
IP Integration

462 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

A LARGE VARIETY OF LANGUAGES exist to model

the different types of hardware and software components

in modern embedded SoCs, as well as to deal with vari-

ous models of computation (MoCs) and abstraction lev-

els. Although single languages have been proposed as

standards, covering a wide modeling range, the most

common situation is the development of heterogeneous

models, where different languages describe components.

Cosimulation tools handling heterogeneous models

become necessary for validating these designs.

The reuse of IP components is essential for coping

with very tight time-to-market constraints. IP protection

issues might impose restrictions on the access to virtu-

al component models. An IP component might not be

downloadable from the provider’s site before its pur-

chase, or it might require a simulator that is available

only at the provider’s site. The evaluation of an IP com-

ponent might thus require its “virtual” integration into a

cosimulation model, so that it can be remotely simulat-

ed at the provider’s site while the SoC designer access-

es its functionality only through its interface.

The heterogeneity of IP components is complicated

by the fact that their functional interfaces might not

directly match each other. Direct matching would be

possible if all components use the same

interface standard. The diversity of IP

providers, together with the search for

best-of-class components, however, can

result in designs requiring the integration

of components with heterogeneous inter-

faces.

A general approach to the evaluation of IP compo-

nents must therefore provide a simultaneous and con-

sistent solution to three major problems:

■ the interoperability among different modeling lan-

guages,

■ the adaptation of the heterogeneous functional inter-

faces of IP components, and

■ the virtual integration of heterogeneous IP compo-

nents into distributed cosimulation models.

Current approaches to cosimulation do not simulta-

neously address these three issues. Tangram is a cosim-

ulation environment offering general-purpose, innovative

solutions for these three problems.

We named it after an ancient type of Chinese puzzle

that has as its goal the building of a regular figure by fit-

ting together pieces of various sizes and shapes.

Tangram works on top of a general-purpose infra-

structure for distributed simulation, called the

Distributed Cosimulation Backbone (DCB). It offers

mechanisms for the easy integration of existing IP com-

ponents into cosimulation models and for the use of

new modeling languages.

Tangram: Virtual Integration
of IP Components in a
Distributed Cosimulation
Environment

IP reuse is essential in embedded SoC design, but IP components can use
different modeling languages and present heterogeneous interfaces. To
efficiently integrate these heterogeneous components, the Tangram
environment supports the remote evaluation of IP components, implementing
the virtual integration of these components into distributed cosimulation models.

Bráulio Adriano de Mello

Universidade Regional Integrada do Alto Uruguai e das
Missões

Uilian Rafael Feijó Souza, Josué Klafke Sperb, and

Flávio R. Wagner

Universidade Federal do Rio Grande do Sul

The Tangram and DCB mechanisms are not restrict-

ed to a given set of modeling languages. Instead, they

are based on concepts from High-Level Architecture

(HLA), an IEEE standard for distributed simulation that

allows for the easy integration of new languages.1

However, we have adapted HLA concepts to an IP reuse

scenario, in which components cannot depend on the

cosimulation mechanisms.

Tangram encapsulates adaptation layers for com-

munication and synchronization among heterogeneous

and remote components within the DCB cosimulation

infrastructure, so that the code for components

becomes completely independent from these DCB

mechanisms. Besides, Tangram automatically generates

these layers, requiring only a knowledge of the compo-

nents’ interfaces. This promotes IP reuse by avoiding the

code adaptations sometimes necessary for integrating

a component into a cosimulation model.

The integration of an IP component into a cosimula-

tion model in Tangram follows a stack of layers with dif-

ferent functions. The various layers support the adaptation

of functional interfaces and languages, and distribution

and synchronization. This separation of concerns lets

Tangram enhance the reuse of adapted components for

synthesis purposes, achieves an easier integration of new

languages, and can implement a more efficient cosimu-

lation of models that do not have remote components.

Current situation
As just mentioned, Tangram addresses problems in

three major areas.

