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“A matemática é a arte do perfeito. A física é a arte do ótimo. A biologia, por

causa da evolução, é a arte do satisfatório.”1

Sydney Brenner

1Trecho extraído do livro “O que é a vida? Compreendendo a biologia em 5 passos”, Paul Nurse.
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RESUMO

Os elementos transponíveis (TEs) são sequências de DNA capazes de se

transporem dentro de um genoma hospedeiro e desempenham vários papéis na

regulação dos genes, no envelhecimento, no desenvolvimento de certos tipos de

câncer, na especiação e no desenvolvimento do sistema imunológico, entre

outros. A identificação e classificação dos TEs nos genomas constituem um

desafio devido à sua natureza repetitiva e diversificada. Embora se aplique várias

técnicas para a anotação de TEs, o ressurgimento de deep learning (DL) trouxe

novas possibilidades dentro das ciências ômicas com esta finalidade. As redes

neurais convolucionais (CNN) têm sido aplicadas com sucesso em vários

domínios, incluindo a classificação de imagens, o processamento de linguagem

natural e na genômica. No entanto, faltam ferramentas baseadas em DL que

possam efetuar a identificação e classificação de TEs de ponta a ponta. Nesta

tese, apresentamos o HamleTE, uma ferramenta baseada em DL que utiliza um

workflow para anotar e classificar TEs em genomas. HamleTE oferece os modos

de anotação e classificação, proporcionando flexibilidade para diferentes casos de

uso. A ferramenta emprega CNNs para extração de características, seguida por

camadas totalmente conectadas para aprender as associações entre dados e

rótulos para categorização precisa. Ao contrário das ferramentas existentes,

HamleTE integra etapas de extração de sequências repetitivas e de remoção de

redundância, assegurando uma anotação TE robusta. Para avaliar o desempenho

do HamleTE, comparamo-lo com outros programas de classificação de TE. Os

resultados demonstraram que, em relação aos outros programas, HamleTE

alcançou um desempenho comparável ou superior em termos de identificação

correta de TEs, precisão, especificidade, acurácia, sensibilidade e F1-score. Além

disso, o modo de anotação do HamleTE gerou bibliotecas de TEs que refletem

com precisão a distribuição de TEs em diferentes espécies, superando os

programas de anotação existentes em termos de representação e cobertura. Sua

fácil instalação e utilização, bem como eficiente uso de recursos computacionais,

tornam HamleTE acessível tanto a especialistas em bioinformática como a não

especialistas. Para resolver os desafios da classificação de TE, HamleTE
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emprega um workflow hierárquico com vários modelos de classificação. Esta

abordagem reduz a complexidade e a variação em cada etapa, atenuando as

dificuldades associadas à aprendizagem e à categorização. Além disso, o

HamleTE utiliza embedding vectors para representar sequências de DNA,

capturando as relações contextuais e a semântica da informação genética. Esta

abordagem melhora a capacidade do modelo para extrair características e

aumenta a precisão da classificação. Em conclusão, HamleTE preenche a lacuna

nas ferramentas de anotação e classificação de TE baseadas em DL. Ele fornece

um workflow abrangente e eficiente para a análise de TEs, fornecendo resultados

precisos e possibilitando opções de refinamento dos resultados. Ao tirar partido

do poder da DL, HamleTE permite aos pesquisadores explorar a paisagem

repetitiva e diversificada dos TEs nos genomas eucarióticos, facilitando uma

exploração dos seus papéis funcionais e evolutivos.

Palavras-chave: anotação, bioinformática, deep learning, elementos

transponíveis.
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ABSTRACT

Transposable elements (TEs) are DNA sequences capable of transposing within a

host genome, and they play various roles in gene regulation, aging, cancer,

speciation, and immune system development, among other processes. Accurate

identification and classification of TEs in genomes are challenging due to their

repetitive and diverse nature. While several techniques have been developed for

TE annotation, the recent re-emergence of deep learning has provided new

opportunities for omics sciences. Convolutional neural networks (CNNs) have

been successfully applied in various domains, including image classification,

natural language processing, and now, genomics. However, there is a lack of deep

learning-based tools that can perform end-to-end TE identification and

classification. In this thesis, we present HamleTE, a deep learning-powered tool

that utilizes a workflow to annotate and classify TEs in genomes. HamleTE offers

both annotation and classification modes, providing flexibility for different use

cases. The tool employs CNNs for feature extraction, followed by fully-connected

layers to learn the associations between data and labels for accurate

categorization. Unlike existing tools, HamleTE integrates repeat extraction and

redundancy removal steps, ensuring robust TE annotation. To evaluate HamleTE's

performance, we compared it with other TE classification programs. The results

demonstrated that HamleTE achieved comparable or superior performance in

terms of correct TE identification, precision, specificity, accuracy, recall, and

F1-score. Furthermore, HamleTE's annotation mode generated TE libraries that

accurately reflected the distribution of TEs in different species, outperforming

existing annotation programs in terms of representation and coverage. The tool's

user-friendly installation and usage, as well as its efficient resource utilization,

make it accessible to both bioinformatics experts and non-specialists. To address

the challenges of TE classification, HamleTE employs a hierarchical workflow with

multiple classification models. This approach reduces complexity and variance at

each step, mitigating the difficulties associated with learning and categorization.

Furthermore, HamleTE utilizes embedding vectors to represent DNA sequences,

capturing the contextual relationships and semantic of the genetic information.
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This approach improves the model's ability to extract features and enhances

classification accuracy. In conclusion, HamleTE fills the gap in deep

learning-based TE annotation and classification tools. It provides a comprehensive

and efficient workflow for TE analysis, delivering accurate results and allowing

options for curating the results. By leveraging the power of deep learning,

HamleTE enables researchers to explore the repetitive and diverse landscape of

TEs in eukaryotic genomes, facilitating the exploration of their functional and

evolutionary roles.

Keywords: annotation, bioinformatics, deep learning, transposable elements.
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CAPÍTULO 1

INTRODUÇÃO GERAL
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1. REDES NEURAIS ARTIFICIAIS
Machine learning ou aprendizagem de máquina é um campo das ciências

da computação, pertencente ao grande campo da inteligência artificial (IA), que

busca desenvolver algoritmos que possam aprender características a partir de um

conjunto de dados (Shinde e Shah 2018). Deep learning, ou aprendizado de

máquina profundo, é um subcampo dentro da área de aprendizagem de máquina

que utiliza múltiplas camadas de redes neurais artificiais, visando a emular o

comportamento do cérebro humano, para aprender padrões complexos e

estabelecer relações entre dados (LeCun e cols. 2015). Tem como aplicações, por

exemplo, análise de mercado financeiro (Yekrangi e Nikolov 2023; Blasco e cols.

2023), reconhecimento de imagens (Rawat e Wang 2017; Luo e cols. 2018),

processamento de linguagem natural (Wang e Gang 2018; Han e cols. 2020),

inclusive, com aplicações dentro das diferentes áreas das ciências naturais e da

saúde (Cao e cols. 2018; Ching e cols. 2018; Oubounyt e cols. 2019;

Martorell-Marugán e cols. 2019).

1.1 Breve histórico da pesquisa em IA
Podemos traçar o começo da pesquisa na área da aprendizagem de

máquina a partir dos anos 40 do século XX. Os neurofisiologista Warren

McCulloch e o matemático Walter Pitts, no ano de 1943, publicaram o artigo "A

Logical Calculus of Ideas Immanent in Nervous Activity" apresentando um modelo

de neurônio artificial baseado no funcionamento dos neurônios humanos. Este

neurônio artificial, por meios algorítmicos e matemáticos, simularia o

processamento da informação das conexões neurais do cérebro humano

aplicando uma lógica de limiar, no qual um neurônio artificial seria ativado caso

ultrapassasse um certo limiar de ativação após o processamento de sinais de

entrada (inputs) recebidos (McCulloch e Pitts 1943; Cowan 1990). Em 1957 o

psicólogo Frank Rosenblatt desenvolveu o algoritmo do Perceptron (Figura 1),

baseando-se no neurônio artificial de McCulloch-Pitts, com o objetivo de melhorar

as predições computacionais ao aprender padrões e ajustar os parâmetros do

modelo até atingir valores ótimos capazes de classificar corretamente os dados

(Rosenblatt 1958; Seising 2018).
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O Perceptron foi um dos primeiros algoritmos de redes neurais artificiais e

foi inicialmente projetado para tarefas como o reconhecimento de dígitos escritos

à mão (Kussul e cols. 2001). Ele produz uma saída binária (i.e., 0 ou 1, verdadeiro

ou falso) a partir de diversos sinais de entrada os quais são multiplicados por um

dado peso, e ao somatório destas multiplicações adiciona-se um viés (bias, em

inglês) (Rosenblatt 1962; Kanal 2003). Os pesos são os parâmetros que definem

o quão relevante é um sinal de entrada, ou seja, qual a influência deste dentro do

conjunto de dados. O viés pode ser entendido como o fator que determina o quão

fácil um neurônio artificial pode ser ativado. Um viés muito positivo facilita a

ativação, enquanto um muito negativo dificulta a ativação. Se o resultado for

maior que um determinado limiar o neurônio artificial é ativado (Cowan 1990;

Wang e cols. 2018; El-Amir e Hamdy 2020). Ambos peso e viés são parâmetros

auto-ajustáveis do modelo, isto é, eles são aprendidos durante o treinamento.

Essa capacidade de aprender os parâmetros é o que diferencia o Perceptron do

neurônio de McCulloch-Pitts e levou ao seu sucesso.

Figura 1. Representação esquemática comparando um neurônio humano e o processamento da

informação com o perceptron de Rosenblatt. Fonte: autores.
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Apesar do êxito inicial do método, o perceptron em sua modelagem original

apresentava limitações significativas, pois era capaz de classificar apenas dados

linearmente separáveis. A insuficiência de sua aplicação em tarefas mais

complexas associada a baixa velocidade de processamento e baixa memória dos

computadores na época, levou ao chamado primeiro inverno da IA (Toosi e cols.

2021) - década de 1970 até início dos anos 1980 - onde muitos projetos foram

terminados pelo corte de financiamento ocorrido pelo insucesso das pesquisas na

área como, por exemplo, no campo de machine translation, um ramo da

linguística computacional com o objetivo de realizar tradução de um idioma para o

outro por meios computacionais (Hendler 2008; Floridi 2020). Um ponto de virada

se deu com a implementação da retropropagação na pesquisa de IA, que apesar

de ter sido pensada no fim dos anos 60, ganhou popularidade após a publicação

de Rumelhart e colaboradores em 1986. A retropropagação é considerada como

um dos pontos mais importantes do campo, tendo permitido o treinamento de

modelos com uma eficiência não antes vista. Foi possível diminuir tempos de

treinamento de modelos que outrora duravam dias ou mais para questão de horas

(Wythoff 1993; Rojas 1996).

Um segundo inverno da IA ocorreu do fim dos anos 1980 até meados dos

anos 1990 devido ao colapso das máquinas LISP, as quais eram o referencial

dentre os pesquisadores e desenvolvedores de IA na época, e eram

extremamente caras comparadas aos computadores pessoais que estavam em

ascensão na época (Toosi e cols. 2021). A volta do desenvolvimento na área, no

que se pode chamar de primavera da IA, se deu a partir do fim dos anos 1990

com eventos como a vitória do computador Deep Blue sobre o campeão de

xadrez Gary Kasparov (Hsu 1999; Campbell e cols. 2002) e o desenvolvimento de

assistentes virtuais no fim da primeira década dos anos 2000. A partir desta

época, com publicações de Hinton e Salakhutdinov, o termo deep learning

começou a se popularizar. Naqueles trabalhos, os autores demonstraram como

uma rede neural de várias camadas poderia ser treinada uma camada de cada

vez obtendo um melhor aprendizado (Hinton e Salakhutdinov 2006; Salakhutdinov

e Hinton 2007).
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1.2 Introdução às redes neurais artificiais
Os diferentes algoritmos de aprendizagem de máquina podem ser

baseados nos paradigmas de aprendizagem conhecidos como aprendizado

supervisionado, aprendizado não-supervisionado e aprendizado por reforço (Alom

e cols. 2018; Dong e cols. 2021; Sharma e cols. 2021). No aprendizado

supervisionado, o algoritmo é alimentado por dados que são previamente

categorizados para que o modelo aprenda a relação entre os dados de entrada e

a categoria a qual este dado pertence. Algoritmos que utilizam aprendizagem

supervisionada são muito usados para criar modelos de classificação ou

regressão - a predição de valores baseados em dados contínuos. Exemplos de

aprendizado supervisionado são random forest, support vector machine (SVM) e

algoritmos baseados em redes neurais artificiais (Caruana e Niculescu-Mizil 2006;

Saravanan e Sujatha 2018). O aprendizado não-supervisionado diz respeito a

algoritmos que aprendem a estabelecer relação entre os dados sem uma prévia

categorização destes. Algoritmos de aprendizado não-supervisionado são usados

para, por exemplo, modelos de agrupamento ou de sistemas de recomendação,

utilizando de algoritmos como k-means e hierarchical clustering (Celebi e Aydin

2016; Sinaga e Yang 2020). O método de aprendizado por reforço é mais usado

em robótica e criação de jogos, casos nos quais o modelo deve aprender uma

sequência de eventos por interação com o ambiente por meio de tentativa e erro

(Kaelbling e cols. 1996; Li 2018; François-Lavet e cols. 2018).

Algoritmos baseados em redes neurais artificiais estão sendo cada vez

mais utilizados devido a sua grande capacidade de fazer predições a partir de

uma grande quantidade de dados com alta complexidade, superando outros

métodos de aprendizagem de máquina como SVM. Dentre os algoritmos mais

basilares ou em voga estão o perceptron multicamadas (MLP, do inglês,

multi-layer perceptron) e redes neurais convolucionais (CNN, do inglês

convolutional neural networks). Pode-se considerar o MLP como o exemplo base

de uma rede neural artificial moderna (Murtagh 1991; Li e cols. 2023). A

arquitetura básica é composta por uma camada de entrada, uma ou mais

camadas intermediárias conhecidas como camadas escondidas e, por fim, uma

camada de saída (Figura 2). Um MLP com duas ou mais camadas escondidas
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pode ser caracterizado como de aprendizado profundo, o deep learning. A

camada de entrada diz respeito aos dados a serem aprendidos e a camada de

saída às predições baseadas no aprendizado (Schmidhuber 2015; Jakhar e Kaur

2020). As camadas escondidas são compostas por nodos (ou neurônios)

empilhados em cada camada, sendo os responsáveis pelo armazenamento dos

parâmetros aprendidos pela rede neural. Todos os nodos de uma camada estão

conectados a todos os nodos de uma próxima camada, originando-se disto o

nome de camadas densamente conectadas (Somuncuoğlu e cols. 2020; Uzair e

Jamil 2020). Os parâmetros aprendidos são atualizados durante um dado número

de etapas para valores que melhor representem os dados vistos até que ocorra o

aprendizado adequado destes. A atualização dos parâmetros se dá pela redução

da perda com o uso de funções de otimização como o gradiente descendente.

Figura 2. Representação de um perceptron multicamadas. Neste exemplo temos a camada de

entrada (input layer), três camadas escondidas (hidden layers) e a camada de saída (output layer).

Fonte: autores.

A perda (ou custo) do aprendizado é a medida da diferença entre o valor

real de um dado e o valor predito, calculada por uma função de perda como MAE,
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MSE, binary cross-entropy e categorical cross-entropy. As funções de

cross-entropy baseiam-se no cálculo comparativo da soma do produto da

distribuição verdadeira e do logaritmo da distribuição prevista pelo modelo, sendo

a binary cross-entropy utilizada para classificações binárias, como sugere o nome,

enquanto a categorical cross-entropy é usada para classificações com diversas

classes (de Boer e cols. 2005; Gordon-Rodriguez e cols. 2020). Otimizadores

como o gradiente descendente possuem como objetivo encontrar um mínimo

global para minimizar o valor da função de perda (Schmidt e cols. 2021). Outros

otimizadores populares são gradiente descendente estocástico, Adagrad e Adam

(Okewu e cols. 2019; Choi e cols. 2020). A atualização dos parâmetros com um

otimizador é calculada pela técnica da retropropagação pelo uso da regra de

cadeia, que é o método para se calcular a derivada de uma função composta. A

retropropagação é chamada desta forma, pois ela calcula, por exemplo, o

gradiente descendente a partir da última camada em direção às camadas iniciais

para atualizar os valores dos parâmetros aprendidos pela rede neural (Wythoff

1993; Baldi e cols. 2018; Lillicrap e cols. 2020). Os principais parâmetros de uma

rede neural são os pesos e o viés. Os pesos são os responsáveis por estabelecer

a força das conexões entre os nodos, informando a importância de uma conexão

em relação ao dado de saída das categorias a serem preditas. O viés é a

constante adicionada ao produto dos pesos com os valores dos dados de entrada,

e causa o deslocamento deste valor em um plano, auxiliando a função de

ativação a estabelecer a saída (Denil e cols. 2013; Suk 2017). Em outras

palavras, os parâmetros, como o peso e o viés são as informações, aprendidas

pela rede neural durante o treinamento a fim de estabelecer as conexões

necessárias para atingir o resultado.

Outro conceito importante para a construção de uma rede neural é o de

hiperparâmetros. Estes, diferentemente dos parâmetros que são a parte

aprendida, são os valores configuráveis durante a criação da arquitetura do

modelo da rede neural, realizando-se antes do treinamento em si. Os

hiperparâmetros ditam o quão eficiente será o aprendizado da rede, necessitando

de um ajuste fino dos seus valores a fim de atingir um resultado ótimo de

aprendizado. Os hiperparâmetros principais de uma arquitetura de redes neurais
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são a taxa de aprendizado, a função de ativação, o número de épocas de

treinamento, o número de camadas da rede e o número de nodos em cada

camada (Young e cols. 2015; Shankar e cols. 2020). A taxa de aprendizagem é o

valor que controla a velocidade do modelo em se adaptar aos dados em questão.

Está intimamente relacionada com o gradiente descendente, pois a velocidade

dos passos deste na tentativa de encontrar um mínimo global para diminuição do

erro é dada pela taxa de aprendizagem. Um modelo com uma taxa de

aprendizagem muito baixa pode ser incapaz de aprender e atingir os valores

ótimos na descida de gradiente, ficando preso em mínimos locais. Taxas muito

altas podem induzir o modelo a aprender de forma muito rápida obtendo

resultados muito distantes do ideal (Chandra e Sharma 2016; Johny e

Madhusoodanan 2021). A função de ativação introduz a não-linearidade

necessária ao output de cada neurônio quando se trabalha com dados de alta

complexidade, ou seja, faz a transformação dos dados de entrada para o output

do neurônio. A função de ativação pode ser desde uma simples step function

como do primeiro perceptron desenvolvido ou outras bastante usadas atualmente

como tahn, ReLU (do inglês, rectified linear unit) e sigmóide. O número de épocas

diz respeito a quantos ciclos de treinamento serão realizados pela rede neural até

se atingir uma performance adequada. Em termos simples, é o número de vezes

que a rede precisa “estudar” os dados até aprender.

O número de camadas e o número de nodos em cada camada, associados

aos hiperparâmetros descritos anteriormente, tem relação direta com a

capacidade de aprendizagem e generalização do modelo. Por generalização,

entende-se a capacidade do modelo de ser aplicado em dados do mundo real não

vistos durante o treinamento com a mesma eficiência obtida no treinamento. Dois

aspectos fundamentais relacionados a uma limitada capacidade de generalização

são o overfitting e underfitting. O overfitting é o ajuste demasiado realizado pelo

modelo em relação aos dados de treinamento, podendo ser visualizado por

métricas de acurácia bastante altas durante o treinamento, mas com resultados

parcos ao se testar com dados não vistos durante o treino (Bejani e Ghatee 2021;

Ghojogh e Crowley 2023). Pode ocorrer em modelos treinados com dados

insuficientes, modelos com arquiteturas muito complexas em relação aos dados,
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assim como dados como em caso de dados com muito ruído, levando o modelo a

basicamente os “decorar” ao invés de aprender seus padrões gerais. Formas de

contornar este problema são a reestruturação da arquitetura do modelo a fim de

reduzir a sua complexidade, o aumento do tamanho do dataset de treinamento e

o uso de técnicas de regularização como o dropout, técnica que desativa

aleatoriamente uma porção definida de neurônios da arquitetura em cada fase do

treinamento, forçando-o a não se apoiar em porções muito específicas dos dados

(Ashiquzzaman e cols. 2018; Gavrilov e cols. 2018; Rice e cols. 2020). O

underfitting é a falta de aprendizado durante o treinamento e pode ser visualizado

de forma mais clara, pois durante o treino as métricas são baixas e de avanço

lento (Gavrilov e cols. 2018; Liu e cols. 2023). Modelos muito simples, falta de

treinamento, dados muito complexos ou não representativos e dados insuficientes

podem causar este fenômeno. Soluciona-se ao aumentar o número de neurônios

e/ou camadas na arquitetura do modelo, usando-se dados mais representativos

ou aumentando o tempo de treino (Kolluri e cols. 2020; Li e cols. 2021).

