
~ l

Bridging the gap between control theory and its application to complex
industrial processes requires translating process requirements into

economical, reliable software-a task control engineers can now undertake.

Control Software Specification
and Design: An Overview
Cláudio Walter, Universidade Federal do Rio Grande do Sul

A1though much remains to be done in control theory,
it has already developed a significant body af knowledge,
composed af models and ident ification and optimization
methods. This knowledge is often ve ry sophisticated
ando when applied 10 relatively rapid and complex in·
dustrial operations and design, it may requi re substantial
engineering support. While operations can already be
performed by compUlers, design remains largely a
human domain where trial and errar, experience and in·
tuitian come into play.

Currem cont rol system design fo r industrial applica·
tions corresponds essent ially to stat ing lhe process re­
quirements, specifying lhe fu nclions to be performed,
then implementing them in software. This art icle surveys
techniques in lhe field of control software and design,
noting part icularly the need fo r clear specifications and
engineering methods. lt provides the basis for predicting
the general direction of improvements in contrai system
design allowed by the deve lopments in computer lechnol­
ogy a nd artific ial intelligence.

Control system design needs

A glance at computing systems and process control ap­
plications revea ls a significant reduct ion of the hardware
cosH o-funct ion rat io, leading to a much broader range

- <~ ~- ,~~~~~~ -

STATE
CONTROLLEO

L CONTROLLER
PLANT

COMMANOS

of appl ications lhan imaginable 20 years ago. This trend
is expected to hold duri ng lhe eighties, due to higher
scales of integration of electronic componenls. The
result ing sophistication of lhe applications and the in­
creased complexity of their control algorithms turn soft­
ware, which includes system analysis, engineering,
programming, and testing, into the most expensive item
of a controI system and often a significant part of lhe
overa ll investment in an industrial plant.

Unfonunately, one cannot consider software produc­
tion without thinking about software errors, which stem
from several causes. To start with, the customer who
orders a software system may not know precisely what he
wants. When discussing his ambiguous, incomplete, and
sometimes contradictory specifications with the supplier,
both customer and supplier may make diverging assump­
tions, thinking lhat they understand one another. The sup­
plier then proceeds to introduce his own errors through in­
ternai communication problems within his staff and
through the very nature of computer programrning.

The fault does not lie entirely with the people involved.
The culprits are the traditional means for specification
and developrnent. Free-syntax, informal specifications
are c1early inadequale to define software and lead to
unforeseeable costs, de lays, and often unsatisfactory
result s. It follows lhat praclical formalisms and software
productioo too ls and controls are needed. Some have
already been introduced. The existing efforts and their
contexts rnerit considerat ion.

Control and software engineering

A control system, or process, can be divided into lhe
controller and the controlled plaot, as shown in Figure 1.

ENV
PROCESS

IRON MENT A control design job can be broadly defined as specifying
and implementing the functions that drive lhe inputs 50

that a plaot performs a specified processo Design can be
Figure 1. Partition of a process Into controller and plant. broken down into two successive, but ofteo overlapping

20 00 18-9162/84/0200-OO20S01.00 © 19841EEE COMPUTER

tasks-control engineering and software engineering-as
illustrated in Figure 2.

Given a plant and lhe process that it is expected to per­
forrn-lhe requirements specifications-control engineer­
ing establishes the functions of lhe controller. CE is sup­
ported by control and automata theories. A significant
part of its task is performed during lhe user-designer in­
teraetioo at lhe beginning cf lhe project. It is straightfor­
ward when applied, for instance, to monovariable, con­
stant-pararneter, linear syslems, where a satisfactory feed­
back ean be quite easily established from the given piam
transfer function and from the overall process-time and
frequency-domain requirements. Unfortunately, most
real processes are not so simple, and besides their
mathematical complexity, the uncertainty of the incom­
pleteness and inconsistency of the process specifications
become sources of difficulty. Although such problems are
typical of control engineering, LOols borrowed from soft­
ware engineering usually assist in structuring, consistency
checking, and providing documentation facilities to solve
them.

Software engineering, or more precisely control soft­
ware engineering, implements the specified control func­
tion as an executable computer program, accommodating
such criteria as safety. readability, and flexibility. While
control software engineering tools may help in stating the
function of the software to be generated, they generally
provide only very broad guidelines-structural rather than

CDNTlNUOUS ASPECTS

functional-for the actual design of the software specifi­
cations from process requirements. Here control and soft­
ware engineering may overlap because the process/ plant
specifications are included in the control software
specifications, instead of just leading to them. The overlap
can be explained by:

• Designer psychology: It is convenient for the designer
to simulate the process on paper and in his mind while
developing the control specifications.

