
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 6, DECEMBER 2007 3069

On the Evolution of Remote Laboratories for
Prototyping Digital Electronic Systems

Leandro Soares Indrusiak, Member, IEEE, Manfred Glesner, Fellow, IEEE, and
Ricardo Reis, Senior Member, IEEE

Abstract—The design of digital electronic systems for indus-
trial applications can benefit in many ways from the prototyping
capabilities of field-programmable gate array (FPGA) platforms.
This paper presents three evolutionary releases of an FPGA-based
remote laboratory and discusses the didactical and technical mo-
tivations behind each release, aiming to reduce the overhead of
setting up and operate a laboratory environment where designers
and students can use FPGA prototyping to validate their designs.
To achieve that, a number of abstraction layers were introduced,
allowing configuration and data processing in remote FPGA plat-
forms, as well as integrating such platforms within a simulation
environment. The proposed approach supported a number of
projects where groups of designers and students could specify,
refine, and prototype electronic systems using a pool of remotely
available FPGA platforms.

Index Terms—Design automation, field-programmable gate
arrays (FPGAs), integrated circuit design, remote laboratories.

I. INTRODUCTION

THE DESIGN of electronic systems for industrial applica-
tions has become increasingly complex. The advances on

silicon technologies have allowed the periodic release of new
generations of integrated electronic components with higher
logic density than their predecessors, which, in turn, enabled
the design of more sophisticated industrial systems that were
not feasible before. The increasing complexity of the design
process has been tackled by increasing the sophistication of
the computer-aided design (CAD) automation techniques that
support the specification, verification, and manufacture of such
systems.

Recent trends on design automation point to a system-level
approach, which uses a single model to specify an electronic
system. Such model includes the digital hardware platform
(custom processor, digital signal processing (DSP), memory,
interconnects, etc.), the software subsystems (operating system,
middleware, application programming interfaces, etc.), and the
deployment scenario (for instance, a model of the moving parts
of an ac motor in a control system or a model of lighting
patterns in a computer vision application) and allows for the
evaluation of different implementation alternatives. Several re-

Manuscript received March 30, 2007; revised August 16, 2007.
L. S. Indrusiak and M. Glesner are with the Microelectronic Systems

Institute, Darmstadt University of Technology, 64283 Darmstadt, Germany
(e-mail: indrusiak@mes.tu-darmstadt.de).

R. Reis is with Informatics Institute, Federal University of Rio Grande
do Sul, 91501-970 Porto Alegre, Brazil.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2007.907010

search groups addressed such approach under different points
of view, such as the hardware/software codesign [1] and the
platform-based design [2] methodologies.

The design of industrial electronic systems benefits greatly
from such approaches, as they allow the full exploration of the
hardware/software tradeoff regarding performance and costs.
For instance, most companies are more likely to add value to
an electronic product by customizing its software components
and using off-the-shelf electronic components, because the
manufacture costs of custom hardware are extremely high. On
the other hand, the performance that was provided by off-the-
shelf microcontrollers and DSP processors is often not enough
for state-of-the-art applications (such as the adaptive control
system based on a self-tuning regulator shown in [3]), so the
design of a custom hardware platform is needed.

To address such wide spectrum of hardware/software so-
lutions, it is necessary to define a complex design flow that
is able to integrate multiple abstraction layers—for instance,
discrete-event systems, state machines, concurrent processes,
dynamic systems, etc.—and handle the inherent complexity of
each of them within design entry, simulation, validation, and
synthesis tools. The task of preparing engineers that are able to
handle such design flow is not less complex. The high degree
of automation in such flows requires educational and training
activities addressing the fundamental engineering concepts, the
usage of the tools, and the development of prototypes to validate
successive design refinements that are performed by the tools.

This paper presents three evolutionary releases of a remote
prototyping laboratory supporting the design of electronic sys-
tems for industrial applications. This approach has the potential
to improve the design of educational and training activities,
because it allows their close integration with prototyping ac-
tivities using the same design environment. The major goals of
the presented approach are given as follows: 1) to support the
successive prototyping of system modules—both hardware and
software—into platforms that resemble the target implementa-
tion and 2) to allow the validation of such prototypes under
realistic operation conditions by simulating or emulating the
deployment scenario.

In order to better justify the need for prototyping—and
thus prototyping using remote laboratories—we describe in
Section II the major steps of the design flow for integrated
digital electronic systems. Then, we present in Section III
the state of the art in remote laboratories and the successive
attempts we did over the last seven years to extend it, aiming
to properly integrate and abstract remote laboratories within
the electronic systems design flow. In Section IV, we present

0278-0046/$25.00 © 2007 IEEE

3070 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 6, DECEMBER 2007

Fig. 1. Simplified representation of the integrated electronic systems
design flow.

the advantages of our approach on the system-level design of
industrial electronic systems, as well as its impact on related
education and training activities.

