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Abstract—In deep-submicrometer technologies, process vari-
ability challenges the design of high yield integrated circuits. While
device critical dimensions and threshold voltage shrink, leakage
currents drastically increase, threatening the feasibility of reliable
dynamic logic gates. Electrical level statistical characterization
of this kind of gates is essential for yield analysis of the entire
die. This work proposes a yield model for dynamic logic gates
based on error propagation using numerical methods. We study
delay and contention time in the presence of process variability.
The methodology is employed for yield analysis of two typical
wide-NOR circuits: one with a static keeper and another without
the keeper. Since we use a general numerical approach for the
calculation of derivatives and error propagation, the proposed
yield analysis methodology may be applied to a wide range of dy-
namic gates (for instance pre-charge dynamic gates using dynamic
keeper). The proposed methodology results in errors less than
2% when compared to Monte Carlo simulation, while increasing
computational efficiency up to 100 .

Index Terms—Design for yield, Monte Carlo methods, proba-
bilistic analysis, process variability, VLSI, yield estimation.

I. INTRODUCTION

P ERFORMANCE and reliability of deep-submicrometer
technologies are being increasingly affected by process

variations and leakage current [1]. These variations are statis-
tical in nature, and predicting the percentage of manufactured
circuits that will achieve a given performance becomes a major
problem for the circuit designer. Therefore, the use of statistical
methods in circuit design assumes great relevance. When con-
sidering electric level simulations, the statistical characteriza-
tion of circuits must be related to the microscopic features that
cause device performance variability and affect circuit yield.

Electrical parameters variability may be decomposed into pa-
rameters that present spatial correlation (SC) and parameters
that do not present spatial correlation (NSC) [2], [3]. NSC pa-
rameter variability may originate from different sources, for
instance the discreteness of matter and energy (dopant atoms,
photo resist molecules, and photons). A well known example
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Fig. 1. Dynamic NOR.

of NSC parameter is threshold voltage variability due to
the random Dopant fluctuations (RDFs) [4]. RDF are mainly
caused by the irregular distribution of doping atoms above the
channel, and this effect nowadays represents one of the greatest
challenges for the industry [5]. Consider , the standard de-
viation in threshold voltage for minimum-sized transistors. The
dependence of on transistor size is given by [6]

(1)

where is the channel length and is the channel width.
and refer to the minimum geometries of these dimensions.

The spatially correlated parameters can be subdivided into
an inter-die systematic component and an intradie systematic
component. Inter-die systematic variation may originate from
equipment asymmetries (such as asymmetries in chamber gas
flows, thermal gradients and so on) or imperfections in equip-
ment operation and process flow. These asymmetries and im-
perfections affect the mean value of a parameter from die to die,
wafer to wafer and lot to lot. Intradie systematic variations are
due to pattern or layout induced deviation of a parameter from
its nominal value. Parameters such as oxide thickness, transistor
channel length and channel width may show systematic varia-
tions [7]. In the case of a SC parameter , transistors close to
each other are affected by the same constant fluctuation .

Typical topology for a dynamic gate consists of a pull-down
network implementing the Boolean function and one single
pMOS transistor connected to . Fig. 1 shows the schematic
of a typical dynamic wide-NOR gate with inputs. The gate
of the pMOS transistor is connected to the clock signal .
According to the state of , the dynamic gate has 2 phases:
pre-charge and evaluation. When V, the gate is in
pre-charge phase, and the dynamic output is charged to .
By definition, in this phase there is no path from the dynamic
output to GND. After the pre-charge phase, is switched to
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Fig. 2. Dynamic NOR with keeper.

, and the gate is in the evaluation phase. During the evalu-
ation phase, if the inputs are such that the computed output is
logical one, the dynamic output is maintained at , and in
this case there is no power consumption. Otherwise, the output
node is discharged to GND.

MOSFET subthreshold leakage currents are increasing ex-
ponentially across successive technology generations, due to
threshold voltage and channel length reduction [8]. Further-
more, with decreasing device dimensions and supply voltages,
the amount of charge at the circuit nodes used to store infor-
mation reduces. In addition, measures in [9] indicate that the
spread in the leakage current
can be up to 20 in a recent technology node. These effects
impact negatively the robustness and feasibility of wide (high
fan-in) domino logic gates [10]. High fan-in dynamic logic
gates often lead to fewer logic levels, resulting in compact
circuits with better performance and lower power consumption,
when compared to their counterparts in static logic. These wide
gates have been used extensively in the design of the access
circuitry of memory elements and in the control and arithmetic
units of high-performancee processors [11].

