IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 31, NO. 4, AUGUST 2003 765

Stability of the Envelope Evolution of a
Cold-Fluid Corkscrewing Elliptic Beam
In a Uniform-Focusing Magnetic Field

V. Roytershteyn, C. Chen, and R. Pakter

Abstract—The envelope oscillations of a cold-fluid corkscrewing  In this paper, we analyze the envelope oscillations of a cold-
elliptic beam in a uniform-focusing magnetic field are studied. In  fluid corkscrewing elliptic beam about its equilibrium in a uni-
particular, by linearizing the generalized beam envelope equations, ¢qym_focusing magnetic field. In particular, by linearizing the
the eigenmodes of small-amplitude envelope oscillations are calcu- - . . .
lated for a cold-fluid corkscrewing elliptic beam oscillating about generalized beam enyelope equations, We Qetermlne the e'ge”'
its equilibrium. All of the eigenmodes are shown to be stable. modes of small-amplitude envelope oscillations of a cold-fluid
corkscrewing elliptic beam about its equilibrium, and show that
all of the eigenmodes are stable.

The organization of this paper is as follows. In Section II,
we review cold-fluid corkscrewing elliptical beam equilibria for
. INTRODUCTION an intense charged-particle beam propagating in a uniform-fo-

IGH-INTENSITY charged-particle beams are wideI)PUSing magnetic field and present an alternative representation
H used in basic scientific research and industries [1], [2f]r_)r the generalized beam envelope equations. In Section lll, we
One important aspect in the research and developmentSHPW the existence of two branches of equilibrium solutions to
high-intensity beams is the determination of the equilibriuth® béam envelope equations and study the equilibrium flow
and stability properties of such systems [3], [4]. For the Sin?haracteristic;s in both branchgs. In Section IV, we carry out a
plest focusing configuration with an applied uniform-focusinanear analysis of the perturbations about the equilibrium solu-
magnetic field, it is well known [4] that there exists a widdions, determine the eigenmodes of small-amplitude envelope
variety of azimuthally symmetric beam equilibria in Whicrpscilll.atipns of a cold-fluid cor_kscrewing elliptic beam f_:lbogt its
beams propagate axially along the applied magnetic figkguilibrium, and compare with results of the numerical inte-
and rotate azimuthally with certain internal flow Vebcitygration of the generalized envelope equations. Conclusions are
profiles. Some of these equilibria are stable in the contestfawn in Section V.
of collisionless nonneutral plasmas [4], [5]. Recently, it has
been shown [6], [7] that in this focusing configuration, there  1l. COLD-FLUID CORKSCREWINGELLIPTICAL BEAM
also exists a new class of cold-fluid corkscrewing ellipticEQUILIBRIA AND GENERALIZED BEAM ENVELOPE EQUATIONS

beam equilibria. In the cold-fluid corkscrewing elliptic beam In this section, we review cold-fluid corkscrewing elliptical

_equmbrlum, the transverse-beam cross section is _elhptlc, aBQam equilibria discovered recently [6], [7], concentrating on
it rotates as the beam propagates along the applied magngiic c4qe of a uniform-focusing magnetic field. An alternative
field. The internal flow velocity profile is a combination Ofrepresentation of the generalized beam envelope equations,
both.the' elliptical-like rotatipg flow apd quadrupole-like flow,, hich proves more suitable for the stability analysis, is pre-
Applications of corkscrewing elliptic beams include beangiay | et ys consider a thin, continuous, ultrahigh-brightness

manipulations [8], [9] such as orienting beam ellipses at they, e charge-dominated beam propagating with constant axial

interaction point in a high-energy collider [10] or at & heavyg|ocity 3,cé. through a linear uniform-focusing magnetic
ion fusion target [11].