II. INTEGRATED ELECTRONIC SYSTEMS DESIGN FLOW

Over the last 30 years, the specification of integrated digital
electronic systems became increasingly abstract, from the direct
specification of the circuit layout to logic gate netlists, then to
cycle-accurate models that are described using hardware de-
scription languages (HDLs), up to untimed system-level models
that do not discriminate hardware and software subsystems.
Nowadays, most design flows still use all those specification
styles, but only the most abstract of them are directly ma-
nipulated by designers, and all the others are automatically
generated by design automation tools.

Fig. 1 shows a simplified view of the design flow that is con-
sidered in this paper. The most abstract styles of specification
(represented as boxes) appear on top, and model transformation
and synthesis techniques (represented as arrows) successively
convert abstract specification models into the ones closer to the
final implementation that is shown on the bottom.

The top level specification describes the system as a whole
and does not yet discriminate which modules are going to be
implemented as hardware or software. It should also include a
model of the final system’s deployment scenario—the industrial
setup on which the final system will be embedded—so that
the functionality of the system can be validated at early stages
of the design flow. Such specification models are validated by
simulation, so that design alternatives can be compared using
application-specific figures of merit (for instance, bit error
rate versus signal-to-noise ratio for wireless communication
systems, or the number of correctly recognized features per
frame in a computer vision application).

The next specification style, as depicted at level 2 in Fig. 1,
already discriminates hardware and software subsystems, and is
cycle accurate. This means that the double-headed arrow lead-
ing to it comprehends the following: 1) a hardware-software
partitioning; 2) a choice of one or more microprocessors that
execute the software subsystems; 3) software code genera-

tion; and 4) (semi-) automatic implementation of the hardware
subsystems. In most practical cases, the hardware subsystems
are modeled using HDLs such as Very High Speed Integrated
Circuit HDL (VHDL) or Verilog, and the microprocessors are
abstracted by instruction set simulators or also by HDL-based
models.

Cycle-accurate models of the hardware subsystems are syn-
thesized into logic netlists, which are in turn input to tech-
nology mapping, placement, and routing tools, so that the
final implementation is produced automatically with little as-
sistance by the designer. The final implementation can be an
application-specific integrated circuit or a configuration for a
field-programmable gate array (FPGA). A given logic netlist
can be mapped to either of the implementation alternatives,
so the upper levels of the design flow is common for both
of them.

It must be clear at this point that the design flow of integrated
electronic systems spans several abstraction layers and usually
relies on simulation to validate the system models on each
of those layers. As it is not always feasible to transform the
complete system specification from one abstraction layer to the
lower one, it is often necessary to cosimulate subsystems that
are described using different specification styles at different
levels of abstraction. For instance, while the model of a wireless
receiver can be described in HDL at the cycle-accurate level,
the transmitter and the wireless channel model may still be
described at very abstract untimed models, and to validate
the whole communication system, one must simulate them all
together.

A problem arises when the final implementation of a given
subsystem is achieved: how to validate the functionality of
that subsystem together with other subsystems that are still
modeled using more abstract styles, or even with the model
of the deployment scenario. One way is to fabricate the actual
hardware components, connect them to a printed circuit board,
and build a prototype. However, if the system comprehends
custom hardware components, this approach is unfeasible be-
cause of the fabrication time and costs: If a problem is found
in the fabricated circuit, the costs of redesign and the new
fabrication are usually too high to be recovered, and the product
will probably miss its time-to-market window.

This problem has been solved by exploring the capabilities
of FPGAs. As explained earlier, FPGAs can be configured to
implement logic netlists that are generated out of cycle-accurate
models of custom hardware subsystems or microprocessor soft
cores. Thus, they can be easily customized to be used as proto-
types for such subsystems, allowing the validation of the final
implementation of a system without requiring the fabrication
of custom hardware. Many state-of-the-art industrial electronic
systems are known to rely on FPGA prototyping, such as [3]
and [4]. Dubey et al. [5] reviewed the application of FPGAs
and other programmable logic devices in power electronics and
motion control not only as prototyping platforms but also as
final implementation platforms. Such acceptance is due to the
higher performance of FPGA implementations when compared
with solutions based on microcontroller or DSP processors,
or the lower cost compared with the fabrication of custom
hardware.

INDRUSIAK et al.: ON EVOLUTION OF REMOTE LABORATORY FOR PROTOTYPING DIGITAL ELECTRONIC SYSTEM 3071

In the next sections, we explore FPGA platforms as remote
prototyping laboratories supporting the design of integrated
electronic systems for industrial applications.

