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Stability of the Envelope Evolution of a
Cold-Fluid Corkscrewing Elliptic Beam
in a Uniform-Focusing Magnetic Field

V. Roytershteyn, C. Chen, and R. Pakter

Abstract—The envelope oscillations of a cold-fluid corkscrewing
elliptic beam in a uniform-focusing magnetic field are studied. In
particular, by linearizing the generalized beam envelope equations,
the eigenmodes of small-amplitude envelope oscillations are calcu-
lated for a cold-fluid corkscrewing elliptic beam oscillating about
its equilibrium. All of the eigenmodes are shown to be stable.

Index Terms—Focusing, particle beam stability, space-charge-
dominated.

I. INTRODUCTION

H IGH-INTENSITY charged-particle beams are widely
used in basic scientific research and industries [1], [2].

One important aspect in the research and development of
high-intensity beams is the determination of the equilibrium
and stability properties of such systems [3], [4]. For the sim-
plest focusing configuration with an applied uniform-focusing
magnetic field, it is well known [4] that there exists a wide
variety of azimuthally symmetric beam equilibria in which
beams propagate axially along the applied magnetic field
and rotate azimuthally with certain internal flow velocity
profiles. Some of these equilibria are stable in the context
of collisionless nonneutral plasmas [4], [5]. Recently, it has
been shown [6], [7] that in this focusing configuration, there
also exists a new class of cold-fluid corkscrewing elliptic
beam equilibria. In the cold-fluid corkscrewing elliptic beam
equilibrium, the transverse-beam cross section is elliptic, and
it rotates as the beam propagates along the applied magnetic
field. The internal flow velocity profile is a combination of
both the elliptical-like rotating flow and quadrupole-like flow.
Applications of corkscrewing elliptic beams include beam
manipulations [8], [9] such as orienting beam ellipses at the
interaction point in a high-energy collider [10] or at a heavy
ion fusion target [11].
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In this paper, we analyze the envelope oscillations of a cold-
fluid corkscrewing elliptic beam about its equilibrium in a uni-
form-focusing magnetic field. In particular, by linearizing the
generalized beam envelope equations, we determine the eigen-
modes of small-amplitude envelope oscillations of a cold-fluid
corkscrewing elliptic beam about its equilibrium, and show that
all of the eigenmodes are stable.

The organization of this paper is as follows. In Section II,
we review cold-fluid corkscrewing elliptical beam equilibria for
an intense charged-particle beam propagating in a uniform-fo-
cusing magnetic field and present an alternative representation
for the generalized beam envelope equations. In Section III, we
show the existence of two branches of equilibrium solutions to
the beam envelope equations and study the equilibrium flow
characteristics in both branches. In Section IV, we carry out a
linear analysis of the perturbations about the equilibrium solu-
tions, determine the eigenmodes of small-amplitude envelope
oscillations of a cold-fluid corkscrewing elliptic beam about its
equilibrium, and compare with results of the numerical inte-
gration of the generalized envelope equations. Conclusions are
drawn in Section V.

II. COLD-FLUID CORKSCREWINGELLIPTICAL BEAM

EQUILIBRIA AND GENERALIZED BEAM ENVELOPEEQUATIONS

In this section, we review cold-fluid corkscrewing elliptical
beam equilibria discovered recently [6], [7], concentrating on
the case of a uniform-focusing magnetic field. An alternative
representation of the generalized beam envelope equations,
which proves more suitable for the stability analysis, is pre-
sented. Let us consider a thin, continuous, ultrahigh-brightness
space-charge-dominated beam propagating with constant axial
velocity through a linear uniform-focusing magnetic
field given by

(1)

where is the speed of light in vacuum and .
For an ultrahigh-brightness beam, thermal (emittance) effects

are negligibly small compared to space-charge effects, and the
beam can be adequately described by cold-fluid equations. In
the paraxial approximation, the steady-state cold-fluid equa-
tions for time-stationary flow are

(2)
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Fig. 1. Equilibrium density profile in the laboratory and rotating coordinate
systems.