As CNN são uma classe de redes neurais de aprendizagem profunda que

ganharam visibilidade por seu desempenho na classificação e reconhecimento de

imagens, reconhecimento de fala, detecção de objetos e análise de dados de

séries temporais (O’Shea e Nash 2015; Wang e Gang 2018; Wang e Huang

2023). A arquitetura padrão de uma CNN é composta por uma ou mais camadas

convolucionais, camadas de pooling e camadas densamente conectadas, além

das camadas de entrada e saída. O nome advém do uso da operação matemática

de convolução a qual gera uma terceira função a partir da soma dos produtos de

duas outras funções nos pontos onde elas se sobrepõem. Em termos práticos,

esta operação é usada na CNN ao se realizar a extração de características dos

dados com o uso de um ou mais filtros (também chamados kernels) deslizantes

que geram um mapa de características (Figura 3). Aplica-se às camadas

convolucionais uma função de ativação e então uma camada de pooling. Esta

camada tem por objetivo reduzir a dimensionalidade do mapa de características e

o número de parâmetros da rede ao extrair os pontos identificados como os mais

relevantes (Alom e cols. 2018; Tao e cols. 2022; Wang e Huang 2023). O pooling

pode ser realizado mais comumente pela operação de max pooling (Mehedi
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Shamrat e cols. 2021), a qual extrai o maior valor de uma seção do mapa de

características de acordo com a dimensão da camada de pooling, ou de average

pooling, o qual extrai a média dos valores da seção (Figura 3).

Figura 3. Etapas de extração de características de uma rede neural convolucional com o uso das

camadas convolucional e de pooling. Em azul temos o filtro (kernel) da camada de convolução e

em verde vemos o filtro de pooling que pode extrair o valor médio ou máximo da seção analisada

de acordo com o tipo de pooling utilizado. Fonte: autores.

Para se treinar uma rede neural, além de se estabelecer a arquitetura do

modelo e o algoritmo usado, o conjunto de dados deve ser representativo do

problema a ser resolvido, recomendando-se haver um número igual de elementos

para cada categoria a fim de evitar vieses de treinamento em favor de uma das

categorias a serem aprendidas (Shahinfar e cols. 2020). Além disso, sugere-se a

divisão do conjunto de dados em dados de treino e de validação, em uma

proporção de, por exemplo, 80-20 ou 90-10, respectivamente (Zou e cols. 2019).

A maior porcentagem dos dados é usada para realizar o treinamento do modelo,

enquanto a menor parte para avaliar o modelo com dados não vistos durante o

treinamento. Desta forma, pode-se verificar a ocorrência ou não dos fenômenos

de overfitting e underfitting, assim como a performance do modelo de forma geral.

Deve-se atentar a presença da proporcionalidade de cada categoria nos

conjuntos de dados de treino e validação, isto é, todas as categorias devem ter

proporções iguais entre os conjuntos de dados de treino e validação (Chen e cols.

2017). Apesar destas recomendações, nem sempre é possível a coleta de dados

em número igual e suficiente para cada categoria, levando a conjuntos de dados

desbalanceados (Johnson e Khoshgoftaar 2019a; Saini e Susan 2022).
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Para contornar estes problemas se pode utilizar de estratégias como

oversampling e undersampling (ou downsampling) (Johnson e Khoshgoftaar

2019b; Lashgari e cols. 2020; García-Ordás e cols. 2021). O primeiro consiste em

aumentar de forma sintética o número de amostras de categorias com menos

elementos até se igualarem os números de amostras de todas as categorias

(Yedida e Menzies 2022). No undersampling ocorre o oposto, diminui-se o número

de elementos da categoria com mais elementos até que se iguale com a de

menor número (Shahinfar e cols. 2020). O uso de oversampling pode levar o

modelo ao overfitting para a categoria em questão, além de aumentar o tempo de

treinamento devido ao aumento do número de dados, e, dependendo do tipo de

dados, pode não ser possível realizá-lo de forma a evitar este viés (Roy e cols.

2019; Tarekegn e cols. 2021). No caso do undersampling, os dados da categoria

submetida a este método podem não ser representativos da categoria,

enviesando o aprendizado ao se descartar os dados que poderiam ser mais

relevantes (Liu e cols. 2022). Outra forma de se trabalhar com dados

desbalanceados é através da atribuição de pesos de classe previamente ao

treinamento. Neste caso, o peso inicial de uma classe é inversamente

proporcional ao número de elementos nela contidos, assim, durante o

treinamento, há uma penalidade maior para os erros em classes com menor

número de elementos (Krawczyk e cols. 2014; Cui e cols. 2019; Gao e cols.

2020). Ao se trabalhar com dados desbalanceados, pode-se também mesclar as

diferentes estratégias como medida de se obter melhores resultados (Hernandez

e cols. 2013).

2. ELEMENTOS DE TRANSPOSIÇÃO
Elementos de transposição (TEs) são segmentos de DNA capazes de se

inserir em uma nova posição no genoma. Foram descobertos por Barbara

McClintock na década de 1940 ao observar a ocorrência de diferentes fenótipos

de grãos em espigas de milho. Ao investigar o fenômeno, ela descobriu a

presença de um locus no cromossomo 9 o qual denominou de Ds (do inglês

dissociation), responsável pela variegação do milho. Após a descrição deste

fenômeno ocasionado pela inserção do elemento Ds, Barbara McClintock
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descobriu que este elemento não era capaz de se mobilizar sozinho,

necessitando da ação de um outro elemento o qual foi nomeado Ac (do inglês,

activator) (McClintock 1947; McClintock 1956). Os achados de McClintock foram

encarados inicialmente com muitas restrições e ceticismo por grande parte da

comunidade científica da época, visto que a ideia de segmentos de DNA com

capacidade móvel ia contra o pensamento corrente encabeçado por cientistas

como Thomas H. Morgan de que os genes eram estruturas estáticas de posição

definida nos genomas, relegando a descoberta de McClintock a um status

marginal à ciência corrente. Foi apenas a partir da década de 1970 com a

descoberta de elementos transponíveis em bactérias, em Saccharomyces

cerevisiae e Drosophila melanogaster, por exemplo, que a ciência pode se fazer

agente da justiça para recompensar McClintock por sua enorme contribuição à

genética, laureando-a como a primeira mulher a ganhar um Nobel não

compartilhado de fisiologia ou medicina em 1983, 35 anos após sua descoberta

(Biémont 2010; Ravindran 2012).

Outrora adjetivados como DNA “lixo”, DNA egoísta e atribuídos à condição

de elementos moleculares parasíticos (Ohno 1972; Doolittle e Brunet 2017), os

TEs estão associados a uma profusão de eventos genéticos e adaptativos como

especiação (Warren e cols. 2015; Serrato-Capuchina e Matute 2018),

diversificação do sistema imune (Broecker e Moelling 2019; Ivancevic e Chuong

2020), gestação interna em mamíferos placentários (Sotero-Caio e cols. 2017),

coloração em plantas e animais (Hirsch e Springer 2017; Galbraith e Hayward

2023), e perda da cauda em grandes primatas (Xia e cols. 2021; Hayward e

Gilbert 2022), para citar alguns. Os TEs são encontrados em virtualmente todas

as espécies eucarióticas já estudadas a nível genômico, contribuindo com grande

porção do genoma destas (Bourque e cols. 2018; Wells e Feschotte 2020). O

próprio genoma da espécie que levou McClintock à descoberta dos TEs, Zea

mays, o milho, possui, segundo estimativas, até 85 % do seu genoma composto

por TEs (Stitzer e cols. 2021). Outras espécies notáveis por grande porção de

TEs no genoma são Mus musculus, com aproximadamente 40%, Hordeum

vulgare, com 55%, Drosophila melanogaster até 20% e Homo sapiens, 45-50%

(Kidwell 2002; Canapa e cols. 2016). No caso do genoma humano, há uma
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multitude de resíduos de sequências associados ao elemento Alu inseridos ao

longo de milhões de anos de evolução e que também podem ser encontrados em

outros grandes primatas (Batzer e Deininger 2002; Britten 2010). A inserção

destes elementos em certas regiões do genoma está associada à instabilidade

genômica durante o envelhecimento e inclusive à doenças como hemofilia,

neurofibromatose e câncer de mama (Hedges e Deininger 2007; Andrenacci e

cols. 2020).

As inserções de TEs em sua maioria promovem efeitos neutros ou

deletérios. Neste último caso, é esperada a eliminação dos elementos em uma

população por efeitos de seleção purificadora (Oggenfuss e cols. 2021; Doolittle

2022). A mobilização de TEs causando efeitos deletérios geralmente está

associada à ideia de um agente estressor causador de instabilidade. É notório o

efeito de certos tipos de estresse na mobilização dos elementos, como, por

exemplo, a mobilização de elementos mariner em Drosophila simulans por

estresse térmico (Cancian e cols. 2022), o aumento da expressão de elementos

LTR por estresse químico em drosófilas tratadas com cisplatina (Mombach e cols.

2022b) e casos de estresse biótico levando a mobilização de elementos hAT em

plantas (Deneweth e cols. 2022). Apesar de o termo estresse ser comumente

associado à ideia da mobilização de TEs, é importante ressaltar que nem todo

tipo de estresse causa mobilização, visto que esta relação estresse-mobilização é

complexa e possui muitas variáveis (Mombach e cols. 2022a). Os efeitos danosos

dos TEs são combatidos por mecanismos de controle, como a metilação, o

silenciamento de TEs por piRNAs e siRNAs (Burns 2017; Nakamura e cols. 2019),

e biotinilação de histonas (Zempleni e cols. 2009).

Os cenários quais os TEs estão inseridos podem ser benéficos para a

adaptação do organismo em questão, fixando-os na população. O próprio

silenciamento de um TE pode levar a cooptação do elemento para realizar novas

funções em um genoma. Há famílias de ERVs em mamíferos cooptadas como

sítios de regulação da cromatina, ou o caso do gene Arc, com papel no

armazenamento da memória e plasticidade do córtex visual, derivado do gene

gag de retrotransposons (Hayward and Gilbert 2022). Outro exemplo da influência

de TEs evolutivamente é a produção de amilase pelas glândulas salivares em
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primatas, onde já foi demonstrada ter ocorrido a exaptação de sequências

derivadas do elemento HERV-E como promotores, possivelmente auxiliando na

melhora da digestão de amido, aumentando o fitness deste grupo (Bourque e

cols. 2018). Evidências sugerem o papel dos TEs como agentes de plasticidade

genômica, conferindo rápida adaptabilidade de organismos ao enfrentar novos

desafios ambientais, a exemplo de formigas da espécie Cardiocondyla obscurior,

e do que ocorre na evolução de patógenos os auxiliando na “corrida

armamentista” hospedeiro-patógeno, em um conceito conhecido como genoma de

duas-velocidades, onde uma parte do genoma composta por maior porção de

elementos repetitivos evolui em maior velocidade do que a parte com menor

porção destes elementos (Schrader e Schmitz 2019). De forma geral, os TEs

contribuem de forma significativa com a evolução do tamanho dos genomas de

invertebrados (Petersen e cols. 2019) e vertebrados (Sotero-Caio e cols. 2017;

Shao e cols. 2019).

2.1 Classificação de TEs
Um primeiro sistema de classificação de TEs foi proposto em 1989 por

Finnegan, diferenciando os TEs de acordo com seu intermediário de transposição

(Finnegan 1989). Os elementos de classe I ou retrotransposons realizam sua

mobilização por um intermediário de RNA, ao passo que os elementos de classe

II ou transposons de DNA não necessitam de um intermediário de RNA.

Elementos de classe I realizam a transposição pelo mecanismo de transposição

replicativa conhecido como ‘copia-e-cola’ (Meena e cols. 2012; Zhang e cols.

2014). Este mecanismo está relacionado com o aumento de genomas, inclusive

com o gigantismo genômico observado em certas espécies de salamandras

(Sotero-Caio e cols. 2017), por exemplo. O elemento se insere em uma posição

diferente do genoma a partir de uma cópia transcrita, mantendo-se em sua

posição original; após, a nova cópia sofre o processo de transcrição reversa por

uma enzima transcriptase reversa produzida pelo próprio elemento ou por outro

elemento da mesma classe, e o cDNA resultante insere-se na nova posição

(Saleh e cols. 2019). Elementos de classe II em sua maioria se mobilizam pelo

mecanismo de ‘corta-e-cola’ ou conservativo, no qual o elemento é removido do
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sítio doador e se insere um sítio receptor pela enzima transposase, porém, alguns

elementos desta classe podem se transpor pelo mecanismo de ‘copia-e-cola’

similar aos classe I, mas sem necessidade de transcrição reversa (Skipper e cols.

2013; Ochmann e Ivics 2021).

A grande diversidade de TEs trouxe à tona a necessidade de um sistema

de classificação mais abrangente, como proposto por Wicker e cols. (2007),

adicionando os níveis hierárquicos de subclasse, ordem, superfamília e família

respectivamente (Tabela 1). A categoria de subclasse atualmente aplica-se aos

elementos de classe II, separando-os em elementos que se transpõem pelo

mecanismo de ‘corta-e-cola’ ou ‘descasca-e-cola’ (do inglês, peel-and-paste) (Di

Stefano 2022). A divisão em Ordem se baseia no mecanismo de replicação e

separa os elementos de classe I na ordem LTR, elementos com presença de

longas repetições terminais (LTR) e ordens de elementos não-LTR, sendo estas

DIRS, PLE, LINE e SINE; os elementos de classe II são separados nas ordens

TIR, Crypton, Helitron e Maverick. Os elementos dentro de uma mesma ordem

são separados em superfamília pelas diferenças estruturais no que concerne à

presença de domínios ou organização enzimática, por exemplo (Piégu e cols.

2015; Anderson e cols. 2019). Os elementos das ordens Crypton, Helitron e

Maverick apresentam apenas elementos homônimos à nível de superfamília. A

divisão em famílias é feita baseada na similaridade das sequências e, adentrando

níveis mais profundos de classificação, pode-se separar os elementos em

subfamílias a partir de análise filogenética (Arkhipova 2017). Os TEs também são

classificados de acordo com sua capacidade inerente de mobilização em

elementos autônomos e não-autônomos, ambos os tipos podem ser de classe I

ou classe II. Um TE autônomo é capaz de se transpor sozinho por codificar as

enzimas necessárias para sua transposição. Os elementos não-autônomos

dependem da maquinaria de elementos autônomos da mesma classe para se

transporem (Wessler 2006; Lanciano e Cristofari 2020). Um exemplo ilustre é o

complexo Ac/Ds identificado por Bárbara McClintock ao descobrir os TEs.
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Tabela 1. Classificação hierárquica dos TEs de acordo com o modelo de Wicker e

cols (2007).

Classe Ordem Superfamília

Classe I -
Retrotransposons

LTR Copia
Gypsy
Bel-Pao
Retrovirus

ERV
DIRS DIRS

Ngaro
VIPER

LINE R2
RTE

Jockey
L1

SINE tRNA
7SL
5S

Classe II - transposons de
DNA

subclasse I

TIR Tc1-Mariner

hAT
Mutator
Merlin
Transib

P
Piggyback
CACTA

Crypton Crypton
Classe II - transposons de

DNA
subclasse II

Helitron Helitron

Maverick Maverick
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3. OBJETIVOS
3..1 Objetivo geral
Construir uma ferramenta amigável e acurada, baseada em deep learning, capaz

de realizar a anotação e a classificação de elementos transponíveis em genomas

eucarióticos.

3.2 Objetivos específicos
1. Criar conjuntos de dados curados de elementos transponíveis a partir de

bancos de dados disponíveis;

2. Treinar modelos baseados em deep learning a partir dos conjuntos de

dados para classificar elementos transponíveis;

3. Comparar a capacidade de classificação dos modelos com algumas das

ferramentas mais usadas para a tarefa;

4. Criar um workflow para a anotação de elementos transponíveis usando os

modelos de deep learning para a classificação;

5. Testar a ferramenta criada em genomas eucarióticos e comparar com as

ferramentas de anotação mais comumente usadas.
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4. Estrutura da tese

Esta tese está estruturada em forma de artigos. O primeiro artigo intitulado

“The good, the bad and the ugly about transposable elements annotation tools” foi

submetido a revista Genetics and molecular biology e está em fase de revisão.

Neste manuscrito, fazemos um apanhado geral das principais ferramentas de

bioinformática utilizadas para a classificação e anotação de TEs, e discutindo

seus pontos fortes e fracos, assim como o que chamamos de “ugly”, referindo-se

a parte de usabilidade e documentação dos software, que é muitas vezes

negligenciada pelos desenvolvedores. A partir desta ideia, buscamos apresentar

soluções para este problema.

O segundo artigo apresenta o ponto principal desta tese: HamleTE, uma

ferramenta desenvolvida para classificação e anotação de TEs usando modelos

baseados em DL. Existem algumas ferramentas baseadas em DL para a

classificação de TEs, porém nenhuma delas integra um workflow próprio para a

anotação. Além disso, HamleTE propõe formas de refinar os resultados como

seleção de valores de cut-off, tamanho de k-mers e otimizações para torná-lo

capaz de ser rodado em máquinas de uso pessoal, sem a necessidade de

servidores.

Há ainda um artigo em anexo resultante de um trabalho realizado durante o

doutorado demonstrando a existência de mesmos supergrupos de Wolbachia em

hospedeiros artrópodes de grupos taxonômicos diferentes, mesmo distantemente

relacionados, o que não é esperado considerando-se o modo de transmissão

vertical de Wolbachia. Isto evidencia a mudança de hospedeiros por transmissão

horizontal, fenômeno que poucas vezes recebe a importância devida, mas possui

papel fundamental na relação parasito-hospedeiro dado o impacto que Wolbachia

tem em artrópodes.
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ABSTRACT

Transposable elements are repetitive and mobile DNA segments that can be found in 

virtually all organisms investigated to date. Their complex structure and variable nature 

are particularly challenging from the genomic annotation point of view. Many softwares 

have been developed to automate and facilitate TEs annotation at a genomic scale, 

but they are highly heterogeneous regarding documentation, usability and methods. 

In this review, we revisited the existing softwares for TE genomic annotation, 

concentrating on the most often used softwares, the methodologies they apply, and 

user usability. Building on the state of the art of TE annotation softwares we propose 

best practices and highlight the strengths and weaknesses from the available solutions.
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INTRODUCTION

Transposable elements (TEs) are mobile genetic elements found in nearly 

every eukaryotic organism studied to date. As the name implies, these elements use 

the host molecular machinery to code their protein for mobilization. TEs are repetitive 

and sometimes fragmented, may be found within other TEs or protein-coding genes, 

and exhibit a wide range of structural, sequence-length, and distribution diversity. TEs 

constitute a significant portion of the genomes of many eukaryotic organisms, as for 

instance, 45% for humans and 85% in maize (Saleh et al. 2019; Stitzer et al. 2021; 

Hayward and Gilbert 2022). The method of transposition used by TEs varies 

depending on the TE class. Class I elements transpose via an RNA intermediate using 

a reverse transcriptase in what is known as "copy-and-paste" transposition; class II 

elements transpose via a DNA intermediate, with the majority of elements in this class 

using "cut-and-paste" mechanism, which is done by enzymes known as transposases 

(Wells and Feschotte 2020). TEs are yet subdivided in order, superfamily, family and 

subfamily (Wicker et al. 2007; Makałowski et al. 2019). In some species, e.g. Homo 

sapiens, despite having a high number of TEs, a few are known to be active, such as 

ERVs, L1 and Alu, which are LTR and non-LTR class I elements, respectively (Ali et 

al. 2021; Autio et al. 2021). Furthermore, not all elements have the required machinery 

to transpose, and those lacking it are referred to as non-autonomous elements, relying 

on autonomous elements, which have the necessary enzymes to transpose. This is 

illustrated by the previously mentioned elements L1 and Alu in humans, with the latter 

relying on the former to insert in a new location in a genome (Burns 2020; Chesnokova 

et al. 2022).