Language interoperability
Usual approaches to language interoperability are

based on proprietary or restricted solutions. Commercial

cosimulation tools are restricted to given combinations

of SystemC, VHDL, Verilog, C, C++, instruction set simu-

lators, or native compiled code. A more general solution,

the Multilanguage Cosimulation Interface (MCI), auto-

matically builds a multilanguage cosimulation model,

based on a proprietary, distributed cosimulation back-

plane.2 MCI simulations, however, handle only untimed

models. Ptolemy is a framework offering a set of classes

that support interoperability between objects following

different models of computation.3

This and similar approaches, however, do not direct-

ly address the interoperability among common lan-

guages, such as C, Java, and VHDL. In contrast, Tangram

offers a general-purpose mechanism for language inte-

gration, just as MCI, but also supports timed models.

IP integration
Designers can easily interconnect IP components

into a design if the component interfaces follow a bus

standard, such as AMBA,4 or a core standard, such as

OCP (http://www.ocpip.org). The integration of com-

ponents with heterogeneous interfaces, however,

requires hardware and/or software wrappers. A design

tool can automatically generate hardware wrappers if

interfaces are formally described.5 COSY maps high-

level communications between components to com-

munication schemes, for which there is a library of

hardware-software wrappers.6 The Roses tool generates

hardware-software wrappers by composing basic mod-

ules corresponding to given component types and com-

munication structures.7 From a SystemC specification,

Roses generates wrappers for both cosimulation and

synthesis, using the same wrapper architecture.

Tangram is not restricted to a given bus or core stan-

dard and can adapt any interface, provided the designer

specifies them. Unlike all the other approaches, Tangram

also handles language interoperability for cosimulation.

Distributed simulation
Researchers have proposed distributed, heteroge-

neous cosimulation techniques for the Web-based eval-

uation of IP components. In JavaCAD, distributed

simulation follows a client-server approach and pro-

vides IP protection for remote components, but it

requires the description of all components in Java.8 In

HLA, components communicate by calling runtime

infrastructure (RTI) functions. However, this process

restricts the integration to already-available IP compo-

nents. Such approaches suppose that IP components,

from a functional point of view, have consistent inter-

face protocols that can connect directly to each other,

without requiring application wrappers.

Tangram is strongly inspired by the HLA standard, so

we did not restrict it to particular design languages.

However, Tangram does not require that components

make explicit calls to RTI functions. As opposed to all

the other approaches to distributed simulation,

Tangram also considers the adaptation of incompatible

functional interfaces among components.

Tangram/DCB overview
We aimed Tangram at the virtual integration of het-

erogeneous IP components into distributed cosimula-

tion models. It offers resources for adapting the

functional interfaces of IP components, if they do not

match directly. Tangram also implements interoper-

463September–October 2005

ability between different design languages.

We based Tangram cosimulation on DCB.9 DCB, in

turn, uses simulation principles from the HLA standard.

HLA was initially conceived within the community of

distributed and interactive simulation, considering spe-

cial needs observable in military training. Although

some conceptual definitions in DCB are similar to those

in HLA, we proposed DCB as an environment that is

completely independent from HLA.

DCB is a simulation-specific coordination layer for

supporting the distributed simulation of heterogeneous

systems. It offers generic mechanisms for communica-

tion and synchronization among heterogeneous com-

ponents. The encapsulation of these mechanisms inside

the DCB infrastructure allows a greater independence

of components. As opposed to the HLA standard, DCB

does not require that components make explicit calls

to an RTI; it also does not require the use of HLA mech-

anisms for distribution and synchronization.

As opposed to other proprietary solutions, DCB does

not impose proprietary standards for data exchange.

Therefore, DCB reduces the need to modify the com-

ponent implementations to support integration. The

DCB infrastructure is general purpose and remains unaf-

fected by which particular simulators or submodels the

cosimulation effort must integrate into a federation.

These DCB features make the integration of already-

existing IP components much easier and more flexible.

Generic middleware solutions, such as the Common

Object Request Broker Architecture, deal with language

interoperability and distribution. In contrast, we specifi-

cally oriented Tangram toward distributed cosimulation,

including synchronization capabilities. We also devel-

oped features targeted at embedded-SoC designs that

support the integration of heterogeneous IP components.

In the Tangram approach, as in HLA, a cosimulation

model is a federation, composed of autonomous and dis-

tributed federates. Federates can have descriptions in dif-

ferent languages and/or simulations by any simulator. A

federate encapsulates an IP component’s code. To par-

ticipate in a federation, a federate must only have a pub-

licly available interface. This means that the interface’s

attributes must be visible and controllable from outside.