• Observer theory: It is often necessary for the con­
troller to include a model-the observer-which
reconstitutes the state of the process from limited
captor information. This modeling occurs in some
classes of ar'.aptive control functions and very often
with the sequential aspects of processes, which can be
represented by finite automata.

Comparing contrai software and general-purpose soft­
ware engineering, we see that both have software func­
tional specifications as the starting point and an executable
program as a product. CS engineering extends GPS
engineering in the same way as, say, real-time Fortran ex­
tends common Fortran. CS can be specified using GPS
specification languages, but' the resul! will probably be
harder to write and read because CS specification
languages incorporate as primitives some constructs that
would be expressed as composite instructions of GPS
specification languages. These constructs-real-time, syn-

DISCRETE ASPECTS

f PlANT (PROCESS 11 PlANT ANO PROCESS (
SPECIFICATlON I SPECIFICATlON) SPECIFICATION

L------r-+ --~.~=====r----~: L------,r----J

,---------'''---,

CONTROl
ENGINEERING

r:-- -- - -::l'
.. DS : DOCUMENTATION'I I

,...- L_SIMI!.:.A~O~ __ I I
L-___ +.---____ -' I ,--______ L-________ ---,

I
)

\

CONTROllER FUNCTION
SPECIFICATlON

+
SOFTWARE
ENGINEERING

CONTINUOUS CONTROl MODULES í ..

I
I

CONTROl ENGINEERING
SOFTWARE ENGINEERING

I L--------r----------~

I

\L-~S~Ea=U=E=N=TI=A=l =CO=N=T=R=Olr-M_OD_U_l_ES ________ ~\
•

I SOFTWARE ENGlNEERING
["-------

- - I DS: STRUCTURING,
- -,

I
+ I PARAMETER CHECKI NG I

) (
1..- ___ ___ _ _ _ ...J

CONTROl PROGRAM

+
I COMPUTER ENGINEERING I

•
\ CONTROl SYSTEM \

Figure 2. Specification and design of the controller. OS identifies funct ions of the development system.

February 1984 21

22

chronization, co mmun ication , etc.-are related to
cont rol-system appl icat ions in envi ronments with real­
lime constraints and orten wit h a high degree of
parallelism. Finally, the control program has to be ex­
ecuted on a computing system with appropriate hardware
and software support, whose design/configuration is a
computer engineer ing task.

During the last decade, software designers have tried to
create"cont ro l-software development systems that provide
the designer-analyst-programmer wilh too ls fo r the cost­
effeclive generation of dependable software. The tools
case the designer's task by

• guiding his steps as he deve lops software re­
quirements,

• providing parameter and range checking when con­
tinuous and sequential control modules are knit
together into a control program, and

• automating the documentation.

Among the most significant design tools are

• the EPOS 1 specification system, with severa l
modules now operat ional and others in development;
its starting point is a formal model of cont rol soft­
ware requirements, which specifies the controller
funct ions for each state and event;

• PCSL,2 which is essentially a language based on the
PSL general software speci fication system,3 and its
improved offshoot, Espreso 4 ;

• lhe SARS5 system, inspired by R-nets 6; and
• the Mascot 7 system, a software specification, de­

velopment and management tool based on "channel
and activity" nets.

These systems are based on graphical and / or textual
speci fication formalisms.·

Controller design 01 industrial processes

The function of a development system is determined
largely by the different aspects-sequential and continu­
ous-presented by industrial processes. An industrial pro­
cess, for instance, is composed of concurrent sets of se­
quential activ ities, each corresponding to a transformarion
on one o r more of the att ributes of the objects it acts upon.
Each activity within lhe process can be defined by lhe
range af attribute values acceptable for its incaming and
outgoing objects. When these abjects are observed from
the outside, an activity is a step among others performed
before, concurrently, or afterwards. But when an activity
is considered intrinsically, it is always continuous and con­
tro lled by continuous control algorithms, which may be
inlerpre ted continuously o r sampled for computer
comroJ.