Using bioinformatics to find TEs in genomes is like putting together a puzzle 

with multiple copies of the same piece, each with its own place, some shredded or 
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with holes in it, and other pieces glued together with another piece. Choosing the right 

tools to solve the challenge of finding and classifying TEs in genomes is a difficult task, 

and there is currently no single tool that can thoroughly fulfill this effort on its own. 

Similarity-based, structure/motif pattern-matching, de novo prediction, or a workflow 

combining different methods are the approaches used by TEs annotation softwares, 

each with a trade-off between its strengths and weaknesses that need to be equated 

when choosing a program, that is, the good and the bad algorithmically speaking. 

There are two other frequently encountered software issues by researchers that we 

consider to be the "ugly" part: user friendliness and application development state.

Many of the most commonly used applications are not well maintained, failing 

to keep up with operating system updates or advances in the programming languages 

in which they are written, resulting in difficult installation due to obsolete dependencies 

required by the software. The problem of finding and installing the correct package 

versions can be overcome by using programs to create virtual environments or 

"containers". However, this does not guarantee that the required dependency versions 

will be available or that it will be easier to install. Another option is to compile either 

the software or its dependencies from source, which may result in a time-consuming 

snowball effect of finding software dependencies, all of which must be compatible with 

the operating system used.

To complete the task of installing and using the softwares, the human side must 

be considered. It necessitates skills that, depending on the researcher's background, 

may outweigh his or her knowledge or willingness to use the software. In line with this, 

not all softwares has a complete and clear documentation on how to run them and 

what the available options mean.
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Herein, we bring to light the good, the bad and the ugly sides of using 

bioinformatics tools for genomic annotation of transposable elements. What are the 

most commonly used softwares, how to distinguish between methods and what can 

be done to advance the current state-of-the-art on the subject.

METHODS AND SOFTWARES FOR TE ANNOTATION

The process of detecting a TE sequence in a genome, classifying it, and 

identifying its coordinates, i.e. the start and end of a sequence, in a chromosome or in 

contigs is referred to as TE annotation. The repetitiveness of TEs, the number of very 

similar or degraded copies, and the presence of nested elements are some of the 

challenges faced by TE annotation softwares. Tools designed to annotate TEs may 

use sequence similarity, the presence of structural elements such as long terminal 

repeats (LTR) or terminal inverted repeats (TIR), and a de novo approach to 

accomplish this task. 

Table 1 summarizes the main features of the softwares used for TE annotation 

and classification, such as the release year, method for TE characterization, the 

software development status, i.e., whether it is still receiving updates, improvements, 

or developer support, and other aspects such as the operating system required to run 

the software if it is a downloadable version.

 

Similarity-based

The most used method for characterizing sequences in general (Zielezinski et 

al. 2017; Carey et al. 2021), many times wrongly named homology-based (Reeck et 

al. 1987; Pearson 2013). It is used by RepeatMasker (Smit et al. 2013) and CENSOR 

(Kohany et al. 2006), two of the most well-known and widely used tools for masking 
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repetitive sequences (Figure 1a). Similarity-based searches have high specificity and 

accuracy, making it useful for detecting conserved regions of related sequences, 

single nucleotide polymorphisms, and indels. Disadvantages are its computational 

complexity, it may not work well with highly divergent sequences, can generate false 

positives when working with repetitive sequences as TEs, and are limited to known 

sequences, i.e. does not allow for the discovery of new TEs.

RepeatMasker searches genomic data for interspersed repeats and low 

complexity DNA sequences, by default using the Dfam database as queries including 

Hidden Markov Models profiles and consensus sequences (Storer et al. 2021), but it 

is also possible to use a Repbase-like formatted custom library instead. RepeatMasker 

is written in Perl, an interpreted programming language, meaning it does not need to 

be compiled from source, it includes installation instructions, basic usage and a 

detailed program manual with all of the information needed regarding all parameters. 

It can be installed from the bioconda channel in a conda virtual environment. 

RepeatMasker is still maintained, updated, and has news about newer releases on its 

website. It is an open-source software available for download at 

https://www.repeatmasker.org/ or https://github.com/rmhubley/RepeatMasker.

CENSOR compares nucleotide or amino acid sequences to known repeats 

using WU-BLAST (in newer paid versions there is an option to use BLAST instead), 

and can compare sequences of DNA-DNA or DNA-protein. CENSOR is available as 

a web-based service or standalone program to be used in UNIX systems. The web 

version uses the REPBASE database, which for download needs a paid subscription 

since 2018. The standalone version available for download (at 

https://www.girinst.org/downloads/software/censor) was last updated in 2016, has a 

short description on how to use and no manual describing the options.
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Structure-based

Tools that search for structure in sequences can discover catalytic sites and 

functional protein sites. It can also be used to improve similarity-based alignment 

results. This method is limited by the availability of known sequence structures and 

does not work well with highly variable regions or homologs that are highly divergent. 

Two of the most used softwares using this method are LTR_finder (Xu and Wang 2007) 

and MITE-hunter (Han and Wessler 2010), as other tools as TIRmite (found at 

https://github.com/Adamtaranto/TIRmite).

LTR_finder identifies full-length LTR elements in genomic data by searching 

possible exactly matching pairs at the 5’ and 3’ end of sequences, selecting the pairs 

based on a specified distance between them, calculates the similarity between regions 

using global alignment and adjusts the near-end boundaries using the Smith-

Waterman algorithm. It is presented both as a web-server and a standalone version 

for UNIX systems. The latter is written in C and C++ and must be compiled from the 

source code. It is also dependent on Perl. The manual makes no mention of 

dependency versions or the requirement to install the Perl module GD, which is 

required for bitmap handling. The LTR_finder repository on github 

(https://github.com/xzhub/LTR_Finder) is not maintained anymore and the webserver 

(http://tlife.fudan.edu.cn/ltr_finder/), to the moment of this writing, was not available.

MITE-hunter is a program that searches for miniature inverted-repeat 

transposable elements (MITEs), which are short non-autonomous Class II elements 

found in plants and animals. MITE-hunter is written in Perl and is intended to run on 

UNIX systems. It first identifies candidates based on the presence or absence of TIRs 

and target site duplications (TSDs), then performs an all-by-all BLASTN comparison 
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to filter false positives and clusters selected sequences. A multiple sequence 

alignment is performed to generate consensus sequences, which are then categorized 

into families. It can be downloaded on 

http://target.iplantcollaborative.org/mite_hunter.html, but does not appear to be in 

development any longer, as the last update on its github page 

(https://github.com/jburnette/MITE-Hunter) was in 2010. MITE-hunter depends on 

NCBI BLAST, Muscle, mDust and the Perl programming language to be installed and 

used. The manual makes no mention of the dependencies versions.

De novo

The de novo method does not require a reference database to find TEs, which 

is useful when working with newly sequenced genomes. Conversely, it can produce 

unreliable results due to sequencing or assembling errors, and because there are no 

curated sequences as reference to validate the results. It usually works by performing 

an all-by-all sequence comparison followed by sequence clustering or by directly 

applying clustering methods to reads that will be downsampled or filtered (Storer et al. 

2022). RepeatModeler (Smit and Hubley 2008), EDTA (Ou et al. 2019) and LTR 

annotator (You et al. 2015) are some examples of tools using this method, being 

RepeatModeler and EDTA two of the most used.

RepeatModeler is a pipeline for de novo TE identification that aims to produce 

a reliable and consistent TE library of consensus sequences of unique TE families. It 

uses Recon for repeat discovery, which uses a sensitive alignment approach and is 

well suited to discovering old TE families, and RepeatScout, which is faster and 

detects the most abundant and younger families more easily. RepeatModeler is mostly 

written in Perl, having a complete and detailed manual on how to install and run it, with 
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all of its dependencies clearly specified with the necessary versions. It is still 

maintained and is available at https://github.com/Dfam-consortium/RepeatModeler or 

http://www.repeatmasker.org/RepeatModeler/. The newer version RepeatModeler2 

(Flynn et al. 2020) integrates a structure discovery step of LTR elements to improve 

the discovery of elements of this class. 

EDTA is a package designed for de novo TE annotation that aims to generate 

a high-quality non-redundant TE library for whole sequenced genomes. It was 

developed by benchmarking many TE tools using a manually curated rice TE library, 

and selecting the most performant ones to be part of the TE annotation pipeline, which 

includes LTRharvest, a parallel version of LTR_FINDER, LTR_retriever, GRF, TIR-

Learner, HelitronScanner, and RepeatModeler. EDTA is written using Perl, Python and 

shell script, and can be installed using a conda virtual environment, singularity or 

docker containers. Its manual contains detailed descriptions on how to install and run 

the program, as well as information on the input and output files. It is still maintained 

and updated, being found at https://github.com/oushujun/EDTA. It can also be used to 

test new TE annotation methods or TE libraries using the rice genome, according to 

the authors of EDTA. The input FASTA sequence identifiers (IDs) must be at most 13 

characters long, and many non-alphanumeric characters are not permitted; otherwise, 

the program execution is terminated. There is no tool or script included with the 

package to edit the invalid IDs, leaving it up to the user to do so.

Combined approaches

Because TEs are such complex elements with so many features to consider in 

order to correctly annotate them, the scientific community has agreed that a 
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combination of de novo, similarity, and structure-based approaches is the best 

strategy for a more careful and accurate characterization of TEs. TIR-learner (Su et 

al. 2019), REPET (Flutre et al. 2011), DAWGPAWS (Estill and Bennetzen 2009) and 

Earl Grey (Baril et al. 2022) are examples of such tools.

TIR-learner is a tool developed to detect TIRs primarily in plant genomes and 

is available at https://github.com/WeijiaSu/TIR-element-annotation. It uses a pipeline 

of combining similarity and structure approaches with a de novo structure screening, 

which uses a machine learning algorithm to classify sequences into five TIR 

superfamilies. Next, it removes overlaps by comparing the outputs of each method, 

resulting in a library of TIR-elements. It is written in Python and shell script, and it is 

dependent on the softwares Generic Repeat Finder (GRF) and BLAST+. It includes a 

simple and straightforward manual for installing and running the software. There is no 

mention of specific version dependencies. Its most recent version is 1.14, which was 

updated in 2019 with newer unresolved github issues.

REPET is a software suite that uses two main pipelines to annotate TEs at the 

genomic scale: TEdenovo and TEannot. The former compares a genome to itself 

using BLASTER and then clusters the resulting matches using GROUPER, RECON, 

and PILER. For each cluster, a multiple sequence alignment is performed in order to 

construct a consensus sequence and then classify it. After that, TEannot combines 

multiple programs to reconstruct intact TE copies and filter out fragmented copies and 

false-positives. REPET is written in C++ and Python to be used in Linux-based 

systems, it depends on several external programs, with some dependency versions 

being deprecated or not yet maintained upstream, such as the required Python version 

(version 2.x). To help address those issues, there is a docker version. The REPET 

manual has detailed information about software versions, installation and usage. It is 
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still maintained, with recent updates on its containerized version, PFAM database and 

a newly added eukaryotic rRNA database. The REPET package and its instructions 

can be found at http://urgi.versailles.inra.fr/Tools/REPET.

Classifiers

Following the step of generating a series of TE consensus, the newly created 

library must be classified, which will give those sequences meaning. Although many 

TE annotation pipelines rely on some sort of classification mechanism (Flutre et al. 

2011; Flynn et al. 2020; Riehl et al. 2022), this mechanism does not always follow a 

classification scheme adopted by a research group, or provide the level of detail 

desired by the researcher. Furthermore, different classifiers generate predictions 

using different databases as a source of comparison. The distribution of TE types in a 

database, as well as the divergence between the species under study and the species 

present in the database, will have a direct impact on the classification quality, because 

there is a loss of TE identification when very divergent reference sequences are used 

(Bell et al. 2022). It is also known that different classification methods have varying 

accuracies, with some better classifying specific groups of TEs than others (Hoede et 

al. 2014; Monat et al. 2016; Zhang et al. 2022). As a result, it is frequently necessary 

to apply multiple classification methods to a newly created library in order to resolve 

ambiguities in more divergent consensus (Melo and Wallau 2020).

In recent years, TE classification mechanisms have evolved significantly. In 

general, they can be divided into two large groups (Figure 1b): I) programs that employ 

traditional approaches, such as the use of various types of blasts and search 

algorithms for protein domains like HMMER. including REPCLASS (Feschotte et al. 

2009), PASTEC (Hoede et al. 2014), RepeatClassifier (a classification program from 
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RepeatModeler 2), LTRclassifier (Monat et al. 2016), TEsorter (Zhang et al. 2022) and 

RTclass1 (Kapitonov et al. 2009); II) programs that use machine learning algorithms, 

including TEclass (Abrusán et al. 2009),  DeepTE (Yan et al. 2020), ClassifyTE (Panta 

et al. 2021) and TERL (da Cruz et al. 2021).

One of the most cited classifiers is PASTEC. It is part of the REPET pipeline 

and thus has the same set of manuals, whether it is installed alongside the main 

package or used within a container provided by the developers. PASTEC searches 

sequences for structural features such as TIRs or LTRs, as well as the presence of 

SSRs, ORFs, and poly(A) tails. This program also searches for sequence similarity 

against Repbase sequences and Pfam domains. One of the most intriguing aspects 

of PASTEC is its user-friendly output, which includes a tabular file with a classification 

combined with a confidence index for each sequence, as well as lists of structural 

characteristics, protein domains, and blast matches against Repbase. Despite this, as 

there is no longer free access to Repbase, the library used by PASTEC has become 

outdated. REPCLASS employs a similar strategy, but their software has not been 

updated in at least 8 years, and has WU-blast, a discontinued program, as a 

dependency. RepeatClassifier (installed with RepeatModeler) can use Dfam as the 

database for its classification task, circumventing the challenge of accessing up-to-

date data from Repbase. However, the output of this software is very streamlined, 

consisting only of a multi-fasta file containing the TE classification in the original 

sequence header.

While all three of these tools are designed to categorize TEs of any kind, some 

tools concentrate on doing so in greater detail. Both TEsorter and RTclass1 can 

classify LTRs and LINEs at the clade level. RTclass1, a Repbase database service, 

can classify TE at the clade level in seconds; the user only needs to supply the amino 
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acid sequence of the TE protein's reverse transcriptase domain. Despite being easy, 

it only works for non-LTR TEs. TEsorter, like most TE-related programs, requires a 

local installation; however, it is quite simple to install using the conda package 

manager. This software compares translated TE sequences to profiles in GypsyDB 

and RexDB. However, while it can generate a classification for any type of TE, it can 

only classify LTR-type TEs at the clade level. TEclass was one of the first classifiers 

to use machine learning algorithms. It was last updated in 2016, when the Random 

Forest and LVQ algorithms were added to the SVM algorithm that had previously been 

used in the classifier's first version. In addition to the local installation option, it also 

provides the option to run the analyses on a web server, making it easier to use for 

less experienced users. Despite this, the program can only classify TEs into one of 

four major groups: DNA, LINE, LTR or SINE.

This limitation was recently overcome by DeepTE, ClassifyTE, and TERL, 

which also use machine learning (usually artificial neural networks) to classify TEs at 

the superfamily level. These three programs all run only locally, requiring installation, 

which may be difficult for some users. Another issue the three programs have in 

common is that they all generate only one classification label for each sequence, even 

though their output structures differ. TERL, for example, replaces a sequence's entire 

header with its classification label, making it difficult for the user to manage multi-fasta 

files. There is also no information about the accuracy of each class prediction in any 

of these three programs. Furthermore, other factors can have an impact on the user 

experience. For example, ClassifyTE requires that the TE library that needs to be 

classified be located in the "data'' folder in the application's root directory, which can 

limit the application's flexibility.
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DISCUSSION

In the quest to better understand and unravel the complexity of life from a 

genomic perspective, bioinformatics has become an indispensable ally of geneticists 

and molecular biologists. The exponential availability of genomic data  creates an 

increasing need for the development of tools capable of balancing efficiency and ease 

of use, preventing either from becoming a hindrance to research. Because of a 

plethora of genetic and structural features that make correct annotation difficult, TEs 

add another dimension to this picture. To undertake such hardships, many strategies 

are employed to detect and characterize TEs on genomes.

Similarity-based tools (RepeatMasker, CENSOR) employ a well-established 

method that uses libraries or sets of known sequences that for an increasing number 

of species have experimental validation, generating precise results. The bad side is 

that it depends on the reliability of the dataset used as a library, its efficiency and 

precision can quickly decrease when used to detect, for example, protein sequences 

with only a few distinct residues and is time demanding and memory consuming 

(Zielezinski et al. 2017). 

Structure-based methods, such as LTR_FINDER and MITE-hunter, are best-

tailored to detect protein domains or class-specific patterns of TE sequences. The 

search strategy behind structure-based methods is either an enumerative approach, 

where sequences are analyzed as small words contained in the query and then 

compared to a collection of patterns, or probabilistic, in which  patterns are searched 

using a motif or a weighted matrix (Hashim et al. 2019). Equally to similarity-based 

tools, the search time increases as the dataset grows and is also dependent on known 

patterns. Nonetheless, when compared to the amount of TE libraries for use with 

similarity-based tools, there are even less structures/motifs available.
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RepeatModeler and EDTA, for example, use the de novo methodology to 

annotate TEs, which is effective for discovering novel TE sequences and creating a 

non-redundant TE collection. Most of the time, de novo tools operate by automatically 

comparing sequences and grouping those that share the most similarities (Storer et 

al. 2022). The disadvantage of this method is that it produces more false-positive 

results than other approaches, is more likely to result in chimeric sequences, and may 

make it more difficult to distinguish between different TE fragments, sometimes even 

including pieces of non-TE sequences like those from repetitive gene families from the 

host genome.

Combining strategies is currently a scientific consensus as a way to minimize 

the drawbacks of a technique while maximizing its benefits (Arkhipova 2017). 

Nonetheless, combining methods brings its own problems to the game. Combining 

methods also entails combining the disparate output of each program, analyzing the 

results, removing redundant but not necessarily identical TE sequences, and typically 

clustering the results. All of this takes more time and computational resources to run, 

and it does not solve the problem of redundant sequences being classified with 

different labels. That is why understanding how each method works, as well as the 

benefits and drawbacks of the tools used, is critical to knowing what results to expect 

from the annotation.

Regardless of the good and bad of each software’s methodology, if it is unclear 

what is needed to install it, how to use it, and how comprehensible the output is, the 

researcher may opt to avoid using cutting-edge or more performant software in favor 

of older but better documented tools. In other words, when annotating TEs, or even in 

bioinformatics in general, user friendliness and documentation completeness must be 

considered.
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A poorly documented software may lead the daily work of a researcher to 

setbacks and delays, by adding a new layer of complexity to the already complex task 

of working with biological data (Lawlor and Sleator 2020). It would be similar to 

conducting a wet lab experiment without fully understanding the chemicals, their 

activities, or not having the label's information regarding concentration. It is especially 

true for small research groups or underfunded institutions that do not have enough 

financial support to hire a specialist to work on the task, which can become, at a certain 

level, an obstacle to progress in their field of study and to keep pace with the state-of-

the-art (Krampis 2022). If the quality of software documentation was evaluated as 

carefully as other topics in peer-reviewed papers on bioinformatics tools, it could 

contribute to better documented softwares. Karimzadeh and Hoffman (2018) propose 

guidelines for creating good software documentation, including, as minimum 

requirements, a page with code and an issue tracker (e.g. Github and Gitlab), a 

"Readme" file containing the main points for installation and usage, and a manual with 

a detailed description of every parameter.