By controlling these attributes, DCB can configure the

way federates cooperate and implement mechanisms for

the automatic configuration of a cosimulation model.

This way, internal aspects of an IP component do not

impact its integration into a federation. If IP components

are already validated, as expected, the SoC designer need

only worry about their integration through the federation.

Figure 1 shows the Tangram layers for component

integration. Components for interconnection can pre-

sent incompatible interface protocols or have various

abstraction levels. Component wrappers implement pro-

tocol- and abstraction-level adaptation. Wrappers are

usually necessary for both cosimulation and synthesis,

so the description of the federation, including the inter-

face wrappers, are synthesizable by appropriate tools.

For cosimulation, Tangram automatically generates

gateways, which adapt functional interfaces and lan-

guages. It also generates ambassadors, which connect

federates to the DCB kernel. Ambassadors, together with

the DCB kernel, implement distribution and synchro-

nization among various components.

Figure 2 shows the DCB architecture. Federates don’t

IP Integration

464 IEEE Design & Test of Computers

Federate

Federate DCB

IP component

Wrapper

Gateway

DCB kernel

Network

Ambassadors

Cosimulation
infrastructure (Java)

Synthesis

Simulation

Component

Protocol
adaptation

Language
adaptation

Distribution and
synchronization

Figure 1. Tangram integration layers.

Federate

Gateway

DCB kernel

FA DCBA

Federate

Gateway

DCB kernel

FA DCBA

Network

…

Figure 2. DCB architecture.

need to invoke DCB communication primitives for send-

ing data. Instead, a federate transfers output data to its

gateway, which communicates with the DCB kernel

through a pair of ambassadors.

Although gateways can imply some implementation

effort, they avoid more costly modifications both in the

communication and synchronization infrastructure

(DCB kernel and ambassadors) and in the code of sim-

ulators and federates. Gateways depend on the respec-

tive federates, but Tangram automatically configures

them when it builds a new federation. Ambassadors

and the DCB kernel, in turn, have a fixed code that does

not depend on federates.

Via this stack of layers, Tangram implements a sep-

aration of concerns. Each layer has a different function:

■ the wrappers adapt the functional interfaces,

■ the gateways adapt the languages, and

■ the DCB kernel and the ambassadors implement dis-

tribution and synchronization.

This separation of concerns achieves several goals. First, it

enhances the reuse of components for synthesis purposes

by adapting the functional interfaces. Second, it becomes

easier to integrate new languages because the gateways

provide encapsulation. Lastly, a more-efficient cosimula-

tion of models that do not have remote components is

possible, via the implementation of specialized ambas-

sadors and DCB kernels for nondistributed models.

Modeling environment
The Tangram modeling environment has four main

modules: a graphical modeling tool, an IP repository,

an import assistant, and a configuration tool. Users can

build cosimulation models by instantiating and inter-

connecting components stored in local, hierarchically

organized repositories. These repositories can also con-

tain references to components that are only remotely

available. An import assistant helps the user in locating

remote components and retrieving and storing them in

the local repositories.

Interface specification
To store a federate in a local repository and later

instantiate it in a cosimulation model, a designer must

explicitly declare its interface through an import assis-

tant. Because of this public interface, Tangram does not

need to know internal details of a federate to integrate it

into a federation.

A component’s interface can have several access

points. Each access point can have several alternative

definitions, corresponding to various abstraction lev-

els. At RTL, for instance, the access point might be a

bundle of ports, each having its own data type. At

higher levels of abstraction—such as service, mes-

sage, and transaction—the access point might be a

collection of access methods, with input and output

parameters. There are no predefined names for

abstraction levels.

The interface specification of a local or remote IP

component results in an IP description (IPD) file, which

defines the interface by means of an XML configuration.

The definition includes the component name, the loca-

tion of the code describing the component behavior

(for example, a URL for a remote component), the lan-

guage used for describing the component behavior, and

the icon that represents the component in the graphi-

cal modeling tool.

IP-based graphical modeling
The graphical modeling tool allows the instantiation

of local or remote IP components that are available in

repositories. It also creates an XML description of a fed-

eration, including all information on federates and their

interconnections. Generating the cosimulation model

requires two main steps.

