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Abstract—This paper presents SIMOO-RT, an object-oriented
framework designed to support the whole development cycle of
real-time industrial automation systems. It is based on the concept
of distributed active objects, which are autonomous execution en-
tities that have their own thread of control, and that interact with
each other by means of remote methods invocation. SIMOO-RT
covers most of the development phases, from requirements engi-
neering to implementation. It starts with the construction of an
object model of the technical plant to be automated, on which user
and problem-domain requirements are captured. Here, emphasis
on modeling timing constraints is given. The technical details in-
volved in the process of mapping problem-domain objects to de-
sign specific entities as well as the automatic code generation for
the runtime application are discussed in the paper. Furthermore,
details are given on how to monitor the runtime applications and
to evaluate its timing restrictions.

Index Terms—Object-oriented methods, real-time systems, soft-
ware tools, system analysis and design.

I. INTRODUCTION

T HERE IS AN increasing demand for industrial automa-
tion systems, due to market globalization and consequent

world-wide competition. Industrial automation has been consid-
ered one of the most effective alternatives for producing high-
quality products and to optimize the overall production process.
Specially motivated by advances in electronics, microproces-
sors, and software, major changes have taken place in the field
of industrial automation over the past years. Intelligent, flex-
ible, networked, and adaptive manufacturing and automation
systems rely heavily on a distributed computer-based infrastruc-
ture, where smart sensors and actuators, intelligent machines,
automated guided vehicles (AGVs), robots, and other automa-
tion devices can interact using industrial protocols and take de-
cisions in real time, in order to optimize the whole production
process.

Most modern automation devices used in industrial fields
can support some local processing. Their degree of autonomous
behavior has increased quite considerably over the last decades,
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thanks to advances in microprocessor and embedded elec-
tronics. This has led to a distribution of intelligence in the
automation structure, from centralized controllers to fully
distributed smart sensors and actuators.

The development of such computer-based infrastructure to
modern industrial automation systems has become highly com-
plex, since it tends to be large, distributed, contains highly dy-
namic and adaptive behavior, has a long lifetime, and involves
complex timing constraints. Conventional techniques for devel-
oping those computer-based systems are not able to deal with
such ever increasing complexity, mainly due to their poor ab-
straction mechanisms. Therefore, new techniques are required.
Among these, the object-oriented (OO) paradigm, and in par-
ticular, distributed real-time objects, has gained a lot of interest
[1], [39].

This paper presents an OO approach to the development of
real-time computer-based systems (i.e., hardware and software)
that are embedded in devices used in flexible and adaptive
industrial automation systems. The approach is based on the
concept of active objects, which are concurrent processing
units. Each active object has its own thread of control. Active
objects are used to map the structure and the desired behavior
of technical plant components. The approach leads to a generic
specification, which preserves the semantics of the physical
plant under automation. Emphasis is on aspects such as main-
tainability, extensibility, and reusability, besides those related
to the description of timing constraints. The approach covers
the whole life cycle of industrial automation systems, from
requirements engineering, through hardware and software
design, to implementation and validation. The paper describes
SIMOO-RT, an OO framework and related tool support to the
development of real-time distributed automation systems.

The remainder of the paper is divided as follows. Section II
discusses the use of object orientation in the development
of real-time industrial automation systems, and formally
introduces the proposed methodology. In Section III, the
SIMOO-RT framework is presented, which groups the facilities
to assist designers following the proposed development steps
into a single computational tool. In Section IV, a practical
example is shown, illustrating the main benefits achieved when
using the proposed approach. Later, some related works are
exposed and compared with the authors’ methodology. Finally,
Section VI draws the main conclusions and the lessons learned
from the exposed work.
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II. RATIONALE FOR USING OO IN INDUSTRIAL

AUTOMATION APPLICATIONS

A. Review Stage

When dealing with complex industrial automation appli-
cations, the definition of a good architecture is of utmost
importance. Aspects such as modularity, cohesion, and cou-
pling, which historically were relegated to a second plan due to
an overemphasis on systems performance, have a major impact
in installation, maintenance, and engineering costs. OO sys-
tems have important and desirable architectural properties [9],
[35]. They are composed of a number of communicating and
well-defined objects. Objects that have common characteristics
and behaviors are organized into classes. Class hierarchies can
be built using inheritance concepts. Also, objects fit nicely with
concurrence, since their logical autonomy makes them a natural
unity for concurrent execution. That implies a fruitful way
of thinking, enabling concurrent processes present in the real
world to be expressed in a natural and easily understandable
way.

