
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 3, MARCH 1999 

A Dynamic Extension for L,V Controllers 

Alexandre S. Bazanella, Petar V. Kokotovii., and Aguinaldo S. e Silva 

Abstract-A dynamic state feedback control stmcture is proposed in 
this paper. The scheme is conceived as an adaptive controller with the 
equilibrium in an LgV control law as the uncertain parameter, which 
allows the implementation of the controller for systems with unknown 
equilibnum. A new property of LgV controllers is given, and it is proven 
that this and other important properties carry on to the proposed scheme. 
A synchronous machine case study shows that the pmposed scheme may 
give hetter results than the L,V controller from which it is derived. 

Zndex Terms-Dynamic feedback, passivity, stability domains. 

I. INTRODUCTION 

L,V controllers arise in Lyapunov analysis as a means of providing 
asymptotic stability to a Lyapunov stable system or increasing the 
damping of an asymptotically stable system. This class of controllers 
occupies an important role in the study of feedback stabilizability 
and stabilization of nonlinear systems. Significant results have been 
presented regarding global asymptotic stabilization of Lyapunov 
stable systems [2], [13], [15], involving geometric characterizations 
[6], [9], [l  I], Lyapunov analysis [I 21, and passivity concepts [4]. In 
this paper we study L,V controllers in a slightly different setting, 
which allows us to deal with nonglobal stability and stabilization. In 
fact, our main concem will be to study the effect of the control on 
the size of the region of attraction-or its estimate. 

On the other hand, L,V controllers, as most state feedback 
controllers designed to improve the dynamic performance of a 
system around a given equilibrium point, require the knowledge 
of this equilibrium. This is not a reasonable assumption in many 
control problems, such as in power system stabilizers [10] and 
other applications [I], [16]. We treat the equilibrium as an uncertain 
parameter in the L,V control law and design an adaptive mechanism 
to track it while maintaining the overall system stability. In so doing, 
knowledge of the equilibrium is not required. The resulting controller 
presents a dynamic state feedback structure and is referred to as 
dynamic L,V controller, in opposition to its nonadaptive counterpart, 
referred to as static L,V controller in this paper. Some important 
properties of static L,V controllers carry on to the dynarnic L,V 
controllers. Moreover, in some examples the dynamic L,V controller 
outperforms its static counterpart, as shown by a case study presented 
in this paper. 

The paper is organized as follows. In Section I1 some concepts 
of L,V control are reviewed as we fix the notation and state some 
mild assumptions on the system and the Lyapunov functions to be 
made throughout the paper. It is proven that under these conditions 
an LgV controller enlarges the estimate of the region of attraction of 
the equilibrium. The dynarnic L,V control is presented in Section 111, 
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and it is proven that it inherits the properties of infinite gain margin 
and enlargement of the estimate of the region of attraction from the 
static LgV controllers. The application of the proposed scheme to the 
control of a synchronous machine is presented in Section IV. Finally, 
in Section V the conclusions are given. 

II. LgV CONTROLLERS 

We consider nonlinear systems affine in the input, with the usual 
assumptions for existence and uniqueness of solutions 

j: = f ( x )  + g(x)u 

with x  E X = Wn and u  E U = R"', and its equilibnum xe at 
which it is to operate in steady state 

where the superscript o stands for "operating point." It is assumed that 
xe is an asymptotically stable equilibrium of the open-loop system (2) 

Hence there exists a continuous function V ( x )  which satisfies, in 
some neighborhood 2) of xz 

V ( x )  > 0 ,  v x  E (2) - x:> (3) 

V ( X ~ )  = o  (4) 
L f V ( 2 )  < o  (5) 

where 

L f V ( x )  = - a v ( x )  dx f ( z )  

is the Lie derivative of V ( x )  along the vector field f ( x ) .  The 
Lyapunov function also satisfies a nondecreasing condition, which 
we assume to hold all over the set 2) 

Cv(c1) 3 C V ( C Z )  iff ci > C Z ,  Vcl:  Cv(c1) C 2) 

where Cv(c)  is the interior of the leve1 surface V ( x )  = c and C is 
used in the strict sense. 