In order to increase the circuit noise margin (reducing sen-
sitivity to leakage current, charge sharing effect and coupling
noise), pre-charge dynamic gates can be designed using the tra-
ditional static keeper [12], as shown in Fig. 2. This circuit is
composed of the dynamic NOR of Fig. 1, a static inverter and a
static keeper transistor. If the output is at , the keeper pro-
vides a path from the power supply to the output preventing the
output to be discharged by leakage currents. Although, as the
keeper transistor drives a contention current to the output node
while output contains , this approach implies a significant
performance penalty when an input signal switches.

When a transition occurs, the keeper and pull-down network
transistors compete to determine the logical state of the dynamic
node. The time delay of a transition is inversely proportional to
the keeper transistor size, while the noise margin is directly pro-
portional to it. In the last few years, dynamic keeper technique
emerged as an important research area. Kursun [13] proposes a
technique where a body-bias generator dynamically varies the
threshold voltage of keeper transistor, reducing contention cur-
rent in the evaluation phase. In [10] a design is presented where
the keeper is turned on only if after a given time there

is no transition on the dynamic output. Circuit proposed in [14]
consists of a 3-bit programmable keeper, where a set of fuses is
set during the test phase of the chip. Although recent researches
in this area point to self-adaptive dynamic keeper techniques,
static keeper is still an industry-standard and largely employed.

At gate level, statistical static timing analysis (SSTA) pro-
vides quantitative risk management for the design as a func-
tion of circuit parameters, topology and gate variability [15].
In order to obtain both delay average and delay variance using
SSTA, logic gates must be statistically characterized at electrical
level. The present methodology is an alternative to Monte Carlo
simulation when computing statistical response of logic gates
at electric level. This methodology provides accuracy equiva-
lent to Monte Carlo while reducing running time. Furthermore,
the methodology presents as advantage over Monte Carlo the
capability to compute the variance sensitivity to each random
variable, leading to further yield optimization.

In this work, we propose a probabilistic model to compute
yield of a pre-charge dynamic gate. The methodology presented
in this paper is intended to be generic enough to model response
(e.g., delay, contention time, power and leakage) variability of
any kind of pre-charge circuits, including circuits employing dy-
namic keeper. The proposed methodology shows this potential
for wide applicability because we employ numerical techniques
based on electric simulation for the computation of variance.

This paper is organized as follows. Section II exposes the the-
oretical foundations of error propagation and numerical deriva-
tives for computing yield of logic gates. Section III presents
the methodology applied to the problem of computing statis-
tical delay and contention time of dynamic gates—with and
without the static keeper. Next, Section IV presents results ob-
tained with the proposed method, which is compared to Monte
Carlo on both accuracy and performance. Finally, our conclu-
sions are provided in Section V.

II. YIELD ANALYSIS METHODOLOGY

Consider an electric circuit denoted by , composed
by transistors represented as components of the vector

, interconnected according to a topology
. By definition, the circuit response is given by the func-

tion , where the vectors

and represent,
respectively, the NSC and SC parameters of transistor , is the
number of NSC parameters and the number of SC parameters.

For instance, the case and
represents typical input parameters for transistor , including
oxide thickness , threshold voltage and dimensions
( and ) of the transistor.

In the presence of variability in the fabrication process,
electrical characteristics and physical dimensions of the cir-
cuit can be considered random variables and consequently
the output is a random variable. Consider, without loss of
generality, that parameters (for instance, , , , ) are
Gaussian variables with mean and variance , i.e,

and ,
where , and .
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The circuit statistical response is a function that depends
on random variables (including NSC and SC
parameters), given by the functional relation

(2)

A. SC and NSC Random Variables

In order to model the impact of process variations on the elec-
tric circuit response, SC and NSC are treated differently. By def-
inition, for a SC parameter, exactly the same fluctuation affects
all nearby transistors, although their absolute value can be dif-
ferent because they can have distinct average values.

Other random variables are modeled as Gaussian random
variables, which are denoted in this work as NSC parameters.
A NSC variable assumes a random value for each transistor,
although it can be subject to covariance coefficients .

