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V is  u a l i z a T i o n  C o r n e r

M arching cubes1 (MC) is 
currently the most popular 
algorithm for isosurface 

extraction. It’s elegant, simple, fast, 
and robust. Although the output mesh 
that MC generates is adequate for vi-
sualization purposes, it’s far from suit-
able for use in numerical simulations. 
This deficiency arises from the degen-
erate triangles that MC typically gen-
erates—a single badly shaped triangle 
can lead to the ill conditioning of an 
entire finite element simulation.2 The 
current practice is to solve this prob-
lem by postprocessing,3,4 but here we 
present a simpler alternative. We first 
elucidate the causes of bad triangles in 
MC, and then mitigate the problem 
with small specific changes.

Edge Groups
We base our discussion of MC on the 
notion of edge groups, recently intro-
duced in another study.5 Each MC 
case generates up to five triangles, 
which are directly encoded in a fixed 
table. More importantly, each triangle 
is created using vertices placed along 
the edges of a fixed cube, which limits 
the number of ways a triangle is gen-
erated. We then identify equivalent 
triples of edges under the cube’s sym-
metries, and arrive at eight different 
edge groups, illustrated in Figure 1.

Surprisingly, a single-edge group 
produces most degenerate triangles 

in MC. Some cases in the MC table 
admit different triangulations, which 
use different edge groups. By system-
atically analyzing each case in the MC 
table, we build on our previous work to 
generate a table that leads to improved 
triangle quality.5,6 Here, we focus on 
the practical aspects of improving MC 
to generate better-shaped triangles. 
The new, improved table is available 
at www.sci.utah.edu/~cscheid/edge 
_groups, together with supplemen-
tal material showing more extensive 
comparisons and results.

Marching Cubes Tables
Given a node-centric volumetric ar-
ray of data approximating a scalar field 
f(x, y, z) : R3 → R and a scalar value 
k ∈ R, MC produces a triangular sur-
face that approximates the level set f(x, 
y, z) = k (called the isosurface). MC’s 
implementation follows a straightfor-
ward pipeline of actions executed for 
each cell in a given volume. It starts by 
computing each cell vertex’s sign, de-
termined by simply comparing a given 
vertex’s scalar value with k. The signs 
of all vertices from a cube define an 
8-bit value that identifies a particular 
case in MC. This value indexes two 
predefined tables: an active-edge table 
and a triangulation table (Figure 2).

The active-edge table identifies, for 
each case, which of the cell’s edges the 
isosurface crosses and therefore which 

intersections to compute. The trian-
gulation table correspondingly gives 
the set of triangles that the active edg-
es will generate. A single MC case can 
generate up to five triangles. Most im-
portantly, the encoding of some cases 
isn’t unique. Any triangulation that 
has the same topology as the continu-
ous level set that it’s approximating is 
seen as equally good. As we will ex-
plain in the next section, the notion of 
edge groups lets us effectively choose 
triangulations that generate system-
atically better triangles.

Analysis of Marching Cubes’ 
Edge Groups
In our approach to improve MC, we 
use quality information given by the 
edge groups involved in any particu-
lar triangulation. We then pick the 
one that maximizes some criteria. 
Here, we mainly use the radii ratio of 
incircle to circumcircle normalized to 
lie between zero and one; with zero 
representing a degenerate triangle and 
one an equilateral triangle.7 However, 
the same idea directly applies to other 
measures such as minimal and maxi-
mal angles, as we show in Figure 3.

Our first analysis of the impact that 
different edge groups have comes 
from plotting the probability density 
function (PDF) of triangle quality 
for randomly selected triangles from 
each of the edge groups. In this ini-

Most computational codes that use irregular grids depend on the worst triangle’s quality. Marching cubes 
(MC) is the standard isosurface grid generation algorithm, and, whereas most triangles it generates are good, 
it almost always generates bad triangles. Here, we show how simple changes to MC can lead to a drastically 
reduced number of degenerate triangles, making it a more practical choice for isosurface grid generation.
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tial model, the triangle distribution 
is given by assuming a uniform dis-
tribution of triangle vertices along 
edges and that the vertex choices are 
independent across edges. This gives 
a PDF for each edge group (see Figure 
3). Clearly, edge group 2 has a qualita-
tively different behavior than the oth-
ers: it creates a substantial fraction of 
degenerate triangles.

Dietrich and his colleagues col-
lected edge group statistics on a col-
lection of 30-volume datasets to test 
the robustness of the distribution as-
sumptions for each edge group.5 One 
experiment shows edge group fre-
quency data over isosurfaces extract-
ed from each of the 30 volumes. The 
results show, as we would expect, that 
edge groups are not equally probable. 
The second set of statistics presents a 
much clearer picture. By counting the 
edge groups of the 1,000 worst trian-
gles in each of the 30 extracted iso-
surfaces, they found that edge group 
2 is responsible for, typically, more 
than 60 percent of the worst 1,000 
triangles in any given dataset, and, in 
some cases, close to 95 percent. Our 
strategy, then, is to systematically 
change the MC tables to remove the 
occurrence of edge group 2.