Under these conditions, a control law of the form u  = 
- ~ ( L , v ( x ) ) ~ ,  k  > O is called an L,V controller and V ( x )  is 
called an L, V  control Lyapunov function [7], [15]. The closed-loop 
system is then described by 

i = f ( ~ )  - k g ( c ) ( ~ g ~ ( x ) ) T .  ( 6 )  

In a slightly different setting, in which the equilibrium of (1) 
is globally Lyapunov stable, but not asymptotically, such L,V 
controllers have been used to prove some important conditions for 
global asymptotic stabilizability [12]. It has also been noted that 
the L,V control can be interpreted as a unit gain negative output 
feedback imposed on the passive system defined choosing for (1) the 
output map 

Then the above-mentioned result can be seen as a consequence of 
the passivity of the plant (I), (7) and the sirictly positive real (SPR) 
property of the unit gain feedback [4]. This paper is concerned with 
the effect of the control on the size of the region of attraction of 
the stable equilibrium when it does not encompass the whole state 
space. Accordingly, nonglobal asymptotic stability of the open-loop 
system is assumed so that we can talk about the size of the region 
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of attraction of its stable equilibrium. This does not represent loss 
of generality on the class of systems under study with respect to the 
above-mentioned publications, since the asymptotically stable system 
can always be thought of as a Lyapunov stable system that satisfies 
the stabilizability conditions to which a previous stabilizing control 
has been applied. 

A well-known property of LgV controllers is that they guarantee 
infinite gain margin. Also, an LgV controller does not shift the 
position of the equilibrium, since 

point x E n No belongs to 8 Nc. We then conclude that 
a R, n a N, = 0, so that, from Fact 2, 2, # R, and thus 

R, 2 R,. 

We work with negative definite derivative of the Lyapunov function 
and base our results on Lyapunov's theorem for the sake of simplicity. 
For a semidefinite Lyapunov derivative the above result-as well as 
Theorem b c a n  be proven based on LaSalle's invariance principie, 
under the additional assumption that the operating point is the only 
invariant set inside the set {x E Lv(ã,): LfV(x)  = 0). 

which implies that the control vanishes at xz. We now prove a useful IU. rn DYNAMIC EXTENSION 
propeq  of '9' controllers: that t h e ~  enlarge of It is assumed in fie following that the control law is of the fom: 
region of attraction of the stable equilibrium obtained with the sarne 
Lyapunov function. First, let us define some notation and state a few u = - ~ ( L , v ( x ) ) ~  = <p(x) - <p(xz). (8) 
facts needed in the proof. 

Let No be the largest connected set containing the equilibrium such 
Instead of implementing the control law like in (8), the equilibrium 

value of the function ~ ( x )  can be thought of as an uncertain parameter that Lf V ( x )  < O. Then an estimate of the region of attraction of xe A 
can be obtained as 8 = <p(xz). Then a certainty equivalente controller with an adaptation 

mechanism for this uncertain parameter can be applied. The proposed 
R, = ~ v ( ã , )  control structure is 

A 
where E, = max a: Lv(a) c No. Sirnilarly, an estimate of the 
region of attraction of xz in closed loop can be obtained as 

R, = LV(E,)  with A E ? R m X m ,  A = > O. This control structure will be 
A 

where ã, = max a: Lv(a) 2 NC and N, is the largest 
connected set containing the equilibrium such that LfV(x)  - 
~ ( L ~ V ( X ) ) ( L ~ V ( X ) ) ~  < O. Note that Lv(ã,), Lv(ã,), No, and 
Nc are open sets. 

Let a denote the boundary of a set. The following facts come di- 
rectly from the definitions above and the smoothness of the Lyapunov 
function. 

Fact I :  

and 

Fact 2: 

and 

a&, naN,  f0 .  

O 
Fact3: 1 fNc>N0 2Ro,thenaRonaNo > a R , n a ~ , . o  
Theorem 4: Let V ( x )  be an LgV control Lyapunov function for 

the open-loop system (2), satisfying $e continuity and smoothness 
conditions in some domain D > R,, and consider the closed- 
loop system (6). Then R, > R,. If it is further assumed that 
L,V(X)  # ovx E a ~ , n a f i , ,  thenR,  2 R,. 