Notice that both SC and NSC parameters are random vari-
ables. The difference between them is the randomness context:
each instance of a NSC variable assumes a different random
value, while a SC parameter has a single random increment for
a set of devices.

1) SC Parameters: Spatial correlation impels the SC elec-
trical parameter of all transistors to change in a synchronized
way. For instance, if the dimension is assumed to present SC
variations and of transistor changes by a quantity , the
dimension of a transistor changes by the same quantity

although their mean ( and ) in the standard
sampling process can be different. The parameter is then de-
fined as a variable that presents:

1) exactly the same variation inside an single electrical
block;

2) but different variation in different electrical blocks, for in-
stanced variation in block 1 and variation in
block 2.

Parameters that present SC variations can be modeled as

where is a standard normal variable which is in-
dependent of the transistor . It means that the same
variable will have the same shift of magnitude inde-
pendent of the transistor to which it is applied. In other words,
the variables are the same random variable except by
their mean values. Looking at the contribution of this variables
for error estimation, it is important to define the general variable

, where is a transistor-indepen-
dent constant. Then it can be written as

(3)

which leads to suitable simplifica-

tion
and using the chain

rule the computation of partial derivatives becomes

(4)

because according to (3) it is true that , for all
.

B. Error Propagation

A frequent question when working on data analysis is how to
estimate the uncertainty of a quantity which is function of many
variables whose uncertainties are known. The classical error
propagation formula [16] provides means to compute such un-
certainty estimate. When computing uncertainty of logic gates
electrical characteristics (delay, leakage, etc.) as modeled on (2),
the variance in can be computed as follows:

(5)

For this particular case, the SC as given by (4) is assumed,
as well as the hypothesis of , being random
Gaussian variables deriving from systematic and statistical
sources. Gaussian parameters is widely accepted [17] for such
circuits.

The reader should notice that covariances between electrical
parameters do not imply overhead in the number of simulations.
Nonbiased sampling estimator to the standard deviation com-
puted from a sample of experimental measures of ,
denoted as , is calculated by the expres-
sion and we ex-
pect for a sufficiently large, where

.
Such statistical estimates of electric characteristics of digital

and analog circuits are often obtained by Monte Carlo simula-
tions [18] considering a large sample of simulations at electric
level [19]. In this case one needs a suitable number of runs to ob-
tain reasonable approximation for variance and error estimates
(confidence intervals, relative errors), once this error is nonrig-
orously estimated by .

The error propagation (EP) method is a suitable way to
compute variance of an electrical response avoiding the huge
number of simulations required by sampling techniques once



BRUSAMARELLO et al.: PROBABILISTIC APPROACH FOR YIELD ANALYSIS OF DYNAMIC LOGIC CIRCUITS 2241

it works by computing the variance having as input: standard
deviation of random parameters, correlation between random
parameters and the sensitivities of the circuit response to the
random parameters. Standard deviations and correlation coeffi-
cients are technology dependent and are given by the foundry.
Sensitivities can be computed numerically as suggested in
Section II-C.

C. Numerical Derivatives

Suppose is an arbitrary function which can be
computed by electrical simulation, the numerical estimates for
derivatives also can be computed by electrical
simulation. From these derivatives, the variability at the output
can be computed.

In order to present a generic methodology independent of cir-
cuit topology, sensitivities are computed numerically. Thus, one
can calculate the sensitivity at point
using an approximation

(6)

In order to obtain a more precise approximation, algebraic
manipulations over Taylor expansion results in a formula with
accuracy . Consider Taylor expansions around the points

and , and a
better approximation for can be
computed according to

(7)

For the first case, two electrical simulations are re-
quired to compute each partial derivative: one is required
to compute and another one for

. However, as is
the same for all partial derivatives, it is computed only once.
Thus, computation of all partial derivatives using first order
approximation requires runs. Similarly in the second
case we can conclude that runs are required.

D. Sensitivity of the Variance to the Electrical Parameters

When dealing with the challenges imposed by design for
manufacturability, it is essential to have a methodology capable
of identify which parameters contribute most to the circuit
variability. Error propagation is a good solution for variability
analysis at electrical level because by using it one can compute
the quantitative contribution of each parameter to the circuit
variance. This information points out what parts of the circuit
may be redesigned in order to optimize yield.

