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Abstract—We outline the information-theoretic differential
geometry of gamma distributions, which contain exponential
distributions as a special case, and log-gamma distributions.
Our arguments support the opinion that these distributions have
a natural role in representing departures from randomness,
uniformity, and Gaussian behavior in stochastic processes. We
show also how the information geometry provides a surprisingly
tractable Riemannian manifold and product spaces thereof, on
which may be represented the evolution of a stochastic process, or
the comparison of different processes, by means of well-founded
maximum likelihood parameter estimation. Our model incor-
porates possible correlations among parameters. We discuss
applications and provide some illustrations from a recent study of
amino acid self-clustering in protein sequences; we provide also
some results from simulations for multisymbol sequences.

Index Terms—Gamma models, information geometry, multi-
symbol sequences, random, search, stochastic process.

I. INTRODUCTION TOGAMMA MODELS AND THEIR GEOMETRY

E LSEWHERE we have discussed the differential geometry
of manifolds of gamma distributions and their application

to various clustering problems and security testing, e.g., [5], [6],
and [9]. The family of gamma distributions with event space

, parameters has probability density func-
tions given by

(1)

Then is the mean and is the variance, so
the coefficient of variation is independent
of the mean. The special case in (1) corresponds to the sit-
uation of the random or Poisson process with mean inter-event
interval .

For , (1) models a process that has larger variance than
the random case; this corresponds to clustering since very small
and very large values ofbecome more likely.

For integer (1) models a process that is Poisson
but with intermediate events removed to leave only every;
This would evidently have a smoothing effect for . For-
mally, the gamma distribution forinteger is the -fold con-
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Fig. 1. Probability density functions,f(t; �; �), for gamma distributions of
inter-event intervalst with unit mean� = 1; and� = 0:5; 1; 2; 5. The case
� = 1 corresponds to an exponential distribution from an underlying Poisson
process;� 6= 1 represents some organization—clustering or smoothing.

volution of the exponential distribution, called also the Pearson
Type III distribution.

Thus, gamma distributions can model a range of stochastic
processes corresponding to nonindependent clustered events,
for , and smoothed events, for , as well as the
random case. Note that the property of having sample stan-
dard deviation independent of the mean actually characterizes
gamma distributions, as shown recently by Hwang and Hu [12].
They proved, for independent positive random variables

with a common continuous probability density
function , that having independence of the sample meanand
sample coefficient of variation is equivalent to
being a gamma distribution. Fig. 1 shows some sample gamma
distributions, all of unit mean, with thus, rep-
resenting processes that are clustered, random and smoothed,
respectively.

The log-likelihood function for a probability density function
is ; cf., eg [2] and [3] for more details of general re-

sults. Shannon’s information theoretic entropy or “uncertainty”
is given, up to a factor, by the negative of the expectation of
the log-likelihood function. For the gamma densities (1)

and the entropy is

(2)

In particular, at unit mean, the maximum entropy (or maximum
uncertainty) occurs at , which is the random case, and
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Fig. 2. Information entropyS (�; �); for gamma distributions of inter-event
intervalst with unit mean� = 1.

then . Fig. 2 shows a plot of , for
the case of unit mean . So, a Poisson process of points on
a line are as disorderly as possible and among all homogeneous
point processes with a given density, the Poisson process has
maximum entropy.

The maximum likelihood estimates of can be
expressed in terms of the mean and mean logarithm of a set
of independent observations . These
estimates are obtained in terms of the properties ofby
maximizing the log-likelihood function

with the following result that is easily applied to experimental
data .

(3)

(4)

where .
At each point in parameter space the covariance of partial

derivatives of the log-likelihood function with respect to the
parameters gives the Fisher information matrix, , which
turns out to be positive definite. This matrix has entries the
expectations

(5)

for coordinates .
Since it is positive definite, determines a Riemannian

metric on the parameter space, called the expected informa-
tion metric for the parametric statistical model. Explicitly, the
metric is given by the arc length function

(6)

In our case, we have two parameters so we obtain a Riemannian
2-manifold and on the parameter space

for gamma distributions, the arc length function is given
by

for (7)

where is the logarithmic derivative of
the gamma function. The 1-dimensional subspace parameter-
ized by corresponds to all possible “random” (Poisson)
processes, or equivalently, exponential distributions.