It is not uncommon for TE annotation softwares to use discontinued or outdated 

packages, causing installation and usage issues, as well as becoming a bottleneck to 

computer performance, which goes against the ever-increasing computer power and 

technological advances in operating systems and programming languages. It may also 

occur as a result of the software's development being halted and becoming an 

abandonware, not receiving any upgrades, also affecting the developer's error support 

for users. Another issue is retro-fitting older tools to new conditions, i.e., a tool 

developed to identify a certain feature may be unable to extract all the correct 

information obtained by newer research leading to incomplete results. (Lawlor and 

Walsh 2015). The software installation can be impacted by outdated packages, 
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whether it is because the required program does not have a version for more recent 

operating systems or because the software's dependencies cannot be installed. 

Attempting to install outdated versions on newer platforms may result in version 

conflicts, leading to the "dependency hell," a frustrating situation in which a software 

cannot be utilized due to incompatibilities between softwares with shared packages 

but that need different versions, particularly for softwares that require a large number 

of packages.

Virtual environments and containers are methods for dealing with dependency 

issues, allowing programs to run on any system (Krampis 2022). Version conflicts can, 

however, still occur in virtual environments such as Conda. Containers are more 

reliable in this regard because they provide a more isolated environment due to 

operating system-level virtualization, but may be trickier to set up. Dockerfiles and 

Conda recipes, files containing all commands and software versions to automatically 

assemble a container or create a virtual environment, make software installation easier, 

aid in experiment reproducibility and avoid dealing with dependency issues that may 

arise when manually installing software and looking for its dependencies.

Lack of documentation, software updates and developer support are examples 

of the “ugly side” of TEs annotation tools and bioinformatics as a whole, all of which 

are unrelated to the method’s good and bad. On top of that, the ugly side may enter 

the picture when a developer creates a program to solve their own research problem, 

releases it for the scientific community, but does not fully adapt it for general use, 

casting aside good software development practices for what worked on the original 

project. Parameters and outputs that appear clear to the developer may be confusing 

to the end-user, making the program less user friendly and less understandable for 

biologists or other life scientists, who are the best suited to validate the findings (Lerat 
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2010). In an ideal world,  a biologist would have the skills of a software engineer and 

vice versa, however this is far from the reality due to the complexity of both disciplines. 

The adoption of best practices for developing and deploying bioinformatics software, 

along with software documentation that adheres to guidelines to better inform the user, 

would provide a solid foundation for improving TEs annotation tools and the standard 

of related research (Lawlor and Walsh 2015; Lawlor and Sleator 2020). The creation 

of better documented and user-friendly tools can be aided by initiatives like TE Hub 

(Elliott et al. 2021), a collaborative platform that aims to provide information for the TE 

scientific community with a focus on databases, tools, and methods for TE annotation. 

TE Hub offers a way to integrate information and standardize protocols for tools related 

to TE scientific research. Figure 2 depicts a score for the tools mentioned here based 

on the availability or absence of several types of documentation, such as a reference 

manual, an informative figure illustrating how the software works, and whether there 

is an alternative method of installation other than manual installation. Table S1 

contains a more detailed version that shows what features are present or absent for 

each software.

Therefore, when choosing a TE annotation software the researchers should 

always ask themselves: is this the best tool for my needs? What are the downsides? 

Is the documentation clear about what is required to use the software? Is the software 

still being actively developed/maintained? Does the developer provide user support? 

These questions might seem simple, but given the significance of knowing how to get 

the most out of a tool, they help to achieve better research results, particularly in terms 

of software usability. Having a reliable TE annotation is the ultimate goal. This can be 

accomplished by improving the status of existing tools, which calls for both end-user 

and developer effort. For that, the user requires better documented tools as well as a 
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place to share information with the developer so that the developer knows what to do 

to create a more well-known tool, benefiting the entire TEs scientific community.
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Figure legends

Figure 1. Schematic representation of some softwares available for TE annotation (a) 

and classification (b) based on the method for TE detection.

Figure 2. Software score for annotators (a) and classifiers (b) based on documentation 

availability. The final score, which ranges from 0 to 1, is determined by the presence 

or absence of various types of documentation, such as a manuscript, reference 

manual, Readme file, quick start section, informative figure demonstrating how the 

software works, frequently asked questions (FAQ), news section, issue tracker, and 

built-in help.

-- 

Supplementary material - the following online material is available for this article:

Table S1 -  Presence or absence of types of documentation by software.
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Table 1. Summary of the key features of tools used to annotate or classify TEs.
Software Year Type Method Development status Presentation Operating system Installation External dependencies Alternative installation

CENSOR 1996 Annotator Similarity Maintained* Web/Downloadable - - No -
ClassifyTE 2021 Classifier Machine learning Maintened Downloadable Unix Executable script Yes Venv
DAWGPAWS 2009 Annotator Combined Not maintained Downloadable Unix Executable script Yes -
DeepTE 2020 Classifier Machine learning Maintained Downloadable Unix Executable script Yes Venv
EarlGrey 2022 Annotator Combined Maintained Downloadable Linux Executable script Yes Venv/Container
EDTA 2019 Annotator De novo Maintened Downloadable Linux Executable script Yes Venv/Container
LTR annotator 2015 Annotator De novo Not maintained Downloadable Linux Executable script Yes -
LTR classifier 2016 Classifier Library-based Maintained Web - - - -
LTR_finder 2007 Annotator Structure Not maintained Downloadable Linux Source code No -
MITE-hunter 2010 Annotator Structure Not maintained Downloadable Linux Executable script No -
PASTEC 2014 Classifier Library-based Maintained Downloadable Linux Executable script Yes Container
reasonaTE 2022 Annotator Combined Maintained Downloadable Linux Executable script Yes Venv
REPCLASS 2015 Classifier Library-based Not maintained Downloadable Linux Executable script Yes -
RepeatClassifier 2020 Classifier Library-based Maintaned Downloadable Linux Executable script - Venv
RepeatMasker 1997 Annotator Similarity Maintained Web/Downloadable Linux Executable script Yes Venv
RepeatModeler 2008/2020 Annotator De novo Maintained Downloadable Linux Executable script Yes Venv
REPET 2011 Annotator Combined Maintained Downloadable Linux Executable script Yes Container
RTclass1 2010 Classifier Library-based Maintained Web/Downloadable Linux Executable script Yes -
TERL 2020 Classifier Machine learning Maintained Downloadable Unix Executable script No Venv
TEsorter 2022 Classifier Library-based Maintained Downloadable Unix Executable script Yes Venv
TIR-learner 2019 Annotator Combined Maintained Downloadable Linux Executable script Yes -
TIRmite 2017 Annotator Structure Maintained Downloadable Linux Executable script Yes Venv
Legend. Executable script: the program does not need to be compiled from source code; Source code: program needs to be compiled to install; Venv: program can be installed using a virtual 
environment; Container: program can be installed as a container using tools such as Docker or Singularity. Linux: program needs to be installed in a Linux based operating system (OS); Unix: a Unix-
based operating system such as MacOS or a Linux-based OS; External dependencies: tools mandatory to run the main program that are not installed in the main program installation. *: just the web 
version appears to be maintained.
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Figure 1. Schematic representation of some softwares available for TE annotation (a) and classification (b) 
based on the method for TE detection. 
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Figure 2. Software score for annotators (a) and classifiers (b) based on documentation availability. The final 
score, which ranges from 0 to 1, is determined by the presence or absence of various types of 

documentation, such as a manuscript, reference manual, Readme file, quick start section, informative figure 
demonstrating how the software works, frequently asked questions (FAQ), news section, issue tracker, and 

built-in help 
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Table S1. Presence or absence of types of documentation by software.
Software Manuscript Reference Manual Readme Quick start Informative figures FAQ News Issue tracker Built-in help Score

CENSOR 1 0 0 0 0 0 1 0 1 0.33
ClassifyTE 1 0 1 1 0 0 0 1 1 0.56
DAWGPAWS 1 1 1 1 0 0 1 1 1 0.78
DeepTE 1 0 1 1 1 1 1 1 1 0.89
EarlGrey 1 0 1 1 1 0 0 1 1 0.67
EDTA 1 1 1 1 1 0 0 1 1 0.78
LTR annotator 1 1 1 1 1 0 1 0 1 0.78
LTR classifier 1 0 0 0 1 0 0 0 1 0.33
LTR_finder 1 0 1 0 0 0 0 1 1 0.44
MITE-hunter 1 1 0 0 0 0 0 1 1 0.44
PASTEC 1 1 1 1 0 0 0 0 1 0.56
reasonaTE 1 0 1 1 1 0 0 1 1 0.67
REPCLASS 1 0 1 1 0 0 1 1 1 0.67
RepeatClassifier 1 0 0 0 0 0 0 1 1 0.33
RepeatMasker 0 0 1 0 0 1 1 1 1 0.56
RepeatModeler 1 1 1 1 0 0 1 1 1 0.78
REPET 1 1 1 0 1 1 1 1 1 0.89
RTclass1 1 0 0 0 1 0 1 0 1 0.44
TERL 1 0 1 1 0 0 0 1 1 0.56
TEsorter 1 0 1 1 1 0 0 1 1 0.67
TIR-learner 1 0 1 1 1 0 0 1 1 0.67
TIRmite 0 0 1 1 0 0 0 1 1 0.44

Legend
0 The absence of a feature.
1 The presence of a feature.
Manuscript Conceptual and technical details of the method.
Reference manual Complete details of every configurable setting, input and output.
Readme Basic instructions for installation and use of the software and where to find more information. Describe how to install your software and all of its dependencies, in detail.
Quick start Step-by-step instructions for installation and use of the software on a provided test data set, tells users exactly how to get a result with a small number of explicit steps on a specified test data set.
Informative figures A schema that explains how the software works, and its modules.
News Changes in behavior, bug fixes, new features and caveats.
FAQ Answers to commonly asked or anticipated questions.
Issue tracker News and discussion of details not otherwise provided in the documentation or not apparent to users. A chanel where users can send questions and feedback, ex: GitHub Issues.
Built-in help Concise description of a software component and its parameters.
Score A value between 0 and 1, which is the sum of each feature value divided by the number of features.
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HamleTE: a deep learning-powered tool to annotate transposable
elements
Tiago M. F. F. Gomes, Alexandre R. Paschoal, Elgion L. da S. Loreto.

ABSTRACT
Transposable elements (TEs) are DNA sequences capable of changing their

location in genomes, a process known as transposition. The repetitive and

fragmented nature of TEs makes them difficult to find and classify. To date, we are

not aware of any deep learning-based tools that are capable of identifying and

classifying TE elements from genomes without the need of a plethora of external

tools. HamleTE is a deep learning powered tool that uses a workflow to generate a

library to annotate TE from genomes. It uses convolutional neural networks for

TEs classification to the level of superfamily. HamleTE works as a classifier and an

annotation tool of easy installation and use. Its classification power equals and

even surpasses existing classification programs in several aspects, helping to

reinforce deep learning methods as another ally in the search for TE in eukaryotic

genomes in general.

keywords: Deep learning, transposable elements, annotation, classification, software.

INTRODUCTION
Transposable elements (TE) are DNA sequences able to change their

location in genomes, a process known as transposition. Initially, TEs were known

as “junk DNA”, due to their highly repetitive nature and unknown roles on

genomes. However, research has shown that TE may play various roles on a host

genome such as gene expression regulation (Bourque et al. 2018; Drongitis et al.

2019), aging and cancer (Burns 2017; Andrenacci et al. 2020), as well as

speciation (Serrato-Capuchina and Matute 2018) and the development of adaptive

immunity in vertebrates (Hayward and Gilbert 2022). They can transpose either via

an RNA or a DNA intermediate, which is used to classify them into classes. Other

structural aspects allow their classification in lower levels as order, superfamily

and family (Wicker et al. 2007). TEs that transpose with an RNA intermediate are

classed as class I elements and can be further differentiated into LTR elements,
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which have a long terminal repeat (LTR) on their structure, or non-LTR elements

(Kapitonov et al. 2009; Zhang et al. 2014). Class II elements use a DNA

intermediate and are very distinctive from one another, however they can be

classified as having or not having a terminal inverted repeat (TIR) (Skipper et al.

2013). The repetitive and fragmented nature of TEs makes them difficult to find

and classify in genomes. Additionally, TEs may have undergone a substantial

number of mutations and changes over time, so the divergence between

sequences of the same order or superfamily, or even family, creates another issue

in correctly classifying them (Sotero-Caio et al. 2017; Wells and Feschotte 2020).

Many techniques, such as similarity-based, structure-based, and de novo

methodologies, have been developed throughout the years to aid in such

endeavors (Permal et al. 2012; Goerner-Potvin and Bourque 2018; Storer et al.

2022). The recent rise in popularity of machine learning and deep learning

methods brought the attention of bioinformaticians to the use of deep learning in

the field of omics sciences (Zou et al. 2019; Martorell-Marugán et al. 2019). The

ability of deep learning methods to learn from data without needing to be explicitly

programmed according to user defined rules is an advantage in the era of big

data, with more and more data being generated (Zhang et al. 2018; Li et al. 2019).

Convolutional neural networks (CNN) are one the most used deep learning

algorithms for image classification (Rawat and Wang 2017), also being used for

other tasks such as computer vision (Luo et al. 2018), natural language processing

(Wang and Gang 2018), recommendation systems (Xu et al. 2019), speech

recognition (Han et al. 2020), among many others. The convolutional layers of a

CNN are used for feature extraction, usually followed by a dimensionality reduction

layer called pooling layer. Essentially, the convolutional layer employs

sliding-window filters (also known as kernels) to extract features from a dataset,

which are subsequently processed by a pooling layer to reduce the number of

features, focusing on the most important elements of the data. The information

generated from feature extraction using convolutional layers is then sent to the

fully-connected layers, which learn the association of the data and their labels in

order to correctly categorize data (Rawat and Wang 2017).
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In the omics sciences, deep learning has been used, for example, to identify

and predict enhancers and promoter regions on the human genome (Oubounyt et

al. 2019; Umarov et al. 2019), for prognosis based on transcriptomic data (Ching

et al. 2018), identify protein folding (Jumper et al. 2021) and predict gene

expression (Zrimec et al. 2020; Avsec et al. 2021). There are tools such as TERL

(da Cruz et al. 2021) and DeepTE (Yan et al. 2020) for the classification of TEs

using deep learning, and more specifically CNN. However, the latter tools are

classifiers only. TransposonUltimate (Riehl et al. 2022) is a pipeline of various

tools for TEs annotation that applies different machine learning methods for

classification, not using deep neural networks. To date, we are not aware of any

deep learning-based tools that are capable of identifying and classifying TE of a

genome from start to end without the need of a plethora of external tools. Thus, we

present HamleTE, a deep learning powered tool that uses a workflow to annotate

TE elements from genomes. HamleTE can be used as an annotation tool using

the genome mode and a genome as input or also only as a classifier using the

classifier mode, as a way to help curate existing annotated sequences.

MATERIALS AND METHODS
Datasets

The sequences used to construct the TE datasets were obtained from the

Conifer transposable elements database (ConTEdb, 322,705 sequences), the

Dioecious Plants Transposable Elements Database (DPTEdb, 31,340 sequences),

the Salicaceous Plants Transposable Elements Database (SPTEdb, 18,413), the

last publicly available Repbase database (2018 version, 55,892 sequences), and

sequences) and Soybase transposable elements database (SoyTEdb, 38,664

sequences), totaling 467,014 sequences. Sequences were filtered to remove

misclassified and duplicate sequences from the dataset, then, classified into class,

subclass, order, and superfamily according to Wicker (2007), resulting in 435,883

sequences.

The non-TE dataset was built of protein coding sequences and non-coding

RNA sequences from Homo sapiens, Mus musculus, Danio rerio, Populus

trichocarpa, Arabidopsis thaliana, Drosophila melanogaster, Zea mays and
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Caenorhabditis elegans, with total of 337,014 sequences (239,456 coding, 97,558

non-coding).

To train and test a deep learning model, a dataset is divided into training

and validation datasets equally stratified by label; the latter is used to evaluate

model performance on data that was not seen on training. We divided the datasets

into training and validation using the module train_test_split module from the

scikit-learn python library. We represented sequences as vectors with the index ‘1’

for ‘A’, ‘2’ for ‘T’, ‘3’ for ‘G’, ‘4’ for ‘C’ and ‘5’ for ‘N’. Any other IUPAC nucleotide

representations were replaced by ‘N’. All datasets had sequence lengths ranging

from 50 to 30,000 nucleotides, which were padded with zeros after transforming

sequences to vectors to make all sequences the same length of 30,000. Table 1

shows a summarization of the dataset used for training and testing each model.

The first dataset was used to train a model to differentiate TE from non-TE

sequences, and was composed of 18,914 sequences for TE, protein coding

sequences and non-coding RNA sequences for each label, totaling 56,742

sequences, 80% of which are for training and 20% for validation. The second

dataset, to identify class I and class II TE, had 19,064 sequences in total (9,532 for

each class), 80% training and 20% validation. The dataset used for LTR/non-LTR

identification was composed of 23,175 LTR sequences and 6,814 non-LTR

sequences, 90% for training and 10% for validation. Given that it was a

unbalanced dataset label-wise, we used python’s scikit-learn class_weight module

to attribute an initial weight for each label, which was, approximately, 2.20055 for

the non-LTR label and 0.64701 for the LTR label. The dataset used to train the

model for non-LTR classification was also unbalanced, so we also used the

module class_weights to give initial weights for each label. The sequences and

weights were distributed as follows: L1, 25,525 sequences, initial weight of

0.17228; LINE, 1,622 sequences, initial weight 2.71006; CRE, 921 sequences,

initial weight 4.77276; DIRS 779 sequences, initial weight 5.64276; SINE 741,

initial weight 5.93213; RTE, 698 sequences, initial weight 6.29758; Penelope, 494

sequences, initial weight 8.89820. The training and validation split was 90% and

10%, respectively. The rationale for using unbalanced datasets with precomputed

weights is to overcome limitations caused by a lack of data for many
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superfamilies/labels, allowing for a broader range of classification and avoiding, or

at least significantly reducing, overfitting for overrepresented labels, making sense

with real world data. The dataset used to classify LTR superfamilies included

11,358 LTR sequences, with 3,786 for Bel-Pao, Copia, and Gypsy, 90% for

training and 10% for validation. For Class 2 TE superfamily classification, the

dataset was 2,865 for hAT, Helitron, Mutator, Pif-Harbinger and Tc1-Mariner, 90%

for training and 10% for validation, totaling 14,325.

Repeat extraction and clustering
HamleTE extracts and clusters repetitive sequences from genomes or

transcriptomes for later classification. We use Red (Girgis 2015) to detect repeats,

with a default k-mer size of 13, as recommended by Red's guidelines. A

command-line option allows the user to change this value. All other Red

parameters, such as the minimum number of occurrences of the k-mer, are set to

their default.

To reduce redundancy and retrieve more intact repeats, repeats are

clustered using cd-hit-est (Li and Godzik 2006; Fu et al. 2012). The alignment

coverage is set to 0.8 (80%), and the cd-hit-est '-G' flag is set to 0 to use a local

sequence alignment strategy. Other sequence alignment parameters are set to the

cd-hit-est default.

Deep learning models
To identify and classify transposable elements, six models were developed.

Tensorflow (Abadi et al. 2016) and Keras (Chollet 2015) frameworks were used to

create all models. Model 1 distinguishes TE from non-TE. Model 2 categorizes TE

as either class I or class II elements. Model 3 distinguishes between LTR and

non-LTR for elements classified as class I by model 2. Model 4 assigns elements

classified by model 2 as class II to superfamilies. Models 5 and 6 classify LTRs

and non-LTRs at the superfamily level. Supplementary table 1 shows the

hyperparameters for each model.

We used the Python package Talos (Autonomio 2020), which automates

hyperparameter tuning and model evaluation, to choose the hyperparameter
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values for the models. Then, based on the lowest validation loss, we chose the

best Talos results and manually tested the hyperparameters to fine-tune them

more.

The basic architecture of each model (Figure 1) consists of an input layer,

an embedding layer, three one-dimensional convolutional layers, each followed by

a pooling layer. Subsequently, there is a normalization layer and a data flattening

step. The last layers are two dense layers with a dropout layer among them, with

the last dense layer as the output layer. The Embedding layers map the input to a

dense vector representation of words or characters and establish a semantic

relationship between the values, resulting in word embeddings that function as a

lookup table, whereas a one-hot encoded representation produces a sparse vector

with no relationship between the input values and has a less efficient use of space.

