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ICS ARE SENSITIVE to upsets that occur in aero-

space. More recently, ICs have also become sensitive to

upsets at ground level because of the continual evolution

of fabrication technology for semiconductors. Drastic

device shrinkage, power supply reduction, and increas-

ing operating speeds significantly reduce noise margins

and thus reliability because of the internal noise sources

that very deep-submicron ICs face.1 This trend is

approaching a point at which it will be infeasible to pro-

duce ICs that are free from these effects. Consequently,

fault tolerance is no longer a matter exclusively for aero-

space designers; it’s important for the designers of next-

generation ground-level products as well.

FPGAs are popular for design solutions because they

improve logic density and performance for many appli-

cations. SRAM-based FPGAs, in particular, are highly

flexible because they are reprogrammable, allowing

onsite design changes. However, because the repro-

grammability leads to a high logic density in terms of

SRAM memory cells, SRAM-based FPGAs are also sen-

sitive to radiation and require protection to work in

harsh environments.2

Our high-level fault tolerance tech-

nique combines time and hardware

redundancy to cope with upsets in SRAM-

based FPGAs. This technique reduces the

number of I/O pads, and therefore power

dissipation, in the interface compared to

the well-known triple modular redun-

dancy (TMR) solution. Our goal is to

reduce hardware overhead (which is

three times more in TMR than the original

area of the unprotected design) to close

to twice the original area, maintaining the

same reliability and consequently reducing power dis-

sipation. We’ve evaluated our technique in two types of

circuits: multipliers and digital filters.

Radiation effects on SRAM-based
FPGAs

A radiation environment contains various charged

particles, generated by sun activity, that interact with sil-

icon atoms, exciting and ionizing the atomic electrons.3

At ground level, neutrons are the most frequent causes

of upsets.4 When a single heavy ion strikes the silicon,

it loses its energy through the production of free elec-

tron-hole pairs, resulting in a dense ionized track in the

local region. Protons and neutrons can cause a nuclear

reaction when passing through the material. The recoil

also produces ionization, generating a transient current

pulse that can cause an upset in the circuit.

A single particle can hit either the combinational or

the sequential logic in the silicon.5 When a charged par-

ticle strikes a memory cell’s sensitive nodes, such as a

drain in an off-state transistor, it generates a transient

current pulse that can mistakenly turn on the opposite
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transistor’s gate. The effect can invert the stored value—

that is, produce a bit flip in the memory cell. This effect

is called a single-event upset (SEU) or soft error, and it’s

a major concern in digital circuits. When a charged par-

ticle hits the combinational logic block, it also gener-

ates a transient current pulse. This phenomenon is

called a single-event transient (SET).

In FPGAs, an upset has a peculiar effect when it hits the

combinational and sequential logic mapped into the pro-

grammable architecture. For example, consider SRAM-

based FPGAs such as those from Xilinx’s Virtex series, one

of the most popular series of programmable devices on

the market. Virtex devices include a flexible, regular archi-

tecture comprising an array of configurable logic blocks

(CLBs) surrounded by programmable I/O blocks, all inter-

connected by a hierarchy of fast and versatile routing

resources.2 The CLBs provide the functional elements for

constructing logic; the I/O blocks provide the interface

between the package pins and the CLBs. A general rout-

ing matrix interconnects the CLBs. This matrix includes

an array of routing switches located at the intersections of

horizontal and vertical routing channels. Virtex devices

also dedicate 4,096-bit memory blocks called block-select

RAMs, clock delay-locked loops (DLLs) for clock-distrib-

ution delay compensation and clock domain control, and

two tristate buffers associated with each CLB.

Users can quickly program a Virtex device by load-

ing a configuration bitstream (a collection of configu-

ration bits) into it. They can change device functionality

at any time by loading in a new bitstream. The bitstream

contains all the information to configure the program-

mable storage elements in the matrix located in the

lookup tables (LUTs), flip-flops, and CLB configuration

cells, and interconnections, as Figure 1 shows. All these

configuration bits are potentially sensitive to SEUs;

hence, we targeted them in our investigation.