Dodson and Matsuzoe [9] have provided an affine immersion
in Euclidean for the Riemannian 2-manifold of gamma dis-
tributions with information metric (7). This may help in visual-
izing the geometric shape of the gamma manifold:

Proposition 1.1: (Dodson and Matsuzoe [9]):The coordi-
nates form a natural coordinate system
for the gamma manifold . Then can be realized in Euclidean

by the graph of the affine immersion where is the
transversal vector field along(cf., Amari and Nagaoka [3]):

This immersion has been used to prove a general result which
by its very qualitative nature is stable under small perturbations
and hence should be useful in practice, giving confidence in the
use of gamma distributions to model near random processes.

Proposition 1.2: (Arwini and Dodson [1]):Every neighbor-
hood of an exponential distribution contains a neighborhood of
gamma distributions, in the subspace topology of.

This means that in a rather precise sense,every neighborhood
of a random process on the real line has a neighborhood of
processes that are represented by gamma distributions.

It was proved elsewhere [8] that there is a Riemannian mani-
fold consisting of log-gamma distributions and isometric with

. This log-gamma manifold has several useful properties in
security testing of smartcards and in modeling of galactic cluster
evolution [7], [8].

Proposition 1.3: (Dodson [8]):The log-gamma probability
density functions for random variable

for

(8)
determine a metric spaceof distributions with the following
properties:

1) contains the uniform distribution as the limit:
.

2) contains approximations to truncated Gaussian distri-
butions.

3) is an isometry of the Riemannian manifold of
gamma distributions with information-theoretic metric.

In Fig. 3 are shown examples of the log-gamma distributions
corresponding gamma distributions in Fig. 1. In fact, the log-
gamma family (8) arises from the gamma family (1) for the
nonnegative random variable , or equivalently,

. So, the gamma and log-gamma families of distri-
butions have a common differential geometry through the infor-
mation metric and the exponential distributions inmap onto
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Fig. 3. Log-gamma probability density functionsg(N ; �; �), with central
mean �N = 0:5, and� = 0:5; 1; 2; 5. The case� = 1 is the uniform
distribution,� < 1 corresponds to clustering in the underlying spatial process;
conversely,� > 1 corresponds to smoothing.

the uniform distribution in , giving further topological proper-
ties through the isometry [1].

A. Correlation

Clearly, in certain bivariate stochastic processes we may ex-
pect that there will arise departures from randomness that in-
corporate correlation between the variables. So it is natural to
consider bivariate gamma distributions.

Kibble’s bivariate gamma distribution has been used in a va-
riety of applications [13], but from our viewpoint it suffers from
the disadvantage that its two marginal gamma distributions have
a common dispersion parameter. Moreover, the calculation of
the Fisher metric and its information geometry is intractable.

McKay’s bivariate gamma distribution [14] is given by the
density function

(9)

defined on with parameters .
Where is the covariance of and . This has the limita-
tions that it constrains the random variables to the octant

and to have nonnegative covariance. The infor-
mation geometry of this density function yields a Riemannian
3-manifold which has been studied by Arwini and Dodson [1]
and will be reported elsewhere since the details of the geometry
are rather cumbersome.

In the sequel, to circumvent these difficulties in developing
easily applied information geometry of bivariate gamma
manifolds, we introduce the notion of warped products of
statistical manifolds. A simple direct product geometry like

represents the case when we have two independent
stochastic processes subordinate to gamma distributions.
Warped products allow us to create a new geometry from any
pair of manifolds by blending them through a warping function
which can represent interaction; no interaction remains as the
special case for independent processes. Such methods are used
in the pseudo- Riemannian geometry of general relativistic
spacetime, cf., Beemet al. [4].

II. CURVES AND DISTANCES IN

In the manifold of gamma models for the distribution of
intervals between events, we use the Riemannian metric to
measure information distances between pairs of points. In a
neighborhood of a given point we can obtain a locally bilinear
approximation to this distance. From (7) for small variations

, near ; it is approximated by

(10)

As increases from 1, the factor decreases
monotonically from . So, in the information metric,
the difference has increasing prominence over as the
standard deviation reduces with increasing—corresponding
to increased temporal smoothing of event scheduling.

In particular, near the exponential distribution, where
, (10) is approximated by

(11)

For a practical implementation we need to obtain rapid es-
timates of distances in larger regions than can be represented
by quadratics in incremental coordinates. This can be achieved
using the result of Dodson and Matsuzoe [9] that established
geodesic foliations of the gamma manifold. Now, a geodesic
curve is locally minimal and so a network of two nonparallel
sets of geodesics provides a mesh of upper bounds on distances
by using the triangle inequality about any point. Such a geodesic
mesh is shown in Fig. 4 using the geodesic curves and

constant, which foliate , as described in [9].
Explicitly, the arc length along the geodesic curves

from to is

and the distance along curves of constant from
to is

The functions involved in these latter two distances can be ob-
tained numerically so at any given parameter values they can be
substituted directly. In Fig. 4, we use the base point

and combine the above two arc lengths of the
geodesics to obtain an upper bound on distances from
as

(12)

III. PRODUCT GEOMETRIES

In a practical application of the above differential geometry
we can measure departures from randomness in the gamma
manifold . Equivalently, in the log-gamma manifold we
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can measure differences between approximations to truncated
Normal distributions or departures from a uniform distribution.