In order to ensure the quality and correctness of a real-time
system, it is mandatory to specify timing constraints precisely,
as well as to use a well-structured approach during the entire
life cycle—requirements engineering, design, implementation,
testing, and maintenance—of those systems [21]. Adequate ab-
straction mechanisms are required to be able to cope with the
intrinsic complexity of modern industrial automation applica-
tions. The OO paradigm has been increasingly adopted as a
suitable approach to specify and implement real-time systems
[17], [22], [23], [31], [33], [34], [36], [42] and a new area, dis-
tributed real-time objects, has emerged [20] in order to over-
come the problem that conventional OO design methodologies
do not provide the required support for dealing with complex
real-time applications [38]. The authors have been involved over
the last years in the development of the SIMOO-RT environ-
ment, which is an OO framework for supporting the develop-
ment of real-time industrial automation systems. This project fo-
cuses specially on problems related to the development of large
and complex real-time industrial automation systems (for ex-
ample, manufacturing systems and robot control systems). The
task of developing modern real-time systems cost effectively,
on time, and fulfilling prescribed quality criteria, can only be
satisfactorily met by applying adequate system engineering ap-
proaches. Therefore, it is a sequence of development phases
within the SIMOO-RT environment which should be handled
in an iterative way (spiral life cycle).

The approach proposed in SIMOO-RT follows the main
idea that, when developing an industrial automation system,
before starting the selection of hardware components, indus-
trial communication topology and protocols, etc., one has to
fully understand the problem domain in which the developed
computer-based automation system will be embedded [33].
Hence, a profound analysis of the automation problem to be
solved is needed. In order to be cost effective and to minimize
waste of effort, the analysis model is used as a starting point
to the design.

Our approach can be briefly described as follows. During
the problem-domain analysis, existing OO methodologies

Fig. 1. Mapping of physical domain elements to objects.

(such as [14] and [17]) are applied, allowing classes and object
instances, as well as the relationships among them, to be
identified. Hence, objects may be understood as active entities
that are able to intercommunicate through messages. The class
and objects behavior can be depicted using Unified-Mod-
eling-Language (UML)-based graphical notations [10] such as
Statecharts or Activity Diagrams. System functionalities are
depicted through Use Case and Sequence Diagrams.

In our approach, the starting point of the analysis model con-
sists in describing the whole system as a single element, ac-
cording toDefinition 1.

Definition 1: The system description starts with a single ob-
ject class.

This class is considered to be the most external view of the an-
alyzed system, which encapsulates more detailed components.

Definition 2: The most external object class of the model is
decomposed into more detailed objects.

These more detailed objects are initially extracted from the
industrial automation plant under analysis, and can be classified
asactiveor passiveobjects, according toDefinitions 3and4.

Definition 3: Active object represents a concurrent element
with autonomous reactive behavior.

Definition 4: Passive object represents an element whose be-
havior is dependent on external stimulus.

Active objects are generally used to describe thestructure,
behavior, andtiming constraintsof the technical plant physical
components (e.g., sensors and actuators). On the other hand,
passive objects reflect logical entities or data structures used
within the system (e.g., logical representation of manufactured
parts).

The diagrams used for building such specification are the
class and instance diagrams, according to the following defini-
tions.

Definition 5: The Class Diagram contains a general repre-
sentation for the system components and their relationships.

Definition 6: The Instance Diagram depicts the number of
instances from the general model present in a specific situation
or configuration.