In an ASIC, the effect of a particle hitting either the

combinational or the sequential logic is transient; the

only variation is how long the fault lasts. A fault in the

combinational logic is a transient logic pulse in a node

that can disappear according to the logic delay and

topology. In other words, a storage cell might or might

not latch a transient fault from the combinational logic.

Faults in the sequential logic manifest themselves as bit

flips, which remain in the storage cell until the next

load. In an SRAM-based FPGA, customizable memory

cells—SRAM cells (see Figure 1)—implement both the

user’s combinational and sequential logic. When an

upset occurs in the combinational logic synthesized in

the FPGA, it corresponds to a bit flip in one of the LUT’s

cells or in the cells that control the routing. An upset in

an LUT memory cell modifies the implemented combi-

national logic, as Figure 2a shows. This upset has a per-

manent effect, and is correctable only at the next load

of the configuration bitstream. This effect is similar to a

stuck-at fault at 1 or 0 in the combinational logic defined

by that LUT. Thus, a storage cell latches the upset from

the FPGA’s combinational logic, unless the FPGA uses

some detection technique. An upset in the routing can

connect or disconnect a wire in the matrix, as Figure 2b

shows. It also has a permanent effect, which can travel

to an open or a short circuit in the combinational logic

implemented by the FPGA. The configuration bit-

stream’s next load corrects this fault.
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Figure 1. Bits sensitive to single-event upsets (SEUs) in the configurable-logic-block tile schematic. Inputs F1

through F4 are the four 1-bit input signals of the lookup table. M is the configuration memory cell.



When an upset occurs in the user sequential logic

synthesized in the FPGA, it has a transient effect

because the CLB flip-flop’s next load corrects it. An

upset in the embedded block RAM has a permanent

effect, and fault tolerance techniques must correct it.

Engineers must apply these techniques in the architec-

tural or high-level description, because the bitstream’s

load can’t change the memory state without interrupt-

ing the application’s normal operation. It’s also possi-

ble to find, in the CLB, the SET upsets in the

combinational logic, such as input and output multi-

plexers for routing control. (Rebaudengo, Reorda, and

Violante also discuss the effects of upsets in the FPGA

architecture.6)

Radiation tests on Xilinx FPGAs show the effects of

SEUs in the design application and prove the necessity

for using fault-tolerant techniques in aerospace applica-

tions.7 A fault-tolerant system designed into SRAM-based

FPGAs must cope with the peculiarities just discussed:

transient and permanent effects of an SEU in the combi-

national logic, short and open circuits in the design con-

nections, and bit flips in the flip-flops and memory cells.

Ohlsson et al. also analyzed the effect of neutrons in an

SRAM-based FPGA from Xilinx.8 At that time, FPGAs were

not very susceptible to

neutrons, but now as tran-

sistor size decreases and

logic density increases,

FPGAs are becoming more

vulnerable.

Fault tolerance in
SRAM-based
FPGAs

There are two ways to

implement fault-tolerant

designs in SRAM-based

FPGAs. The first is to

design a new FPGA matrix

of fault-tolerant elements.

These new elements can

replace the old ones in the

same architecture topolo-

gy, or you could develop a

new architecture to im-

prove robustness. Either

way, the cost will be high,

though it will vary accord-

ing to development time,

number of required engi-

neers, and foundry technology. Another option is to pro-

tect the high-level description using redundancy,

targeting the FPGA architecture. You could use a com-

mercial FPGA to implement the design, and apply the

SEU mitigation technique to the design description

before synthesizing the redundant blocks in the FPGA.

This approach is far less expensive than the previous one

because here users are responsible for protecting their

own designs; new chip development and fabrication are

not necessary. Thus, the user can choose the fault toler-

ance technique, and consequently control the area, per-

formance, and power dissipation overheads.