In many cases, embedding vectors can help reduce the “curse of dimensionality”

(Bauer and Kohler 2019; Chattopadhyay and Lu 2019) when compared to

methods like one-hot encoding for data representation. Examples of methods

using embedding layers are Word2Vec (Mikolov et al. 2013a) and GloVe

(Pennington et al. 2014). Conv1D was the chosen convolutional layer, which is the

main piece of a convolutional neural network, responsible to detect features of the

input by applying a matrix of weights (convolution kernel) producing a resulting

vector called feature map. The activation function used was ReLU for all Conv1D

layers in all models, the number of filters and kernel values for each layer in each

model are shown in Table 1. The MaxPooling layer applies a sliding window over

the feature map values, extracting the highest value and reducing the dimension of

the feature map; the pooling size was 7 in all models. The LayerNormalization

normalizes the input values in all neurons of a layer for each sample. The Flatten

layer flattens a multi-dimensional tensor to a single dimension. Dense layers (or

fully connected layers) have the job of matching the learned features to the given

labels. The last dense layer must have the number of neurons corresponding to

the given number of labels. Table 1 shows the number of filters for each dense

layer in every model. For all models, we used categorical crossentropy and adam

as the loss function and optimizer, respectively, and 15 as the number of training

epochs.
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Benchmarks
To assess HamleTE's performance in TE identification and classification,

we compared it to DeepTE and TERL, using the EDTA dataset (available on

https://github.com/oushujun/EDTA/tree/master/database) and sequences of the

repbase dataset that we were able to identify at the levels of class, subclass, order

and superfamily. The EDTA dataset contained 3,793 sequences, while the

screened Repbase dataset contained 39,996 sequences. Accuracy, specificity,

precision, recall and F1-score were the performance metrics used for comparison.

Accuracy is the correct predicted fraction over all labels. Specificity, or true

negative rate, shows how well the program can exclude the true negatives for a

given label. Precision (positive predictive value), denotes the proportion of a

positive predicted label being a true positive. Recall (sensitivity or true positive

rate), shows the ability of the program to correctly predict a true label. F1-score is

the harmonic mean between precision and recall, and can be understood as a way

of measuring a model's accuracy that does not require an estimate of true

negatives, being commonly used to compare two or more classifiers. All the

metrics are calculated using the formulas on Supplementary figure 1.

We also compared HamleTE against EDTA and RepeatMasker in order to

evaluate its classification performance and the generated TE library. EDTA

parameters were --anno 1, to perform whole-genome TE annotation, and --force 1,

to not interrupt and exit when no confident TE candidates are found.

RepeatMasker parameters were -no_is (skips IS element search), -nolow (skips

low complexity masking) and -norna (skips small RNAs masking). HamleTE was

run using the default configuration. We used the previously described datasets

(EDTA and Repbase) for the classification task, and the genomes of Drosophila

melanogaster (version refseq release 6.32), Drosophila simulans (release 2.02),

Drosophila virilis (release 1.07), Danio rerio (GRCz11), Cicer arietinum

(ASM33114v1), Oryza sativa (IRGSP-1.0) and Zea mays (GCA_902167145.1)

were used to evaluate the generated TE library of HamleTE, RepeatMasker and

EDTA.
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RESULTS
Model training and testing

Model 1 had a training accuracy of around 96% and a validation accuracy of

0.894 in identifying TE and non-TE (Supplementary Figure 2). The TE accuracy

was 0.95 and f1-score 0.927 for the validation dataset (Figure 2 Model 1).

Model 2 training accuracy was 98.8%, while validation accuracy was 0.945

(Supplementary Figure 3). For the validation dataset, the Retrotransposon

accuracy was 0.945 and f1-score of 0.946; for DNA transposon identification

accuracy was 0.945 and f1-score of 0.943 (Figure 2 Model 2).

Model 3, for the LTR/non-LTR identification task, had a training accuracy of

0.97 and validation accuracy was, approximately, 0.95 (Supplementary Figure 4).

For the LTR TE validation data, accuracy was 0.95 and f1-score 0.972; for

non-LTR validation data, accuracy was around 0.95 and f1-score 0.906 (Figure 2

Model 3).

Model 4 training accuracy was 0.95 with a validation accuracy of 0.894 for

classifying DNA transposon superfamilies (Supplementary Figure 5). Regarding

the validation data, the superfamily classification mean accuracy was 0.958, mean

specificity 0.974 and mean f1-score of 0.895. The Mutator element had the highest

accuracy (0.968) and f1-score (0.921); Helitron had the highest recall, 0.955. The

hAT element had the lowest f1-score, 0.864. The complete results are shown on

Figure 2 Model 4.

Model 5, for classifying LTR superfamilies, training accuracy was 0.93, while

the validation accuracy was 0.853 (Supplementary figure 6). Validation data-wise,

the superfamily classification mean accuracy was 0.902, mean specificity 0.926

and f1-score of 0.852. The Bel-Pao element had the best results overall, accuracy

0.945 and f1-score of 0.92 (Figure 2 Model 5).

Model 6, the non-LTR superfamily classifier, had a training accuracy of

0.916 and a validation accuracy of 0.886 (Supplementary figure 7). The

superfamily classification mean accuracy was 0.967, mean specificity 0.981 and

mean f1-score of 0.69, in relation to the validation data. The L1 element had an

accuracy of 0.925 and the highest f1-score, 0.952; for SINE, accuracy was 0.993

and f1-score 0.859. The complete results are shown on Figure 2 Model 6.
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TE identification and classification
From a total of 39,996 TEs in the filtered repbase dataset, HamleTE

identified 38,369 as TEs, TERL 38,971, DeepTE 33,581, EDTA 2,553 and

RepeatMasker 9,818 (Figure 3a). Out of 3,792 TEs in the EDTA dataset, HamleTE

identified 3,224 as TEs, TERL 3,576, DeepTE 1,906, EDTA 1,451 and

RepeatMasker 3,675 (Figure 3b).

In regards to the repbase dataset prediction metrics (Figure 4a), the mean

accuracy and f1-score for HamleTE were 0.963 (± 0.039) and 0.665 (± 0.18),

respectively; for TERL, accuracy was 0.92 (± 0.043) and f1-score 0.658 (± 0.09);

for DeepTE, accuracy was 0.955 (± 0.05) and f1-score 0.621 (± 0.277); EDTA

mean accuracy and f1-score were 0.745 (± 0.376) and 0.189 (± 0.221),

respectively; for RepeatMasker values were 0.951 (± 0.069) and 0.36 (± 0.287)

for mean accuracy, and f1-score respectively.

Label-wise (Figure 5a), HamleTE has correctly predicted 1,800 Bel-Pao

elements out of 1,875, f1-score 0767; TERL correctly classified 1,578 elements,

f1-score 0.628. Neither DeepTE, nor EDTA nor RepeatMasker were able to

correctly classify Bel-Pao elements. For the Copia element, HamleTE classified

6,080 out of 7,101, f1-score 0.798; DeepTE classified 5,603 elements, f1-score

0.862; TERL correctly classified 5,993 elements, f1-score 0.746; EDTA identified

949 elements, f1-score 0.235; RepeatMasker identified no Copia elements.

HamleTE Gypsy correct predictions were 8,594 out of 11,239, f1-score 0.764;

DeepTE identified 8,085 elements, f1-score 0.728; TERL identified 6,677

elements; EDTA identified 970 elements, f1-score 0.158; RepeatMasker identified

1,156 elements, f1-score 0.181. For the Helitron element, HamleTE correct

predictions were 906 out of 976, f1-score 0.552; EDTA identified 387 elements,

f1-score 0.541; RepeatMasker identified 137 elements, f1-score 0.245. Neither

DeepTE nor TERL could identify Helitron elements. Out of 1,744 L1 elements, 633

were classified as L1 and 837 as LINE by HamleTE, f1-score 0.519; TERL

correctly classified 1,676, f1-score 0.508; RepeatMasker identified 1,071 L1

elements, f1-score 0.649. Neither DeepTE nor EDTA identified any L1 elements.

HamleTE hAT correct predictions were 2,827 out of 3,111, f1-score 0.89; DeepTE
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correct classified 2,626 elements, f1-score 0.702; TERL classified correctly 2,844

elements, f1-score 0.781; EDTA identified correctly only 3 elements;

RepeatMasker identified 1,342 elements, f1-score 0.529. HamleTE Tc1-Mariner

correct predictions were 2,218 out of 2,632, f1-score 0.86; DeepTE identified

2,219 Tc1-Mariner elements, f1-score 0.728; TERL identified 2,465 elements,

f1-score 0.657; RepeatMasker identified 856 elements, f1-score 0.45. EDTA did

not identify any Tc1-Mariner elements. All counts per label are available on

supplementary table 2-6.

The EDTA dataset prediction (Figure 4b) mean accuracy and f1-score for

HamleTE were 0.945 (± 0.037) and 0.504 (± 0.2), respectively; for TERL, accuracy

was 0.882 (± 0.046) and f1-score 0.475 (± 0.281); for DeepTE, accuracy was

0.938 (± 0.036) and f1-score 0.430 (± 0.284); EDTA mean accuracy and f1-score

were 0.932 (± 0.041) and 0.378 (± 0.288), respectively; for RepeatMasker values

were 0.897 (± 0.078) and 0.127 (± 0.056) for mean accuracy and f1-score

respectively.

On a per-label basis (Figure 5b), HamleTE correctly classified 255 out of

292 Helitron elements, f1-score 0.667; RepeatMasker identified only 16 Helitron

elements, f1-score 0.104. TERL and DeepTE did not identify any Helitron

elements. For the Tc1-Mariner, HamleTE identified 32 out of 47 elements, f1-score

0.372; DeepTE identified 17 elements, f1-score 0.309; TERL identified 46

elements, f1-score 0.12; EDTA identified only 4 elements. RepeatMasker did not

identify Tc1-Mariner elements. For the hAT element, HamleTE correct identified

457 out of 592, f1-score 0.848; DeepTE identified 182 elements, f1-score 0.444;

TERL identified 524 elements, f1-score 0.714; EDTA identified 87 elements,

f1-score 0.255; RepeatMasker identified 21 elements, f1-score 0.068. For Copia,

340 out of 514 were correctly identified by HamleTE, f1-score 0.658; DeepTE 182

elements, f1-score 0.84; TERL correctly classified 383 elements, f1-score 0.655;

EDTA identified 376 elements, f1-score 0.807. RepeatMasker did not identify any

Copia elements. HamleTE correctly identified 527 out of 734 Gypsy elements,

f1-score 0.705; DeepTE identified 534 elements, f1-score 0.788; TERL identified

539 elements, f1-score 0.665; EDTA identified 484 elements, f1-score 0.77;
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RepeatMasker identified 55 elements, f1-score 0.138. All counts per label are

available on supplementary tables 7-11.

Generated TE libraries
In the first step of HamleTE’s workflow (Figure 6) for the D. melanogaster

genome, Red extracted 65,503 repeat sequences, which were then clustered by

cd-hit reducing the total amount to 59,534 sequences from which 8,731 (14.66 %)

were identified as TEs (supplementary figure 8). The most represented category

was LTR with 2,779 sequences, followed by TIR 2,679, non-LTR 1,790 and

Helitron 1,483 (Figure 7). From the total identified TEs, the most represented

superfamilies classified by HamleTE were Helitron (16.98 %), Copia (14.63 %),

Gypsy (12.43 %), Tc1-Mariner (12.33 %), Mutator (8.19 %) and hAT (7.58 %)

(Supplementary figure 9). RepeatMasker generated a TE library of 1,124

sequences in which the most represented category was non-LTR (745

sequences), TIR (186), LTR (162), Helitron (2) and 29 sequences of Unknown

order (Figure 8); the most represented superfamilies/families were CR1 (20.11 %),

hAT-Ac (10.14 %), L2 (10.05 %), the SINE element 5s-Deu-L2 (9.34 %) and Gypsy

(8.9%) (Supplementary figure 9). EDTA generated a TE library of 598 sequences.

The most represented categories respectively were TIR (312 sequences), LTR

(222) and Helitron (64) (Figure 9); Gypsy (30.10 %) was the most represented

element, followed by DTC (CACTA, 19.9 %), DTM (Mutator, 16.55 %), Helitron

(10.7 %) and a MITE-DTC element (4. 85 %). Full results for each software and

classes are shown in figure Supplementary figure 9.

For the O. sativa genome, by using Red, HamleTE found 247,682 repeats,

clustered by cd-hit in 205,211 sequences of which 73,280 (35.71 %) were

classified as TEs (supplementary figure 8). The number of TIR sequences was

28,782, LTR 21,041, non-LTR 13661 and Helitron 9,796 (Figure 7). For

superfamilies, Helitron represented 13.36 % of the total, Tc1-Mariner 13.25 %,

Gypsy 13.11 %, Copia 11.8 %, Mutator 9.3 %, hAT 9.11 % and Pif-Harbinger 7.61

% (Supplementary figure 10). RepeatMasker TE library generated a total of 2,882

sequences, with the most represented category being non-LTR (1,590

sequences), LTR (757), TIR (419), Helitron (102) and 14 sequences of Unknown
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order (Figure 8). Superfamilies were composed mainly of Gypsy (13.84 %), CR1

(12.18 %), ERVL (9.02 %), L2 (8.85 %), the SINE element 5s-Deu-L2 (8.53 %),

RTE-BovB (7.6 %) and hAT-Ac (6.7%) (Supplementary figure 10). The total

sequences of the EDTA library for O. sativa was 7,183 of which 5,273 were from

the category TIR, 1,277 LTR and 633 Helitron (Figure 9). The most represented

superfamilies were DTT (Tc1-Mariner) with 34.3 % of the total TE library, Gypsy

10.06 %, DTM (Mutator) 9.62 %, MITE-DTT 9.59 %, Helitron 8.81 % and DTC

(CACTA) 7.92 % (Supplementary figure 10).

HamleTE repeat identification step for the C. arietinum genome resulted in

222,234 repeats, clustered in 162,049 sequences. From that, HamleTE classified

72,544 (44.8 %) as TE (supplementary figure 8). The number of TIR sequences

were 26,470, LTR were 17,987, non-LTR 16,553 and Helitron 11,534 (Figure 7).

The most represented superfamilies were Mutator (17.36 %), Helitron (15.89 %),

Copia (13.79 %), Tc1-Mariner (11 %), Gypsy (7.81 %) and hAT (6.15 %)

(Supplementary figure 11). RepeatMasker resulted in a library of 2,864 sequences

of which 1,770 were non-LTR, 516 LTR, 440 TIR, 97 Helitron and 41 of unknown

order (Figure 8). Superfamilies were composed mostly by CR1 (17.5 %), L2 (10.1

%), 5s-Deu-L2 (9.39 %), L1 (7.82 %), Gypsy (7.54 %), ERLV (6.98 %) and hAT-Ac

(6.91 %) (Supplementary figure 11). EDTA generated a library of 2,201 sequences

of which 1,141 were classified as LTR, 916 as TIR and 144 as Helitron, regarding

the TE order (Figure 9). For superfamilies, Copia (32.80 %) was the most

represented, followed by DTM (Mutator, 12.58 %), Unknown LTRs (9.68 %),

Gypsy (9.36 %), MITE-DTM (8.86 %), DTC (CACTA, 8.54 %) and Helitron (6.54

%) (Supplementary figure 11).

In the genome of D. rerio, the 1,717,574 repeats found were clustered in

1,285,892 sequences of which 385,547 (29.99 %) were identified as TEs by

HamleTE (supplementary figure 8). Order-wise, TIR was the most representative

with 124,040 sequences, followed by LTR with 117,898, non-LTR 82,532 and

Helitron 61,068 (Figure 7). The most represented superfamilies were Helitron

(15.83 %), Copia (14.52 %), Tc1-Mariner (10.65 %), Gypsy (9.44 %), hAT (9.34

%), Mutator (8.5 %) and Bel-Pao (6.62 %) (Supplementary figure 12). For

RepeatMasker, from a library of 255,162 sequences, the number of TIR
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sequences was 161,370, non-LTR 84,677, LTR 8,652 and 463 of unknown Order

(Figure 8). For superfamilies, Tc-Mar-Tigger represented 58.15 % of the total TE

library, L2 12.54 %, 5s-Deu-L2 10.78 %, hAT-Charlie 4.36 % and L1 4.02 %

(Supplementary figure 12). In the EDTA library of 10,949 sequences, the number

of TIR sequences was 7,490, LTR 3,352 and Helitron 107, regarding the Order

(Figure 9). Superfamilies were mostly represented by DTA (hAT, 25.36 %), Gypsy

(23.25 %), DTC (14.6 %), MITE-DTA (10.05 %) and DTM (Mutator, 7.38 %)

(Supplementary figure 12).

The number of repeats found in HamleTE’s first step in the D. simulans

genome was 188,343, reduced to 183,336 after clustering, of which 44,167 (24.09

%) were classified as TEs (supplementary figure 8). The most represented

category was TIR with 15,985 sequences, followed by LTR 15,447 sequences,

Helitron with 6783, non-LTR with 5952 (Figure 7). The Helitron superfamily

represents 15.35 % of the total TE library, Copia 14.38 %, Tc1-Mariner 11.25%,

hAT 10.77%, Bel-Pao 10.38 %, Gypsy 10.22 % and Mutator 8.85 %

(Supplementary figure 13). RepeatMasker generated a library of 828 sequences of

which 532 were non-LTR, 172 TIR, 89 LTR, 31 of unknown TE order and 4

Helitron (Figure 8). For superfamilies/families, CR1 (15.22%) was the most

represented, followed by L2 (14.85 %), hAT-Ac (12.44 %), RTE-BovB (10.99 %),

the SINE element MIR (8.21 %) and Gypsy (4.95 %) (Supplementary figure 13).

From the total of 379 sequences of the EDTA library generated from D. simulans

genome, 298 were from the Order TIR, 69 Helitron and 12 LTR (Figure 9). DTC

was 32.72 % of the total, DTM 22 %, Helitron 18.20 %, MITE-DTA 6.6 % and

MITE-DTC 6.33 % (Supplementary figure 13).

In the D. virilis genome, HamleTE found 124,751 repeats, clustered in

103,367 sequences of which 19.064 (18.44 %) were identified as TEs

(supplementary figure 8). The most represented category was LTR (6,616

sequences), followed by TIR (5,099), non-LTR (3,907) and Helitron (3,442) (Figure

7). The superfamily Helitron represented 18 % of the total library, Copia 17.34 %,

Gypsy 11.35 %, Tc1-Mariner 10.08 %, Mutator 7.9 %, hAT 6.23 % and Bel-Pao 6%

approximately (Supplementary figure 14). RepeatMasker generated a library of

1,862 sequences, of which 1,070 were non-LTR, 451 LTR, 327 TIR, 12 of
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unknown order and 2 Helitron (Figure 8). Superfamilies/families were composed

mainly by CR1 (21.7 %), ERV1 (16.92 %), hAT-Ac (11.55 %), L2 (10.52 %), L1

(7.78 %) and ERVL (5.48 %) (Supplementary figure 14). EDTA generated a library

of 588 sequences, with the most represented TE order being TIR (355

sequences), then LTR (133) and Helitron (100) (Figure 9). The most representative

elements were DTM (28.23 %), Gypsy (19.56 %), Helitron (17 %), MITE-DTM

(11.22 %) and DTC (9.86 %) (Supplementary figure 14).

The number of repeats found in the Z. may genome running HamleTE was

902,671, clustered into 494,401 sequences (supplementary figure 8). From this

total, 177,935 (36 %) were classified as TEs. LTR was the most represented type

with 61,326 sequences, followed by non-LTR with 41,676 (Figure 7), Helitron with

39,090 and TIR with 35,843. The most representative superfamilies were Helitron

(21.96 %), Gypsy (19.07 %), Copia (12.19 %), hAT (6.01 %) and Mutator (5.93 %)

(Supplementary figure 15). RepeatMasker generated a library of 17,244

sequences formed by 7,939 non-LTR sequences, 5,497 LTR, 3,231 TIR, 431

Helitron and 146 of unknown order (Figure 8). For superfamilies/families, the most

represented was Gypsy (27.38 %), then CR1 (12 %), hAT-Ac (11.02 %), L1 (9.68

%), RTE-BovB (7.17 %) and L2 (6.23 %) (Supplementary figure 15). The EDTA

library of 29,301 sequences was represented by 18,057 elements of the LTR

Order, 7,880 for TIR and 3,364 for Helitron (Figure 9). Gypsy (31.23 %) was the

most represented element followed by unknown LTR elements (18.64 %), Copia

(11.75 %), Helitron (11.48 %), DTC (6.45 %) and DTA (5.67 %) (Supplementary

figure 15).