In the first step, designers instantiate components,

but only show their interface access points. Figure 3

shows a screenshot of the modeling tool during the def-

inition of the federation for the case study that we pre-

sent later. This first step shows only the identification of

the access points. In this example, access point

rc_update of the GPSAlert federate receives a display-

update request sent by the global positioning system

(GPS) federate through its access point, sd_req_up,

while access point sd_coord sends new coordinates to

the access point coord_in of display driver. Details of

interface ports or methods inside the access points are

hidden at this abstraction level. This way, designers can

interconnect two components even if their interfaces at

a given abstraction level do not match exactly.

A second step exposes the interface ports or meth-

ods contained in the access points (at a selected

abstraction level). If the interfaces of interconnected

components match each other, designers can inter-

connect interface ports or methods.

From the graphical model, the tool automatically

generates an XML file that contains all the information

on the federation and its federates. The Tangram com-

pletely hides this file from the user. It passes the file to

465September–October 2005

the configuration tool that will generate the required

data structures for the simulation.

Adapting functional interfaces
If the interfaces of interconnected components do

not match exactly, an adaptation is necessary. The user

interface of the graphical modeling tool indicates

incompatible interfaces through pop-up messages and

by using different colors attached to the connections

between the access points. The user can implement

adaptation on the IP component source code, if it is

available.

IP components without their source code require

wrappers. Because the interface of an IP component is

public knowledge, designers can build wrappers with-

out knowledge of the component’s internal details.

Wrapper construction is based on the IPD files describ-

ing the component interfaces. Wrappers can also follow

general templates, and Tangram can partially configure

them from the IPD files. The designer must manually

complete the wrapper with its adaptation to the inter-

face protocol of the connected component.

Tangram also helps designers to reuse and cus-

tomize previous wrappers. Designers can thus create a

repository of reusable wrappers for connecting various

components to component interfaces with given bus or

core standards.

Configuration tool
The configuration tool performs two main tasks. First,

it generates XML files that Tangram uses to configure

the ambassadors, dynamically reading the files during

the ambassadors’ initialization. Doing so avoids recom-

piling the ambassadors for each federation. The second

task is the compilation of the gateways, based on pre-

defined templates, as we explain in the next section.

The input for these tasks comes from the federation’s

XML specification, which the graphical modeling tool

generates.

Besides the federation configuration, Tangram also

uses the XML specification to determine the mode of

communication between local and remote federates.

Local federates use message exchange through direct

function calls that do not use network services, such as

sockets; this scheme reserves those resources to inter-

connect remote federates. These different communi-

cation mechanisms help improve the simulation

performance.

Distributed Cosimulation Backbone
This section presents the role of each internal mod-

ule of the DCB infrastructure (kernel, gateway, and

ambassadors) in the distributed execution of heteroge-

neous cosimulation models.

DCB kernel
The DCB kernel manages synchronization and data

exchanges between simulators. DCB supports a hybrid

synchronization that allows a combination of synchro-

nous, asynchronous, and untimed federates. Each feder-

ate has its own local virtual time (LVT), which defines a

temporal ordering on events within the federate. The DCB

kernel also maintains a unique global virtual time (GVT)

for synchronous federates and another one for asynchro-

nous federates. DCB uses this global time to build a glob-

al ordering on events from different federates.

To implement this ordering, the current DCB proto-

type implements a special-purpose federate, FedGVT.

When any federate tries to advance its LVT, a corre-

sponding message automatically goes to FedGVT,

which then recomputes the GVT and, if it is advanced,

communicates its new value to all other federates. In

synchronous mode, the federates’ LVTs cannot advance

IP Integration

466 IEEE Design & Test of Computers

Figure 3. Instantiating and connecting components through

access points (AP).

beyond the GVT. In asynchronous mode, the global

time does not restrict a federate’s time advancement,

but the simulator and the federates must support the

return to a previous safe state (rollback).10 This is nec-

essary because the kernel occasionally receives events

with time stamps that are past its current local time.

DCB also supports the inclusion of federates that do

not consider a local time for event execution (untimed

federates). In this case, DCB maintains an LVT that the

ambassadors control; such an LVT thus remains trans-

parent to the federate.