(3)

(4)

where and are the rest mass and charge, respectively, of the
beam particles, is the axial coordinate,

, , and the self-electric and self-
magnetic fields and are determined from the scalar and
vector potentials by and . In [6]
and [7], it has been shown that there exists a class of solutions to
(2)–(4), which describes corkscrewing elliptic beam equilibria
for beam propagation through the applied focusing magnetic
field defined in (1), in the form

(5)

(6)

In (5) and (6), is the number of particles per unit axial length
if and if

(7)

(8)

are the transverse coordinates in a rotating reference frame illus-
trated in Fig. 1 with as the angle of rotation with respect to
the laboratory frame, and the functions , , , ,

, , and are to be determined self consistently.
Substituting (5) and (6) into (2)–(4) leads, after some alge-

braic manipulations (see [6], [7] for details), to the generalized
beam envelope equations

(9)

(10)

(11)

(12)

(13)

where is the focusing parameter
for the uniform-focusing magnetic field and

is the normalized self-field perveance. The velocity
functions and are related to and by

and .
It proves to be convenient to transform (9)–(13) to a more

symmetric form by introducing new variables

(14)

(15)

(16)

(17)

(18)

(19)

Adding (9) and (10) and subtracting (10) from (9) yields

(20)

(21)

respectively. Similarly, adding (11) and (12) and subtracting
(12) from (11) yields

(22)

(23)

Finally, (13) can be expressed in terms of the new variables as

(24)

Furthermore, it is convenient to express (20)–(23) in terms of
the following first-order differential equations:

(25)

(26)

(27)

(28)

(29)

(30)

Note that while the generalized envelope (9)–(12) for variables
, , , and are all coupled and must be solved

simultaneously, the system defined in (25)–(30) decouples into
two independent systems with (, , ) and ( , , ),
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respectively. In particular, (25)–(27) for (, , ) describe
symmetric modes with the envelopesand oscillating in
phase, whereas (28)–(30) for (, , ) describe antisym-
metric modes with the envelopes and oscillating with
opposite phase. The angleis a slaved variable and can be
integrated from (24).

III. SOLUTION TO THE BEAM ENVELOPE EQUATIONS

The steady-state solutions to (25)–(30) can be obtained an-
alytically. Two branches of physically acceptable special solu-
tions are

(31)
for branch A, and

(32)

for branch B.
It is interesting to point out that these solutions represent

two different types of equilibrium flow. Indeed, making use of
the definitions in (14)–(19), we can express the equilibrium ve-
locity, (6), as

(33)
In (33), the first term represents elliptical-like rotation, whereas
the second term describes quadrupole-like flow. Therefore,

and can be considered as measures of elliptical-like
rotation and quadrupole-like flow, respectively. For branch
A, , and the corresponding flow is pure elliptical-like
rotation. Branch B is a mixture of both elliptical-like rotation
and quadrupole-like flow because bothand are nonzero.

Making use of the definitions in (14)–(19), it is possible to
solve the envelope functionsand in terms of the parameters

and from (31) and (32). This gives

(34)

(35)

for branch A, and

(36)

(37)

for branch B. In both cases, and are constant. The con-
ditions for the confinement of corkscrewing elliptic beam equi-
libria are

and

(38)
In the special case with , the beam becomes round,
recovering the well-known rigid-rotor equilibrium [4], [5].

IV. STABILITY ANALYSIS

To determine the stability properties of the steady-state so-
lutions in (31) and (32) or (34)–(37), we linearize (25)–(30) to
obtain

(39)

where and is a 6 6 matrix with
the following nonzero elements:

(40)

For the steady-state solutions in (31) and (32) or (34)–(37) to
be stable, all of the eigenvalues of, , must satisfy the
condition , where .

A. Eigenvalues for Branch A

For branch A, the eigenvalue equation can
be expressed as

(41)

Therefore, the eigenvalues are

(42)

where , and
. It is readily shown that the function has

only one real root and, therefore, is always greater or equal to
zero, i.e., . Consequently, all of the eigenvalues in (42)
satisfy the condition , which means that branch A is
always stable.