In the Class Diagram, the technical plant components are
mapped to classes, while physical and logical connections
among them are modeled as relationships (see Fig. 1). In order
to reduce the number of objects/classes and relationships in
each diagram, abstraction hierarchies, such as inheritance
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and aggregation, are applied. Moreover, instead of building
an analysis/simulation model from scratch, our methodology
proposes that designers make use of predefined components,
which should provide the necessary functionality to transform
the identified conceptual objects into runtime entities.

SIMOO-RT proposes an innovative way of describing the au-
tomation systems functional and timing requirements. This is
achieved by describing how technical plant components should
interact in order to achieve the desired behavior of the industrial
automation being implemented. UML diagrams decorated with
timing information are used for such purpose, as stated inDefi-
nition 7.

Definition 7: Use cases, sequence diagrams, and state ma-
chines are used for depicting the desired behavior and function-
ality.

According to the adopted development philosophy, the spec-
ified behavior can be validated through simulation, allowing
users to have a better understanding of the specified semantics.
One can understand a simulation model as a representation of
an object, system, or an idea, showing the same behavior in the
aspects related to the study of that model. In other words, a sim-
ulation model is nothing more than an abstraction of related en-
tities that emphasizes important aspects of the problem from a
given perspective. The simulation is obtained by executing the
objects instances defined in the specification, according to the
behavior specified in the classes’ dynamic models. Once this
step is finished, the analysis phase is completed.

Considering that the current model stage reflects the desired
structure and dynamic behavior from its elements, a clear link
is established between the computational elements (present in
the model) and the real physical ones (present in the plant under
automation). This link is achieved with the insertion of an extra
object layer, called drivers layer,1 which is used as a bridge be-
tween the logical and physical objects.Definition 8 formulates
this idea.

Definition 8: Drivers bridging the logical objects with the
physical entities of the problem domain should be added into
the model after the simulation step.

In the next step, the target architecture for the system im-
plementation should be defined. Normally, the target architec-
ture envisioned is a distributed hardware architecture, consisting
of low-cost processing units containing embedded microcon-
trollers. These units are interconnected through industrial buses,
such as Profibus, CAN-Bus, and Fieldbus, or through general-
purpose protocols, like RS 232, and TCP/IP. This concept is for-
mulated according toDefinition 9.

Definition 9: Patterns should be used for allocating active
objects to the different processing units, as well as for mapping
the communication between these active objects.

For instance, communication patterns are based on standard
technologies for distributed real-time OO computing, such as re-
mote method invocation (RMI), RT-CORBA IIOP, and OLE for
Process Control (OPC). Regarding the processing units, within
the context of the SIMOO-RT project, both commercially avail-
able real-time operating systems compliant to the POSIX stan-
dard, such as QNX, as well as operating systems developed in

1This is also referred to in the literature as the interface or wrapper layer.

academia, such as Linux and its real-time extensions (RTLinux),
are considered as possible runtime environments.

The final step, but not necessarily the last, since we are
proposing an iterative process with a spiral life cycle, is to pro-
vide means for validating the application timing requirements.
This should provide designers the necessary feedback to find
not only performance bottlenecks of their models, but also to
get qualitative feedback on how well timing requirements are
being fulfilled. This requirement is formulated inDefinition 10.

Definition 10: Temporal validation is the process of
checking the application’s runtime behavior against the speci-
fied timing requirements.

Section III covers in detail the SIMOO-RT development en-
vironment. The main purpose of this environment is to group,
as part of an integrated process, all development steps suggested
by the present methodology.

III. SIMOO-RT INTEGRATED ENVIRONMENT

A. Overview

SIMOO-RT [2] is a framework developed at the Federal Uni-
versity of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,
aiming to cover all development steps of OO real-time systems,
specially those used in industrial automation applications. It
provides diagram editors and configuration folders to help de-
signers follow the sequence of steps suggested in Section II.

Following this idea, the so-called model editing tool (MET)
provides support for the construction of the basic diagrams in
the analysis process (Definitions 1–6): the class and instance di-
agrams. The former depicts relevant problem-domain concepts
(such as the entities presented in Fig. 1) and their relationships,
while the latter represents the real devices of a specific applica-
tion. The instance diagram facilitates the system expansion, as
it can keep an unlimited number of instances from the elements
of the class diagram.