III. REMOTE PROTOTYPING LABORATORIES

A. Related Work

The development of remote laboratories flourished during the
last ten years with the popularization of the Internet. Applica-
tions of remote laboratories were reported on microelectronics
[6], real-time systems [7], control systems [8], chemistry [9],
and physics [10], among many others. Most of them were aimed
at education and training activities, and were developed by
university research and teaching staff members. Some of them
were supported by commercial tools, such as LabView [11] or
Microsoft NetMeeting [8].

Being strongly influenced by the Internet infrastructure and
the World Wide Web, most of the reported remote laboratories
inherit one or more of its features.

1) Client–server architecture, where a remote laboratory
is a server and the users’ access is through the client
applications (usually a web browser).

2) The remote laboratory is identified and located by its
Internet Protocol (IP) address or a Domain Name System
(DNS)-resolved server name.

3) User interface materialized as hypertext and/or forms
within a web browser.

4) The interaction between client and server is done through
stateless protocols, such as Hypertext Transfer Protocol:
All the information that a server receives from the client
is the set of parameters that are passed within a service
request.

Relying on such features usually simplifies the development
of remote laboratories, but on the other hand, it may limit its
usability or require additional developments.

1) Identification by IP address or DNS-resolved server name
makes it hard to assign multiple laboratory units to mul-
tiple users (users must choose a specific laboratory to
access, even if there are many available).

2) The interaction between user and laboratory should be
partitioned in many short-lived transactions.

3) Interactivity among laboratory users is limited, because
Internet protocols completely isolate different service
requests.

A specific analysis of remote laboratories addressing elec-
tronics shows that most of the existing work addresses the
experimentation with electronic devices and not complete
systems. The pioneer work within the MIT Microelectronics
WebLab [6] concentrated on measurements that are performed
on individual devices, such as transistors. A similar approach
was presented by Salaverría et al. [12] but for a wider range of
analog electronic devices. On digital electronics, the scenario
is not different, even though a number of remote laboratories
based on coarse grain components such as microprocessors
[13] or programmable logic [14] were reported. In all cases,

a number of significant shortcomings prevented the analysis of
complete electronic systems and their deployment environment,
and thus restricted the usage of such laboratories within the area
of industrial electronics. Limitations include the lack of support
for realistic test benches and application scenarios, as well as
the difficulties to integrate remote laboratories with additional
resources that are used in design and education activities (such
as simulators or CAD tools). In the next section, we present an
evolutionary approach that aims to overcome such limitations
in the case of FPGA-based remote laboratories.

B. Remotely Accessing FPGAs

In the last seven years, our group addressed the problem of
introducing FPGA-based remote prototyping laboratories into
the design flow of industrial electronic systems. The funda-
mental approach was to increasingly abstract the features of
a remote laboratory that hinder the experience of designers,
students, and trainees: handling network connections, manag-
ing file transfers, and setting up graphical interfaces to analyze
the results of experiments, for instance. Over the years, three
stable releases of the remote laboratory infrastructure can be
identified, with each one built on top of its predecessor and with
increased abstraction features.

Our first release regarded the encapsulation of an FPGA
board, so that it can be remotely configured. The usage scenario
of this approach is given here.

1) The designer uses locally installed automation tools to
specify a given hardware subsystem (as in levels 1 and 2
of the design flow that was depicted in Fig. 1), synthesize
it into a netlist, and generate an FPGA configuration [as in
Fig. 1 (level 3, center)]; the FPGA boards are connected
to a computer that runs a back-end server, which 1) al-
lows connections through Transmission Control Protocol
(TCP)/IP sockets in order to receive the configuration file
from the client side and 2) is able to load the configuration
file into the FPGA (which is connected to the computer
via a Universal Serial Bus or parallel port) by running
vendor-specific configuration tools in batch mode.

2) The designer uploads the configuration to the remote
FPGA using a client application, which opens a TCP/IP
connection to the remote FPGA back-end server (either
the designer or the tool must know the IP address of the
computer running the server as well as the TCP/IP port of
the server).

3) The designer can observe the results by visually inspect-
ing special components of the FPGA board or attached
displays through a video streaming application, which
runs independently of the back-end server (designer must
have a client for the video streaming application and
know the IP address of the video server, as well as its
TCP/IP port).