Proof: The time derivative v,(x) of the Lyapunov function 
V ( x )  in closed loop is 

which implies that NC > No. But then Lv(ã,) C N,, and therefore 
LV(E,)  > LV(E,) ,  that is, Rc > R,. 

Because Nc > No 2 R,, we have a f i o  n aN, L aR, n aNo. 
B U ~ ,  by .assumption, L,V(X) # OVX E a R, n a No, which 
impiies v,(i) < 0 V x E a 2, n a No, so that (from Fact 1) no 

referred to as dynamic LgV controller, in opposition to the original 
control law (8), referred to as static LgV controller. 

Although the Lyapunov function depends on the equilibrium, its 
knowledge usually does not require the knowledge of the equilibrium, 
since the Lyapunov function can be parameterized in terms of a 
generic equilibrium. This point is made clearer in the example. The 
knowledge of the equilibrium is required for the LgV controller 
only at the point of implementation of (8). On the other hand, the 
equilibrium does not appear in (9) and (10) so that the implementation 
of this control does require its knowledge. Thus, &e dynamic 
LgV controller does not require the knowledge of the operating point 
xz, which allows its direct implementation in systems with unknown 
operating point. Moreover, the operating point is invariant under this 
feedback, as shown below. 

Fact 5: To each equilibrium x, of the open-loop system (2) there 
corresponds one and only one equilibrium of the closed-loop system 
(9). (10), and this equilibrium is [xe <pT(x,)IT. 

Proof: A given point [x: 8;lT is an equilibrium of (9), (10) 
if and only if both equations as follows are satisfied: 

Since A > 0, (12) is equivalent to <p(xo) = 00, so that (11) and 
(12) are equivalent to 

Hence [xr 8;lT is an equilibrium of (9), (10) if and only if xo 
satisfies the open-loop equilibrium equation (13) and 80 = ~ ( x o ) .  11 

The positions of the original equilibria are rnaintained in a robust 
way, in the sense that this is a structural property of the control 
scheme and therefore does not depend on the parameters of the 
controller. On the other hand, a11 the equilibria of the original system 
are maintained, not only the operating point xe. 

We shall prove below that the dynamic controller (9), (10) pre- 
serves the stability and the infinite gain margin of the static LgV 
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controiier. The issue of the size of the region of attraction deserves 
more attention because the dynamic controller increases the dimen- 
sion of the state-space of the system. What is to be compared with 
the open-loop region of attraction is the size of the closed-loop region 
of attraction in the r-directions. It is clear that 

and that the operating point of the closed-loop system (9), (10) is 
given by 

Let Rcd be the region of attraction of this operating point. Then we 
are interested in the size of the set k c d f l X .  In other words, we want to 
prove that for any given xl E R,, it follows that [xSeT]  E R,dVe. 

Consider the following Lyapunov function candidate for the closed- 
loop system (9), (10): 

An estimate for the region of attraction of the closed-loop system 
A 

is given by Lu(ã,d), where ã,d = max a: L u  ( a )  C N,d and 
Ncd is the largest connected set containing the equilibrium such that 
c j (x ,  8 )  < O. We are now ready to state our main result. 

Theorem 6: Let V ( x )  be an L,V control Lyapunov function for 
the system (1) and u = p ( x )  - p(xe)  = - ~ ( L , v ( x ) ) ~ .  Then 
[xzT pT(xZ)lT is an asymptotically stable equilibrium of the 
closed-loop system (9), (10) and the control has infinite gain margin. 
Furthermore, R , d  fi X > R,. Finally, if it is further assumed that 
L,V(X) # o v x  E a R , n a N , ,  t h e n R , d n ~  3 R,. 

Proof: Let 

and consider the Lyapunov function candidate (15). Then the Lya- 
punov derivative is 

i j ( ~ ,  i )  = L ~ V ( X )  + L , v ( x ) ( ~ ( x )  - 8 )  
1 + - ( e  - i ) T ~ - l ( - ~ ( p ( ~ )  - i ) )  
k 

which is zero only at the equilibrium [r:' pT(x:) lT,  therefore 
establishing its asymptotic stability. That this control has infinite gain 
margin is clear from (16), since u is negative definite for a11 k > O. 