The high-level SEU mitigation technique used most

often today to protect designs synthesized in the Virtex

architecture is based mainly on TMR combined with

scrubbing, which places a continuous load on the bit-

stream. The TMR mitigation scheme uses three identical

logic circuits (redundant blocks 0, 1, and 2) synthesized

in the FPGA. These circuits perform the same task in tan-

dem, with a majority voter circuit comparing corre-

sponding outputs. Details of the TMR technique for Virtex

are available elsewhere,9 and Lima et al. present more

examples.10 The correct implementation of TMR circuitry

in the Virtex architecture depends on the type of data

Fault Tolerance
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Figure 2. Example upsets in the SRAM-based FPGA architecture: an upset in the lookup

table because of logic modification (a), and an upset in the routing because of an

undesirable connection (b).



structure you need to mitigate. Logic falls into four dif-

ferent structure types: throughput, state machine, I/O, and

special features (select-RAM blocks, DLLs, and so on).

Throughput logic is a logic module of any size or func-

tionality, synchronous or asynchronous, where all logic

paths flow from the module’s inputs to its outputs with-

out forming a logic loop. In this case, all that’s necessary

is to triplicate the logic, creating three redundant logic

parts (0, 1, and 2). No voters are required, because the

FPGA output will be voted on later by default. State-

machine logic is any structure where a registered output,

at any register stage in the module, feeds back into any

prior stage in the module, forming a registered logic loop.

This structure is common in accumulators, counters, and

any custom state machine or state sequencer in which

each internal register’s state depends on its own previous

state. In this case, it’s necessary to triplicate the logic and

to have majority voters in the outputs. To ensure that a

register doesn’t lock on the wrong value, each redundant

logic part in the feedback path has a voter so that the sys-

tem can recover itself. One LUT can easily implement the

majority voter. For designs constrained by available logic

resources, you can implement the majority voter using

Virtex tristate buffers rather than LUTs.

The primary purpose of using a TMR design method-

ology is to remove all single points of failure from the

design. Therefore, each redundant part that uses FPGA

inputs should have its own set of inputs. Thus, if an input

suffers a failure, it affects only one of the redundant logic

parts. The outputs are the key to the overall TMR strate-

gy. Because full TMR generates every logic path in tripli-

cate, it’s necessary to bring these three logic paths back to

a single path that doesn’t create a single point of failure.

You can do this by placing TMR output voters inside the

output logic block. Figure 3 illustrates the TMR technique.

Scrubbing lets a system repair SEUs in the configu-

ration memory without disrupting operations. The

Virtex Select-MAP interface performs this scrubbing.

When an FPGA is in this mode, an external oscillator

generates a configuration clock that drives the pro-

grammable ROM (PROM) and the FPGA. At each clock

cycle, new data is available on the PROM data pins. One

example is the Flash PROM XQR18V04, which provides

a parallel frequency of up to 264 Mbps at 33 MHz. The

scrubbing cycle time depends on the configuration

clock frequency and the readback bitstream size.

Previous results based on fault injection and radia-

tion ground testing show the Virtex TMR design tech-

niques’ reliability.8,11 However, the TMR technique has

limitations, such as high area overhead, three times

more input and output pins, and a significant increase

in power dissipation. Many applications can accept

these limitations, but some cannot.

Reducing TMR overheads by
combining hardware and time
redundancy

To reduce the number of pins used by the TMR

approach and to deal with permanent upset effects, we

present a new technique based on time and hardware
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redundancy to protect the user’s combinational logic.

TMR still protects the sequential logic to avoid the accu-

mulation of faults, because scrubbing doesn’t change

the content of a user’s memory cell.

Lubaszewski and Courtois discussed TMR’s reliabil-

ity and safety compared to self-checking-based fault-tol-

erant schemes.11 Their experiments indicate that the

higher the module’s complexity, the greater the differ-

ence in reliability between TMR and the self-checking

scheme. The self-checking fault-tolerant scheme is more

reliable than TMR if it does not exceed the self-check-

ing overhead bound of 73%.