A closer examination of the eigenvectors show that the eigen-
modes associated with the eigenvaluesand correspond to
the envelopes and oscillating exactly out of phase, which
we refer to as the out-of-phase eigenmode oscillations. On the
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Fig. 2. Plots of the in-phase eigenmode oscillations about an equilibrium
solution in branch A. (a) Normalized beam envelopesa

p
� and b

p
�

versus the normalized propagating distances
p
� . (b) Normalized variables

� =
p
� and� =

p
� versus the normalized propagating distances

p
� .

Here, the choice of system parameters and initial conditions corresponds
to: K = 5:0 � 10 ; � (0)=

p
� = �0:7; � (0)=

p
� = �1:6;

a(0)
p
� = 0:0431; b(0)

p
� = 0:0984; and a (0) = b (0) =

0:02. The equilibrium solution corresponds to:� (s)=
p
� =

�0:7; � (s)=
p
� = �1:6; a(s)

p
� = 0:0431; b(s)

p
� = 0:0984;

anda (s) = b (s) = 0.

other hand, the eigenmodes associated with the eigenvalues
and correspond to the envelopesand oscillating exactly in
phase, which we refer to as the in-phase eigenmode oscillations.
Furthermore, the vanishing eigenvaluesand correspond
to system changes along the equilibrium manifold obtained by
continuously varying the constants in (31) and (32) which just
lead to neighboring equilibrium solutions and are not relevant
to the stability analysis.

Fig. 2 shows the in-phase eigenmode oscillations about an
equilibrium solution in branch A, as obtained by integrating
(9)–(13) numerically. The choice of system parameters and ini-
tial conditions in Fig. 2 corresponds to: ;

; ;
; ; and . Here,

the equilibrium solution corresponds to: ;
; ;

and . In this case, the envelopesand
oscillate exactly in phase, but the variablesand oscil-

late out of phase. The normalized frequency of the eigenmode
oscillations is , which is in agreement with
the expression for the eigenvalue (or ) given in (42).

Fig. 3 shows the out-of-phase eigenmode oscillations about
the same equilibrium solution in branch A, as shown in Fig. 2,
as obtained by integrating (9)–(13) numerically. The choice of
system parameters and initial conditions in Fig. 3 corresponds

Fig. 3. Plots of the out-of-phase eigenmode oscillations about the same
equilibrium solution in branch A as shown in Fig. 2. (a) Normalized
beam envelopesa

p
� and b

p
� versus the normalized propagating

distances
p
� . (b) Normalized variables� =

p
� and� =

p
� versus the

normalized propagating distances
p
� . Here, the choice of system parameters

and initial conditions corresponds to:K = 5:0 � 10 ; � (0)=
p
� =

�0:7; � (0)=
p
� = �1:6; a(0)

p
� = 0:0431; b(0)

p
� = 0:0984;

anda (0) = b (0) = 0:02.

to: ; ;
; ; and

. For the case shown in Fig. 3, the envelopes
and oscillate exactly out of phase, and so do the variables
and . The normalized frequency of the eigenmode oscillations
in Fig. 4 is , which is in agreement with the
expression for the eigenvalue (or ) given in (42).

B. Eigenvalues for Branch B

For branch B, the eigenvalue equation is of the form

(43)

which yields the following eigenvalues

(44)

where
. The function has no real roots,

and, therefore, is always greater then zero, i.e., . Con-
sequently, all of the eigenvalues in (44) satisfy the condition
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Fig. 4. Plots of the in-phase eigenmode oscillations about an equilibrium
solution in branch B. (a) Normalized beam envelopesa

p
� and b

p
�

versus the normalized propagating distances
p
� . (b) Normalized variables

� =
p
� and� =

p
� versus the normalized propagating distances

p
� .