Takeapoint [xT iT IT  E aLu(ã,) , that is ,  U ( x l ,  i i )  = ã,;then 

and, because V ( . )  is continuous and nondecreasing, xl E Li; (à,). 
But Lv(ã , )  C_ No and therefore 

Now, (16) also implies that ~ ( x ,  O )  < O v [ x T  B T l T :  x E N o ,  so 
that x E No -+ [xT eTIT E N c d  V8 .  

Putting the pieces together, we have 

or, in other words 

which implies that ã,d 2 E,, and therefore L v  ( ã , d )  > C v  (ã,). But 
C U ( E ~ ~ )  n x = l v ( ã C d )  and t h ~ s  

which is the same as 

R,, n x 2 R,. (17) 

NOW, suppose R,d n X = R,. Then, since R,d = Cu(ãcd),  R, = 
Cv (à,), and LU (ã,d) n X = CV (E,), we have ã,d = E,. Since 
Lu (ã,) is the closed-loop region of attraction, a L u  (E,) na  Ncd # 
0. It is clear from (15) and (16) that aCu(ã , )  fi aN,d C X,  
for if aCu(ão )  does not intersect aN,d for 8 = 8 then this 
intersection does not happen for any other either. Therefore, 
a Cu(ã,) n a N,d = a Lv(E,)  n a No. Now, because N,d 3 N o ,  
acv(ão) n aN, # 0. Then 32 E a C ~ ( ü , ) : . i ~ ( x ,  6') = O. But 
since L,V(x)  # OVx E a C v ( ã o )  n aN, ,  U ( x ,  8 )  < OVx E 
a Cv  (E,) ri a No and we have a contradiction. We thus conclude 
that R , d  í l  X # R,, which together with (17) gives 

Rcdn x 3 R,. 

Again we can think of the control as an output feedback for the 
plant (I), (7). Then (16) and the resulting properties of asymptotic 
stability and infinite gain margin are a direct consequence of the 
passivity of the plant (I), (7) and the fact that the feedback presents 
an SPR property. 

IV. AFTLICA~ON TO SYNCHRONOUS MACHINES 
Consider the model of a synchronous machine 

2 1  = 5 2  

52 = -bixs sin x i  - Dx2 + P 

53 =b3 cos xl - b4x3 + E + u  

where xl is the load angle, xz is the shaft speed deviation, x3 is the 
interna1 voltage, u is the control input, and bl, b2, b4, P ,  and E are 
positive pararneters. 

The open-loop (u 2 0) system has multiple equilibria, and the 
operating point is the equilibrium x: = [xy, O x:,lT with 
x l ,  E ( O ,  ~ 1 2 ) .  The operating point is asymptotically stable with 
a Lyapunov function given by 

V ( x )  = xi  + blx3(cos xy, - cos 5 1 ) -  P ( x i  - xy,) 

whose time derivative in open loop is 

where 
A 

d ( x )  = b3 tos xl - b 4 ~ 3 .  

The Lyapunov function is locally positive definite and nondecreasing 
in a region D around the equilibrium, while its time derivative 
is globally negative semidefinite which, together with LaSalle's 
invariance principie, establishes the asymptotic stability of se. An 
estimate of the region of attraction of xe is given by the region D [14]. 
Under these conditions no controller can improve the estimate for the 
region of attraction obtained with this Lyapunov function, although 
an LgV  controller-whether static or dynamic-is guaranteed not to 
reduce this estimate according to Theorems 4 and 6. Moreover, the 
actwl region of attraction can be changed by an LgV controller, as 
will be seen in the sequel. It is also worth noticing that the Lyapunov 
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TABLE I 
PARAMETER VALUES FOR THE CASE STUDY 

Parameter Value (pu) 
bi  34.29 
b? 0.1490 

Fig. 1. Load angle ( x l ,  solid line) and internal voltage ( 2 3 ,  dashed line) 
behavior in open loop for t , ~  = 90 ms. 

function is parameterized in the unknown equilibrium xe, so that 
we do not need to know this equilibrium to obtain its analytical 
expression. 