One particular property of SIMOO-RT is to allow the associ-
ation of timing constraints with class methods. It considers two
basic timing requirements:periodicityanddeadlines. The first
denotes a periodic activation pattern of the method, while the
second imposes a limitation on its execution time. Additionally,
SIMOO-RT allows the definition of actions to be taken in case
the specified deadline is violated. While this can be considered
“exotic” by theoreticians in real-time systems, it has proven to
be useful when dealing with real industrial automation appli-
cations, which are inherently safety critical. Such actions are
usually used for alarming as well as bringing the technical plant
to a safe state. This feature is very useful for dealing with tran-
sient-overload situations, which may happen sporadically in the
long term of the system’s life cycle.

Overtaking the scope of the (almost) independent elements
depicted in the class diagram, it is possible to specify the
system’s functionalities in a more generic way, as mentioned
in Definition 7. Therefore, SIMOO-RT allows users to state
the set of a system functionality by means of UML use cases
[10]. This diagram offers designers the possibility of speci-
fying the model context, that is, the messages exchanged by
the proposed application functionalities (use cases) with the
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external environment (actors). Furthermore, each use case can
be detailed into UML sequence diagrams, allowing a more
detailed description that consists of interobject interactions. In
these diagrams, objects taking part in an execution scenario
are disposed vertically, and exchanged messages are placed
horizontally in a time-ordered manner. SIMOO-RT also allows
designers to add timing restrictions to the exchanged messages,
such as maximum waiting time for an invocation, maximum
processing time for an incoming message, and the activation
pattern of the message that triggers the scenario. A notation
similar to the one proposed by Douglass in [14] is used to
depict the message patterns.

For modeling the systems elements’ dynamic behavior, the
environment encourages the use of state-transition diagrams,
whose formalism is based in Harel’s statecharts [19]. Three
distinct basic types of states can be specified: initial, end, and
normal state (operational). They are used, respectively, for
instance creation and initialization, instance destruction, and
for controlling user-defined modes of operation. Incoming mes-
sages are associated to actions (described as code templates)
that objects have to undertake in reaction. These actions can be
executed either during the state transition or while the object
remains in a given state (a combination of Mealy and Moore
formalism). Here, similar to class methods, timing constraints
can also be imposed on the reactions that are part of the
diagram semantic. More precisely, these actions represent state
transitions (entering or exiting a state). For that, also, periodic
activation patterns and deadlines (with exception handlers) can
be specified.

In order to allow the organization of predefined objects into
a library of reusable elements, some additional tool support is
available. The objects library contains information about the
class description, interfaces, context dependencies, source code,
and basic type. SIMOO-RT users can import or export objects
to and from the objects library and the SIMOO-RT MET. The
import–export functions also take into account inheritance de-
pendencies of a given class, so that all necessary information is
stored.

As a way to test the logical correctness of the model specifi-
cations, SIMOO-RT includes a simulation engine [12]. Through
this important feature, designers can check the behavior of the
control algorithms, the correctness of the functional character-
istics, and the overall system behavior. The simulation tool in-
cludes an animation/visualization library that enables designers
to add visualization elements to the model, producing graphical
animations from simulations. This feature has proven to be very
effective when interacting with the final users of the application,
since it anticipates the real vision of the product under develop-
ment.

SIMOO-RT also supports the description of the target archi-
tecture where the application should run. For this purpose, a
similar version of the UML deployment diagram is adopted.
It allows the definition of processing nodes, industrial network
topologies, and specific communication protocols, as well as
the mapping of the formerly defined objects to the processing
nodes. It is assumed that each deployment diagram relates to a
single instance diagram from the SIMOO-RT model. However,

Fig. 2. Deployment information for the code generator.

a given instance diagram may be associated to multiple deploy-
ment diagrams, each one characterizing a possible implementa-
tion solution.