We extend the idea of using a self-checking fault-tol-

erant scheme to FPGAs. Our method combines dupli-

cation with comparison (DWC) with a concurrent error

detection (CED) machine based on time redundancy

that works as a self-checking block. DWC detects faults

in the system, and CED detects which blocks are fault

free. Figure 4 shows the general scheme. Two combi-

national logic blocks run simultaneously in the DWC

technique: modules dr0 and dr1. A comparator in the

output can detect a mismatch and signal a fault detec-

tion. If a mismatch occurs, the CED block evaluates

whether the logic is fault free by analyzing the combi-

national logic’s properties.

Researchers have proposed many methods for using

CED blocks based on time redundancy to detect per-

Fault Tolerance
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combinational logic blocks; Tc0 and Tc1 are time comparisons; and Hc is the hardware comparison. The voter block

also generates a state error signal (ST_error) and signals to enable the fault-free block (enable_dr0 and enable_dr1).



manent faults. These include bitwise inversion, recom-

puting with shift operands (RESO), and recomputing

with swapped operands (REWSO). We implement the

CED block using Patel and Fung’s RESO technique.12

This RESO method includes encoding and decoding

blocks and a register.

During normal operation when time t0, dr0, and dr1

are working simultaneously, the CED block stores the

outputs in sample registers for further comparison, and

the voter block continually compares the dr0 and dr1 out-

puts, as Figure 5a shows. If a mismatch occurs between

these outputs, the output registers hold their original

value for an extra clock cycle, while the CED block’s

RESO detects the fault. During this second clock cycle,

the operands shift prior to use such that errors from per-

manent faults in the combinational logic are different in

the first calculation than in the second. Comparing the

results can identify these different errors, as Figure 5b

shows. The encoding blocks are simple multiplexers,

and the decoding blocks are simple connections.

For registered outputs, each output goes directly to

the input of the user’s TMR register. Figure 6a shows the

logic scheme. Block dr0 connects to TMR combina-

tional module tr0, and block dr1 connects to module tr1.

While the circuit searches for faults, the user’s TMR reg-

ister holds its previous value. When the circuit finds the

fault-free module, tr2 receives that module’s output, and

continues receiving it until the next chip reconfigura-

tion (fault correction). By default, the circuit starts pass-

ing the output of dr0 to tr2. For unregistered outputs, the

circuit can drive the signals directly to the next combi-

national module or to the I/O pads, as Figure 6b shows.

The important characteristic of our method is that it

doesn’t incur a high performance penalty when the sys-

tem has no faults or only a single fault. This method

needs only one clock cycle in a hold operation to detect

the faulty module; then it operates normally again with-

out performance penalties. The final clock period is the

original clock period plus the propagation delay of the

encoders, decoders, and output comparator.

The voter block contains comparators and a small

state machine to identify the operation’s fault-free state

or to signal an error. Figure 7 shows this logic’s state dia-

gram. The state machine’s inputs are hardware com-

parison Hc and time comparisons Tc0 and Tc1,

represented by the 2-bit signal, Tc. The state machine’s

outputs constitute a 4-bit vector (shown in Figure 7 after

the slash) indicating the detection state (ST), the error

state, enable_dr0, and enable_dr1. Signals enable_dr0

and enable_dr1 are used for the unregistered outputs

(Figure 6b); when the output is registered, only

enable_dr0 is used (Figure 6a).
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In both TMR and our method, scrubbing corrects

upsets in the user’s combinational logic, and the CLB

flip-flops’ TMR scheme corrects upsets in the user’s

sequential logic. Scrubbing must be continuous to guar-

antee that only one upset has occurred between two

reconfigurations in the design. Some constraints are

necessary for our method to function properly, just as

with TMR. First, there must not be upsets in more than

one redundant module, including the state machine’s

detection and voting circuit. Consequently, we must use

assigned area constraints to reduce the probability of

short circuits between dr0 and dr1. Second, the scrub-

bing rate should be fast enough to avoid the accumu-

lation of upsets in two different redundant blocks.