The aspect lhat carries the most complex component of
a process or its main function determines whether a pro­
cess is considered sequential or cont inuous. A pape r pulp
production process, for instance, is generally regarded as
continuous. It can, however, be regarded as a set of clearly

• A detailed discussion of Ihese syslems falls beyond the scope of this anicle:
refer to artides in the May 1982 issue of Cnmpuler(Vol. 15, No. 5) on Te­
quiremenls speçifjcations for a survey covering several approaches and
syslems.

identifiable sequential steps, each with its own inpUI and
OUlput object specificat ions. In batch processes, such as
steel production, the operation on a batch within each ac­
tivity (5uch as melting or refining) is continuous, while lhe
transfer of batches between furnaces and other equipment
can be regarded as an interval in lhe sequence of events.

Sequential and continuous aspects differ considerably
in difficuhy of analysis, controller specification, and
design techniques. The difference lies in lhe resolulion
characleristics produced when continuous phenomena are
partilioned imo discrete steps. Partitioning reduces resolu­
tion. On the other hand, increased resolution results in an
increased bandwidth ; the o rder of the significant deriva­
tives also increases, and lhe system becomes harder to
describe and to treat mathematically.

The sequential aspects of physical phenomena can be
represented by fin ite automala. which are easy to con­
SIruct from the informa l underslanding of lhe processo We
have 10 consider only the successive states and lhe events
that indicate the state transit ion of the processo These tran­
sitions are subject to few disturbances, and the ir conse­
quences can be foreseen. At most, a dislurbance might
modify the expected behavior by taking the system into an
exceptional , but represented state or by altering lhe timing
of the expected transition.

T he main formalisms derived from finite aUlOmata are

• state graphs, ge nerall y used in sw itc hin g
applications 8,9 ;

• finite interpreted Petri-nets,I O which facil itate the
specification of parallel activities; lhey are used as
theoretical models for the process specificat ion and
control language Grafcet 11 ; and

• LL (1) grammars, used for lhe specificat ion of the
process behavior. 12

The grammar that specifies a process can be translaled by
a grammar lransformer into a control programo Process
specificalion grammars are rarely used, possibly because
they require a bulky grammar lransformer. Still the con­
cept is e1egam and may become of practical interest with
the increase of computing power.

When applied to the sequential aspecls of an industrial
processo the operation of a control software specificarion
and development system can be expressed by the following
sleps:

(1) Specify lhe contro lled plant: generally, the plant is
defined by lhe physical transforrnalions it is ex­
pected to perform.

(2) Specify the process-the sequence in which these
transformations should occur-and their param­
elers.

(3) From the specifications, derive the controller func­
tion and the corresponding software analytically.

Besides lhe automatic derivation of the controller , lhese
formalisms al10w lhe verification of aspecls of interest,
such as the boundedness and deadlock potential provided
by analysis packages Iike Ovide. 13 The overlapping con­
trol engineering and software engineering tasks can be
automatically perforrned by the developrnent systern, as
shown in Figure 2.

COMPUTER

Continuous aspects of industrial processes are often dif·
ficult to represent accurately because of the quantity and
resolution of the variables involved. Their behavior is af·
fected by noises and other environmental disturbances.
This complexity can be partially handled by adaptive con·
trol concepts and techniques, but as a whole, the auto ma­
tic derivation of continuous control algorithms in practical
applications is still very limited. As a consequence, the
control engineering of continuous processes remains large­
Iy an iterative process, in which successive simulations and
human interaction combine to yield satisfactory results.
Development systems are used mainly to provide docu·
mentation and simulation support to the designer. And
once the control function has been established, it is the
task of software engineering to support the implementa·
tion by means of programming languages that allow the
control function to be specified with a syntax related as
nearJy as possible to the nature of the application
(Figure 2).

Over the long term, significant advances can be ex·
pected. One contribution will certainly come from the
developrnent of software engineering. Another, which is
more significant from the control poim of view, originates
in the developrnent of better process models and artificial
intelligence. In the early nineties, fifth·generation com·
puters are expected to provide the computing power
necessary to develop expert systems-sophisticated pro·
grams and interpreters with predicate calculus and learn·
ing capacity. One of the most important results of this
development will be an explanation of why designs are as
they are; it will clarify a discipline that is now hidden
behind largely intuitive and/or empirical decisions.

According to reports about present experimental sys·
tems,I4 control design expert systems will operate along
the following lines:

(1) A human "expert" team will introduce and im·
prove technology by developing mathematical,
physical, chemical, econornic, and ergonomical
rules, as well as application·oriented process and
control models and rules.