The information described using the deployment diagram
(see Fig. 2) is used as input for an automatic code generator.
A generic high-level code structure is used to represent the
generated application code. The information provided by the
deployment diagram will serve to configure the hidden part
of the code, i.e., the library calls that encapsulate the runtime
infrastructure configuration. In Section III-B, the properties
from the generated code and its execution engine are described
in more detail.

B. Code Generation and Runtime Environment

Considering that the modeling paradigm adopted in
SIMOO-RT is based on the concept of active objects, it is
highly desirable to have an OO programming language as target
for the automatic code generation, allowing a smooth transition
from design to implementation. This target language should
incorporate features for supporting concurrency and object
distribution. The Active-Objects/C++ (AO/C++) language [32]
was originally selected as the target language of SIMOO-RT,
because it supports these desired features. This language
combines the OO properties of standard C++ with the benefits
of the RT-UNIX operating systems (e.g., QNX). The main idea
of AO/C++ is to map the logically distributed model of the OO
languages (e.g., C++), with the physically distributed model of
the process-oriented RT-UNIX operating systems.

The AO/C++ language adds some primitives to C++ in
order to support the definition of active objects, time-triggered
methods, and timing constraint specifications (e.g., deadline).
An exception-handling code can be attached to methods with
timing constraints in order to handle deadline violations. The
number of primitives added to C++ was kept as minimal as
possible, in order not to heavily modify the usual syntax of
C++ programs.

The C++ interobject communication is transparently mapped
to the interprocess communication provided by RT-UNIX op-
erating systems, so that the generated distributed programs are
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Fig. 3. AO/C++ code structure.

very similar to C++ programs written for sequential, single-ma-
chine applications. Both synchronous and asynchronous com-
munication are supported in AO/C++. Additionally, other inter-
esting OO features from C++ compilers, especially multiple in-
heritance, polymorphism, and overloading, are also supported.
Fig. 3 elucidates the language structure through the definition
of an activeclass sensor, with a cyclic2 methodRead(), and a
timed3 methodDataCondition(). Observe that there is nomain()
method associated to the class. Instead, it will be either time-
triggered (activated by cyclic methods) or event-triggered (acti-
vated by any other method).

Programs written in AO/C++ are parsed by a preprocessor
and then converted to a standard C++ code, which includes
calls to the AO/C++ library, which can be configured according
to the operating system and to the network protocol. Currently,
the code generator is able to generate applications for Ethernet
and CAN-bus networks running, respectively, the TCP/IP and
the publisher/subscriber protocols. These communication in-
frastructures can be used for interconnecting processing nodes
running QNX, Linux, and Clinux operating systems. Never-
theless, our code generator can only support four combinations:
QNX+TCP/IP, Linux+TCP/IP, Linux+ CAN and Clinux+
CAN. It must be highlighted that this is not a modeling limi-
tation, but a restriction of this version of the tool. In [11], the
mapping of the original AO/C++ RMI-based communication
for the publisher/subscriber protocol is discussed in detail.

Considering the runtime configuration, a special constructor
is defined for each active class, which generates an operating
system process that is attached to a special interface. This
interface interacts with another implementation of the class that
has modified methods to provide transparent RMI or message
publishing (when using publisher/subscriber communication

2Method with periodic activation.
3Method with an associated deadline.

schemes). The real computation of the active class methods
take place in the generated OS process, which runs concurrently
with other processes. The main goal of this strategy is to keep
the AO/C++ code as similar as possible to the normal C++
code. This allows an interesting combination of the processes
characteristics (concurrent execution, distributed) with those
of the C++ runtime system, such as overloading, multiple
inheritance, and encapsulation.

Regarding the number of threads per object, in the current
version each active object (more precisely each active instance
of a class) corresponds to a process, i.e., a single-threaded ap-
proach is adopted. This cannot be considered a limitation, since
attributes of AO/C++ active classes are not restricted to primi-
tive data types. Instead, instances of other active classes are also
allowed to be attributes (that means an active class can contain
instances of other active classes). Different from multithread ob-
jects, which share common data space (class attributes), active
objects are not exposed to internal race conditions, once there is
no concurrent operation sharing the same set of attributes.