Improving Marching Cubes
Edge groups motivate a simple crite-
rion for improving the MC table. In 
another study, Dietrich and his col-
leagues propose that a retriangula-
tion in certain table entries prevents 
edge group 2 from occurring.5 Their 
proposal focuses on only a few MC 
cases, namely cases 5, 12, 11, and the 
complement of case 6.8

These changes update 96 entries 
of the MC table (120 entries if the 
table is constructed with the comple-
ment of case 6) but still leave 56 en-
tries with occurrences of edge group 

2.8 For some MC cases, however, we 
can’t remove edge group 2 by simply 
retriangulating the case: every tri-
angulation of these cases includes an 
instance of edge group 2 (see the left 
column of Figure 4).

Inserting a New Vertex in the Cell
As we’ve discussed, retriangulating 
the intersection’s vertices can’t re-
move instances of edge group 2 for 
some MC cases. In these situations, 

we turn to an alternative approach. 
By adding an additional vertex in the 
cell’s center and connecting it to the 
intersection’s vertices of active edges, 
we remove edge groups entirely from 
the MC table. We illustrate the result-
ing triangulations in Figure 4. A simi-
lar approach was used in contexts as 
diverse as dual MC meshes9 and MC 
mesh simplification,10 but here we 
emphasize its impact in connection to 
MC mesh quality. Additionally, im-
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Figure 1. The eight edge groups in marching cubes (MC). Every triangle in every 
MC configuration is created by one of these edge combinations.
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Figure 2. MC pipeline. The active edges encoded in the edge table necessarily 
cross the isosurface and are illustrated in orange. The triangulation table 
determines how to connect the vertices that lie on the active edges, which 
creates the triangles for each patch. Creating the entries of the triangulation table 
carefully improves the triangle quality of MC.
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plementing this change requires only 
small changes to the MC code.

To understand how adding an ex-
tra vertex can improve triangle qual-
ity, look at the new configuration 
using the cell center as an additional 
edge group with only two edges. This 
single group generates all triangles 
shown in the right column of Figure 
4. More importantly, its quality histo-
gram is comparable to the best edge 
groups of the cubic cell.

The new vertex’s position in the cell 
depends on the MC case. The cell’s 
center can be a good choice for MC 
case 9 (see Figure 4a). In this case, a 
new triangulation with a vertex in the 
center of the cell will be close to the 
original MC triangulation. On the 
other hand, a new triangulation with 
a vertex in the center of the cell can 
result in artifacts in the complement 

of MC case 3. The artifacts are visible 
in situations where all intersection 
vertices are close to the cell’s negative 
vertices (blue vertices in Figure 4), 
in which the new vertex’s distance to 
the isosurface is maximal. To alleviate 
this problem, the new vertex is placed 
along one of the original MC triangu-
lation’s edges—that is, in the middle 
of the longest edge of the triangula-
tion. This guarantees that the new 
triangulation is close to the original 
triangulation that the MC generates.

These changes in the edge table im-
prove the triangulation quality. How-
ever, most of the value comes from 
the synergy the new table has with the 
change to MC, discussed in the next 
section. Together, these two changes 
are such that the triangles that the 
suggested MC generates compare fa-
vorably to the state of the art.

Transforming Active Edges
The second change to MC is based 
on Macet algorithm6 and consists of 
perturbing the active edges on which 
intersection vertices are computed. In 
this work, they propose to move (by a 
small amount) the two edge endpoints 
inside the volume, and then the com-
putation of the edge vertex proceeds 
as normal. Macet adds two new inter-
mediate steps to the MC pipeline. The 
edge transformation step alters the 
positions of each edge extreme along 
the gradient or tangent directions. 
The second step, when necessary, 
displaces the intersection points away 
from edge extreme. Together, these 
steps tend to create active edges that 
are locally perpendicular to the isosur-
face, which leads to improved triangle 
quality. To enforce valid placement of 
edge endpoints (that is, not crossing 
the isosurface), Macet performs edge 
transformations in several steps with 
smaller displacements along the pro-
posed direction (in our experiments, 
we used eight steps).

As described, the Macet propos-
al’s drawback is that it doesn’t have 
a criterion for choosing which edge 
transformation to use. Instead, it per-
forms both transformations and does 
a neighborhood analysis that chooses 
the transformation that leads to local 
improved triangle quality. Whereas 
the local analysis is fast, the cost of 
using both transformations still leaves 
room for improvement.

In another study,5 we gave a different 

Figure 3. Edge groups and the quality of their corresponding triangles. Histograms for radii ratio, minimum angle, and 
maximum angle show how triangle quality varies in each edge group. Edge group 2’s radii-ratio histogram shows that this 
group produces more degenerate triangles than any other edge group.