Here, the choice of system parameters and initial conditions corresponds
to: K = 5:0 � 10 ; � (0)=

p
� = �0:7; � (0)=

p
� = �1:6;

a(0)
p
� = 0:117; b(0)

p
� = 0:0361; and a (0) = b (0) =

0:02. The equilibrium solution corresponds to:� (s)=
p
� =

�0:7; � (s)=
p
� = �1:6; a(s)

p
� = 0:117; b(s)

p
� = 0:0361;

anda (s) = b (s) = 0.

, which means that branch B is also stable. Asso-
ciated with the eigenvalues and in (44) are the in-phase
eigenmode oscillations in which the envelopesand oscil-
late exactly in phase, whereas the eigenmodes associated with
the eigenvalues and correspond to the out-of-phase os-
cillations. The vanishing eigenvalues and correspond to
system changes along the equilibrium manifold defined in (31)
and (32), and are not relevant to the stability analysis.

Fig. 4 shows the in-phase eigenmode oscillations about an
equilibrium solution in branch B, as obtained by integrating
(9)–(13) numerically. The choice of system parameters and ini-
tial conditions in Fig. 4 corresponds to: ;

; ;
,; ; and . Here,

the equilibrium solution corresponds to: ;
; ;

; and . For this eigenmode, the en-
velopes and oscillate exactly in phase, and so do the vari-
ables and . The frequency of the oscillations in Fig. 4 is

, which is in agreement with the expression
for the eigenvalue (or ) given in (44).

Fig. 5 shows the out-of-phase eigenmode oscillations about
the same equilibrium solution shown in Fig. 4, as obtained by in-

Fig. 5. Plots of the out-of-phase eigenmode oscillations about the same
equilibrium solution in branch B as shown in Fig. 4. (a) Normalized
beam envelopesa

p
� and b

p
� versus the normalized propagating

distances
p
� . (b) Normalized variables� =

p
� and� =

p
� versus the

normalized propagating distances
p
� . Here, the choice of system parameters

and initial conditions corresponds to:K = 5:0 � 10 ; � (0)=
p
� =

�0:7; � (0)=
p
� = �1:6; a(0)

p
� = 0:117; b(0)

p
� = 0:0361;

anda (0) = �b (0) = 0:02.

tegrating (9)–(13) numerically. The choice of system parameters
and initial conditions in Fig. 5 corresponds to: ;

; ;
; ; and . The

frequency of the oscillations in Fig. 5 is ,
which in agreement with the expression for the eigenvalue
(or ) given in (44).

To illustrate the previous results, let us consider a concrete
example of a high-intensity relativistic electron beam with a
current and a normalized axial speed ,
focused by a uniform magnetic field kG. These
parameters correspond to the normalized self-field perveance

used in Figs. 2–5 and to a uniform-focusing
field parameter cm . For branch A equilibrium
solution discussed in Figs. 2 and 3, the transverse beam density
profile is an ellipse with radii mm and mm,
and completes a rotation every cm of propa-
gation. The periods for stable oscillation about the equilibrium
are 14.9 and 10.6 cm for the in-phase and out-of-phase oscilla-
tions, respectively. For branch B equilibrium solution presented
in Figs. 4 and 5, and mm, with the beam
completing a rotation every cm of propagation. In
this case, linear theory indicates that the oscillations about the
equilibrium occur at length scales comparable to the variation
of , with periods of 13.9 cm and 10.6 cm for the in-phase and
out-of-phase oscillations, respectively.
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V. CONCLUSION

We have analyzed the envelope oscillations of a cold-fluid
corkscrewing elliptic beam in an applied uniform-focusing
magnetic field. Two branches of equilibrium solutions to the
beam envelope equations were obtained, and the equilibrium
flow characteristics in both branches were studied. A linear
analysis of the perturbations about the equilibrium solutions
was performed to determine the eigenmodes of small-amplitude
envelope oscillations of a cold-fluid corkscrewing elliptic beam
about its equilibrium. Excellent agreement was found between
the eigenmode calculations and the numerical integration of the
generalized envelope equations. All of the eigenmodes were
shown to be stable.
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