In fact all of these types of comparison between such dis-
tributions—or empirical sampling of them—arise in the cost
function for approximating a given stochastic process. In gen-
eral, however, we havedistributed parameter sets to optimize.
First we consider the case where oursearch parameters all
come from the joint families of gamma and log-gamma distri-
butions and are independent of one another. Then we have a
product manifold of dimension with pairs of coordi-
nates . So, consists of a product of

copies of and copies of , where , and .
Hence,

(13)

with the -fold direct product metric of (I.7)

for but for (14)

We note that each component space in such products contributes
two dimensions.

A. Warped Products and Correlation

More intricate products arise in applications of geometry to
physics, as discussed for example in Beemet al. [4]. A warped
productof two Riemannian manifolds with coordinates

and with coordinates is a manifold
with coordinates under the metric

has the form

for some positive warping function, defined on . It is pos-
sible that correlation may be represented to some extent by a
suitable choice of warping function in a warped product of sta-
tistical manifolds; this is under investigation.

Meanwhile, it seems that some empiricism may be needed
to introduce correlation between variables in the manifold.
One way would be to modify the direct product metric by intro-
ducing symmetrically off-diagonal terms , , while pre-
serving positive definiteness. These off-diagonal terms could be
bounded by , say, and ranked in absolute size by the relative
strengths of the corresponding correlations.

B. Example of Two-Fold Products

Let us take for illustration the submatrix of the metric for
; so it applies to one of the spaces, ,

, , as part of the -fold product . Then this part of the
metric tensor matrix will have the form

(15)

and the information distance arc length element from this com-
ponent of the metric tensor will be given by

(16)

where .
Here, the off-diagonal terms are symmetric and consist of

the product of the correlation coefficient between the
two parameter spaces and the scale control. The scaling value

must be chosen such that , to ensure that positive
definiteness is preserved. The maximum likelihood estimates
should be used for the parameter values obtained from
measured data histograms.

The simplest case is perhaps that of a relationship between
the two mean values, . For this suppose that all of the
are zero except , say. Then, we have to control the size
of in order to have , namely

(17)

But we know that the product of diagonal terms is positive
because this is the determinant for the trivial product space, i.e.
with . Hence, the constraint reduces to

(18)

(19)

and so the magnitude of is bounded by the reciprocal of the
geometric mean of the variances of the two marginal gamma
distributions in the product. This bound could be estimated once
the domain of interest was established.

C. Representing Multimodal Distributions

A large class of distributions arise in practical situations as
bimodal or multimodal histograms. A typical situation is that
of several disjoint symmetric peaks. We can easily handle the
case when the peaks all resemble gamma or log-gamma shaped
distributions; we just multiply the metric contribution of each
peak by the total probability fraction represented by that peak.

Suppose that an observed data set has a histogramwith
peaks giving respective fractional contributions
to the total probability. If each peak is well represented by a
gamma or log-gamma distribution, then there will be a-di-
mensional subspace corresponding to such histograms and its
metric will be

(20)

with and .

IV. A PPLICATIONS

A number of applications arise rather naturally from the
observation that the gamma and log-gamma distributions have
a natural role in representing departures from randomness,
uniformity and Gaussian behavior in stochastic processes. We
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Fig. 4. Distances in the space of gamma models, using a geodesic mesh. The
surface height represents upper bounds on distances from(�; �) = (20; 1), the
random case with mean� = 20. Depicted also are 20 data points for a set of
amino acid sequences with clustering to differing degrees.

have begun studies of several such situations, some are outlined
below.

A. Characterizing Self-clustering of Amino Acids

The data plotted on the distance surface in Fig. 4 comes from
measurements of occurrencies of individual amino acids along a
protein chain within the Saccharomyces cerevisiae genome, see
Cai et al. [5]. If amino acids are distributed randomly within a
sequence then they follow a Poisson process and a histogram of
the number of observations of each gap size will follow a neg-
ative exponential distribution. Our techniques show that this is
not the case and that all 20 amino acids tend to cluster, all having

. In other words, the frequencies of short gap lengths tends
to be higher and the variance of the gap lengths is greater than
expected by chance. In this application we have a one-dimen-
sional (1-D) space where the intervals are between successive
occurrencies of a given amino acid, for all 20 possible amino
acids. The maximum-likelihood parameters were obtained for
gamma fits to the interval distribution for each amino acid.