Fig. 2 depicts the setup of one of the remotely accessible
FPGA boards that we developed using this first approach. The
laptop on the left side is the client, where the FPGA configura-
tion was designed and uploaded to the back-end server, which
is running on the laptop on the right side. The server laptop is

3072 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 6, DECEMBER 2007

Fig. 2. Remote prototyping laboratory setup.

connected to a Xilinx XCV800 FPGA board (in the middle)
and to a camera. It configures the FPGA every time that a
new configuration file is received, and it continuously streams
the video information captured by the camera. The lower left
side of the figure also shows a detail of the screen of the
client computer to highlight the interface that was used by the
designer to interact with the remote prototyping laboratory.

Our second release aimed to increase the abstraction of
the FPGA prototyping platforms by using an object-oriented
approach, so that the FPGA is “encapsulated” by a proxy
that can control reconfiguration and data processing through
method calls. Such proxy must be powerful enough to do the
following:

1) handle the distribution of FPGA platforms over the net-
work, so that clients can locally interact with it without
having any knowledge of the actual network address of
the back-end server;

2) abstract the reconfiguration process, so that it can be done
through a method call that receives an FPGA configura-
tion as argument;

3) abstract the data processing, so that a client can send data
to be processed by the FPGA through a method call that
returns the processed data.

To decouple the client–server connection (which was pre-
viously point-to-point using sockets) and abstract the network
address of the remote prototyping platforms, we decided for
a middleware-based approach using Jini [15]. This granted us
the possibility of using registry and lookup servers that allow
a given client to dynamically query for available prototyping
platforms over the network. This meant that, once a designer
is ready to prototype her design, she can connect to a lookup
server and check whether a suitable prototyping platform is
available. The benefits of such approach for supporting mul-
tisite design and learning activities will be further reviewed on
the next section.

Aside from the network address, the second release also
abstracted the reconfiguration process and the data processing

on the FPGA platform. The reconfiguration process was already
abstracted on the socket-based approach, so it was easily ported
to the new approach by simply encapsulating the batch exe-
cution of the vendor-specific configuration tool as a remotely
accessible method on the back-end server. The data processing
capabilities, on the other hand, were not supported in the
previous version (the results could only be inspected through
the video stream). To allow data processing on the FPGA,
we had to define a memory space within the FPGA board
(either an external memory on the circuit board or an internal
BlockRAM) that could be read and written by both the back-
end server and the hardware system, which is implemented as
an FPGA configuration. The data processing scenario is then
divided in three parts: 1) The client sends data to be processed
by the system, which is presently configured in the FPGA,
by calling a method of the back end’s proxy; the back end,
in turn, receives the data, writes it into a predefined memory
area, and sets a “ready” flag to the FPGA. 2) The FPGA,
which monitors the flag, starts reading, processing the data, and
writing results on another predefined area of the memory, and
then sets another flag when ready. 3) The back end reads
the processed data and sends it back to the client via its
proxy.

A number of issues had to be solved to bring such scenario
into practice. First, we added the data type abstraction in order
to support data processing based on different data types, such
as integers and floating points with different precisions (such
abstraction defined how each value passed on a method call
would be mapped to a bit array to be stored on the FPGA
memory). Second, it was necessary to address the data reading
and writing that were done by the system, which is configured
on the FPGA. For instance, if the FPGA is configured to
perform an encryption algorithm, the designer of the config-
uration must know how to map the input signals of the algo-
rithm implementation to the signals controlling the memory
access. To solve this problem, we implemented in VHDL a
reusable memory interface that follows our predefined memory
organization scheme. By reusing such interface together with

INDRUSIAK et al.: ON EVOLUTION OF REMOTE LABORATORY FOR PROTOTYPING DIGITAL ELECTRONIC SYSTEM 3073

the HDL code that describes the system configuration (in the
aforementioned example, the encryption algorithm), designers
can easily create configurations that can be used within this
approach.

Both the client software and the back-end server had to be
reimplemented to incorporate the Jini protocols for commu-
nicating with registry and lookup servers, as well as the data
processing abstractions. Further details on the implementation
of this release were published in [16], and the same approach
was also used to implement networks of reconfigurable embed-
ded systems [17].

The third release aimed to further abstract the data process-
ing capabilities of the remote prototyping platforms. While
allowing data processing on the FPGA, the second release
required sending the data to be processed as a file to the back-
end server within a method call. This allows designers to test the
system that was prototyped on the FPGA by sending test data to
be processed and analyzing the results. This process, however,
could be tedious and error prone due to the need to package and
send the data as a file (particularly, if the system had feedback
loops, so the test data had to be repeatedly generated out of
the results of the previous cycle). In order to have a better
validation environment, we decided to support the integration
of the remote prototyping laboratories within a modeling and
simulation environment.