C. Model Validation

Validation capabilities is another feature included in the
SIMOO-RT environment. In [4] an automatic monitoring
scheme for such applications is presented. The definition of
which classes or class methods are to be monitored can be
configured in the SIMOO-RT models, and based on that infor-
mation, the generated code will be automatically instrumented
in order to allow an observation of the runtime behavior. All
incoming steps are automatic and hidden from the developers
through scripts. The AO/C++ code is translated into distributed
C++ code, and the output files are then instrumented by running
the mc4pprecompiler [25]. The precompiler places software
triggers using fixed syntactical rules. In order to preserve all
information from the OO environment, an event should always
contain information about its static context (event type, class,
and the method in which it occurred) as well as its dynamic
context (object ID, process ID, and time stamp).

The output of the previous step is compiled using a standard
C++ compiler and linked with a runtime library. The result is a
ready-to-run application that now can be executed in the target
environment. A test run will automatically create per node event
traces that are collected and finally visualized by the Jewel++
tool [4]. This tool is suitable for the observation of real-time
applications, as it puts emphasis on low interference. It is also
capable of using or even creating a system-wide synchronized
time base, and to observe the common system-level events that
are important for any real-time system.

The adopted model validation scheme (described in detail in
[3]) consists of an architecture intended to provide a feedback
to designers regarding the application’s temporal behavior (val-
idation of its timing requirements). After finishing the moni-
toring phase, the generated output is used for the validation of
the modeled timing constraints. In the proposed architecture,
the constraints defined during modeling are mapped to timing
predicates. Here, two basic forms of event occurrences are sup-
posed, cyclic and activities. The first one is important because
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Fig. 4. Overview and class/instance diagrams of the selected case study.

periodical activation is very common in real-time applications,
and is also suitable to be expressed by SIMOO-RT timing con-
straints. On the other hand, the activities abstraction, specified
in SIMOO-RT on the sequence diagrams, is useful to repre-
sent event sequencing and to specify end-to-end timing require-
ments.

In order to allow the validation of timing requirements, it is
necessary to capture runtime information about the application.
This functionality is achieved following the monitoring scheme
provided bymc4p. Validation results are visualized using graph-
ical notations as close as possible to the abstraction used by de-
signers. To achieve this goal, the designer can specify, within
the SIMOO-RT modeling diagrams, the event occurrences that
he/she is interested in. This property is important to highlight
because it acts like a filter for the monitoring results, since it
would be impossible to express all monitoring results in a single
chart. The system allows both the validation of specific event oc-
currences (for instance, to ensure that a sampled sensor signal
occurs with a minimal jitter regarding a predefined sampling pe-
riod) as well as event sequences (end-to-end requirements).

Among the several graphical notations available for visualiza-
tion, the Histogram Graph has proven to be very useful for vali-
dation periodic event occurrences. It elucidates the temporal dis-
tribution in occurrences of particular events, within the timing
interval that represents the requirement. For end-to-end require-
ments validation, Gantt Diagrams appear as a very expressive
visual notation for describing event ordering.

IV. CASE STUDY

In order to better illustrate the methodology presented in Sec-
tion III, a case study will be detailed in this section. Due to the

Fig. 5. Scenario depicting the normal state of operation from Tank class.

paper’s length limitation, only a small subset of a more complex
industrial automation plant (as shown in Fig. 4) was selected.
A small subset of a chemical plant automation problem, which
consists of a tank, a level sensor, and a pump was selected and
the tank level control process will be used for illustration pur-
poses.

The starting point of the OO model for this case study is
the definition of the conceptual model, which results in the
definition of a class diagram and an instance diagram (even if
these elements are not completely populated with attributes and
methods). After that, with the design of the use case diagrams,
the set of use cases containing the system’s functionalities are
defined. For this specific study, three use cases were selected:
1) system configuration; 2) level control; and 3) timing re-
quirements monitoring. The first use case deals with the task of
reading user commands (such as start, stop, level change) and
configuring the controller (encapsulated in the tank class) when
necessary. The second one describes the periodical sampling of
sensor data, the tank level control process, and corresponding
pump actuation. Finally, the third use case depicts the system
execution monitoring. As the control use case is the most
critical one for the system, it will be used to highlight the
constraints applied to the model.