DISCUSSION
The annotation and classification of TEs in a computational way is a

long-standing challenge in which several strategies have been employed to try to

solve the problem (Ou et al. 2019; Bell et al. 2022). Annotation can be done

manually or automatically. Manual annotation is the most accurate, achieving

deeper levels of classification such as, for example, subfamilies (Carey et al.

2021). However, it requires a specialist in the field to obtain more refined results, it

is a time-consuming task, practically unfeasible on a large scale, and even so, it
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requires, at first, the help of automatic methods of annotating TEs (Arkhipova

2017; Goubert et al. 2022).

Software for automatic annotation of TEs, in general, use methods based

on similarity, motif search, de novo methods or a combination of two or more of

these. Some of the main examples of software used to annotate TEs from

genomes are RepeatMasker, RepeatModeler, REPET and EDTA (Goerner-Potvin

and Bourque 2018; Rodriguez and Makałowski 2022). Traditional automatic

annotation methods tend to be computationally expensive and, in many cases, the

software used is not user-friendly, requiring pre-processing that may not be trivial,

especially by users not specialized in bioinformatics and programming (Ison et al.

2020; Krampis 2022).

New tools implementing the use of deep learning (DL) have had a

significant increase in their number in several areas of scientific research in recent

years, as in the case of bioinformatics (Peng et al. 2018; Wang et al. 2018). With

regard to TEs, tools such as TERL and DeepTE make use of DL to classify TEs,

however, they do not propose a workflow for the annotation of transposable

elements from genomes. HamleTE seeks to fill this gap by creating a simple and

efficient workflow for identifying and classifying repetitive sequences, powered by

the use of DL, more specifically, convolutional neural networks (CNN).

HamleTE has an annotation mode, returning as its output the repeats

classified as TEs and their coordinates in the genome, and a classification mode,

allowing its standalone use as a classifier, or to help refine or support classification

results of other tools. Its performance equals or exceeds that of the primary tools

used for annotation and classification of TEs in many circumstances, and is

user-friendly in both its installation and usage, a important topic regarding software

adhesion for a non-technical use specially (Lawlor and Sleator 2020; Baril et al.

2022). HamleTE was designed to also be used on personal computers without

causing overhead (i.e., excessive processing or memory usage) while maintaining

adequate performance at all times.

Its installation can be done using a virtual environment with a conda recipe

or a Docker container, in addition to allowing manual installation for more

advanced users. HamleTE splits files in batches, with the option to set this value,

73



making it possible to control the amount of memory to be used, which avoids

exceeding limits causing computer freezes on machines with fewer resources,

allying performance without sub-optimal performance (Cirillo et al. 2021).

HamleTE also has options for configuring cutoff values for classifying transposable

elements. A value can be established to filter the classification of repeats as being

TEs and another value to mask the classification at the superfamily level, resulting

in a more reliable final classification. HamleTE also has the option to set the size

of the k-mers used to search for repetitive sequences in a genome when in

annotation mode, which is a further aid in the refinement of the final annotation.

Being able to choose the k-mer size is very important since one should always

take into consideration the size of the genome to choose the k value, which has an

impact on the results (Chikhi and Medvedev 2014; Contreras-Moreira et al. 2021).

The repetitive nature of TEs creates the need for tools capable of

accurately identifying them in genomes, which is not a trivial task (Wells and

Feschotte 2020). The annotation programs currently available, such as

RepeatMasker, use other programs in their pipelines such as RepeatScout, Recon

and GRF. Despite being well established, these tools tend to be quite slow or have

a high rate of false positives (Flutre et al. 2011; Girgis 2015). In the first part of its

workflow in annotation mode, HamleTE identifies repetitive sequences with the

help of the Red program, a de novo tool for masking repeats with a very low false

positive rate and high speed, surpassing the best known programs

(Contreras-Moreira et al. 2021). The output of the Red program returns small

repetitive sequences in tandem, low complexity and redundant sequences. To

solve this aspect, HamleTE filters the repeats by size and then uses the

“cd-hit-est” program to cluster the sequences, reducing the existing redundancies,

resulting in less artifacts, less computation time and an improved TE library (Ono

et al. 2015; Ahsan et al. 2023). There is an option to skip the clustering step for

users interested in doing further in-depth evaluation of the sorted sequences later.

The high variability between the elements of different TE classification

categories, and even between TEs of the same hierarchical level of classification,

makes it difficult for any model to learn the parameters of a given category

because it introduces great complexity to the data, preventing the model from
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generalizing the features of the data (Cui et al. 2019; Shahinfar et al. 2020).

Similarly, the more categories the model must learn to categorize, the more difficult

learning gets, preventing the model from establishing a categorization decision

threshold between labels (Abramovich and Pensky 2019). This categorization

learning difficulty might also emerge owing to a lack of training data.

Generalization failure can cause the model to overfit, which is when the model

learns too well only on the training data and is unable to adequately evaluate data

outside of those presented during training, whereas learning failure training data

results in the process of underfitting (Bashir et al. 2020). HamleTE employs six

different classification models that follow a hierarchical workflow, as shown in

Figure 6, beginning with the distinction of TE candidate, coding genes and

non-coding mRNA sequences, progressing through the steps of identifying TE

class, order up to superfamilies, with the goal of reducing the level of complexity

and variance per step, thereby reducing the possibility of overfitting or underfitting

(Ashiquzzaman et al. 2018; Gavrilov et al. 2018).

Lack of data for a given category relative to another can cause

overfitting/underfitting of the different categories within the same model. Having an

equal number sequences for all the labels to be classified tends to avoid this

problem, however, the data available in the real world can differ greatly in number

for the different classes (Saini and Susan 2022). Among the different ways to get

around this are undersampling, the selection of a sample from the category with

the highest representativeness in equal numbers to the category with the lowest

representativeness (Hernandez et al. 2013). The problem with this approach is

that the category that has been undersampled may not contain a good

representation of its features depending on the amount of reduction done

(Johnson and Khoshgoftaar 2019). Another way to approach this problem is to

previously establish different weights for each category, creating a higher penalty

for errors in categories with fewer sequences (Krawczyk et al. 2014; Liu et al.

2022). This strategy of weighted categories proved to be efficient as can be seen

in the case of model 3 for distinguishing sequences classified as Retroelements

into LTR and non-LTR (Figure 2c), and model 6 (Figure 2f), for order/superfamily

level classification of non-LTR elements, which despite lower metrics in some
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cases, showed considerable values for classes with few representations such as

SINE, CRE and Penelope that would otherwise be left out of the training.

In order for CNN models to extract the features of each category of TEs, the

sequences need to be represented in numerical form (Zou et al. 2019). Many DL

models encode the data into numerical arrays using the one-hot encoding (OHE)

method (Supplementary figure 16). This method has the advantage of being fast

and simple to implement to represent almost any categorical data. However, it

results in a sparse vector (only 0's and 1's), making no effective use of space and

establishing no semantic relationship between the data (Rodríguez et al. 2018;

LIANG Jie 2019). HamleTE implements in its classification models the

transformation of sequences into embedding vectors (Supplementary figure 17),

the representation of sequences as dense vectors, which are learned by using an

embedding layer prior to the convolutional layers. Embedding layers are used in

DL models for natural language processing (Li and Yang 2018; Wang and Gang

2018). The embedding layer learns weights that capture the context of the base

order relationship in the sequences and are updated at each training epoch along

with the convolutional and dense layers of the model (Mikolov et al. 2013b;

Hrinchuk et al. 2020).

The idea of using the sequences as embedding vectors instead of the more

commonly used OHE method is because, in a way, the DNA sequences can be

seen as sentences of a language, since the order of the bases and structures

influence the meaning of the sequence, i.e., the sequence of bases is not random,

it gives meaning to the gene product (Searls 1992; Attard et al. 1996; Searls 2002;

Wahab et al. 2021; Ji et al. 2021). During the training phase we were able to

improve the metrics of the models by replacing the OHE method with embedding

vectors (data not shown). The metrics of the HamleTE results compared to other

classification programs using DL show that there was no loss in performance

when using embedding vectors. Conversely, the use of this approach coupled with

fine tuning of the model hyperparameters suggest its success.

In the analyses measuring classification competence with the Repbase and

EDTA datasets, HamleTE was second in the number of correct identifications of

sequences as TEs (Figure 3a), second only to TERL by a small margin and well
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ahead of the other programs. The precision and specificity metrics suggest that

TERL tends to generate more false positives in comparison to HamleTE.

Compared to DeepTE, HamleTE outperforms it in all metrics for the identification

of TEs in the Repbase dataset test (Figure 4a) and falls behind DeepTE in the

identification of TEs in the EDTA dataset only slightly in specificity and accuracy,

with a higher accuracy, recall and f1-score. When analyzing the metrics of

accuracy, specificity, and f1-score, HamleTE is the most balanced of all programs,

matching or beating most, and very close to programs using combined TE

identification strategies such as RepeatMasker and EDTA when it comes to true

negative and true positive rates.

The results of HamleTE in annotation mode with the genomes of 6 species

demonstrates congruence with that found in the literature regarding the distribution

of TEs in these species. Comparing the distribution of LTR, non-LTR, TIR and

Helitron from the annotation of HamleTE, EDTA and RepeatMasker, we notice that

EDTA was not able to identify non-LTR TEs in the genomes analyzed, and in the

case of the genus Drosophila, which generally has a higher number of LTR

elements (Mérel et al. 2020), there is a wide representation of elements of the

order TIR in the library generated and a low representation of LTR elements, with

an even lower number in the case of D. simulans compared to the result for the

other two species of the genus Drosophila (Figure 9). The library generated by

RepeatMasker showed non-LTR TEs as the most represented type in all genomes

(Figure 8), except in the case of D. rerio where TIR elements were the most

numerous (Meena et al. 2012). Even in the genome of well-studied organisms like

D. melanogaster and Z. mays in which LTR elements are already known to be

predominant (Anderson et al. 2019; Stitzer et al. 2021), RepeatMasker generated

few elements of this order in its library, especially in the case of D. melanogaster.

HamleTE was able to identify LTR, non-LTR, TIR and Helitron elements in all

genomes, in general, identifying the predominant type in each genome correctly,

with the exception of D. simulans, in which it identified more elements of the TIR

order than LTR, the two most enriched in the generated library. Even so, the

number of LTR was quite high, as expected in the species (Petersen et al. 2019;

Mombach et al. 2022).
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When checking the annotation results at the superfamily level, it is noted

that HameleTE identified Helitron as the most represented superfamily in number

of sequences in 6 of the 7 genomes. Helitrons are TEs that do not possess

common TE features such as the presence of terminal repeats, nor do they leave

molecular "scars'' like TSDs when they are transposed, and when they are

transposed by the rolling circle mechanism (also called "peel-and-paste") (Di

Stefano 2022), they tend to capture fragments of sequences of protein-coding

genes or of other TEs, making them difficult to identify (Han et al. 2019; Hu et al.

2019). Even programs that specialize in identifying Helitrons such as

HelitronScanner (Xiong et al. 2014) can encounter difficulties in correctly

identifying these elements. In a test done by Ou (2018), of the sequences

classified as Helitrons, 21% were LTR elements and 11% TIR elements. In

Supplementary table 2 containing the results of the Repbase dataset classification

benchmark, among the sequences classified as Helitron by HamleTE,

approximately 8% were from the Gypsy superfamily, 7% Tc1-Mariner and 5% hAT.

However, factors like this do not invalidate the annotation since it is a common

event for any automated annotation software.

HamleTE results for TE superfamilies in D. melanogaster indicate a high

percentage of Helitron, Gypsy and Copia elements in total sequence number.

Indeed, Gypsy and Helitron are elements in large proportion in the D.

melanogaster genome, Copia however, is not among the most prevalent (Mérel et

al. 2020; Lopik et al. 2023). Observing the distribution of sequences in relation to

their size (Supplementary figure 18), there is a considerable amount of Copia

elements in the 100 to 400 nucleotide range, unlike the more harmonic distribution

for Gypsy and Helitron. Comparing the total bases of Gypsy and Copia elements

in the resulting library (Supplementary figure 19), there is a vast difference, with a

preponderance of Gypsy elements over Copia in the total library fraction,

suggesting consonance with what is expected for the D. melanogaster genome.

The smaller sizes of this large portion of elements classified as Copia match the

sizes of the long terminal repeats of TEs of the LTR order, on average 359 base

pairs, with around 276 for Copia elements (Rubin et al. 2011; You et al. 2015).

LTRs have regulatory regions required for transcription, including transcription
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factor binding sites. There is evidence of their co-option as regulatory regions in

different organisms, including humans and mice, which are believed to have

contributed in high proportion as binding sites for different transcription factors

(Thompson et al. 2016; Deneweth et al. 2022). The presence of this large number

of small sequences could mean solo-LTRs (Vitte and Panaud 2003; Jedlicka et al.

2020; Autio et al. 2021), which, in genomes such as Candida albicans, are the

most represented among the LTR TE (Zhang et al. 2014) families, or TE fragments

found in the repeats identification phase of the HamleTE workflow in annotation

mode.

The lower number of sequences in the EDTA and RepeatMasker libraries

can be explained by taking into account that both programs seek to generate a

library of TEs with low redundancy and good reliability, a fact supported by

observing the values of the metrics of these programs in the classification

benchmark tests, where we observe that they obtain good metrics of specificity

and accuracy, (Figure 4a and 4b) despite the poor results in other metrics in

general. In addition, the values presented refer to the total number of sequences in

the libraries generated by the three software programs and not the representation

of the elements in percentage of bases in the genomes, as there is difference

between the number of copies of an element within the genome and how much it

represents of the total bases. An example is the work of (Stitzer et al, 2021), which

showed that there are a close number of copies of the elements Gypsy,

Tc1-Mariner and Helitron in the maize genome (76,306, 66,479 and 62,291

respectively), but in total amount of bases, Gypsy represents around 776 Mb,

while Tc1-Mariner and Helitron represent 23 Mb and 21 Mb respectively, i.e.

approximately 35 times more copies of the former.

However, the amount of sequences of the elements for each category,

either at the order or superfamily level, is important within the research (Britten

2006; Anderson et al. 2019; Sexton and Han 2019; Walker et al. 2023), as the

automatic annotation can be used for refinement of TEs by manual annotation,

identification of families and subfamilies (Goubert et al. 2022), or even the use of

the library generated in an automated way in programs such as RepeatMasker in

the search for elements in newly sequenced genomes (Rodriguez and Arkhipova
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2023), and in the search for TEs in closely-related species or to mask TEs in

genomes (Rossi et al. 2001; Bell et al. 2022). Tools based on sequence alignment

may not be able to identify more distantly related elements of the same

superfamily or family without a reference (Pearson 2013; Zielezinski et al. 2017).

Reference libraries with marked imbalance, with little or no representation of a

given category, such as non-LTRs with EDTA software (Figure 9) or the very low

number of LTR elements in D. melanogaster and TIR elements in O. sativa with

RepeatMasker (Figure 8), could have a major impact on the final result of a search

relying on automatic annotation based on sequence similarity. In view of this, it is

essential to have a library generated by automatic annotation with a balanced

representation of TEs, as close as possible to what is expected according to the

literature for the species in question, highlighting the importance of having

software with alternative approaches helping to dive into eukaryotic genomes in

the search for TEs.

CONCLUSION
HamleTE presents a new alternative for the task of TE annotation and

classification, helping to reinforce deep learning methods as another ally in the

search for TEs in eukaryotic genomes. Through the use of CNNs, its classification

power equals and even surpasses existing classification programs in several

aspects, also functioning as an annotation tool of easy installation and use, by

integrating tools for repeat extraction and redundancy removal in its workflow,

resulting in a robust annotation of TEs in eukaryotic genomes in general.
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Table 1. A summary of the datasets used to train HamleTE workflow’s classifier models.

Dataset Total sequences Number of
classes

Training/validation
split

Class
imbalance

TE/non-TE 18914 3 80/20 No

TE class 19064 2 80/20 No

LTR/non-LTR 29989 2 80/20 Yes

Class II superfamilies 14325 5 90/10 No

LTR superfamilies 11358 3 90/10 No

non-LTR
superfamilies

30780 7 90/10 Yes
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Supplementary table 1. Hyperparameter layer values for each model. Layers or hyperparameters not shown in the table were using default values. The semicolons

are separating the value for each layer. The model architecture is represented in Figure 1.
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Model
Embedding Conv1D MaxPooling1D Dense Dropout

Embedding
size

Vocabulary
size Filters Kernel

size
Activation
function Pool size Neurons Activation

function Rate

TE/non-TE 12 6 128;64;64 7 ReLU 7;7;7 32;4 ReLU;Softmax 0.2

TE Class 12 6 64;32;32 7 ReLU 7;7;7 24;3 ReLU;Softmax 0.2

LTR/non-LTR 12 6 32;24;24 7 ReLU 7;7;7 32;3 ReLU;Softmax 0.2

Class II superfamilies 12 6 32;64;64 12 ReLU 7;7;7 24;6 ReLU;Softmax 0.4

LTR superfamilies 12 6 128;32;32 12 ReLU 7;7;7 32;4 ReLU;Softmax 0.4

Non-LTR
superfamilies 12 6 32;128;128 7 ReLU 7;7;7 128;8 ReLU;Softmax 0.4



FIGURES

Figure 1. Schematic diagram showing the basic convolutional neural network layers used for all six models.
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Figure 2 .Prediction metrics on the validation datasets used to evaluate model performance after training. The figure shows the validation metrics’ results for each model and

TEs category of the corresponding model.
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(a)

(b)

Figure 3. Total number of identified TE by method for the repbase and EDTA datasets. Figure 4a shows the total

number of TEs for the Repbase dataset, figure 4b for the EDTA dataset. HamleTE was only behind TERL in the

number of sequences correctly identified as TEs.
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(a)

(b)

Figure 4. Prediction metrics for the EDTA datasets. Figure 5a shows the metrics for the Repbase dataset and figure 5b

for the EDTA dataset. HamleTE had the best f1-score for both datasets, being the most balanced software and, if not the

best in other metrics, the close second place.
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(a)
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(b)

Figure 5. Per label metrics by method. Figure 6a shows the metrics for the Repbase dataset

and figure 6b for the EDTA dataset. HamleTE had results comparable to those of softwares

based on sequence similarity, even being able to identify elements that some other softwares

were not capable of, such as SINEs, Helitrons and LINEs,
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.

Figure 6. HamleTE's workflow. Dashed arrows are alternatives to the default available for the user. HamleTE

uses a hierarchical workflow, which helps to increase accuracy and reduce classification complexity.
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Figure 7. Number of sequences of LTR, non-LTR, TIR and Helitron found by HamleTE on the

genomes analyzed. HamleTE was the most accurate regarding the expected distribution of

LTR, non-LTR, TIR and Helitron as expected for each species when compared to EDTA and

RepeatMasker.
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Figure 8. Number of sequences of LTR, non-LTR, TIR and Helitron found by RepeatMasker

on the genomes analyzed. RepeatMasker had an overclassification of sequences as being

non-LTR for 6 out of 7 genomes tested, not being in agreement with what is expected for

each species.
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Figure 9. Number of sequences of LTR, non-LTR, TIR and Helitron found by EDTA on the genomes analyzed.

EDTA could not identify any non-LTR sequences on the genomes analyzed, and had on overestimation of TIR

sequences in its library even for genomes well studied such as D. melanogaster.
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SUPPLEMENTARY FIGURES

Supplementary figure 1. Benchmark metrics used to assess HamleTE performance. TP: true positive, TF: true

negative, FP: false positive, FN: false negative.
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Supplementary Figure 2. Model 1 training and validation accuracy across epochs to learn how to identify TE

from non-TE such as protein coding genes and non-coding RNAs. Training accuracy score was 0.96 and

validation accuracy had a score of 0.894.
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Supplementary Figure 3. Model 2 training and validation accuracy across epochs to learn how to identify class

1 and class 2 TEs. Training accuracy score was 0.988 and validation accuracy had a score of 0.945.