Error propagation uncovers the quantitative contribution of
each transistor to the variability in circuit performance. Revis-
iting (5), the sensitivity of the circuit response variance to a
within-die parameter is given by

(8)

For SC components, a re-weighted function can be defined as

(9)

where for synchronized variables. For a pa-
rameter that presents SC variation the sensitivity is given by

(10)

III. DYNAMIC LOGIC

The generic applicability of error propagation using nu-
merical derivatives to the statistical analysis of logic gates
was shown in the previous section. This section presents the
framework to analyze:

1) delay variance of a pre-charge dynamic NOR with or
without a static keeper;

2) contention current variability of dynamic-NOR without
keeper.

A. Formulas for Delay Variance of the Dynamic Logic Circuit

In the case of a dynamic gate without keeper (see Fig. 1), we
can write the delay as a function of the parameters associated to
the transistors labeled and . The threshold
voltages are represented by and . Variability
in the respective channel lengths of these transistors, e.g.,
and , is divided into two components: one and
another .

Here, it is important to notice that spatially correlated com-
ponents, represented by and are synchronized
random Gaussian variables, such that

(11)

where denotes the indexes or with .
The ’s and are constants while is the standard normal
variable . In other words, it means that these variables
are the same random variables, even if they present different
mean values. From that, defining we have

.
The delay of the circuit is defined as the maximum time re-

quired to propagate a transition in the input to the output. At the
beginning of evaluation phase the dynamic output is

, and every transition in at least one input will cause
a transition at the output. It is important to notice that
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all inputs are symmetric, i.e., for a n-input circuit, probability
of the maximum delay to be given by the input is .

Consider, without loss of generality, a transition
at the dynamic gate input. In order to analyze the vari-

ability of a dynamic gate, first we have to study the mean value
and standard deviation for the delay time of this transition. So,
we can write the time delay to this transition as a function of the
random variables of interest

(12)

and the variance in , using error propagation [16] taking into
account circuit symmetry, is given by

(13)

On the other hand, applying the chain rule, we can
conclude by synchronism of variables that

, provided that
for all what leads to

(14)

Then, evaluation of transition delay variance for a dynamic-
NOR without keeper requires the computation of 9 partial deriva-
tives. These derivatives can be numerically computed using an
electrical simulator, according to formulations presented in the
Section II-B. The automation tool for yield analysis generates
the points where function must be evaluated, and the electric
simulator gives the responses of the circuit, which are employed
in the computation of derivatives. Also, notice that the number
of simulations is independent of the number of inputs because
pull-down transistors are symmetric.

Introducing a keeper device in accordance to Fig. 2, we have
three new transistors: , and . Then, the delay from
one input to the output can be written as

(15)

So in this case variance of time delay is given by

(16)

Then, the dynamic-logic NOR with a static keeper requires the
computation of 18 partial derivatives, regardless the number of
inputs or keeper size. For instance, to obtain for a circuit
with a static keeper using 1 point around mean for numerical
derivatives, only 19 electrical simulations are required.

From these formulas we build the Gaussian probability den-
sity function (PDF) provided that we have the necessary param-
eters (delay calculated at the nominal values) and [com-
puted using formulation (14) or (16)].

B. Variance in Contention Time of Dynamic Circuit

For recent and future technologies, dynamic gates designed
as in Fig. 1 require special attention because leakage current
may lead to output discharge. If the output is at , leakage
currents lead to output discharge in a finite contention time in
the case of input . In the following, a
statistical model for contention time variability in dynamic gates
will be provided.

Let the contention time be a function of random variables
as

(17)

then variance in contention time is given by

(18)

In this case, only numerical derivatives for transistors
and , for an arbitrary , need to be com-
puted. This occurs because: 1) the dynamic-NOR is symmetric;
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2) during transient simulation of the contention time, we have
no transition in the input, i.e., .

C. Probabilistic/Statistical Analysis of Logic Gates

In order to characterize VLSI circuits variability, the design
for yield methodology must consider the probability of gate
delay to be less than a given and gate delay PDF. Con-
sidering the circuits represented in Figs. 1 and 2, denotes the
time delay of a transition being arbitrary, i.e.,

. We can write that the probability of the time
delay of a transition in the input to be less or equal to
is the cumulative PDF ,
where is a Gaussian PDF with average and standard
deviation .

