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Polyhedral Regions of Local Stability for Linear
Discrete-Time Systems with Saturating Controls

João Manoel Gomes da Silva, Jr., and Sophie Tarbouriech

Abstract—The study and the determination of polyhedral regions of
local stability for linear systems subject to control saturation is addressed.
The analysis of the nonlinear behavior of the closed-loop saturated system
is made by dividing the state space in regions of saturation. Inside
each of these regions, the system evolution can be represented by a
linear system with an additive disturbance. From this representation, a
necessary and sufficient condition relative to the contractivity of a given
convex compact polyhedral set is stated. Consequently, the polyhedral
set can be associated with a Lyapunov function and the local asymptotic
stability of the saturated closed-loop system inside the set is guaranteed.
Furthermore, it is shown how, in some particular cases, the compactness
condition can be relaxed in order to ensure the asymptotic stability
in unbounded polyhedra. Finally, an application of the contractivity
conditions is presented in order to determine local asymptotic stability
regions for the closed-loop saturated system.

Index Terms—Contractivity, control saturation, local stability, polyhe-
dral Lypunov function.

I. INTRODUCTION

Consider the discrete-time system described by

x(k + 1) = Ax(k) +Bsat(Fx(k)) (1)

wherex(k) 2 IRn; A 2 IRn�n; B 2 IRm�n; F 2 IRm�n and each
component of the saturation term is defined,8 i = 1; � � � ; m, as
follows:

(sat(Fx(k)))(i) =sat(F(i)x(k))

=

�umin(i); if F(i)x(k) < �umin(i)
F(i)x(k); if �umin(i) � F(i)x(k) � umax(i)
umax(i); if F(i)x(k) > umax(i)

with umin(i); umax(i) > 0, for i = 1; � � � ; m. System (1) represents
the closed-loop system obtained from the application of a saturating
state feedback control lawu(k) = sat(Fx(k)) to a linear system
x(k + 1) = Ax(k) + Bu(k). In the polyhedral region

S(F ; �) = fx 2 IRn; Fx � �g

= fx 2 IRn; �umin � Fx � umaxg (2)

where

F
�
=

F

�F
and �

�
=

umax
umin

the saturation does not occur and system (1) admits the classical
linear model

x(k + 1) = (A+BF )x(k): (3)

Due to the saturation term, the system (1) is nonlinear. Since
no particular hypothesis is made about stability of matrixA and
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about how matrixF was computed, in general the global asymptotic
stability of system (1) cannot be ensured [17], [15]. Thus, it is
important to determine domains of initial states that are driven asymp-
totically to the origin under the action of the saturation control law
u(k) = sat(Fx(k)). These regions areregions of local asymptotic
stability, and therefore can be viewed aszones of safe operationfor
system (1).

In this note, we deal with the determination of such regions. In
particular, we consider polyhedral regions defined as follows:

S(G; w) = fx 2 IRn; Gx � wg; G 2 IRg�n (4)

with w(i) > 0; 8 i = 1; � � � ; g. Note that by definitionS(G; w) is
a convex set.

The problem of determining polyhedral regions of stability con-
tained in (or equal to) the region of linearity of system (1), i.e.,
S(G; w) � S(F; �) was widely studied in the literature (see, for
example, [1], [3], [6], [7], [11], [18], [20], and references therein).
The approaches for dealing with this problem are mainly based on
the concept of positive invariance (see [5] for an interesting survey).
The principle consists in guaranteeing thatS(G;w) is positively
invariant w.r.t. thelinear system (3). In this case, provided that
all the eigenvalues of(A + BF ) are placed inside the unit circle,
all the trajectories originating inS(G;w) are confined in it and
converge to the originwithoutcontrol saturation. Note that, in general,
these regions are very conservative approximations of the region of
attraction of system (1).