Supplementary Figure 4. Model 3 training and validation accuracy across epochs to learn how to identify LTR

and non-LTR elements at superfamily level. Training accuracy score was 0.97 and validation accuracy had a

score of 0.95 approximately.
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Supplementary Figure 5. Model 4 training and validation accuracy across epochs to learn how to classify class

2 elements (DNA transposons) at superfamily level. Training accuracy score was 0.95 and validation accuracy

had a score of 0.894.
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Supplementary Figure 6. Model 5 training and validation accuracy across epochs to learn how to classify LTR

elements at superfamily level. Training accuracy score was 0.93 and validation accuracy had a score of 0.853.

103



Supplementary Figure 7. Model 6 training and validation accuracy across epochs to learn how to classify

non-LTR elements at superfamily level. Training accuracy score was 0.916 and validation accuracy had a score

of 0.886.
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Supplementary figure 8. Total number of sequences in the TE library generated by EDTA, HamleTE e

RepeatMasker for seven genomes. HamleTE’s workflow in annotation mode found the highest number of

sequences classified as TEs in the genomes analyzed when compared to EDTA and RepeatMasker.
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Supplementary figure 9. TEs distribution in percentage of sequences for the D. melanogaster genome. It shows the percentage found for TE superfamilies in the libraries

generated by HamleTE, RepeatMasker and EDTA.
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Supplementary figure 10. TEs distribution in percentage of sequences for the O. sativa genome. It shows the percentage found for TE superfamilies in the libraries generated

by HamleTE, RepeatMasker and EDTA.
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Supplementary figure 11. TEs distribution in percentage of sequences for the C. arietinum genome. It shows

the percentage found for TE superfamilies in the libraries generated by HamleTE, RepeatMasker and EDTA.

Supplementary figure 12. TEs distribution in percentage of sequences for the D. rerio genome. It shows the

percentage found for TE superfamilies in the libraries generated by HamleTE, RepeatMasker and EDTA.
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Supplementary figure 13. TEs distribution in percentage of sequences for the D. simulans genome. It shows the

percentage found for TE superfamilies in the libraries generated by HamleTE, RepeatMasker and EDTA.

Supplementary figure 14. TEs distribution in percentage of sequences for the D. virilis genome. It shows the

percentage found for TE superfamilies in the libraries generated by HamleTE, RepeatMasker and EDTA.

109



Supplementary figure 15. TEs distribution in percentage of sequences for the Z. mays genome. It shows the

percentage found for TE superfamilies in the libraries generated by HamleTE, RepeatMasker and EDTA.
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Supplementary figure 16. Schematic representation of applying the one-hot encoding method to nucleotide

sequences. Each nucleotide is represented by a sparse vector. The whole sequence is then represented by a

2-dimensional sparse vector.
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Supplementary figure 17. Schematic representation of applying the embedding method to nucleotide

sequences. Each nucleotide is represented by a dense vector. The whole sequence is then represented by a

2-dimensional dense vector that captures the semantic relationships for sequences of a certain category.
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Supplementary figure 18. Size distribution of the sequences classified as Copia, Gypsy and Helitron in the TE

library generated by HamleTE for the D. melanogaster genome. Most Copia sequences are have length in the

range of 100 to 400 bases, contrasting with a more harmonic distribution size-wise for Gypsy and Helitron.

Supplementary figure 19. Total number of bases for Copia and Gypsy in the TE library generated by HamleTE

for D. melanogaster, showing that Gypsy is more representative in total number of bases, although having less

sequences in the HamleTE’s generated library.
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CONCLUSÕES GERAIS E PERSPECTIVAS
Os TEs são entes genéticos peculiares cuja relevância vagou entre

cenários de ferrenha negação de sua natureza móvel, passando por seu

desapreço ao ser tachado como “junk” DNA (em português comumente traduzido

como DNA “lixo”) até, por fim, com o avanço das pesquisas na área genômica,

receber o devido reconhecimento como elemento genético essencial para a

diversidade biológica por sua ação como agente modificador, abrangendo

processos como a própria especiação, e sua ligação na patogênese de diferentes

tipos de câncer e enfermidades ligadas ao envelhecimento. Fortuitamente, este

avanço, apesar do dilatado espaço temporal, possibilitou a justa premiação em

vida à Barbara McClintock pela descoberta dos TEs.

A natureza repetitiva e diversa mesmo entre elementos de mesmos níveis

hierárquicos são componentes relacionados a sua difícil identificação em

genomas, fatores estes, que certamente influenciaram no ceticismo inicial para

com os TEs. Logo, ferramentas e métodos capazes de identificar com

confiabilidade os TEs possíveis de se encontrar nos genomas se fazem uma

necessidade, seja com o intuito de mascarar sequências repetitivas para a

anotação de genes codificantes de proteínas, ou para a identificação de TEs para

estudo de sua estrutura e efeitos biológicos. Com esta ideia em mente, o presente

trabalho buscou demonstrar o status atual das ferramentas de anotação e

classificação de TEs, e apresentar uma nova solução, HamleTE, para auxiliar

neste mister.

O manuscrito de revisão intitulado “The good, the bad and the ugly about

transposable elements annotation tools” teve como objetivo apresentar as

principais ferramentas para a anotação de TEs, seus pontos fracos e fortes, e,

principalmente, instigar sobre a importância dos softwares serem democráticos no

que concerne sua usabilidade. Um excelente software, mas com uso complexo

por padrão, torna-se óbice, impedindo usuários menos técnicos a nível

computacional de usar a ferramenta em questão de forma adequada ou mesmo

de usá-la absolutamente. Cada nova ferramenta desenvolvida objetiva aprimorar

o estado-da-arte corrente, contudo, é imprescindível oferecer uma experiência
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amigável aos usuários, sendo de simples uso por padrão e rica em recursos

quando demandado pelo usuário.

O manuscrito cerne desta tese revoca as particularidades dos TEs e

apresenta HamleTE como uma nova alternativa para a anotação de TEs que

mescla um workflow prático e eficiente de extração de sequências repetitivas,

com o poder do deep learning de identificação de padrões para as classificar

como TEs até um nível de superfamília, algo que mesmo ferramentas

consolidadas baseadas em métodos de similaridade e usando workflows mais

complexos por vezes não são capazes. HamleTE atesta a capacidade do deep

learning como método auxiliar no estudo de TEs, mesmo com toda a

complexidade inerente a estes elementos, em uma ferramenta focada em ser

amigável ao usuário sem deixar de lado a performance e confiabilidade dos

resultados.

A contribuição do estudo metodológico e comparativo deste trabalho vai

além da criação de uma ferramenta. Discute as melhores práticas de métodos de

deep learning voltadas para o uso nas ciências de estudo da vida. Este ponto

remonta ao princípio basilar da bioinformática: aliar métodos oriundos das

ciências da computação a fim de melhor compreender fenômenos biológicos. Os

métodos de deep learning usados no desenvolvimento de inteligência artificial têm

avançado cada vez mais nas diferentes áreas do conhecimento e a pesquisa

dentro da área da bioinformática tende a acompanhar este progresso. Isto posto,

é essencial o desenvolvimento de trabalhos como este na formação de cientistas

do campo.

Pensando na construção do conhecimento e desenvolvimento como

cientista, este trabalho traz em anexo um estudo sobre a transferência horizontal

de bactérias do gênero Wolbachia entre hospedeiros de níveis taxonômicos

distantes, evento nomeado em inglês como host shift (HS). De forma semelhante

aos TEs, Wolbachia tem grande impacto nos organismos que as carreiam,

causando alterações fisiológicas e fenotípicas, com influência até mesmo na

especiação de artrópodes (Gomes et al. 2022). Com o uso de bioinformática, este

trabalho buscou trazer luz ao muitas vezes preterido evento de HS de Wolbachia
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em artrópodes, discutindo sua importância e o comparando dentro deste ramo da

árvore da vida.

Ambos os estudos de TEs e HS possuem aspectos convergentes,

importantes nos estudos relacionados à evolução em níveis genéticos e

moleculares, principalmente no que diz respeito à transmissão e ao impacto de

elementos genéticos móveis. O uso de estratégias bioinformáticas mais

tradicionais aliado ao estudo e desenvolvimento de ferramentas buscando o

estado-da-arte demonstram a abrangência do campo da bioinformática e a

relevância de uma formação sólida como pesquisador. Este trabalho foi então

capaz de contribuir em diferentes porções dentro do espectro da bioinformática

voltada à genética molecular ao levantar discussões pertinentes sobre assuntos

fundamentais que podem acabar por não receber a atenção devida, como no

caso do trabalho em anexo, e apresentar soluções na fronteira do conhecimento,

tal qual abordado no tema principal, com o uso de deep learning para resolver

problemas complexos como a anotação de TEs.

Por fim, fica aberta a possibilidade de se refinar as ferramentas

baseando-se nos métodos apresentados e, a partir destes, desenvolver

programas “data-driven”, isto é, além de uma abordagem generalista, um

programa treinável pelo usuário para anotação em níveis mais específicos dentro

de gênero ou espécie. Além disso, pode-se tentar desenvolver métodos com o

uso de deep learning capazes de extrair e classificar TEs sem o uso de

ferramentas externas.
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Multiple long‑range host shifts 
of major Wolbachia supergroups 
infecting arthropods
Tiago M. F. F. Gomes1, Gabriel L. Wallau2 & Elgion L. S. Loreto1,2,3*

Wolbachia is a genus of intracellular bacterial endosymbionts found in 20–66% of all insect species 
and a range of other invertebrates. It is classified as a single species, Wolbachia pipientis, divided 
into supergroups A to U, with supergroups A and B infecting arthropods exclusively. Wolbachia is 
transmitted mainly via vertical transmission through female oocytes, but can also be transmitted 
across different taxa by host shift (HS): the direct transmission of Wolbachia cells between organisms 
without involving vertically transmitted gametic cells. To assess the HS contribution, we recovered 50 
orthologous genes from over 1000 Wolbachia genomes, reconstructed their phylogeny and calculated 
gene similarity. Of 15 supergroup A Wolbachia lineages, 10 have similarities ranging from 95 to 99.9%, 
while their hosts’ similarities are around 60 to 80%. For supergroup B, four out of eight lineages, 
which infect diverse and distantly‑related organisms such as Acari, Hemiptera and Diptera, showed 
similarities from 93 to 97%. These results show that Wolbachia genomes have a much higher similarity 
when compared to their hosts’ genes, which is a major indicator of HS. Our comparative genomic 
analysis suggests that, at least for supergroups A and B, HS is more frequent than expected, occurring 
even between distantly‑related species.

Wolbachia is a genus of gram-negative intracellular endosymbiotic bacteria. First isolated from Culex pipiens, 
it is currently estimated to be found in 20–66% of all insect  species1. Moreover, it also infects species of filarial 
nematodes, arachnids, and terrestrial  crustaceans2. Wolbachia belongs to the Rickettisiales order, the same order 
of vertebrate pathogens transmitted by arthropod vectors, although there is no evidence of Wolbachia caus-
ing disease in  vertebrates3,4. There are a myriad of Wolbachia lineages that differ substantially at the genomic 
level, but they are all classified under the umbrella of a single species Wolbachia pipientis. Its strains are divided 
into supergroups, ranging from A to U, which are defined by phylogenetic analysis using the 16S rDNA, ftsZ 
and wsp  markers5. It is estimated that these supergroups diverged around 100 million years ago, first in filarial 
nematodes and then infecting arthropods. The supergroups A and B have only been found in arthropods so far; 
the C and D supergroups are specific to filarial nematodes; and the E and F supergroups are mostly found in 
nematodes, but are also seen in some terrestrial arthropods. The remaining supergroups are distributed among 
other arthropod  clades6.

Long-term evolution of Wolbachia and their hosts have driven the emergence of diverse ecological relation-
ships from mutualism to parasitism, depending on the lineage/supergroup-host pair. Parasitic Wolbachia line-
ages modulate different aspects of host physiology, such as the reproductive cycle, host behaviour and pathogen 
 susceptibility1,7. Nematode-infecting Wolbachia usually have a mutualistic association with their hosts, whereas 
arthropod-infecting Wolbachia are more associated with commensalism or parasitism, modulating their host 
reproductive system through male-killing, feminization, parthenogenesis or cytoplasmic  incompatibility8. The 
variety of Wolbachia induced phenotypes on their hosts has attracted the attention of the scientific community 
due to its potential role in host speciation, exploitation as a biological tool of vector-borne diseases control (e.g., 
dengue, malaria), and to combat filarial neglected tropical  diseases9.

Wolbachia is transmitted mainly via vertical transmission, i.e., it is passed between host generations in the 
female  oocytes10. Wolbachia is also transmitted to other individuals and species through an alternative mecha-
nism called host shift (HS), also referred as horizontal transfer, which is the direct transmission of Wolbachia 
cells between organisms where there is no feasible mechanism of vertical transfer.
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HS can alter host fitness by adding phenotypes to the new host that allow it to interact most successfully with 
the  environment11. Wolbachia strains that can manipulate the host reproductive biology achieve a high rate of 
infection in the new host, substantially enhancing Wolbachia spreading in the next host  generation6.

As an obligatory endosymbiont that is mainly vertically transmitted, Wolbachia is expected to share a long 
evolutionary journey with their hosts. Nevertheless, there is strong evidence of Wolbachia ancient and recent 
horizontal transfer events between phylogenetically closely and distantly related host  species12–16. Transfection 
experiments of Wolbachia were able to show its great capability to infect cells from distantly-related hosts, rein-
forcing the HS potential of Wolbachia7,17,18. Other characteristics that may influence HS include the ability of 
Wolbachia to survive for months in an extracellular environment, despite being an intracellular  symbiont6, as 
well as genome recombination, which may influence the ability of the bacterium to adapt to new environments 
due to genome  diversification7.

Despite the strong evidence on Wolbachia HS in several arthropod hosts, it is still considered a rare 
 phenomenon19,20. In this study, we leveraged a large dataset of over 1000 draft and complete Wolbachia genomes 
reconstructed by Scholz et al. performing the most extensive assessment of Wolbachia HS so far. Our in-depth 
investigation of Wolbachia-host gene divergence revealed several long-range Wolbachia HS events from super-
groups A and B among arthropods, suggesting HS is more frequent than normally reported for these abundant 
and widespread supergroups.

Materials and methods
Data. Assembled Wolbachia genomes were downloaded in November 2020, from https:// www. ebi. ac. uk/ ena/ 
brows er/ view/ PRJEB 3516721; only Wolbachia genomes belonging to supergroups A and B were kept for analy-
sis. Scholz retrieved existing Wolbachia reference genomes from  refseq22 and  genbank23, and public shotgun 
sequencing samples were retrieved from the NCBI sequence read archive (sra) database from all available pro-
jects involving taxa that can host Wolbachia. Host genomes were downloaded from https:// www. ncbi. nlm. nih. 
gov/ genome using the host species as a query term. The complete list of hosts and Wolbachia assemblies can be 
seen in Supplementary Table 1.

Orthologue identification. The orthologous genes for both Wolbachia and their hosts were obtained using 
the BUSCO v5.1.2 docker  image24 using the ‘augustus’ flag. The databases used were ricketisialles_odb10 and 
arthropoda_odb10 for Wolbachia and hosts, respectively. Fifty single-copy genes (Supplementary Table 1) for 
each strain were extracted from both searches for supergroups A and B, and single-copy genes shared between 
supergroups A and B to build a single evolutionary Wolbachia tree. In both situations, BUSCO was not able to 
recover 50 single-copy orthologues between all strains, the mean of recovered genes was 48.94 genes, standard 
deviation of 3.83 approximately. In those cases, the maximum possible number of genes for each strain was used.

Alignment. Each one of the recovered orthologous genes were codon aligned separately using MACSE 
v2.0525, using the ‘alignSequences’ option, then all genes were concatenated by fasta identifier (ID) using the 
tool catfasta2phyml (available at https:// github. com/ nylan der/ catfa sta2p hyml) generating one fasta file with all 
sequences for hosts and Wolbachia, respectively.

Similarity analysis and descriptive statistics. The command-line tool  CIAlign26, version 1.0.9, was 
used to calculate the similarity between the concatenated aligned Wolbachia sequences, as well as for the host’s 
aligned sequences, using the following options: ‘--make_similarity_matrix_input’, ‘--make_simmatrix_keepgaps 
2’. All descriptive statistics were calculated using the ‘describe’ method from the Python package Pandas. The 
‘described’ method was also used to obtain the overall descriptive statistics for the mean, minimum and maxi-
mum values of the first generated statistics. The code used is available at https:// github. com/ Tiago- Minuz zi/ 
wolba chia- hs.

Phylogenetic analysis. The software IQ-Tree stable release 1.6.1227 was used to obtain the Wolbachia phy-
logeny, with the ultrafast bootstrap parameter set to 1000 and model GTR + F + R3 chosen according to BIC; the 
ITOL web  server28 was used to generate the tree visualisation.

Results
Phylogenetic reconstruction and lineages. Wolbachia assemblies were separated into supergroups 
based on the phylogeny by Scholz et al. A careful assessment of the alignments revealed many identical sequences 
between different Wolbachia assemblies, thus, the fasta IDs of the identical sequences were grouped, and only 
a single sequence was kept as a representative. After selection of representative sequences, a reduction of 1044 
to 304 sequences occurred for supergroup A and from 20 to 17 for supergroup B. Most of these highly similar 
genomes were characterised from different populations of some model organisms, such as species from the 
Drosophila genus.

We reconstructed the Wolbachia phylogeny using 50 single-copy orthologues for both supergroups A and B 
to evaluate if the resulting tree agrees with the original dataset from Scholz et al. and showed that it matched as 
expected. After reconstructing the Wolbachia phylogeny, we grouped sequences in 23 lineages/clades that showed 
divergence lower than 0.02% (Supplementary Fig. 1), followed by random selection of one sequence from each 
Wolbachia lineage to estimate and compare the similarities between lineages (Fig. 1).

Supergroup A is composed of 15 lineages, occurring in 10 different hosts species. It is important to highlight 
that 10 out of these 15 lineages have similarities ranging from 95 to 99.9%, occurring in eight different host 

https://www.ebi.ac.uk/ena/browser/view/PRJEB35167
https://www.ebi.ac.uk/ena/browser/view/PRJEB35167
https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome
https://github.com/nylander/catfasta2phyml
https://github.com/Tiago-Minuzzi/wolbachia-hs
https://github.com/Tiago-Minuzzi/wolbachia-hs
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species, some of them as evolutionarily distant as Hymenoptera, Coleoptera and Diptera. These groups showed 
lower genetic similarity, ranging from 60 to 80% when comparing host genes (Fig. 1b). Supergroup B is composed 
of eight lineages found in eight different hosts. Four of these species belonging to distantly related taxa such as 
Acari, Hemiptera and Diptera showed Wolbachia gene similarities ranging from 93 to 97%. The graphical rep-
resentation of gene alignments for Wolbachia supergroup A and supergroup B, and their hosts (Supplementary 
Figs. 2, 3; Supplementary Tables 2, 3) shows the high similarity within each Wolbachia supergroup and the lower 
similarity of host genes.

Pairwise gene sequence similarity. Pairwise gene sequence similarity analysis (Table 1) of Wolbachia 
and host orthologues shows striking differences (Fig.  2), corroborating the concatenated divergence analy-
sis shown in Fig. 1. For supergroup A, the mean similarity between the Hymenopteran Lasioglossum albipes 
Wolbachia (assembly WOLB0007) and dipteran Drosophila simulans Wolbachia (WOLB0926) orthologues 
was 98.51% (minimum 80.48% and maximum 99.9%); the similarity between host orthologues was 48.36% 
(minimum similarity 16.37% and maximum similarity 68.49%). For Wolbachia of Hymenopteran Diachasma 
alloeum and dipteran Drosophila melanogaster, WOLB1002 and WOLB0092, respectively, the mean similar-

Figure 1.  Heatmap showing: (a) Wolbachia similarity and (b) hosts similarity. Wolbachia heatmap shows the 
similarity from representatives of clades from supergroups A and B, also showing the Wolbachia phylogeny.

Table 1.  Descriptive statistics of pairwise gene sequence similarity of Wolbachia and hosts. n_genes number of 
genes, std standard deviation, min minimum value found, max maximum value found.