The literature calls the cooperation between feder-

ates with distinct modes of time advancement hybrid

synchronization. We base this DCB feature on the fact

that a better cost-benefit relationship is achievable by

hybrid models when compared to purely synchronous

or asynchronous models. Because a synchronous fed-

erate cannot advance its internal time beyond GVT, it

might remain idle while waiting for other federates to

advance, even if it does not depend on events coming

from them. In asynchronous federates, in turn, the inde-

pendent time advancement by a federate might opti-

mize the simulation time but violate causality

constraints among federates, thereby requiring rollback.

By combining both types of synchronization, DCB

explores their advantages simultaneously.

Gateways
Gateways adapt federates’ interfaces to the federa-

tion and also implement adapters between languages, if

necessary. To participate in a federation, a federate

must have its interface publicly available (as a follow-

ing case study describes) and update its interface attrib-

utes by using a single gateway method:

Gateway.UpdateAttribute(“attribute name”, value,

timestamp)

This rule also applies to the federate’s LVT, which

must be available as an interface attribute and control-

lable from the outside. This is a requirement for the inte-

gration of any simulator or model into a DCB federation.

The gateway recognizes native methods of the feder-

ate’s interface to send data to it. The gateway is also

responsible for data type conversions, when needed. If

the federate encapsulates a remotely simulated IP com-

ponent, the gateway and the federate will reside in dif-

ferent hosts.

Gateways are automatically generated by configur-

ing library templates for particular languages, simula-

tors, and access methods. A template is a code skeleton

that a configuration tool automatically fills, as the case

study will describe. Current templates correspond to the

following alternatives:

■ A federate with a Java interface can directly com-

municate with the gateway by function calls and

parameter passing because the gateway is also imple-

mented in Java (as are the other DCB modules).

■ A federate with a C or C++ interface, when imple-

mented as a dynamic link library, can be directly

loaded by the gateway. Communication occurs via

routines that access native code offered by the Java

Native Interface (JNI).

■ For a federate with a C or C++ interface, whose

source code is available, Tangram adds a template

to the code that invokes a Java virtual machine. This

permits function calls through the JNI to Java objects

in the gateway.

■ A VHDL federate uses the Modelsim APIs (MTI.h

library) for integration. These APIs provide socket

connections.

■ A SystemC federate for which a header and a pre-

compiled object source are available requires three

auxiliary entities for integration into cosimulation

models. These entities are an adapter module, a sim-

ulation driver, and the gateway. Each one of a

SystemC federate’s ports connects to a correspond-

ing port of an adapter module via a signal. A simu-

lation driver uses these connections to update a

federate’s output attributes and look for values of the

input attributes through the gateway. The simulation

driver uses JNI calls for communicating with the

gateway.

■ A federate located in a remote host can communi-

cate with the gateway by interprocess mechanisms

such as sockets. Tangram automatically adjusts only

the communication functions implemented in the

DCB kernel, such that they use adequate communi-

cation primitives. This does not affect actions imple-

mented in the ambassadors and in the gateway.

Ambassadors
The federate ambassador (FA) registers a federate’s

name and type, and the properties of its interface attrib-

utes. FA is responsible for handling synchronization

aspects and for storing in an input queue the attribute

values that are received from the DCB kernel.

The DCB ambassador (DCBA) stores information on

interconnections between federates. It manages the

467September–October 2005

attributes’ ownership as well as the history of values

(checkpoints) that the federation exchanges. It retains

this information for rollback purposes, in the case of

asynchronous federates. When a federate sends a mes-

sage through an output attribute, this message is initial-

ly stored in an output queue in DCBA. From the

federate’s perspective, the message has been sent. DCB,

however, must check if the source federate has owner-

ship over the destination attribute. If positive, DCBA

removes the message from the output queue, and sends

it to the DCB kernel. If not, DCBA will request owner-

ship, which the DCB kernel will give, depending on a

set of rules. These rules, in turn, depend on the feder-

ates’ LVTs and on the GVT.

Case study
Here, we illustrate Tangram capabilities by partially

describing the design of a portable GPS-Alert terminal. It

receives GPS coordinates, compares them with user-

defined key points previously stored in memory, and

alerts the user about an approaching point by display-

ing its identification.

High-level functional model
Figure 4 shows a first functional model of the system;

this model does not imply any architectural definitions.

It includes four Java components; it

describes computation and communi-

cation at a high abstraction level. For

communication, we built a transaction-

level model, using primitives such as

send, receive, read, and write. In the fig-

ure, access points represent component

interfaces. Because the component inter-

faces match each other exactly, the com-

ponents do not require wrappers.