Index Terms—Focusing, particle beam stability, space-charge-
dominated.
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1d b (az—ay) d ra
EE{GZ [Oéy'i‘\/%zo]}—iiz — bQJ)E (g) =0 (12)

dd  ala,—b o,
b(s) a(s) Ty T (13

9(s) .
5 > X where \/r.o = qB.o/2vfymc? is the focusing parameter

for the uniform-focusing magnetic field and = 2¢>N,/
v2B2mc? is the normalized self-field perveance. The velocity
functions p.(s) and p,(s) are related toa(s) and b(s) by

po = (da/ds)/a andp, = (db/ds)/b.

Fig. 1. Equilibrium density profile in the laboratory and rotating coordinate It Proves to be convenient to transform (9)—(13) to a more

l

<1

systems. symmetric form by introducing new variables

Vi =0, ViAL=—dmqn, (3) r=ath (14)
b b n 1 To = aay, + bay (15)

np (ﬂbc—-l- VL'—> v, =1 [——QVﬂﬁs de
Os ox, Yo | Yy T3 = =1 (16)

\' ds
+—X B0:| (4) T4y =a—0b (17)

&

5 =aay — bay (18)

wherem andgq are the rest mass and charge, respectively, of the dzy
beam particless = z = f,ct is the axial coordinatex; = TG == (19)

zé, +yé,, w = (1 — B2)~'/2, and the self-electric and self- , _
magnetic fieldsE® and B* are determined from the scalar and\dding (9) and (10) and subtracting (10) from (9) yields

vector potentials bfE* = -V, ¢° andB?® = V x A3é.. In [6] 42z, 4K 23
and [7], it has been shown that there exists a class of solutions to P 2w2\/kz0 — P 0 (20)
(2)—(4), which describes corkscrewing elliptic beam equilibria 22, 22
for beam propagation through the applied focusing magnetic R 2x5+/K20 — x—: =0 (22)

field defined in (1), in the form
respectively. Similarly, adding (11) and (12) and subtracting

np(x1,8) = L@ 1— %—2 — i (5) (12) from (11) yields
’ wa(s)b(s) a?(s)  b3(s)
VJ_<XJ_7 5) = [Nz(‘S)% - O‘m(s)m ﬂbCé; % +2 /f‘ézo? + ﬂ% =0 (22)
+ [y ()Y + ay(s)7] Poce;. (6) ° o
Y de)5 d$’4 s d$’4
. . L — + 2k 05—+ ——— =0. (23)
In (5) and (6),lV, is the number of particles per unit axial length ds ds x4 ds

O(z) = 1if 2 > 0andO(z) = 0if = <0 Finally, (13) can be expressed in terms of the new variables as

T =z cosf(s)+ y sinf(s) @) df  z1x5 + 3274

~ . — =0. 24
y= —xsinf(s) +y cosf(s) (8 ds 2z124 (24)

are the transverse coordinates in a rotating reference frame illusEurthermore, itis convenient to express (20)—(23) in terms of
trated in Fig. 1 withf(s) as the angle of rotation with respect tghe following first-order differential equations:

the laboratory frame, and the functions), b(s), 1z (s), py (), da,
a.(s), ay(s), andd(s) are to be determined self consistently. Is =8 (25)
Substituting (5) and (6) into (2)—(4) leads, after some alge- dao ToT3
braic manipulations (see [6], [7] for details), to the generalized ds 2r3v/kz0 — 71 (26)
beam envelope equations AK 2
%=2x2\/ﬁ_zo+—+ﬁ (27)
d?a b? (af —20,ay) +a’a; ) ds 1 I
ds? a?—b2 Ry Vo | X % =6 (28)
S
2K dzs T5T
_ =0 9 5 _*5 6
a Y ) T = 216/ K~ s (29)

d?b <a2 (ai—Zaray)-i-ani dzg
a

2
s
@-1- T2 —2az\/nz0) X Fr 2x5/Kz0 + vy (30)