(2) With the assistance of an application-oriented
dialog, users will introduce environrnent informa·
tion, such as raw materiaIs, human resources and
equipment availability, and cost, in addition to re·
quirements specifications that state desirable
features, acceptable ranges of process, and plant
variables.

(3) Users will extract controlJer specification and 50ft·
ware and process simulation data from application·
oriented dialogs.

(4) The systems' learning capacity will improve the
quality of results and knowledge introduced in (1),
by analyzing data provided by operating plants.

Present-day computer-aided specification and design tools
already emulate particular classes of applications of these
"true" expert systems. The pressing need for faster design
of more dependable software, together with the com­
puting resources now at our disposal, promise a rich and
stimulating field of software research for the next 10 to 20
years .•

February 1984

Acknowledgments

This work is partially supported by grant 30.1461/81 of
the CNPq (Conselho Nacional de Desenvolvimento Cien­
tifico e Tecnológico).

References

I. J. Biewald et aI., "Real-Time Features of EPOS: Formula­
tion, Evaluation and Documentation," Proc. 10th
IFAC/IFlP Workshop Real-Time Programming, 1980, pp.
95-100.

2. J. Ludewig, "Process Contrai Speeification in PCSL,"
Proc. 10th IFAC/IFlP Workshop Real-Time Program­
ming, 1980, pp. 103-108.

3. D. Teichroew and E. A. Hershey, "PSL/PSA: a Computer­
Aided Technique for Structured Documentation and
Analysis of Information Processing Systems," IEEE Trans.
Software Eng., Vol. SE-3, No. I, lan. 1977, pp. 41-48.

4. J. Ludewig, "ESPRESO-A System for Process Control
Software Speeification," IEEE Trans. Software Eng., Vol.
SE-9, No. 4. July 1983, pp. 427-435.

5. W. K. Epple and G. R. Koch, "SARS; a System for
Application-Oriented Requirements Speçification," inter­
nai report, Univ. of Karfsruhe. 1983.

6. M. V. Alford, "A Requirements Engineering Methodology
for Real-Time Processing Requirements," IEEE Trans.
Software Eng. Vol. SE-3, No. 1, lan. 1977, pp. 50-69.

7. The Official Handbook of Mascot, Mascot Suppliers
Association, London, 1980.

8. J. V. Landau, "State Description Techniques Applied to in­
dustrial Machine Control," Computer, Vol. 12, No. 2, Feb.
1979, pp. 32-40.

9. B. Taylor, "A Method for Expressing the Functional Re·
quirements of Real-Time Systems," Proc. !Oth IFA C/lFIP
Workshop Real-Time Programming, 1980, pp. 111-120.

10. J. L. Peterson, "Petri-nets," Computing Surveys, Vol. 9,
No. 3, Sepe 1977, pp. 223-252.

li. AFCET, "Pour une representation normalisée du cahier de
charges d'un automatisme logique," AUlomatique et Infor­
matique Industrielles, No. 61 , Nov. 1977, pp. 27-32.

12. F. Anceau and J. Bordier, "A Syntactic Method for Pro­
gramming Sim pie Industrial Control Applications with
Microprocessors," Euromicro Symp. Large Scale Integra­
tion, North-Holland. Amsterdam, 1978, pp. 324-328.

13. E. Le Mer, " OVIDE: A Software Package for Verifying
and Validating Petri -nets," Proc. Third IFAC/IFIP Symp.
Software for Computer Control, 1983 .

14. "The Concept of Expert Systems," lnfotech State oftne Art
Report, Sedes 9, No. 3, 1981.

Cláudio Walter is a professor for computer
contrai at the Universidade Federal do Rio
Grande do Sul in Porto Alegre, Brasil. He
has done research in the field of require­
ments specifications and worked with
micraprocessor applications to instrumen·
tation, besides consulting in industry. He
holds a BSEE and a MSc in computer sei­
ence from UFRGS. From 1978 until 1981,
he was at the Institut National Poly·tech­

nique de Grenoble, France. where he earned a Docteur-Ingénieur
degree.

His address is Pós-Graduação em Cieneia da Computa­
ção/Dep. Eng. Elétrica, Universidade Federal do Rio
Grande do Sul, 99 A v. Oswaldo Aranha, Caixa Postal 150 I,
90.000 Porto Alegre, RS, Brasil.

23

	ComputerFeb19840001
	ComputerFeb19840002
	ComputerFeb19840003
	ComputerFeb19840004