GPS-Alert is the main system compo-

nent. It stores key point coordinates,

receives GPS data, compares coordinates,

and communicates with the keyboard and

display. Keyboard and display are abstract

Java models of the real peripherals. GPS-

Simulator, which has only validation pur-

poses, simulates the generation of a

sequence of coordinates by reading them

from a text file. The modeling tool gener-

ates an XML federation specification, and

the configuration of Java templates auto-

matically generates gateways. This first

model is completely homogeneous.

Architectural-level model
We next refine the model into the architectural def-

inition in Figure 5. It reuses three IP components: a Java

microcontroller for implementing the main GPS-Alert

functions,11 and keyboard and display drivers, to con-

nect the microcontroller to real peripherals. In this

IP Integration

468 IEEE Design & Test of Computers

GPS-Alert

GPS-Alert

GPS

GPS-
Simulator

Keyboard

LCD
display

Write (string message)

Send (int value)

Send (String pos)

Java Java

Java Java

L
A
T
I
T
U
D
E

X

L
O
N
G
I
T
U
D
E

Y

g
g
G
m
m
,
m
m
m
M

g
g
g
G
m
m
,
m
m
m
M

1

spc

2

ABC

3

DEF

4

GHI

5

JKL

6

MNO

7

PQRS

8

TUV

9

WXYZ

<< >>
0

mode

Figure 4. Functional model of the GPS-Alert

system.

1

spc

2

ABC

3

DEF

4

GHI

5

JKL

6

MNO

7

PQRS

8

TUV

9

WXYZ

<< >>
0

mode

Java
microcontroller

Keyboard
hardware
driver

Display
hardware
driver

LCD
display

Java

Java

Java

JavaC++

Keyboard

GPS

GPS-
Simulator

FSM

GPS-Alert

Display
software

driver

FSM

SystemC

reset

RW

RS

enable

instruction and data

reset

pad_in

done

ke
yp

re
ss

in
te

rr
up

t

re
ad

w
rit

e

lc
d

da
ta

lc
d_

rw

lc
d_

rs

lc
d_

en
ab

le

pad_out

IN1 INT0 IN3 OUT3

IN
0

O
U

T
1

O
U

T
0

Interruption port
Input port
Output port

Intx
INx

OUTx

L
A
T
I
T
U
D
E

X

L
O
N
G
I
T
U
D
E

Y

g
g
G
m
m
,
m
m
m
M

g
g
g
G
m
m
,
m
m
m
M

Figure 5. Architectural model of the GPS-Alert system.

model, although the dri-

vers are locally available

at the designer’s site, the

microcontroller is a third-

party IP model that

requires remote simula-

tion at a provider’s site.

Considering the DCB

cosimulation capabilities,

it’s possible to locally or

remotely simulate any fed-

erate without impact to

the federation’s function-

ality or to the federates’

internal descriptions.

In this architectural model, the GPS-Alert component

description, still written in Java, now mixes an abstract

specification of the computation with a refined commu-

nication at RTL. As before, the GPS-Alert functionality

describes the computation. Communication, however,

considers the real microcontroller interface, consisting

of I/O ports and interrupt signals. We use the same mixed-

level modeling in Java for the GPS-Simulator, keyboard,

and display components. Figure 5 shows the interface

attributes contained in the component access points.

We describe the keyboard driver in C++; the display

driver is in SystemC and implements a proprietary inter-

face. This makes the federation heterogeneous (con-

taining Java, C++, and SystemC components) and

distributed. Configuring Java, C++, and SystemC tem-

plates generates gateways and ambassadors. For C++

and SystemC federates, besides the gateways, we also

generate the C++ code accessing the JNI functions.

Table 1 shows the size (in lines of code, or LOC) for fed-

erates and their respective gateways.

Even much more complex federates will have gate-

ways of reduced sizes, because a gateway’s size is only

proportional to the number of interface signals passing

through it from its respective IP components. The

ambassadors for all federates always have the same size:

172 LOC in Java for the FA and 206 LOC for the DCBA.

The DCB kernel also has a constant size of 227 LOC in

Java. FedGVT, also with a constant size of 221 LOC,

automatically becomes part of the federation. It is

responsible for the overall synchronization, as

explained earlier.