The methodology here allows representation of the departures
from randomness of the processes that allocate gaps between
occurrences of each amino acid. Fig. 4 shows information dis-
tances in the space of gamma models, using a geodesic mesh;
the surface height represents upper bounds on distances from

, the random case with mean . Depicted
also are the 20 data points for the set of amino acid sequences;
these show clustering to differing degrees.

The data for Fig. 4 consisted of sequences with of the order
of occurrencies and from this the maximum-likelihood pa-
rameters were obtained. Here we have then a reduction of some
three million experimentally determined amino acid positions
to just 20 points and the qualitative result that all amino acids
within the Saccharomyces cerevisiae genome exhibit self-clus-
tering. We might expect that such stable stochastic information

TABLE I
TYPICAL SIMULATION RESULTS FOR4-SYMBOL SEQUENCES OFLENGTH

10,000, WITH THE SYMBOLS HAVING ABUNDANCE DISTRIBUTIONS:
I UNIFORM AND II EXPONENTIAL. THESEDATAPOINTS AREPLOTTED IN FIG. 5

in these long sequences encodes important features that may be
relevant in genetic analysis.

B. Stochastic Similarity for Multisymbol Sequences

An application of the gamma manifoldwould be to provide
a structural model for stochastic features of intervals between
consecutive occurrence of symbols through multi-symbol se-
quences. If the intervals between occurrences of a given symbol
exhibit the property that their coefficient of variation is inde-
pendent of the mean, then their distribution may be modeled by
a gamma distribution. Clustering would occur when
the symbol has greater frequency in certain sections; smoothing

would occur for symbols that are more regularly spaced
than at random.

In order to illustrate how the metric might benefit the study
of stochastic sequences of symbols, we have developed a sim-
ulator which generates a wide range of such sequences, of ar-
bitrary length and with arbitrarily many symbols. The proba-
bility of occurrence of symbols is either uniformly distributed
over symbol types or not; if it is not uniform, then we can rep-
resent the ranked probability values by a triangular-type distri-
bution—exponential serves well enough.

We extract some information from such simulated sequences
by computing the maximum likelihood estimate of gamma dis-
tribution parameters for each symbol .

Sample results from sequences of length 10 000 using four
symbols are shown in Table I for uniform and exponential abun-
dance distributions, symbols being chosen independently with
replacement. Fig. 5 shows the results, illustrating the distances
in the space of gamma models, using a geodesic mesh. The sur-
face height represents upper bounds on distances from

, the random case with mean . Depicted also
are data points from Table I for two sample simulations of se-
quences of length 10 000 with four symbols. The small points
near the center are from a uniform distribution of symbol abun-
dances; the four larger points are from an exponential distribu-
tion of abundances.

We see from Fig. 5 that both processes yield sequences of
symbols all exhibiting more smoothing than random, namely
all have . In the case of the nonuniform abundances, we
observe, as expected that the mean intervalbetween occur-
rences of a symbol decreases with increasing abundance, essen-
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Fig. 5. Distances in the space of gamma models, using a geodesic mesh. The
surface height represents upper bounds on distances from(�; �) = (4:7; 1),
the random case with mean� = 4:7. Depicted also are data points from
Table I for two sample simulations of sequences of length 10 000 with four
symbols. The small points near the center are from a uniform distribution of
symbol abundances; the four larger points are from an exponential distribution
of abundances.

tially one is a reciprocal of the other. The other parameter,,
increases also with abundance, in a systematic way.

The extraction of such features from long multisymbol se-
quences might be of value in monitoring and managing infor-
mation flow through large networks. In such cases, dynamic
management might benefit from knowledge of qualitative and
partially quantitative properties of datastream flow simply by
exploiting stable stochastic features.

V. CONCLUDING REMARKS

We have offered arguments to support the opinion that the
gamma and log-gamma distributions have a natural role in rep-
resenting departures from randomness, uniformity and Gaussian
behavior in stochastic processes. We show also how the infor-
mation geometry provides a surprisingly tractable Riemannian
manifold and product spaces thereof, on which may be repre-
sented the evolution of a stochastic process or the comparison of
different processes, by means of well-founded maximum likeli-
hood parameter estimation.
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