The chosen environment was Ptolemy II [18], which is a fully
featured open source framework for modeling and simulation
of concurrent systems that were developed by the University
of California, Berkeley. The core of its simulation models
are actors, which communicate with other actors by receiving
and sending data through their interface, which is a set of
ports. Tokens encapsulate the data that were sent through ports,
and directors govern the interaction between actors. To take
advantage of the features that are present in Ptolemy II, the en-
capsulation of the remote FPGA platform into a new Ptolemy II
actor is necessary. By doing so, the remote prototype becomes
an active part of the simulation environment in a “hardware-
in-the-loop” fashion. The overall organization of this release is
shown in Fig. 3.

The encapsulation of the remote FPGA as an actor was
relatively simple, as it reused the data processing capabilities
of the previous release. For every token that is received at the
input ports of the FPGA actor, the following are done: 1) data
are unpacked; 2) the data processing routine is executed; and
3) the results are packed in a new token, which is sent to the
output port. On the implementation, a few changes were needed
to support the packing and unpacking of the data as tokens, as
well as some performance improvements at the back-end side
in order not to degrade simulation speed.

A snapshot of Ptolemy II depicting an actor encapsulating
a remote FPGA is shown in Fig. 4. By setting the properties
of such actor, designers can choose a configuration file to be
uploaded and define the criteria for looking up for a suitable
prototyping platform (such as FPGA vendor and family, and
gate count) Thus, Ptolemy II becomes the main interface to
modeling, simulation, and prototyping.

In Table I, a comparison of the advantages and disadvantages
of all three releases is given.

Fig. 3. Integration of remote prototyping platforms and Ptolemy II modeling
and simulation environment.

IV. OBTAINED RESULTS AND EXPERIENCES

A. Concept Evolution

All three releases that were described in the previous section
were used within design and educational activities. The limi-
tations of each release were the actual motivations for the fur-
ther development of the remote prototyping environment. For
instance, the first release allowed visual inspection of the results
only, limiting the types of applications that could be used and
making the design of the FPGA configuration more complex (as
it should include also the test generation and the control of the
peripherals providing the visual output, such as light-emitting
diodes and displays). The second release solved that problem
by allowing data processing on the FPGA via method calls, so
that the test data could be generated and analyzed at the client
side. While cumbersome because of its file-based approach,
this release hosted more complex projects that could start an-
alyzing the tradeoffs between pure software and pure hardware
implementations of a given system (transition from level 1 to
level 2 in Fig. 1). Table II presents the results of such tradeoff
analysis for an implementation of the Data Encryption Standard
cryptography algorithm, which was performed as a student
project in our university. The software-only implementation
was done in Java and was profiled through the execution of the
compiled bytecode by a virtual machine running on top of two
different processors, while the hardware-only implementation

3074 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 6, DECEMBER 2007

Fig. 4. Ptolemy II GUI displaying simulation results and data processed at the remote prototyping laboratory.

TABLE I
COMPARATIVE ANALYSIS OF REMOTE FPGA ACCESS STRATEGIES

was done in VHDL and configured within the Xilinx XCV800
remote prototyping platform that was shown in Fig. 2.

In most of the state-of-the-art designs, however, such tradeoff
analysis between pure hardware and pure software solutions
is insufficient, because the optimal solution usually lies in
between, as a mix of hardware and software subsystems. We
tried to do such analysis using the second release, but the fact
that we could not easily simulate/emulate the hardware and
software subsystems together forced us to introduce inaccu-

TABLE II
TRADEOFF ANALYSIS OF A DES IMPLEMENTATION

racies and made the setup task very difficult. This was the
major motivation for the third release, which allowed us to
successively refine the system implementation while still being
able to validate it under realistic execution scenarios within
Ptolemy II. Still, the Jini-based solution that was introduced
on the second release was kept, so the support for dynamic
matching of multiple users to multiple remote prototyping
platforms could also be used. Those were the most appreciated
features of the system during the design and learning activities
that we performed, so we describe the experiences and feedback
that we obtained on the next sections.

B. Design by Successive Refinement

The efficient exploration of different hardware/software par-
titions is still an open problem in the design of integrated
electronic systems. As mentioned previously, one can benefit
from cosimulation capabilities in order to evaluate alternatives
for the partition as well as the communication among hardware
and software subsystems. In the third release that was pre-
sented on Section III, it is possible to use the encapsulation of
FPGA prototyping platforms to support the evaluation of such

INDRUSIAK et al.: ON EVOLUTION OF REMOTE LABORATORY FOR PROTOTYPING DIGITAL ELECTRONIC SYSTEM 3075

alternatives. We explored such possibilities in a number of case
studies and student projects.