b 2K —0 (10) Note that while the generalized envelope (9)—(12) for variables
a a(s), b(s), a(s), anday, (s) are all coupled and must be solved
1d ,, a*(az—ay) d (b B simultaneously, the system defined in (25)—(30) decouples into
bds {V*[on+ /R0l = Z—b2 ds =0 D 1o independent systems with( z», 3) and @4, x5, z¢),
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respectively. In particular, (25)-(27) foe{, =2, 23) describe for branch B. In both cases,, andc, are constant. The con-
symmetric modes with the envelopesand b oscillating in ditions for the confinement of corkscrewing elliptic beam equi-
phase, whereas (28)—(30) far4( x5, x¢) describe antisym- libria are
metric modes with the envelopes and b oscillating with

opposite phase. The angheis a slaved variable and can be 92 o 9 M - _9 and <1~|— 2o ><1+ %y ><1.
integrated from (24). V20 V#=0 VF0 VF=0 (38)
In the special case with, = «,, the beam becomes round,
lll. SOLUTION TO THE BEAM ENVELOPE EQUATIONS recovering the well-known rigid-rotor equilibrium [4], [5].
The steady-state solutions to (25)—(30) can be obtained an- IV. STABILITY ANALYSIS
alytically. Two branches of physically acceptable special solu- ) . i
tions are To determine the stability properties of the steady-state so-
lutions in (31) and (32) or (34)—(37), we linearize (25)—(30) to
obtain
4K+z§ const const 0 dé
r1=————==const. xy=const. Tr3=rz3=x5=
1 RN 4 3 5 6 40X _ A bx (39)
(31) ds
for branch A, and wheredx = (§x1, 6z, ...,0xz6)T andA is a 6x 6 matrix with
the following nonzero elements:
4K + 22 x5 T2
T 2rs Vo cons Ty NG cons A3 =1, Ass 2\/K. ™
z3 =12 =0 32 4K 22 2x
e (32) A31=——2—_—37A32=2\/%+‘—2
Ty Ty 1
for branch B. B B x5
It is interesting to point out that these solutions represent Ass =1, Ase = =2/k=0 — T
two different types of equilibrium flow. Indeed, making use of x2
the definitions in (14)—(19), we can express the equilibrium ve- Aps = — 2
locity, (6), as 2z
Ags :2\/%4‘ 1_ (40)
4
Vi(xy,s) _ @ <§e~ _ gev> + % <gev §e~> _ For the steady-state solutions in (31) and (32) or (34)—(37) to
Bre 2\a? b 2\b* aV be stable, all of the eigenvalues 4f, {)\;}, must satisfy the

) . . . conditionRe(\;) = 0, wherei = 1,2,...,6.
In (33), the first term represents elliptical-like rotation, whereas

the second term describes quadrupole-like flow. Thereforg, Eigenvalues for Branch A
x2 and z; can be considered as measures of elliptical-like
rotation and quadrupole-like flow, respectively. For brancg
A, z5 = 0, and the corresponding flow is pure elliptical-like
rotation. Branch B is a mixture of both elliptical-like rotation/\z(/\z + 4k20) {(ag: + a2\ 44 (a2 n a2) K-
and quadrupole-like flow because bathandzx; are nonzero. * i

Making use of the definitions in (14)—(19), it is possible to +8az 0y [Apay + K20 + (A + 0y) V0] } = 0. (41)
solve the envelope functiomsandb in terms of the parametersTherefore, the eigenvalues are
a, anda, from (31) and (32). This gives

For branch A, the eigenvalue equatidet(A — AI) = 0 can
e expressed as

A2 =0
Ty { K }% 34 As.a = £2/k0t .
a=,—=
o Lo = (o /o)y + Vi) Xop = & 2/hag (42)

W=

b=,/"L { ut } (35)  whereF, = (ay + 6y + boty)? + 4242, b = o /\/Fao and
@ Lrz0 = (@ + v/Ra0)(ay + v/Ka0) Gy = ay/\/Fao. It i readinJshown that the funct\é)ﬁ’_A has
for branch A, and only one real root and, therefore, is always greater or equal to
zero, i.e.,F4 > 0. Consequently, all of the eigenvalues in (42)
satisfy the conditiorRe(A) = 0, which means that branch A is