Simulation performance
To concretely compare simulation times among dif-

ferent models, we observe the time consumed by a

complete screen update, performed through a series of

messages sent to the display federate. This activity starts

with a first update message and ends when the display

federate processes the last message. In the high-level

functional model, the GPS-Alert federate sends mes-

sages; in the architectural model, the display driver

sends the messages.

The number of messages for a display update is larger

in the architectural model because the model refinement

is at a lower abstraction level. In this model, a complete

display update requires 282 messages; the same action

requires only 42 messages in the functional model. Both

cases require nine control messages, sent by DCB and

related to synchronization among the federates.

We have initially simulated these models with the

display federate located in the same network node as

the respective origin federate. In a second step, we

moved each display federate to a distinct node, com-

pletely isolated from the remaining network and con-

nected by a 100-Mbps network adapter. In the

functional model, the mean time to update the display

had been 60 ms in the local simulation and 320 ms in

the distributed one. In the architectural model, the local

execution took 79 ms, and the distributed execution

took 304 ms.

We observed that the architectural model is only 19

ms (or 31.7%) slower than the functional one, when we

consider only local simulation. This overhead comes

from the refined description of the communication and

to the language adaptation (all the components in the

functional model use Java descriptions, whereas the dis-

play driver component in the architectural model uses

a SystemC description).

The distributed execution, in turn, is faster in the

architectural model than in the functional model, even

if we perform the simulation at a lower abstraction level.

469September–October 2005

Table 1. Size of federates and gateways.

Federate Federate language Federate size (LOC) Gateway size (LOC)

FedGVT Java 81 140

GPS-Alert Java 349 159

GPS-Simulator Java 107 120

LCD display Java 398 138

Display driver SystemC 269 218* **

Keyboard Java 208 152

Keyboard driver C++ 309 243*
* Includes the C++ code for JNI access.

** Includes the simulation driver (75 LOC) and the adapter module (11 LOC).

This apparently odd behavior arises from the way we

implement the display-driver federate in the architec-

tural model. It executes an infinite loop, constantly

monitoring its interface attributes, thus consuming a

large simulation time. The distributed execution allo-

cates this federate to a separate node. In this way, this

node’s processing power is entirely devoted to this fed-

erate, which no longer executes concurrently with the

other federates.

WE DO NOT TARGET Tangram toward simulation per-

formance. Rather, its main goals are language interop-

erability, the adaptation of heterogeneous interfaces,

and distributed simulation. Together, these features

allow the virtual integration of heterogeneous IP com-

ponents into cosimulation models, resulting in rapid IP

evaluation while maintaining IP protection.

Tangram and DCB do not impose severe rules on the

description of the components’ communications, which

could limit the reuse of already-existing, heterogeneous,

IP components. Tangram entirely encapsulates the man-

agement of distribution and communication among

components—located at different sites and described

with different languages—within gateways and ambas-

sadors that it automatically generates and keeps inde-

pendent of the federates’ code. This feature distinguishes

Tangram from other general-purpose distributed com-

munication solutions.

To enhance simulation performance, we will, in the

future, consider simulation code generation that uses

dedicated implementations of gateways and ambas-

sadors for two special cases: nondistributed and homo-

geneous models. Future work will also consider

capabilities for IP classification and search within the

modeling environment. ■

Acknowledgments
We gratefully acknowledge the support from the

Brazilian funding agencies CNPq and Capes. Carlos

Arthur Lisboa developed the original Java model of the

GPS-Alert terminal. Further development of this model,

targeted at the Tangram environment, had valuable

help from Daniel Barden, Lucio O.M. Rech, Fabio

Wronski, and Eduardo W. Brião.

References
1. IEEE Std. 1516.1-2000, IEEE Standard for Modeling and

Simulation (M&S) High-Level Architecture (HLA)—Fed-

erate Interface Specification, IEEE, 2000.

2. F. Hessel et al., “MCI: Multilanguage Distributed Cosimu-

lation Tool,” Distributed and Parallel Embedded Systems,

F.J. Rammig, ed., Kluwer Academic Publishers, 1999.

3. J. Davis II et al., “Overview of the Ptolemy Project,” tech-

nical memorandum UCB/ERL M01/11, Dept. of Electrical

Eng. and Computer Science, Univ. of California, Berke-

ley, Mar. 2001.