The first step is to create a system-level model, as shown
in Fig. 1 (upper layer). Such model can be profiled through
simulation in order to have a rough idea of the complexity and
the performance requirements of each subsystem. In our third
release, this is done within Ptolemy II. The subsystems with
stringent performance requirements are the usual candidates to
be implemented in custom hardware, but other aspects may
also affect this decision (power consumption, reuse of legacy
subsystems, etc.) Once selected to be implemented in hardware,
the subsystem is specified using HDL (either manually or using
code generators when available) and simulated in a cycle-
accurate manner to verify its functionality and performance,
as shown in layer 2 of Fig. 1. Finally, the HDL code is
synthesized, and an FPGA configuration is generated. At this
point, the approach that is presented here can play a critical
role: Once the configuration is generated, it can be uploaded to
a remote prototyping platform and executed within a system-
level simulation model. This means that one can create the
system-level model, profile it, choose one of its components
to be implemented in hardware, generate the configuration for
an FPGA, and then substitute the original component in the
model by the encapsulated FPGA in order to verify if the
designed hardware implements all the desired functionality and
performance.

Fig. 4 depicts such a case within Ptolemy II. On the left side
of the system model, a number of actors model the sampling
of an audio signal coming from a microphone. At the center,
there are two actors performing a fast Fourier Transform (FFT)
calculation—one in software and one in hardware—with the
latter being prototyped on a remote FPGA. On the right side,
there are actors supporting the result analysis. In this example,
the system was completely modeled using software compo-
nents, and once a hardware implementation of the FFT was
obtained, it was uploaded to a remote prototyping platform,
so that the functionality of both can be compared. Had the
example entail other actors to be implemented in the hardware,
a successive prototyping could be done as long as there are
further prototyping platforms that are available at the lookup
server. The described example, which outputs the spectral in-
formation of an audio signal through the application of the FFT,
was implemented within a student project. A video showing the
joint execution of such Ptolemy II simulation model and the
hardware implementation of the FFT prototyped in a remote
FPGA platform can be downloaded from [19].

C. Handling Multiple Users

By introducing a lookup-based system, remote FPGA plat-
forms can be dynamically located when needed. Every request
for a prototyping laboratory is not sent to the backed servers
encapsulating the FPGA boards but to the Jini lookup server
introduced on our second release, which in turn will return a
proxy to the first suitable board that is available. This allows
for a more efficient usage of the FPGA resources, particularly,
when they must be shared by groups of designers or students:
All FPGA platforms can be made available at any time to every

student/designer, so every one can be served as long as there
is at least one board available. Since the network address of
the back end of each FPGA device is transparent to the user,
devices can be safely removed from the network when they are
not in use (no user will get a “error 404: device unavailable”
message, as the binding between the user and the board is
dynamically resolved). Devices can also be added dynamically,
without any notification to the users. The newly added devices
will be available immediately after their proxy is uploaded to
the lookup server.

In order to guarantee that the prototyping resources are
properly managed under multiuser access, we implemented a
ticketing service that ensures mutual exclusion for each board
(otherwise, one user could reconfigure the device, while another
is trying to process data, or other similar conflicts). It uses
the JavaSpaces storage facilities within Jini, so it can be ac-
cessed via the same lookup server as the prototyping platforms
themselves.

D. Advantages and Disadvantages on Design and Education

The feedback from the laboratory users—designers, in-
structors, students, and trainees—can also provide valuable
hints about its advantages and disadvantages over conventional
hands-on laboratories. On the general analysis, our users pro-
vided similar feedback as those quoted in most of the pub-
lications that were referenced in Section III: All appreciated
the lack of complex setup and tricky cabling, the attractive
cost–benefit ratio, and the freedom to access the laboratories
anytime and anywhere. Because of the fact that each of the
laboratory releases was deployed to different classes of students
over the last seven years, it is not possible to have a direct
comparison between them. A number of research assistants
and designers doing project work at the university had the
opportunity to use two or three releases though. The statements
listed here are a combination of the feedback received from all
of them.

1) The overhead that are required by the first release regard-
ing FPGA design (test generators, display controllers,
etc.) overweighed the advantages that are brought by the
remote access of the laboratory (students/designers had
to do too much additional work in order to have visible
results from the remote board).

2) While providing the best user experience because of its
simplicity of test data generation and analysis, the third
release can hide the remote prototyping board too much,
to the point that the student has the impression that he is
dealing with a simulator. Thus, even if it is unnecessary to
the proper execution of the experiment, the use of a video
stream showing the board and its displays can contribute
to the “credibility” of the whole setup.

3) Due to the batch mode operation, the second release
is more suitable to the integration with other remote
laboratories or to workflow systems in general. Ongoing
work addresses the encapsulation of that release as a
component on a network of remote laboratories that are
integrated using Web services.