The Tank class encompasses the most critical system func-
tionalities, once it interacts with the actors User, LevelSensor,
and Pump to execute the control algorithm. This class is consid-
ered to be in one of the following operational stages (which are
mapped as states): Normal, Exception, Overload, and Alarm. As
already implied by its name, the Normal state indicates normal
operation of the class execution flow. A scenario (see Fig. 5) is
used to represent the usual closed-loop control interaction pat-
tern. First, the level sensor is read, then the control algorithm is
computed, and finally the pump status is set. If one of these steps
fails (detected by the expiration of the associated deadline), an
alternative operation mode is triggered. The state Exception is
triggered by the event Timeout1, meaning that there was no an-
swer from the level sensor within the specified time (100 ms)
(for instance, this triggers the activation of an open-loop control
algorithm). Another possible state is Overload, that is triggered
if the control method does not meet its deadline. This situation
triggers the event Timeout2, starting an error-correction routine.
The last state is Alarm, triggered by the timeout in the call of
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Fig. 6. Snapshot of the tank system simulation.

Fig. 7. Class diagram with the drivers layer.

the Command() method, from class Pump (event Timeout3). As
soon as the modeling phase is completed, a simulation is under-
taken in order to test the logical behavior of the model. A snap-
shot of the animation produced by the simulation is presented
in Fig. 6.

Up to now, the designed model was intended to be tested
within a simulation environment. Nevertheless, to move toward
using it in a real environment, it needs to be adapted for inter-
acting with real technical plant devices. This development phase
corresponds to the addition of specific drivers into the model,
as discussed in Section II. This causes a modification in the
class diagram, because the corresponding drivers substitute the
Process class (see Fig. 3), which is the entity that provided the
simulated behavior. In this case study, drivers for the Sensor and
the Pump classes are added as shown in Fig. 7.

Completed the modeling cycle, the target architecture for the
developed model is defined. In this case, the modeled object in-
stances are deployed to an architecture consisting of two Pen-
tium PCs running the QNX operating system, interconnected
through a TCP/IP network. The initial deployment configura-
tion consisted of all objects being mapped to a single execution

TABLE I
EVENTS USED IN THE CASE STUDY

TABLE II
TIMING REQUIREMENTS ONEVENTS

node. Events of interest for this configuration are selected for
instrumentation (see Table I), so that their occurrences could be
collected and analyzed. The timing behavior expressed in the se-
quence diagram as timing annotations is mapped to predicates,
to be further used within the time validation tool. Table II shows
the requirements captured from the sequence diagram presented
in Fig. 5.

To increase the spectrum of the experiments, three different
target architectures were configured and the resulting behavior
was monitored for validation purposes. The three architectural
alternatives were as follows:

1) all objects instantiated into a single machine;
2) with the level sensor object instantiated on a remote node;
3) similar to case 2, with a forced (simulated) network

failure.
The integrated validation tool allowed several important

timing analyses to be performed. For instance, the execution
cycle of the Tank class control scenario in Normal state of
operation was validated using the timing requirement “CYCLIC
E1@-1[500, 10]” (see Table II). Results show that the observed
periodicity of the cyclic methodCtrLoop() from Tank class is
basically the same in all three experiments. The average period
was about 3 ms smaller than expected, and a few occurrences
showed deviations of up to 1 ms. The histogram in Fig. 8
(derived from Experiment B) depicts this situation, presenting
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Fig. 8. Periodicity of Tank class control scenario in Normal state.

Fig. 9. Comparison of cases 1 and 2.

the number of occurrences of the event E1 during the monitored
interval.

The execution time of the tank control scenario presents a
variation of 23% more time for Experiment B (80 ms) in com-
parison to Experiment A (65 ms). Differences in the execu-
tion times can be related to the communication overhead be-
tween the controller and the sensor object, when instantiated
into a remote node. This communication overhead can be ob-
served in the Gantt diagrams of Fig. 9, on which one can com-
pare the delay from Event E2 (requesting sensor information) to
Event E9 (message arrival in the sensor), in Experiment A (local
sensor) and in Experiment B (remote sensor). In this diagram,
horizontal bars are related to the specified timing requirements,
showing the validity interval on which a given event must occur
(see Table II).