Upsets in the detection and voting circuit don’t interfere

with the system’s proper execution because the logic is

already duplicated. In addition, upsets in this logic’s

latches are not critical, because they’re refreshed every

clock cycle. Assuming a single upset occurs per chip

between scrubbing, it doesn’t matter if an upset alters

the correct voting, provided no upset

occurs in both redundant blocks.

Experimental results
To evaluate our technique’s fault cov-

erage, we chose two arithmetic-based cir-

cuits: a multiplier and a canonical finite

impulse response (FIR) digital filter. The

developed tools automatically generated

the multipliers and filters protected by

DWC-CED. We evaluated these case study

circuits in terms of fault coverage, area,

performance, and power dissipation.

Fault coverage
We developed a fault coverage test

system to evaluate the DWC-CED tech-

nique’s robustness in the presence of

upsets. The system automatically

inserted structures to enable automatic

fault injection in high-level descrip-

tions, replacing all design nodes with

one fault injection component, a 4-to-1

multiplexer, so that users can insert all

types of faults and as many as neces-

sary. If the multiplexer’s select signal is

00, the original signal goes to the out-

put; if the signal is 01, the output is a

constant 0 (stuck-at-0 emulation); if the

signal is 10, a constant 1 propagates

(stuck-at-1 emulation).

For the first case study, we chose an 8-bit multipli-

er, along with a 9-bit multiplier to apply the RESO

technique without losses in the most significant bit.

We implemented multipliers using cascaded full

adders. The 8-bit multiplier had 528 faulty nodes,

1,056 faults in total (stuck-at 0 or 1). The 9-bit multi-

plier had 675 faulty nodes, 1,350 faults in total. In both

cases, the two original operands had 8 bits, resulting

in 216 (65,536) combinations of input vectors. We

injected all combinations of faults and input vectors:

69,206,016 for the 8-bit multiplier, and 88,473,600 for

the 9-bit version.

We chose a canonical digital FIR filter circuit for our

second case study; the multipliers had constant coeffi-

cients, resulting in an optimized area and minimal faulty

nodes. Our developed system automatically generated

a 9-tap, 8-bit FIR canonical filter. The multiplier coeffi-

cients were 2, 6, 17, 32, and 38. Because of the 8-bit

input, there were 28 (256) combinations of input vectors

Fault Tolerance
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to test. The total number of faulty nodes

in the FIR filter, including all multipliers

and adders, was 4,208. We tested all pos-

sible combinations of input vectors and

faults, a total of 1,077,248.

The system exhaustively injected the

faults in all nodes of the test circuits for

each input vector, sensitive node, and

redundant blocks mult_dr0 and mult_dr1.

The fault injection system operated with

two clocks, one to control the change of input vectors,

and the other to control the change of faults. A counter

controlled the total number of combinations of input

vectors and faults inserted in the circuit. We injected all

possible combinations.

In all cycles, the voter block from the DWC-CED tech-

nique compared the outputs of modules dr0 and dr1. If

the outputs were equal (Hc = 0), then a fault occurring

in one of the circuits did not generate an error in the

output. Therefore, for real-time operations, we could

ignore this fault, and no detection operation was

necessary. If a fault generated an error in the output 

(Hc = 1), the voter compared the output of dr1 with the

recomputing circuit’s decoded output. If the outputs

were not equal (Tc1 = 1), the technique under test was

able to detect the fault. The voter also compared the

output of dr0 to the recomputing circuit’s decoded out-

put. If the outputs were equal (Tc0 = 0), the technique

was able to detect a fault-free module.

A fault was undetected if there was a mismatch in

the output of dr0 and dr1 (Hc = 1), and the technique

could detect neither the faulty module (status Tc1 = 0)

nor the fault-free module (status Tc0 = 1). An incre-

mented counter shows the number of total undetected

faults. Reading this counter from the prototype board,

we calculated the percentage of undetected faults. The

results in Table 1 show that all variations of RESO had

good results in terms of fault coverage for arithmetic-

based circuits.