3076 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 6, DECEMBER 2007

4) The maintenance of such a remote laboratory is not
negligible, as many of the prototyping boards are expen-
sive and often used for other purposes. The middleware
approach that was introduced on the second release is
very useful in such conditions, as it can hide from the
users the fact that a given board was removed temporarily
from the system to serve other purposes.

V. CONCLUSION

This paper described the evolution of an approach for simpli-
fying the setup of remote prototyping laboratories supporting
the design of industrial electronic systems. Initially, the ap-
proach regarded only the possibility of remotely prototyping
electronic systems using FPGAs. Improvements were put in
place, so that the validation of the prototyped systems could be
done from within feature-rich modeling and simulation envi-
ronments, allowing for complex testing scenarios and compar-
ative analysis. The possibility of jointly executing simulation
models and the prototyping platforms in a “hardware-in-the-
loop” fashion allowed for the successive refinement of system-
level models toward optimal hardware/software partitions.

The proposed approach was used as a design and proto-
typing environment in a number of industrial and educational
projects, in areas such as wireless communications, cryptog-
raphy, automation, and multimedia. However, unlike most re-
lated work, our approach for remote laboratories is not only
tailored for measurements or predefined experiments. It relies
on the flexibility of FPGAs to allow designers and students to
completely configure the remote laboratory as a prototype of
the system that they are designing. Furthermore, such proto-
type is rendered completely interactive, so its execution can
be controlled and monitored, which is ideal for both design
and education purposes. The fact that our approach simplified
the integration of remote prototyping laboratories and design
flows also increased its educational potential, because training
and education activities in the area of electrical, electronic,
and computer engineering tend to strongly rely on hands-on
experience with design tools and flows. Finally, its Jini-based
approach for the middleware provided a simple yet efficient
way to assign remote prototyping platforms (from a limited
pool) to a group of students or designers.

ACKNOWLEDGMENT

The authors would like to thank Prof. J. Becker, F. Lubitz,
and D. Jimenez for their valuable contributions to the concepts,
methods, and implementation work leading to this paper.

REFERENCES

[1] A. Kalavade and E. A. Lee, “A hardware-software codesign methodology
for DSP applications,” IEEE Des. Test Comput., vol. 10, no. 3, pp. 16–28,
Sep. 1993.

[2] A. L. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and
software design methodology for embedded systems,” IEEE Des. Test
Comput., vol. 18, no. 6, pp. 23–33, Nov./Dec. 2001.

[3] Z. Salcic, J. Cao, and S. K. Nguang, “A floating-point FPGA-based self-
tuning regulator,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 693–704,
Apr. 2006.

[4] C. F. Juang and J. S. Chen, “Water bath temperature control by a recurrent
fuzzy controller and its FPGA implementation,” IEEE Trans. Ind. Elec-
tron., vol. 53, no. 3, pp. 941–949, Jun. 2006.

[5] R. Dubey, P. Agarwal, and M. K. Vasantha, “Programmable logic devices
for motion control—A review,” IEEE Trans. Ind. Electron., vol. 54, no. 1,
pp. 559–566, Feb. 2007.

[6] J. A. del Alamo et al., “MIT microelectronics WebLab,” in Lab on the
Web, T. A. Fjeldly and M. S. Shur, Eds. Hoboken, NJ: Wiley, 2003,
pp. 49–87.

[7] A. Rasche et al., “Real-time robotics and process control experiments in
the distributed control lab,” Proc. Inst. Electr. Eng.—Software, vol. 152,
no. 5, pp. 229–235, Oct. 2005.

[8] N. Swamy, O. Kuljaca, and F. L. Lewis, “Internet-based educational
control systems lab using NetMeeting,” IEEE Trans. Educ., vol. 45, no. 2,
pp. 145–151, May 2002.

[9] F. Senese and C. Bender, “The Internet chemistry set: Web-based remote
laboratories for distance education in chemistry,” in Proc. World Conf.
Educ. Multimedia, Hypermedia Telecommun., Montreal, PQ, Canada,
2000, pp. 1731–1733.

[10] S. T. Park et al., “Web-based nuclear physics laboratory,” in Proc. 3rd Int.
Conf. m-ICTE, 2005, pp. 1165–1169.

[11] R. Berntzen, J. O. Strandman, T. A. Fjeldly, and M. S. Shur, “Advanced
solutions for performing real experiments over the Internet,” in Proc. Int.
Conf. Eng. Educ., Oslo, Norway, 2001, pp. 21–26.