_|ae+2y/kz0 K 36 always stable.
“= ay+24/F20 | K20 — (e ++/F20) (ay +/F20) (36) A closer examination of the eigenvectors show that the eigen-

modes associated with the eigenvaldgsnd )\, correspond to

- oy +2\/Kz0 [ K } ’ 37) the envelopes andb oscillating exactly out of phase, which
z+2\/F0 | K20 — (0w ++/Fz0) (o +/F-0) we refer to as the out-of-phase eigenmode oscillations. On the
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Fig. 2. Plots of the in-phase eigenmode oscillations about an equilibriysly 3 plots of the out-of-phase eigenmode oscillations about the same
solution in branch A. (a) Normalized beam envelopggr.o and by/k.0  equilibrium solution in branch A as shown in Fig. 2. (a) Normalized
versus the normalized propagating dlstangél <.0- (D) Normallz_ed variables paam envelopest,/f., and by/k.o versus the normalized propagating
a,/\/RK=o anda, / /K=o versus the normalized propagating distangé=o.  distances,/x~,. (b) Normalized variables., / /%, anda, //r-o versus the
Here, the choice of 3system parameters and initial conditions correspopgsmalized propagating distaneg/w-,. Here, the choice of system parameters

. = K —3- " p— bkl " N p— - P e N - - -
to A = 5.0 x 1073; o (0)/y/Kzo = —=0.7; ay(0)//Kzo = —1.6;  and initial conditions corresponds t& = 5.0 x 1073; a,(0)//k.0 =

a(0)/k.o = 0.0431; b(0)\/rk.o = 0.0984; anda’(0) = b'(0) 0.7 (0 S = —1.6" a(0)/Foo = 0.0431: b(0)/roc = 0.0984:
0.02. The equilibrium solution corresponds toe.(s)/\/Fo anda,”((zfi(:)/l)’(gio: 0.02. Ha(0)vr=o 1(0) V=0 '

2075 ay(5)/ /R = —1.6; a(s)/Aog = 0.0431; b(s)\/Rog = 0.0984;
anda’(s) = b'(s) = 0.

to: K = 5.0 x 1073; a,(0)/\/k0 = —0.7; o, (0)/\/Fzo =

other hand, the eigenmodes associated with the eigenvajues~1-0: a(0)//Fz0 = 0.0431;6(0)//kz0 = 0.0984 anda’(0) =
and\s correspond to the envelopeandb oscillating exactlyin —¢'(0) = 0.02. For the case shown in Fig. 3, the envelopes
phase, which we refer to as the in-phase eigenmode oscillatiodfd? oscillate exactly out of phase, and so do the variables
Furthermore, the vanishing eigenvaluesand \, correspond andqy. The normalized frequenqy of.thg eigenmode osglla‘uons
to system changes along the equilibrium manifold obtained By Fig- 4 is|As|/\/kz0 = 2.0, which is in agreement with the
continuously varying the constants in (31) and (32) which ju§iPression for the eigenvalug (or A4) given in (42).
lead to neighboring equilibrium solutions and are not relevagt
to the stability analysis. ’ . o

Fig. 2 shows the in-phase eigenmode oscillations about arf-or branch B, the eigenvalue equation is of the form
Z;q)ui(lilbsr;um solgtic1|r1 i_rllhbraﬂch A, fas obtained by integra;[jir.]g. A2(A2 + 4k.0) x

—(13) numerically. The choice of system parameters and ini- ATV 45 (0 4 o
tial conditions in Fig. 2 corresponds té&¢ = 5.0 x 1073; {0 oy o+ 4v/Ra0)" N+ 5 (0 4 ) rizot
az(0)//kz0 = —0.7; ay(0)/\/kz0 = —1.6; a(0)/\/kz0 = 16(y + ay + /Fo0)y\/ K3+

0.0431; b(0)/ /=0 = 0.0984; anda’(0) = /(0) = 0.02. Here,
e . 20,0y [azoy + 9K, (g )V Ez =0 (43
the equilibrium solution corresponds t@; (s)/\/f.0 = —0.7; 0y [oatry + 90 + (0 + ay) Vol } (43)

ay(s)/\/Fzo = —1.6; a(s)/\/Fz0 = 0.0431; b(s)/\/F=0 = which yields the following eigenvalues