The last analysis of the case study focuses on the failure sce-
nario found in the third experiment. The introduced network
failure produces a timeout in the RMI of methodRead(), which
is represented by event E10. This timeout triggers the transi-
tion from Normal to Exception state, changing the set of re-
quirements. In [15] a more comprehensive comparison of the
results obtained with different architectures (operating systems,
programming languages) is presented.

V. RELATED WORKS

This section aims to compare the proposed approach, con-
cerning the main aspects of SIMOO-RT methodology and its

supporting tools, with some related work presented in the lit-
erature. The first point that is highlighted concerns the adopted
object model. The time-triggered (TT) message-triggered object
(TMO) model proposed by Kane Kim [22]–[24], also suggests
that real time should be presented at a high-level, implemen-
tation-independent way. The main feature of the TMO model
is a clear separation between TT and message-triggered (MT)
methods. This separation enables the runtime engine to have a
strict control among the possible execution conflicts between
the highest priority TT methods, and the lowest priority MT
methods. We consider this approach very complementary to the
one presented in this paper, and some efforts for integrating the
SIMOO-RT environment with the TMO programming model
have already been done.

Another interesting aspect to be discussed regards the objects
architectural definition. Although one of the main advantages
of OO models is to allow a direct mapping of problem-domain
semantics, leading to intuitive and easier to understand models,
not always do such models lead to good runtime architectures.
In a collaboration project with researchers from the University
of Lisboa, Portugal, some approaches toward an automatic iden-
tification of objects, based on modularity and testability metrics,
has been developed (see [5], [6], [13]).

Regarding the SIMOO-RT integrated environment, the au-
thors do not know another similar tool which provides sup-
port for the whole development phase suggested by the pro-
posed methodology. Many existing commercial tools provide
good support for modeling aspects. Concerning model valida-
tion using simulation and automatic code generation, tools such
as I-Logic Rhapsody, Rational Rose Real-Time, Telelogic Tau
Suite, and the Artisan Real-Time Studio, just to name a few,
also provide suitable support. A missing feature of these tools
is that they do not provide designers feedback concerning the
evaluation of timing properties. Although some proposals of in-
tegrating such modeling tools with existing real-time program-
ming and debugging environments already exist, the resulting
tools are still missing a more comprehensive support from re-
quirements to implementation.

Considering the AO/C++ target language, the new generation
of middleware for distributed objects computing, like CORBA
[28], [41], DCOM [26], [27], and Java-RMI [42], support sim-
ilar and even more enhanced distribution facilities. The problem
resides in the real-time aspects, where they do not provide sup-
port for timing requirements specifications. Implementations
for the RT-CORBA [29], [36], [37] and RT-Java [8] standards,
although very powerful conceptually, are still under develop-
ment. The underlying methodology and concepts proposed in
this paper are generally applicable, and not restricted to the
AO/C++ programming model. Current research done by the au-
thors (see [43]) includes the use of recently published real-time
object models, such as the RT-UML [30] notation and the RT
Specification for Java API [8].

VI. CONCLUSION

This paper introduced SIMOO-RT, a framework to support
the whole development cycle of industrial automation real-time
applications with the use of distributed real-time objects. The re-
sults obtained in the developed case studies indicate that the pro-
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posed methodology is effective in covering the suggested design
aspects. The simulation facility and the automatic code gener-
ator provide designers with valuable support to reduce program-
ming and debugging time. Also, it provides designers with valu-
able feedback regarding model-related high-level information
about timing specifications. In addition, the various graphical
diagrams integrated in the architecture give developers the nec-
essary conditions to analyze and validate the application tem-
poral behavior. The main point to highlight is that the tool pro-
vides a fully integrated development methodology and tool sup-
port, assisting users from initial specification to code generation
and timing requirements validation during runtime.
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