New edge group

Edge group 4

Edge group 3

(a)

(b)

Figure 4. New triangulation. Placing a new vertex in the middle of the cell allows 
the removal of edge group 2 in MC case 9 (a) and the complement of case 3 (b) 
by retriangulating the intersection’s vertices with the help of an additional vertex.
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interpretation for edge transformation 
that makes room for edge transfor-
mation unification. We formulate the 
edge transformation as a projection 
operation of the edge midpoint onto 
the plane tangent of the isosurface. 
The same result can be accomplished 
by using a new approach with unified 
edge transformations. To accomplish 
this, we identify the edge extreme 
closest to the isosurface—this one will 
be subject to interleaved edge transfor-
mations using gradient and tangential 
transformations (eight in total, four 
for each type). The use of alternate 
transformations in sequence combines 
the properties of each transformation 
without requiring a second edge trans-
formation step or subsequent neigh-
borhood analysis. We move the other 
extreme to the edge’s midpoint, which 
is what the projection operation advo-
cates, under ideal circumstances.

W e evaluated the impact of the 
new MC table and unified 

Macet with experiments using a col-
lection of 23 datasets. We summa-
rize the results in Table 1 (full results 
are available online at www.sci.utah.
edu/~cscheid/edge_groups). We com-
pare results using two methods: the 
original MC and the unified Macet 
with the extended edge table. For each 
case, we report minimal and maximal 
angles (θ0 and θ∞) and radii ratio (ρ).

Results clearly demonstrate that 
the unified Macet approach using the 
new MC table generates consistently 
improved triangle quality in all data-
sets, with the worst radii ratio being 

0:43. An intuition of the impact of the 
unified Macet’s changes (see Figure 5) 
shows a zoomed version of a portion 
of the Bonsai dataset.

Table 1 also shows that edge group 
2’s removal from the MC table results 
in an improvement of the maximum in-
ternal angle (θ∞) quality measure vary-
ing from 25 degrees in cross dataset to 
47 degrees in Neghip dataset, even in the 
original MC algorithm. Edge group 2 
is the only group that can generate arbi-
trarily obtuse triangles. Removing this 
case, the largest angle in MC is bound 
by 118.6 in all cases we tested.

As future work, we intend to con-

tinue our analysis of edge groups and 
use our findings to design more ef-
ficient triangulation algorithms. We 
also want to inspect how the proposed 
techniques work for adaptive subdivi-
sions (that is, where you have cells of 
different resolutions).�
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Table 1. Triangle quality for MC and suggested variants.*

Name MC with old table Macet with new table

θ0 θ∞ ρ θ0 θ∞ ρ

Chest CT 0.08 179.0 0.0 17.9 118.6 0.46

Bonsai 0.38 178.7 0.0 17.6 119 0.45

Shockwave 1.26 175.7 0.0 20.7 110.7 0.52

Silicium 0.66 177.4 0.0 18.7 117.3 0.47

*Results are typical of all datasets tested—a full set of results with all 30 datasets available online at www.sci.utah.edu/~cscheid/
edge_groups.
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Figure 5. Triangulation results. The MC mesh (left) shows many badly shaped 
triangles generated from edge group 2, as the one highlighted in the zoomed 
image, whereas the new MC table using the unified Macet algorithm results in an 
optimal mesh.
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Related Work

Our proposal for improving the MC triangulation 
quality is simple and effective, and represents one of 

many proposals in the area. Gibson1 (with improvements 
by other researchers2) proposes a method based on MC 
that places sampling points at the center of each active 
cell (a cell crossed by the isosurface) and connects them to 
sampling points in adjacent cells. These generate meshes 
that are, in a sense, dual to the traditional MC triangula-
tion. Nielson specifically proposes the dual MC algorithm.3 
Our insertion of an extra vertex in MC cases where we 
can’t completely remove edge group 2 is an application of 
these dual techniques.

Our proposal for an improved MC involves directly chang-
ing the polygonization process. A similar idea also motivated 
Tzeng,4 and Labelle and Shewchuk5 not only to improve 
tetrahedral mesh quality by warping the grid in which the 
boundary extraction happens, but also to use a body-cen-
tered cubic lattice instead of the traditional cubic one.

Finally, Raman and Wenger propose a slightly different 
approach:6 instead of warping the computational grid, 
they perturb the scalar field directly and explicitly treat 
the cases where the isosurface touches the grid’s vertices. 
The modified MC table is much larger (38 entries before 
coalescing symmetric cases, instead of 28 in the regular 
MC algorithm), and the authors recommend a computer-
based table construction. Additionally, their method tends 
to change the resulting mesh’s topology and generates 

nonmanifold surface meshes. Still, the method is conceptu-
ally very simple and amenable to parallelization.

Ju discusses ways to modify the triangulation encoded 
in the MC tables.7 Instead of a static table, the proposed 
algorithm uses decision trees to identify the triangulation 
to choose in such a way that forms convex contours. This 
approach can be used to choose the best possible triangu-
lation based on a particular cell’s actual configuration.
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