Such parameters may be obtained by Monte Carlo simula-
tions considering many runs, or directly by error propagation.
For the former case is the sampling average of delay
for the input while in the later it is the nominal delay
value, i.e., the delay computed using the nominal values:

. Supposing that all inputs are
independent random variables we arrive that the probability of
the dynamic logic gate time delay to be less than is

At this time we can ask more precise questions about the
delay of the dynamic gate. We are interested in the probability
of gate delay to belong to interval that here
we denote as . In first approximation, for a small
value of this probability is calculated as

However, in the case which all inputs are symmetric, i.e.,
and for all , we conclude that

(19)

and from this we conclude that the distribution for maximum
delay (delay of the dynamic gate), in a first approximation and
for , is given by

(20)

For a suitable study, we must compare the distribution of
with the experimental distribution (histogram for max-

imum values of delay obtained over runs in Monte Carlo
simulation)

and for a sufficiently large number of runs we expect
for .

IV. RESULTS

In this section, we apply the methodology exposed in the pre-
vious sections to the analysis of variability of a pre-charge dy-
namic NOR. In the first subsection the delay of a dynamic NOR

designed without the static keeper is studied. The variability in
circuit behavior computed using our semi-analytical approach
is compared to traditional Monte Carlo approach. Next we an-
alyze contention time variability in the circuit without keeper,
comparing Monte Carlo (MC) simulations to error propagation.
The last subsection is dedicated to the analysis of delay vari-
ability in a dynamic NOR designed with a static keeper. There,
we: 1) look at fits of data obtained by our probabilistic approach
compared to MC ; 2) show that the static keeper has an optimal
channel width for delay variance.

We use the commercial electric simulator HSPICE [19] to
obtain numerical derivatives needed for variability analysis in
delay and contention time. The transistor model employed is
Berkley BSIM3 Predictive Technology Model for the 70-nm
node (BPTM70) [20].

We consider the transistor parameters threshold voltage ( )
and channel length ( ) as random variables with Gaussian
distribution. For each transistor , is assumed to have one
spatially correlated component and one spatially uncorrelated
component, i.e., so that nm nm
and nm . Transistor threshold voltage are
random variables given by V mV
and V mV . These values are in
accordance to ITRS [21] and [22].

A. Delay Variability in a Dynamic NOR Without Keeper

In this subsection we present analysis of delay variability
using both the error propagation approach and Monte Carlo
simulation, for dynamic logic with 2, 4, 8, 16, 32, and 64 in-
puts. Consider the pre-charge dynamic NOR given in Fig. 1. Let

, where , be the channel width of the
pull down transistors, and the channel width of transistor

. For our experiments, m and
m.

In order to analyze circuit delay variability, at this first mo-
ment consider the delay for a transition
(a transition in one input), which causes a transition

at the output. The delay can be written according to (12),
and (14) gives its variance using error propagation. To obtain a
delay histogram of one input using Monte Carlo simulation, we
run a large number of electrical simulations in which , ,
and are random Gaussian variables. Fig. 3 exposes the his-
togram and PDF of the delay of the transition at one input in an
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Fig. 3. PDF (using EP) and histogram (using MC) for the delay of a transition
in one of the inputs of the dynamic-NOR without keeper.

Fig. 4. Convergence of � as a function of the number of MC simulations com-
pared to EP using 1 and 2 points for derivative.

8-input dynamic-NOR. The histogram was obtained by MC sim-
ulation with 1000 runs, while the PDF was obtained using
computed by simulation with nominal values and given by
error propagation. The figure shows how EP, using 1 or 2 points
around mean for numerical derivatives, compares to MC.

The convergence of the MC method can be verified by ana-
lyzing as a function of the number of runs. Fig. 4 shows the
values obtained by EP using 1 and 2 points with the convergence
of of an 8-input dynamic-NOR computed by MC. These sim-
ulations show that the MC method requires more than
to obtain a result with accuracy similar to EP. Error propaga-
tion using 1 point presents error of 1.5% in comparison to a MC
run with simulations. EP with 2 points for derivative
presents an error of only 0.8% in comparison to MC. For a sta-
tistical process, this small difference is not significant.