Symmetric short circuits at the machine's terminal are considered 
the most important disturbances in a power system. It is assumed that 
the short circuit is removed after a clearing time t ,~ .  An important 
secunty measure of a power system is the critica1 clearing time t,,, 
which is the maximum clearing time after which the system will still 
retum to the operating point in a stable manner [14]. Since t,, is 
diiectly related to the size of the region of attraction of se, the latter 
is of major importance in power systems operation. On the other 
hand, the dynarnic performance of the machine following a major 
disturbance is also of great concem. A controller that provides both 
improved damping and increased critica1 clearing time is thus highly 
desirable. 

Consider a case study, with the system parameters given in Table I. 
Then the operating point is 

1.12 rad 
x:= [ o 1 .  

0.914 pu 

By simulating short circuits with increasing clearing times the 
critica1 clearing time for the open-loop system is found to be 90 
ms. Fig. 1 presents the response of the open-loop system to a short 
circuit at the machine's terminal with exactly this clearing time. 

The region of attraction of x t  can be visualized by means of a 
trajectory on its boundary, which can be obtained by the procedure 
bnefiy descnbed below. The boundary of the region of attraction of 
x: in the synchronous machine case is the stable manifold of the 
closest unstable equilibrium-which we denote se. If we linearize 
the system around se then the eigenvectors associated to the stable 
eigenvalues of this linearization define a vector space which is tangent 
to the stable manifold of xe.  Then points arbitrarily close to the 

w (radls) -5 O delta (rad) 

Fig. 2. Trajectory on the boundary of the region of attraction in open loop. 

Fig. 3. Load angle and internal voltage behavior with the static LgV 
controller; k = 1, t,i = 60 ms. 

stable manifold of xe can be obtained as a small perturbation from 
this equilibrium along some direction inside this tangent space. If 
the system is simulated in reverse time with such a point as the 
initial condition, then the resulting trajectory will remain arbitrarily 
close to the boundary of the stable manifold of x,". Details of this 
trajectory reversing approach are given in [SI and [8]. This procedure 
has been applied to obtain trajectories arbitrarily close to the boundary 
of the region of attraction for our case study in open-loop and with 
the controllers proposed. The trajectory obtained for the open-loop 
system is shown in Fig. 2. 

Consider now a static LgV controller 

which is of the form (8) with p ( x )  A k$(x) .  The Lyapunov derivative 
under this control law becomes 

It can be seen in Fig. 3 that this static LgV controller provides the 
system with better damping. However, the region of attraction is not 
enlarged, as shown in Fig. 4. 
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delta (rad) 

Fig. 4. Trajectory on the boundary of the region of amaction with the static 
L,  V controller; k = 1. 

0.8 
O 2 4 6 8 10 12 14 16 18 20 

time (sec) 

Fig. 5. . Load angle and interna1 voltage behavior with the dynamic L,V 
controller; k = 1, a = 1, t , ~  = 108 ms. 

The dynamic extension of the above LgV controller is given by 

with a > O. Fig. 5 shows that the dynamic performance of the system 
with this controller is better than that obtained with the static L,V 
controller. Moreover, Fig. 6 shows that the region of athaction is 
considerably larger than in open loop and with the static controller 
(notice the different scales in the plots). Indeed, a critica1 clearing 
time of 108 ms is obtained with this controller, which is 20% larger 
than in open-loop. 

V. CONCLUSION 
A dynamic state feedback scheme has been proposed for the control 

of nonlinear systems. This dynamic L,V controller derives from 
a static L,V controller by treating the equilibrium of the open- 
loop system as an uncertain parameter and applying an adaptation 
mechanism to estimate this parameter. It has been shown that the 
proposed control structure preserves the properties of infinite gain 

o 
delta ( r d )  

Fig. 6. Trajectory on the boundary of the region of attraction with the 
dynamic L,V controller; k = 1, a = 1. 

margin and enlargement of the estimate of region of attraction 
present in LgV controllers. The dynamic L,V controller does not 
require the knowledge of the operating point, which is invariant 
under this feedback. Fiirthermore, the proposed scheme may yield 
a better performance than the original L,V controller from which 
it is derived. This is indeed the case for the excitation control of 
synchronous machines, as shown by the case study presented. 
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