4. AMBA Specification Rev2.0, ARM Ltd., Mar. 1999.

5. R. Passerone, J.A. Rowson, and A. Sangiovanni-Vincen-

telli, “Automatic Synthesis of Interfaces between Incom-

patible Protocols,” Proc. 35th Design Automation Conf.,

ACM Press, 1998, pp. 8-13.

6. J.-Y. Brunel et al., “COSY Communication IP’s,” Proc. 37th

Design Automation Conf., ACM Press, 2000, pp. 406-409.

7. W. Cesario et al., “Component-Based Design Approach

for Multicore SoCs,” Proc. 39th Design Automation

Conf., ACM Press, 2002, pp. 789-794.

8. M. Dalpasso, A. Bogliolo, and L. Benini, “Virtual Simula-

tion of Distributed IP-Based Designs,” Proc. 36th Design

Automation Conf., ACM Press, 1999, pp. 50-55.

9. B.A. Mello and F.R. Wagner, “A Distributed Co-simula-

tion Backbone,” M. Robert et al., eds., SOC Design

Methodologies, Kluwer Academic Publishers, 2002.

10. M. Elnozahy et al., A Survey of Rollback-Recovery Pro-

tocols in Message-Passing Systems, tech. report

CMUCS99148, Dept. of Computer Science, Carnegie

Mellon Univ., Sept. 1999.

11. S. Ito, L. Carro, and R. Jacobi, “Making Java Work for

Microcontroller Applications,” IEEE Design & Test of

Computers, vol. 18, no. 5, Sept.-Oct. 2001, pp. 100-110.

Bráulio Adriano de Mello is a pro-
fessor in the Engineering and Com-
puter Science Department of the
Universidade Regional Integrada do
Alto Uruguai e das Missões (URI),

Santo Ângelo, Brazil. His research interests include
systems modeling and heterogeneous simulation.
Mello has a BS in computer science from the Univer-
sidade de Passo Fundo and a PhD in computer sci-
ence from UFRGS. He is a member of the Brazilian
Computer Society (SBC).

Uilian Rafael Feijó Souza is a
graduate student at UFRGS. His
research interests include the archi-
tecture and design of embedded sys-
tems, the distributed cosimulation of

heterogeneous systems, IP reuse, and component-

IP Integration

470 IEEE Design & Test of Computers

based systems development. Souza has a BS in com-
puter science from Universidade Federal de Pelotas.

Josué Klafke Sperb is a techni-
cian at the Fundação de Economia e
Estatística (FEE), Porto Alegre, Brazil.
His research interests include distrib-
uted and heterogeneous cosimulation.

Sperb has a BS in computer science from the Univer-
sidade de Santa Cruz do Sul and an MSc in comput-
er science from UFRGS.

Flávio R. Wagner is a professor at
the Computer Science Institute of
UFRGS. His research interests include
embedded-systems modeling, design,
and cosimulation. Wagner has a BS in

electrical engineering from UFRGS and a PhD in com-
puter science from the University of Kaiserslautern. He
is a member of the IEEE Computer Society, ACM
SIGDA, SBC, and the Brazilian Microelectronics Soci-
ety (SBMicro).

471September–October 2005

Coming Next Issue
November-December 2005

3D Integration
Guest Editors

Sachin Sapatnekar, University of Minnesota
Kevin Nowka, IBM

Predicting 3D Processor-Memory Chip Stack Performance
Philip Jacob et al.—Rensselaer Polytechnic Institute

Demystifying 3D ICs: The Pros and Cons of Going Vertical
Rhett Davis et al.—North Carolina State University

Physical Design for 3D System-on-Package: Challenges and Opportunities
Sung Kyu Lim—Georgia Institute of Technology

3D Chip Stack Technology Using Through-Chip Interconnects
Peter Benkart et al.—Infineon Technologies; University of Ulm

Bridging the Processor-Memory Performance Gap with 3D IC Technology
Christianto C. Liu et al.—Cornell University

PLUS

Special ITC Section
Guest Editor

Scott Davidson, Sun Microsystems

Direct questions and comments about this article to Bráulio Adriano de Mello; Rua Universidade das Missões,
464; Santo Ângelo – RS; 98802-470, Brazil; bmello@urisan.tche.br.