Area, performance, and power dissipation
To check area, performance, and power dissipation,

our first test circuit was a 16-bit multiplier with a regis-

ter in the output. We compared three implementations

of this circuit in the XCV300-PQ240 FPGA: no fault tol-

erance, TMR, and our technique (DWC-CED for perma-

nent faults using RESO). The application was to multiply

a set of input numbers for 2,000 ns, with the inputs

changing every 100 ns. We evaluated each circuit’s

power dissipation using Xilinx’s XPower tool.

Table 2 shows the results in terms of area, perfor-

mance, and power dissipation for these multipliers.

Using our DWC-CED method, we reduced not only the

number of I/O pins but also the area. The prototype

board used a Virtex part with 240 I/O pins (166 available

for the user). With TMR, we were unable to synthesize

the (16 × 16)-bit multiplier. However, implementing the

same multiplier with our technique, we could fit it into

the chip and occupy less area.

In terms of performance, the standard multiplier

without fault tolerance had a maximum delay of 54 ns

for the specific application, the TMR version had a delay

of 56 ns, and our DWC-CED method had a delay of 62

ns, representing an 11% degradation in performance.

Power dissipation was less in the DWC-CED than the

TMR technique, mainly because of differences in the

logic, connections, and I/Os.

The second test circuit was an 11-tap, 9-bit, digital low-

pass filter, shown in Figure 8. We multiplied the original
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Table 1. Fault coverage of recomputing with shift operands (RESO) techniques in SRAM-

based FPGAs.

No. of No. of Detected 

Circuit injected faults detected faults faults (percent)

8-bit multiplier 69,206,016 69,176,011 99.95

9-bit multiplier 88,473,600 88,473,600 100.00

8-bit FIR filter 1,077,248 1,077,248 100.00

Table 2. Results for a 16-bit multiplier with a register in the output implemented in an XCV300-PQ240 FPGA.

Fault No. of 

tolerance Maximum No. of four-input No. of               Estimated power dissipation (mW)             

technique delay (ns) I/O pads LUTs flip-flops Clock Nets Logic Inputs Outputs Total

None 54 67 495 32 7 88 186 2 29 312

TMR 56 201 1,709 96 22 305 718 7 88 1,140

DWC-CED 62 169 1,706 162 22 282 542 5 83 934
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coefficients calculated using Matlab (http://www.matlab.

com) by a constant of 512. The final multiplier coefficients

were 1, –1, –9, 6, 73, and 120.

Table 3 compares the results in terms of area, per-

formance, and power dissipation for this digital filter

implemented with no fault tolerance, TMR, and our

DWC-CED technique. In this case, TMR also protected

the registers, whereas the DWC-CED using RESO pro-

tected the combinational logic (multipliers and

adders). The CED block resides at the outputs, where it

votes on the correct pad output from dr0 or dr1. Results

show that the FIR filter occupies a little bit less area in

the FPGA when DWC-CED rather than TMR protects it.

The results also show that our method uses 19% fewer

pins than TMR. In terms of performance, TMR had a

maximum delay of 58 ns for this test application, 20%

higher than the standard (no fault tolerance) approach.

Our DWC-CED technique had a maximum delay of 63

ns (8% higher than TMR) for this application.

The DWC-CED technique’s power dissipation was

considerably less than with TMR. But DWC-CED’s power

dissipation was also less than the standard (no fault tol-

erance) approach because our technique uses fewer

input and output pins compared to TMR, uses less logic,

and stores the output in a register, whereas the standard

approach has the combinational logic going directly to

the output pads. The DWC-CED technique also saves

power because the output voter passes only one of the

logic-registered outputs to the pads while the other one

waits in the used one in case of a fault. TMR does not

register the outputs but rather votes on them in the out-

put pads, consuming more power.

WE’VE DISCUSSED only SEUs occurring in the SRAM pro-

grammable cells that are permanent until the next recon-

figuration. However, a circuit operating in outer space can

suffer from a total ionization dose and other effects that

can provoke permanent physical damages in the circuit.

We hope to explore these areas in the future. �
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