[12] Á. Salaverría, J. G. Dacosta, L. F. Ferreira, and E. Mandado, “Analog
electronics basic simulator and virtual laboratory,” in Proc. Int. Workshop
VIRTUAL-LAB, Setubal, Portugal, 2004, pp. 20–27.

[13] L. Gomes and A. Costa, “Remote laboratory support for an introductory
microprocessor course,” in Proc. IEEE Int. Conf. MSE, Anaheim, CA,
2005, pp. 21–22.

[14] J. Murphy et al., “Local and remote laboratory user experimentation
access using digital programmable logic,” Int. J. Online Eng., vol. 1, no. 1,
2005.

[15] K. Arnold et al., The Jini Specification. Reading, MA: Addison-Wesley,
1999.

[16] L. S. Indrusiak, M. Glesner, and R. A. L. Reis, “Lookup-based remote
laboratory for FPGA digital design prototyping,” in Proc. Int. Workshop
e-Learning Virtual Remote Lab., Setubal, Portugal, 2004, pp. 3–11.

[17] L. S. Indrusiak, F. Lubitz, M. Glesner, and R. A. L. Reis, “Ubiqui-
tous access to reconfigurable hardware: Application scenarios and imple-
mentation issues,” in Proc. IEEE/ACM Des. Autom. Test Eur., Munich,
Germany, 2003, pp. 940–945.

[18] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng, Eds.,
“Heterogeneous concurrent modeling and design in Java (Volume 1:
Introduction to Ptolemy II),” EECS Dept. Univ. California, Berkeley,
UCB/EECS-2007-7, 2007.

[19] D. Jimenez Orostegui, L. S. Indrusiak, and M. Glesner, Enhanced Sound
Spectrum Simulation, Mar. 2007. [Online]. Available: http://www.mes.
tu-darmstadt.de/staff/lsi/stud_dipl/diegojimenez

Leandro Soares Indrusiak (S’00–M’05) was born
in Santa Maria, Brazil. He received the B.S. de-
gree in electrical engineering from the Federal Uni-
versity of Santa Maria, Santa Maria, in 1995, the
M.S. degree in computer science from the Federal
University of Rio Grande do Sul (UFRGS), Porto
Alegre, Brazil, in 1998, and the Ph.D. degree in
computer science from the Darmstadt University
of Technology, Darmstadt, Germany, and UFRGS,
in 2003.

From 1998 to 2000, he was a Lecturer with the
Informatics Department, Pontifical Catholic University of Rio Grande do Sul,
Uruguaiana, Brazil. Since 2000, he has been with the Darmstadt University of
Technology, where he is currently a Research Fellow with the Microelectronic
Systems Institute and the Coordinator of the International Master Program in
Information and Communication Engineering. His research interests include
hardware/software design automation, distributed and concurrent computing,
remote/virtual laboratories, and collaborative design.

Dr. Indrusiak received the Internationality Award of the Carlo und Karin
Giersch Stiftung in 2005 for his contributions to the establishment of inter-
national degree programs at Darmstadt University of Technology.

INDRUSIAK et al.: ON EVOLUTION OF REMOTE LABORATORY FOR PROTOTYPING DIGITAL ELECTRONIC SYSTEM 3077

Manfred Glesner (M’93–SM’99–F’00) was born in
Saarlouis, Germany. He received the Diploma degree
in applied physics and electrical engineering and the
Ph.D. degree from Saarland University, Saarbrücken,
Germany, in 1969 and 1975, respectively.

From 1975 to 1981, he was a Lecturer with
Saarland University in the areas of electronics and
CAD. Since 1981, he has been a Professor with the
Microelectronic Systems Institute, Darmstadt Uni-
versity of Technology, Darmstadt, Germany. He was
a Project Consultant for the European Commission

and the United Nation Development Organization. He has contributed original
research to areas of electronic circuits design, rapid system prototyping, intelli-
gent signal processing, and reconfigurable hardware.

Prof. Glesner is the recipient of three honoris causa doctoral degrees, as well
as an honoris causa professorship. In 2007, he was nominated Chevalier de
l’ordre des palmes académiques (Knight of the Order of the Academic Palms)
by the French Minister of Education.

Ricardo Reis (M’81–SM’06) was born in Cruz
Alta, Brazil. He received the B.S. degree in electri-
cal engineering from the Federal University of Rio
Grande do Sul (UFRGS), Porto Alegre, Brazil, in
1978 and the Ph.D. degree in microelectronics from
the National Polytechnic Institute, Grenoble, France,
in 1983.

Since 1981, he has been a Professor with the
Informatics Institute, UFRGS. His research inter-
ests include physical design automation, microelec-
tronics education, and fault-tolerant microelectronic
systems.