Supergroup A Supergroup B

L. albipes vs. D. 
simulans

D. alloeum vs. D. 
melanogaster

T. urticae vs. A. 
albopictus

H. vitripennis vs. 
D. mauritiana

Host Wolb Host Wolb Host Wolb Host Wolb

n_genes 50 50 48 47 50 50 48 50

Mean 48.36% 98.51% 47.24% 99.87% 40.80% 94.37% 47.81% 94.17%

Std 11.77% 2.92% 12.21% 0.16% 12.07% 6.27% 10.84% 4.71%

Min 16.37% 80.48% 21.64% 99.33% 14.73% 74.35% 25.91% 73.93%

25% 40.52% 98.05% 40.45% 99.77% 32.68% 93.83% 41.66% 92.46%

50% 48.18% 99.42% 46.63% 99.99% 39.42% 96.54% 46.42% 95.10%

75% 57.29% 99.99% 54.93% 99.99% 49.57% 98.78% 55.95% 97.32%

Max 68.49% 99.99% 68.71% 99.99% 68.80% 99.67% 71.33% 99.53%
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ity was 99.87% (minimum 99.33% and maximum similarity 99.9%); host mean similarity values were 47.24% 
(minimum and maximum values, 21.64% and 68.71%, respectively).

For supergroup B, the Wolbachia found infecting the arachnid Tetranychus urticae (WOLB0958) and the strain 
infecting the insect Aedes albopictus Wolbachia (WOLB1128) showed a mean orthologue similarity of 94.37% 
(minimum 74.35% and maximum 99.67%), while the similarity between host orthologues showed a 40.80% 
mean similarity (minimum 14.73% and maximum 60.80%). The mean similarity for Wolbachia orthologues 
of the hemipteran Homalodisca vitripennis and dipteran Drosophila mauritiana, assemblies WOLB0957 and 
WOLB0080, respectively, was 94.17% (minimum 73.93% and maximum 99.53%); the mean similarity for host 
orthologues was 47.81% (minimum 25.91% and maximum 71.33%). To more clearly visualise the differences 
between the hosts and bacteria orthologous gene divergences, they are presented as strip plots for four pair-
wise species comparisons (Fig. 2). Considering that Wolbachia mutation follow their hosts’ molecular clock, as 
demonstrated by the correlation of Wolbachia and the 18S rRNA gene  evolution21, we can directly compare the 
evolution through time of Wolbachia and host genes, which demonstrates that the host genes are significantly 
more divergent than the Wolbachia genes.

Supergroup A overall similarity. From the supergroup A similarity table (Supplementary Table 2), we 
calculated the descriptive statistical values for Wolbachia similarity within the supergroup for the following 
examples. Wolbachia from Diabrotica virgifera, order Coleoptera, showed a mean similarity of 84.38% with the 
Wolbachia from Diachasma alloeum, order Hymenoptera, with a maximum mean of 97%, a minimum mean of 
60.15%, and a mode of maximum values of 97.19% (Supplementary Table 5). In D. virgifera and Drosophila mela-
nogaster (Diptera) Wolbachia, the mean similarity, in many cases, is greater than 96%, reaching maximum values 
greater than 97%, with an overall mean similarity of 89.08%, mode of maximum values of 97.2% in a compari-
son of 150 D. melanogaster and 22 D. virgifera Wolbachia (Supplementary Table 6). D. virgifera Wolbachia has 
an overall mean similarity of 96.05% with Dufourea novaeangliae (Hymenoptera) Wolbachia (Supplementary 
Table 7). The overall mean similarity between D. virgifera and Drosophila ananassae Wolbachia, is 90.37%, with 
a mean of max values of 90.9%, and a mode of max values of 96.40% (Supplementary Table 8).

Supergroup B overall similarity. In Supergroup B, orthologue similarity analysis (Supplementary Table 3) 
and descriptive statistics (Supplementary Table 9) show that Wolbachia from Hemiptera Diaphorina citri has a 
mean similarity of 93.88% with Wolbachia from Tetranychus urticae, order Trombidiformes, Class Arachnida 
(minimum 88.56% and maximum 95.67%). The D. citri and Drosophila mauritiana Wolbachia similarity was 
93.04% (minimum 88.19% and maximum 94.7%); D. citri Wolbachia similarity with Wolbachia from Homalo-
disca vitripennis (Hemiptera) was 93.49% (minimum 88.34% and maximum 95.25%); and D. citri Wolbachia 
has a mean similarity of 90.92% with Wolbachia from A. albopictus (minimum 86.45% and maximum 93.08%).

Figure 2.  Pairwise gene similarity of Wolbachia and hosts. Each dot represents a gene pair (blue—Wolbachia 
genes; orange—host genes). It shows a higher similarity of Wolbachia orthologues when compared with their 
hosts orthologues similarity.
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Discussion
Wolbachia is the most widespread endosymbiotic organism in arthropods. One of the main features thought 
to be responsible for its successful long-term persistence in nature is its ability to manipulate host physiology 
and specifically host reproductive biology, conferring fitness benefits to Wolbachia and eventually to its host, 
including, for instance, increased pathogen  resistance29. Maternal transmission, or vertical transfer, is the main 
process used by Wolbachia to infect a new host offspring, which, through evolutionary time, may allow these 
bacteria to prevail in different host species. Additionally, Wolbachia infection also can occur via hybridisation 
and introgression of similarly related species, or by HS between closely and distantly related  species30.

Although Wolbachia HS is a well-documented  phenomenon6,7,18,31–34, a large amount of the literature depicts 
it as a rare  event19,20. Our comparative genomic analyses of several Wolbachia strains and their hosts reinforce the 
occurrence of HS in these bacteria, showing many cases in which different host species share Wolbachia more 
similar than would be expected by long-term coevolution of vertically transmitted endosymbionts with their 
hosts. However, the novel finding of our data is that HS, at least for Wolbachia supergroups A and B, seems to 
be more frequent than expected.

Six out of 17 host species bearing Wolbachia supergroups A and B showed Wolbachia similarity higher than 
95%, pointing out that this Wolbachia was shared by HS very recently, even between phylogenetically distant 
host taxa as Hymenoptera, Coleoptera and Diptera (Fig. 3a). Additionally, for supergroup B, four host species 
as phylogenetically distant as Acari, Diptera and Hemiptera share a Wolbachia lineage that is more than 93% 
similar at the nucleotide level (Fig. 3b). Therefore, from the 17 host species analysed, at least 10 (58.8%) shared 
Wolbachia lineages by HS. Thus, we ask: is HS a rare phenomenon in Wolbachia evolution?

HS depends on specific environmental conditions to happen, alongside the ability of a Wolbachia strain to 
infect a new host and maintain the  infection7. It has been hypothesised that the closer the phylogenetic rela-
tionship of the hosts, the more likely HS is to  occur34, which may induce novel phenotypes in the new  host18. 
The underlying mechanisms of HS are not yet fully understood, leading it to be overlooked on many occasions.

Wolbachia migrates from somatic tissues to germline cells during the host’s development, transferred by 
cell-to-cell contact via phagocytic/endocytic machinery. Yet, in cell culture, Wolbachia can infect Wolbachia-free 
cells independently of cell contact through the culture  medium31. Infection by Wolbachia, which is present in 
the haemolymph, can occur by contact with excretions or injuries of an infected host to an uninfected  host34; 
thus, shared food sources and feeding habits are plausible pathways for Wolbachia HS between different  hosts35. 
Another factor contributing to Wolbachia HS is predation, where ingested larvae contaminate the uninfected 
host, crossing the digestive system epithelium and colonising the future ovarian stem  cells36. Parasitoid-host 
interactions are well documented as another route Wolbachia uses to move between  species12,15,18. Among the 
organisms analysed in the present study, some already showed previous evidence of HS, and are either parasi-
toids, e.g., Diachasma alloeum11, or parasitised by a parasitoid, for example in Drosophila melanogaster and other 
Drosophila  species4. HS through such interactions reinforce them as a viable mechanisms of direct Wolbachia 
transfer on a short time scale. It is important to note that, in field samples, the Wolbachia detected on a host may 
be due to sequencing reads derived from another species that are closely associated with the primary investigated 
host such as endoparasitoids. For instance, Wolbachia detected in Ixodes ricinus, which were actually from its 
endoparasitoid Ixodiphagus hookeri37, and the detection of Wolbachia from Strepsiptera found in the Australian 
tephritid fruit  flies38. Although this may occur, it should not affect the general HS pattern identified, since there 
is no evidence that most of the host species analysed have endoparasitoids. Also, by the amount of data analyzed 
in our work and the detection of high similarity between many different species as we present here, it would be 
very unlikely that it is the case here, thus causing any sort of analysis bias.

The phylogenetic patterns of Wolbachia and its hosts usually show incongruences, indicating recent HS events 
and successful infection of new host  species30. We found several instances of incongruences in the phylogenetic 
trees of Wolbachia and its hosts (Supplementary Fig. 1), reinforcing the presence of HS. Moreover, our similarity 
analysis showed that different Wolbachia show high levels of similarity within the group for both supergroup A 
and B (Supplementary Tables 2 and 3), whilst host similarity was lower, indicating that HS is very likely to occur 
in natural environments, as previously  suggested32.

The order Coleoptera dates from more than 250 million years ago (mya), and the Diptera order around 
200  mya39. In our analysis, the supergroup A of Wolbachia from both the Coleoptera D. virgifera and Diptera 
D. melanogaster showed very high similarity (Fig. 3a), considering that supergroup A dates from 76  mya40; HS 
presents itself as a strong hypothesis to explain the high similarity of Wolbachia from distantly related hosts. The 
same rationale is applied when comparing the Hemiptera (an order dating from nearly 350 mya) D. citri and 
A. albopictus (Diptera), in which their respective Wolbachia from supergroup B (dating from around 112 mya) 
also shows high similarity (Fig. 3b).

In the process of genome assembly of eukaryotic organisms, a common step is the removal of bacterial 
sequences. This process, although important for these studies, reduces the possibility of a proper assessment of 
symbionts  HS18, which may be related to claims of HS not being a common event. In our study, using publicly 
available data, we calculated the within groups similarity of Wolbachia from supergroups A and B, tracing a 
parallel with their hosts’ similarity. The data showed that many Wolbachia from distantly related hosts share 
high similarity, while their hosts’ core gene similarity is significantly lower, alongside a divergence between host 
and Wolbachia phylogenetic trees. We found that 58.8% of host species analysed share two particular Wolbachia 
lineages, indicating that these lineages have been acquired by HS recently and suggesting that HS events may 
be more frequent than previously thought. This is evidence for the HS hypothesis being a common outcome of 
different ecological interactions, explaining at least partially how Wolbachia became such a ubiquitous organ-
ism across multiple clades. In addition, epidemiological modelling of Wolbachia transmission demonstrated 
that it would not be possible to explain Wolbachia incidence in a broad range of clades only considering it as 
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vertically  transmitted41, thus it is necessary to take host shift into account to explain the spread of Wolbachia in 
phylogenetically distant hosts.

Wolbachia HS is a known event described by a wide range of  literature4,6,7,14,15,32,33, yet it is still somewhat 
overlooked and sometimes disbelieved as a more common  mechanism19,20,30, as it is still not very clear how it is 
established in some  cases13. Nonetheless, Wolbachia has an arsenal of well described methods to thrive when first 
encountering a new host, which may explain its success jumping across clades by  HS6. This arsenal consists of 
the facts that Wolbachia has no problem adapting to new  environments7, can, without much effort, move across 
cells and tissues, as it is a proficient manipulator of its hosts  physiology6,42. Even though Wolbachia may cause 
reduced host fitness, the opposite is also true, as Wolbachia may alter pathogen susceptibility conferring viral 
protection for its  hosts43. Also, Wolbachia can survive for a limited time in an extracellular environment, albeit 
being an obligatory intracellular  endosymbiont12,35.

Figure 3.  Wolbachia similarity between different hosts. The high Wolbachia similarity between distant related 
hosts is a strong evidence of HS since there is no feasible way of vertical transfer of Wolbachia between those 
hosts. ws, Wolbachia similarity.
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By using gene similarity of over 1000 reconstructed  genomes21, alongside a phylogenetic reconstruction, we 
were able to bring focus to Wolbachia HS, estimate the event and compare it in Wolbachia supergroups A and B 
of close and distant related hosts and their Wolbachia, shedding more light on the importance of HS as a major 
player in Wolbachia pervasiveness on very distinctive branches of the Arthropoda tree.

Received: 12 October 2021; Accepted: 9 May 2022

References
 1. Landmann, F. The Wolbachia endosymbionts. in Bacteria and Intracellularity 139–153 (American Society of Microbiology, 2019). 

https:// doi. org/ 10. 1128/ micro biols pec. bai- 0018- 2019
 2. Hedges, L. M., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science 322, 702 (2008).
 3. Werren, J. H. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587–609 (1997).
 4. Brown, A. N. & Lloyd, V. K. Evidence for horizontal transfer of Wolbachia by a Drosophila mite. Exp. Appl. Acarol. 66, 301–311 

(2015).
 5. Baimai, V., Ahantarig, A. & Trinachartvanit, W. Novel supergroup U Wolbachia in bat mites of Thailand. Southeast Asian J. Trop. 

Med. Public Health 52, 48–55 (2021).
 6. Sanaei, E., Charlat, S. & Engelstädter, J. Wolbachia host shifts: Routes, mechanisms, constraints and evolutionary consequences. 

Biol. Rev. 96, 433–453 (2021).
 7. Tolley, S. J. A., Nonacs, P. & Sapountzis, P. Wolbachia horizontal transmission events in ants: What do we know and what can we 

learn?. Front. Microbiol. 10, 296 (2019).
 8. Lo, N., Casiraghi, M., Salati, E., Bazzocchi, C. & Bandi, C. How many Wolbachia supergroups exist? [2]. Mol. Biol. Evol. 19, 341–346 

(2002).
 9. Ding, H., Yeo, H. & Puniamoorthy, N. Wolbachia infection in wild mosquitoes (Diptera: Culicidae): Implications for transmission 

modes and host-endosymbiont associations in Singapore. Parasit. Vectors 13, 1–16 (2020).
 10. Singh, N. D. Wolbachia infection associated with increased recombination in drosophila. G3 Genes Genomes Genet. 9, 229–237 

(2019).
 11. Dhaygude, K., Nair, A., Johansson, H., Wurm, Y. & Sundström, L. The first draft genomes of the ant Formica exsecta, and its Wol-

bachia endosymbiont reveal extensive gene transfer from endosymbiont to host. BMC Genomics 20, 1–16 (2019).
 12. Le Clec’h, W. et al. Cannibalism and predation as paths for horizontal passage of Wolbachia between terrestrial isopods. PLoS One 

8, e60232 (2013).
 13. Siozios, S., Gerth, M., Griffin, J. S. & Hurst, G. D. D. Symbiosis: Wolbachia host shifts in the fast lane. Curr. Biol. 28, R269–R271 

(2018).
 14. Pimentel, A. C., Beraldo, C. S. & Cogni, R. Host-shift as the cause of emerging infectious diseases: Experimental approaches using 

drosophila–virus interactions. Genet. Mol. Biol. 44, 1–8 (2021).
 15. Duplouy, A., Pranter, R., Warren-Gash, H., Tropek, R. & Wahlberg, N. Towards unravelling Wolbachia global exchange: A contri-

bution from the Bicyclus and Mylothris butterflies in the Afrotropics. BMC Microbiol. 20, 319 (2020).
 16. Stahlhut, J. K. et al. The mushroom habitat as an ecological arena for global exchange of Wolbachia. Mol. Ecol. 19, 1940–1952 

(2010).
 17. Newton, I. L. G., Savytskyy, O. & Sheehan, K. B. Wolbachia utilize host actin for efficient maternal transmission in Drosophila 

melanogaster. PLoS Pathog. 11, 1004798 (2015).
 18. Ahmed, M. Z., Breinholt, J. W. & Kawahara, A. Y. Evidence for common horizontal transmission of Wolbachia among butterflies 

and moths. BMC Evol. Biol. 16, 1–16 (2016).
 19. Hamm, C. A. et al. Wolbachia do not live by reproductive manipulation alone: Infection polymorphism in Drosophila suzukii and 

D Subpulchrella. Mol. Ecol. 23, 4871–4885 (2014).
 20. O’Neill, S. L. Wolbachia mosquito control: Tested. Science 352, 526 (2016).
 21. Scholz, M. et al. Large scale genome reconstructions illuminate Wolbachia evolution. Nat. Commun. 11, 5235–5235 (2020).
 22. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annota-

tion. Nucleic Acids Res. 44, D733–D745 (2016).
 23. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 33, 34–38 (2005).
 24. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and 

annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
 25. Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: Multiple alignment of coding sequences accounting for frameshifts 

and stop codons. PLoS One 6, 22594 (2011).
 26. Tumescheit, C., Firth, A. E. & Brown, K. CIAlign—A highly customisable command line tool to clean, interpret and visualise 

multiple sequence alignments. PeerJ 10, e12983 (2020).
 27. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating 

maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
 28. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids 

Res. 49, W293–W296 (2021).
 29. Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila 

melanogaster. PLoS Biol. 6, 2753–2763 (2008).
 30. Turelli, M. et al. Rapid global spread of wRi-like Wolbachia across multiple Drosophila. Curr. Biol. 28, 963-971.e8 (2018).
 31. White, P. M. et al. Mechanisms of horizontal cell-to-cell transfer of Wolbachia spp. Drosophila melanogaster. Appl. Environ. Micro-

biol. 83, 3425–3441 (2017).
 32. Pattabhiramaiah, M., Brückner, D. & Reddy, M. Horizontal transmission of Wolbachia in the honeybee subspecies Apis mellifera 

carnica and its ectoparasite Varroa destructor. Int. J. Environ. Sci. 2, 514 (2011).
 33. Tseng, S. P. et al. Evidence for common horizontal transmission of Wolbachia among ants and ant crickets: Kleptoparasitism added 

to the list. Microorganisms 8, 805 (2020).
 34. Zimmermann, B. L. et al. Supergroup F Wolbachia in terrestrial isopods: Horizontal transmission from termites?. Evol. Ecol. 35, 

165–182 (2021).
 35. Cardoso, A. & Gómez-Zurita, J. Food resource sharing of alder leaf beetle specialists (Coleoptera: Chrysomelidae) as potential 

insect-plant interface for horizontal transmission of endosymbionts. Environ. Entomol. 49, 1402–1414 (2020).
 36. Faria, V. G., Paulo, T. F. & Sucena, É. Testing cannibalism as a mechanism for horizontal transmission of Wolbachia in Drosophila. 

Symbiosis 68, 79–85 (2016).
 37. Plantard, O. et al. Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid 

Ixodiphagus hookeri. PLoS One 7, 1–8 (2012).

https://doi.org/10.1128/microbiolspec.bai-0018-2019


8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8131  | https://doi.org/10.1038/s41598-022-12299-x

www.nature.com/scientificreports/

 38. Towett-Kirui, S., Morrow, J. L., Close, S., Royer, J. E. & Riegler, M. Host–endoparasitoid–endosymbiont relationships: Concealed 
Strepsiptera provide new twist to Wolbachia in Australian tephritid fruit flies. Environ. Microbiol. 23, 5587–5604 (2021).

 39. Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
 40. Gerth, M. & Bleidorn, C. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis 

operon transfer. Nat. Microbiol. 2, 1–7 (2016).
 41. Zug, R., Koehncke, A. & Hammerstein, P. Epidemiology in evolutionary time: The case of Wolbachia horizontal transmission 

between arthropod host species. J. Evol. Biol. 25, 2149–2160 (2012).
 42. Hague, M. T. J., Caldwell, C. N. & Cooper, B. S. Pervasive effects of Wolbachia on host temperature preference. MBio 11, 1–15 

(2020).
 43. Zug, R. & Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. 

Camb. Philos. Soc. 90, 89–111 (2015).

Author contributions
E.L. and G.L.W. and T.M.F.F.G. designed the project, analyzed the data and wrote the manuscript. T.M.F.F.G. 
prepared the original artwork. All authors have made intellectual contributions to the research project and 
approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 12299-x.

Correspondence and requests for materials should be addressed to E.L.S.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-12299-x
https://doi.org/10.1038/s41598-022-12299-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