Fig. 5 shows the standard deviation of the pre-charge dy-
namic-NOR delay considering 2, 4, 8, 16, 32 and 64 inputs.
The standard deviation obtained by EP using 1 and 2 points
for derivatives is compared with Monte Carlo using up to

Fig. 5. Comparison of ��� obtained by MC and EP as a function of the number
of inputs.

Fig. 6. Yield of an 8-input dynamic-NOR without keeper computed by MC and
EP.

. The relative standard deviation computed by EP
minus the relative standard deviation given by MC
is less than 2% in all cases. Although we performed

MC with , only 10 electrical simulations are
required for EP using 1 point around mean and 19 runs using 2
points around mean. This allows comparable results in terms of
accuracy while improving running time by orders of magnitude.

The probability of the delay of a transition not being greater
than a design constraint tells the yield of the gate. Con-
sidering the symmetry of pre-charge dynamic-NOR circuit, this
probability is given by (19). To apply this formula to the design,
consider that is a design constraint and is computed
using error propagation or MC. Fig. 6 presents this formula ap-
plied to an 8-input dynamic-NOR, where yield (probability of all
inputs having time delay less than ) is a function of .
The figure compares using average and standard devia-
tion computed using EP (1 or 2 points around mean for numer-
ical derivatives) with the ones obtained by MC.

Once the gate delay is given by the greatest transition delay
and considering the symmetry in the pull-down transistors, (20)
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Fig. 7. Delay PDF (using EP) and histogram (using MC) of the dynamic-NOR

without keeper.

Fig. 8. Contribution of the parameters to the delay variability of the dynamic-
NOR without keeper.

gives PDF of the gate delay. This formula computes the proba-
bility of the gate delay to be within the range . Fig. 7
presents the Gaussian PDF obtained using EP with 1 and 2
points for derivatives compared to the histogram obtained by
MC simulation with . Again EP fits the data obtained
using MC, with a running time speedup of 100 (approach
using 1 point for derivative) or 50 (approach using 2 points
for derivative).

Our methodology is suitable for a design-for-yield synthesis
flow because it allows the study of the individual contribution
of each electric parameter to the circuit variability, as exposed
in the Section II-D. The Fig. 8 exposes the individual contribu-
tion of each parameter: , and , considering (1) the
pull-down transistor which switches from 0 to 1, (2) clock tran-
sistor and (3) the pull-down transistors that remain 0. Actually,
we verify that more than 80% of the delay variability comes
from the SC and NSC components of the channel length of the
transistor that is switching.

Pre-charge dynamic-NOR delay variability computed using
error propagation is equivalent to the results achieved by the

Fig. 9. Yield of the dynamic-NOR as a function of � : distribution of the time
required to discharge the dynamic-NOR without static keeper.

widely employed Monte Carlo simulation at electric level, fea-
turing a speedup up to 100 (compared to MC using ).
As the yield analysis using error propagation requires 10 or 19
electrical simulations for approaches using 1 or 2 points for the
derivatives, respectively, an improvement of 50 is achieved.
The difference of the standard deviations computed using MC
and EP is less than 2%.

B. Contention Time of a Dynamic NOR

Transistors designed in deep-submicron technology nodes
suffer of increasing leakage currents. Dynamic logic gates
designed as in Fig. 1 present the problem of the output node
discharging if all inputs keep at logical 0 during the evalua-
tion phase. As discussed in the Section III-B, there is a finite
contention time for which the dynamic output signal is
discharged to below .

Variance in contention time of a dynamic-NOR can be com-
puted using EP, as given by (18). The probability of the con-
tention time to be greater than a given constraint gives the
probability of the dynamic-NOR to work properly. The formula
for probability of contention time to be greater than the con-
straint is given by

(21)

Fig. 9 presents comparison of yield as a function of com-
puted by EP using 1 and 2 points around mean in comparison
to statistical values obtained by MC with . In this
case, semi-analytical approach requires only 7 or 12 simulations
for numerical derivatives using 1 or 2 points, respectively. The
speedup of EP over MC is up to 140 , while the difference of
the standard deviations is less than 1%.