Eigenvalues for Branch B

0.0984 andd’(s) = v'(s) = 0. In this case, the envelopesand A2 =0
b oscillate exactly in phase, bl_Jt the variablesanda, qscn- Nga = £ 2mgi
late out of phase. The normalized frequency of the eigenmode
oscillations is|A5|/\/k-0 = 1.42, which is in agreement with Asg = + Qmﬁi (44)
the expression for the eigenvalig (or \g) given in (42). ’ |G + Gy + 4
Fig. 3 shows the out-of-phase eigenmode oscillations abautere Fz = 24247 + 64242 + 5G4 + 667 d,+180,dy +

the same equilibrium solution in branch A, as shown in Fig. 264, + 5&5 + 164, + 16. The Fp function has no real roots,
as obtained by integrating (9)—(13) numerically. The choice ahd, therefore, is always greater then zero, Eg.,> 0. Con-
system parameters and initial conditions in Fig. 3 corresponsksquently, all of the eigenvalues in (44) satisfy the condition
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(’(zo) s Fig. 5. Plots of the out-of-phase eigenmode oscillations about the same

equilibrium solution in branch B as shown in Fig. 4. (a) Normalized
Fig. 4. Plots of the in-phase eigenmode oscillations about an equilibripgam envelopes:/k.o and b,/k.o versus the normalized propagating
solution in branch B. (a) Normalized beam envelopggr.o and b\/r., distances\/xo. (b) Normalized variables.. / /i~ anda / /%o versus the
versus the normalized propagating distargée.o. (b) Normalized variables nhormalized propagating distaneg/ 0. Here, the choice of system parameters
o, [/F=o anda, /\/ro versus the normalized propagating distangée o . and initial conditions corresponds t& = 5.0 x 1072%; a.(0)/\/kz0 =
Here, the choice of system parameters and initial conditions corresponds:7; a,(0)/v/k-0 = —1.6;a(0)y/k-0 = 0.117; b(0)\/K-o = 0.0361;
to: K = 5.0 x 1073, a,(0)//k=0 = —0.7; a,(0)/\/k=o = —1.6; anda’(0) = —b'(0) = 0.02.
a(0)\/Foo = 0.117; b(0)\/koo = 0.0361; anda’(0) = ¥'(0) =
0.02. The equilibrium solution corresponds tocw.(s)//k-0 =
—0.7; ay(s)/ /R0 = —1.6;a(s)\/koo = 0.117; 0(s)\/kz0 = 0.0361; tegrating (9)—(13) numerically. The choice of system parameters
anda’(s) = b'(s) = 0. and initial conditions in Fig. 5 corresponds #6:= 5.0 x 10~2;
0:(0)//Fmo = —0.7; 0y (0)/ Rz = —1.6; a(0)//Fz =

Re(A\) = 0, which means that branch B is also stable. Ass®-117; b(0)\/r-0 = 0.0361; anda’(0) = —b'(0) = 0.02. The
ciated with the eigenvaluel; and )\, in (44) are the in-phase frequency of the oscillations in Fig. 5 i9s|/\/k.0 = 2.0,
eigenmode oscillations in which the envelopeandb oscil- which in agreement with the expression for the eigenvalyie
late exactly in phase, whereas the eigenmodes associated @th\s) given in (44).
the eigenvalues; and )¢ correspond to the out-of-phase os- To illustrate the previous results, let us consider a concrete
cillations. The vanishing eigenvaluas and )\, correspond to example of a high-intensity relativistic electron beam with a
system changes along the equilibrium manifold defined in (3tyrrentl, = 100 A and a normalized axial spe¢lj = 0.8,
and (32), and are not relevant to the stability analysis. focused by a uniform magnetic fiel®,, = 1.35 kG. These