C. Delay Variability in a Dynamic-NOR With Static Keeper

In this subsection, we discuss error propagation and vari-
ability analysis for dynamic-NOR gates with a static keeper.Con-
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Fig. 10. PDF (using EP) and histogram (using MC) for the delay of a transition
in one of the inputs of the dynamic-NOR with keeper.

sider the pre-charge dynamic-NOR shown in Fig. 2. Let be
the channel width of the pull-down transistors, be the
channel width of transistor , , and be the
width of transistors , and , respectively. Consider

m and m.
The (16) computes the variance of a dynamic-NOR with a

static keeper using error propagation. This simulation repre-
sents the variability of the delay when a transition

occurs, i.e., a transition in one input (without
loss of generality, we consider transition on input , because
inputs are symmetric). The partial derivatives of the 6 transis-
tors computed numerically. Since each transistor has 3 random
parameters ( , and ), 18 partial derivatives must be
computed. Fig. 10 presents how the PDF computed by EP using
1 or 2 points for partial derivatives compares to the histogram
obtained by MC using samples. The circuit in considera-
tion is an 8-input dynamic-NOR with nm. Error
propagation using 1 point around mean for derivative evalua-
tion requires 19 Spice simulations, while the approach using 2
points requires 36 Spice simulations.

Fig. 11 presents the relative standard deviation of the
delay of the 8-input dynamic-NOR with static keeper as a func-
tion of the keeper strength. Error propagation using 1 and 2
points for numerical derivatives was performed, as well as MC
simulation with . The relative standard devia-
tion is normalized by the relative standard deviate of the 8-input
dynamic-NOR without keeper shown in the previous subsection.
The curve indicates that there is one keeper strength that min-
imizes the variability. In our case study, the dynamic-NOR de-
signed with nm presents a 3% decrease in vari-
ability compared to a dynamic-NOR without keeper, while a de-
sign using m presents a 6% increase in delay vari-
ability. Also, this figure again shows that EP obtained results
statistically equivalent to MC with a high improvement in sim-
ulation efficiency. Error propagation using 1 point around mean
for numerical derivatives presents an error up to 2% compared to
MC, while the approach using 2 points for derivatives presents
an error smaller than 1%.

Fig. 11. Relative error of the 8-input dynamic-NOR as a function of the keeper
width.

Fig. 12. Yield of an 8-input dynamic-NOR with keeper computed by MC and
EP.

From the standard deviation computed using EP and the av-
erage approximated by the simulation using the nominal values,
the probability of the gate delay to be smaller than a constant

, i.e., the yield of the gate, is computed using (19). Fig. 12
shows the yield of an 8-input dynamic-NOR with static keeper

nm in function of the time constraint . Once
again the plot produced using the values computed by EP fits
well with the one computed using MC.

PDF of the gate delay is computed using (20), where can
be computed using EP and is approximated by the simulation
using nominal values. The Fig. 13 exposes the Gaussian PDF of
the delay of the dynamic-NOR with static keeper. The plot devel-
oped using the proposed methodology fits well to the histogram
computed using MC. In order to draw the PDF using EP, we run
19 simulations in the case of derivatives using 1 point around
mean, and 36 electrical simulations when using 2 points. This
represents an improvement in the running time up to 50 com-
pared to MC using .

Fig. 14 presents the contribution of each parameter to
the delay variability. They were computed according to the
Section II-D. As in the case of the dynamic-NOR without keeper,
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Fig. 13. Delay PDF (using EP) and histogram (using MC) of the dynamic-NOR

with keeper.

Fig. 14. Contribution of the parameters to the delay variability of the dynamic-
NOR with keeper.

the contribution of and are orders of magnitude more
significant than the contribution of the other parameters.

V. CONCLUSION

A novel methodology for variability analysis in dynamic
logic is presented. The methodology shows results statistically
equivalent to usual sampling techniques like Monte Carlo
simulation, while reducing simulation time by orders of magni-
tude. Our theoretical approach is generic and can be extended
to gates which implement other Boolean functions as well as
other kinds of dynamic and static gates with minor changes.

The proposed methodology allows quantifying the contribu-
tion of each component to the variability in circuit behavior. The
components that contribute more to the circuit variability may
then be selected for optimization. In our simulations the contri-
bution of channel length is orders of magnitude more relevant

than threshold voltage. These results are important for an yield
enhancement phase.

Also, we identify an optimal strength for the static keeper
transistor, which leads to diminishing the variance of the time
delay by correctly sizing the static keeper.
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