Fig. 4 shows the in-phase eigenmode oscillations about parameters correspond to the normalized self-field perveance
equilibrium solution in branch B, as obtained by integrating = 5.0 x 10~* used in Figs. 2-5 and to a uniform-focusing
(9)—(13) numerically. The choice of system parameters and ifield parameter/r., = 0.297 cm~!. For branch A equilibrium
tial conditions in Fig. 4 corresponds t& = 5.0 x 10~3; solution discussed in Figs. 2 and 3, the transverse beam density
a,(0)//Fz0 = —0.7, ayy(0)/\/kz0 = —1.6; a(0)/\/k.o = profile is an ellipse with radiz = 1.45 mm andb = 3.31 mm,
0.117,; 6(0)/\/rz0 = 0.0361; anda’(0) = b'(0) = 0.02. Here, and completes & = 2 rotation everys = 43.5 cm of propa-
the equilibrium solution corresponds t; (s)/\/k-0 = —0.7, gation. The periods for stable oscillation about the equilibrium
ay(s)//Fz0 = —1.6; a(s)/\/k0 = 0.117; b(s)/\/k-0 = are 14.9 and 10.6 cm for the in-phase and out-of-phase oscilla-
0.0361; anda/(s) = b'(s) = 0. For this eigenmode, the en-tions, respectively. For branch B equilibrium solution presented
velopesa andb oscillate exactly in phase, and so do the varin Figs. 4 and 5q¢ = 3.94 andb = 1.22 mm, with the beam
ablesa, anday,. The frequency of the oscillations in Fig. 4 iscompleting a rotation every = 12.4 cm of propagation. In
|A3]/\/F-0 = 1.52, which is in agreement with the expressionhis case, linear theory indicates that the oscillations about the
for the eigenvalue\; (or A4) given in (44). equilibrium occur at length scales comparable to the variation

Fig. 5 shows the out-of-phase eigenmode oscillations abaitd, with periods of 13.9 cm and 10.6 cm for the in-phase and
the same equilibrium solution shown in Fig. 4, as obtained by inut-of-phase oscillations, respectively.
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the eigenmode calculations and the numerical integration of the ~ Phys. Resvol. A464, pp. 271-277, 2001.

generalized envelope equations. All of the eigenmodes were

shown to be stable.

(1]
(2]
(3]

(4]
(5]
(6]

V. Roytershteyn is currently working toward the Ph.D. degree at the Plasma
REFERENCES Science and Fusion Center, Massachusetts Institute of Technology, Cambridge.
J. Rosenzweig and L. Serafini, EdPhysics of High-Brightness His research interest is plasma physics.

Beam New York: World Scientific, 2001.

S. Y. Lee, Ed.,Space-Charge Dominated Beams and Application of

High-Brightness Beams New York: AIP, 1996.

I. M. Kapchinskij and V. V. Vladimirskij, “Limitations of proton beam
current in a strong focusing linear accelerator associated with the be
space charge,” iRroc. Int. Conf. High-Energy Accelerators and Instru-
mentation Geneva, Switzerland, 1959, pp. 274-288.

R. C. DavidsonPhysics of Nonneutral PlasmasReading, MA: Ad-
dison-Wesley, 1990.

R. C. Davidson and N. A. Krall, “Vlasov equilibria and stability of an
electron gas,Phys. Fluidsvol. 13, pp. 1543-1555, 1970.

R. Pakter and C. Chen, “Cold-fluid equilibrium for a corkscrewing

elliptic beam in a variably focusing channelPhys. Rev. E, Stat. R. Pakter is an Associate Professor with the Physics Institute of Universidade
Phys. Plasmas Fluids Relat. Interdiscip. Togl. 62, pp. 2789-2796, Federal do Rio Grande do Sul, Porto Alegre, Brazil. His research interests in-
2000. clude beam physics, plasma physics, and nonlinear dynamics and chaos.

nghenis a Principal Research Scientist and Leader of the Intense Beam The-
oretical Research Group, Plasma Science and Fusion Center, Massachusetts In-
stitute of Technology, Cambridge. His current research interests include plasma
physics, beam physics, coherent radiation sources, and nonlinear dynamics and
chaos.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