If we are interested in determining regions of stability not contained
in S(F; �), i.e., S(G;w) 6� S(F; �), we have to consider the
nonlinear behavior of system (1). In this case, the guarantee of
positive invariance ofS(G; w) w.r.t. system (1) (see in [9] a
necessary and sufficient condition for this) is not sufficient to ensure
the convergence of trajectories to the origin, even if the eigenvalues
of (A + BF ) are strictly stable. Since the behavior of the system
is nonlinear, the possible existence of limit cycles and/or parasitic
equilibrium points insideS(G; w) have to be considered. Hence,
before concluding that the polyhedronS(G; w) is also a region of
asymptotic stability for system (1) it is necessary to eliminate this
possibility. The verification of the existence of equilibrium points,
other than the origin, insideS(G; w) is trivial. Nevertheless, in
general, it is not easy to verify if there exist limit cycles inside
S(G; w). In this case, a way to ensure the asymptotic stability inside
S(G; w) is to guarantee the contractivity of this set w.r.t. system (1).

Definition 1 (Contractivity): Let @S(G; w) be the boundary of
S(G; w). The setS(G; w) is contractive with respect to system
(1) if 8x(k) 2 �k@S(G; w); �k 2 IR; 0 < �k � 1, there exists
�k+1; 0 � �k+1 < �k such thatx(k + 1) 2 �k+1@S(G; w) for
all integer k � 0.

In other words, the contractivity implies that ifx(k) belongs to
the boundary of an internal homothetic ofS(G; w), thenx(k + 1)
belongs to the interior of this homothetic. Note thatx(k) 2 S(G; w);

x(k) 6= 0, implies thatx(k) 2 �@S(G; w) for some � 2 IR;

0 < � � 1. Hence, ifS(G; w) is compact, the contractivity implies
the asymptotic convergence to the origin.

To the knowledge of the authors, few papers have dealt with the
determination of polyhedral regions of stability in which saturation
effectively occurs as well as the study of polyhedral contractivity
w.r.t. the nonlinear system (1). We can cite, for example, [16]
where a method for computing polyhedral regions of stability for
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second-order continuous-time saturated systems is proposed. Hence,
the aim of this note is to furnish a new method of analysis in
order to guarantee the local asymptotic stability, inside polyhedral
sets, of linear multivariable discrete-time systems subject to control
saturation. Our approach is based on the contractivity concept.

The note is organized as follows. First, a suitable representation
for the nonlinear behavior of the closed-loop system is presented.
Based on this representation, a necessary and sufficient condition for
guaranteeing the contractivity of a compact polyhedral set is stated.
Consequently, a polyhedral Lyapunov function can be associated to
the contractive set and the local asymptotic stability of the saturated
closed-loop system in this set is ensured. Relaxing the compactness
condition of the polyhedral set, the analysis of stability inside
unbounded polyhedra is discussed. Finally, in order to determine a
local asymptotic stability region for system (1), an algorithm based on
linear programming is proposed for computing homothetic expansions
of contractive polyhedra over the zone of nonlinear behavior of the
closed-loop system.

Notations: For any vectorx 2 IRn; x � 0 means that all the
components ofx, denotedx(i), are nonnegative. For two vectorsx; y
of IRn, the notationx � y means thatx(i)�y(i) � 0; 8 i = 1; � � � ; n.
jxj is the vector composed by the absolute values of the components
of x. For any real matrixM , square or not,M(i) denotes itsith row.
MT andKerM denote, respectively, the transpose and the null space
of M . For a polyhedral setS; intS; @S, and@iS denote, respectively,
the interior, the boundary and theith facet of S. Given a vector
x 2 IRn; diag(x) denotes ann-order diagonal matrix generated from

x. Finally, 1m
�
= [1 � � � 1]T 2 IRm and0m

�
= [0 � � � 0]T 2 IRm.

II. SATURATED SYSTEM REPRESENTATION

Before studying the stability properties related to saturated systems,
we define a mathematical representation for these kinds of systems.
This representation consists of dividing the state space in regions
called regions of saturation. Inside each region of saturation, the
system (1) can be modeled as a linear system with an additive
disturbance [14].

Consider a vector� 2 IRm such that each entry�(i); i = 1; � � � ; m,
takes the values 1, 0, or�1 as follows.

• If u(i) = umax(i) then �(i) = 1, that is, x is such that
F(i)x > umax(i).

• If u(i) = F(i)x then�(i) = 0, that is,x is such that�umin(i) �
F(i)x � umax(i).

• If u(i) = �umin(i) then �(i) = �1, that is, x is such that
F(i)x < �umin(i).

Hence, each vector� represents a possible combination between
saturated and nonsaturated control entries. There are3m different
combinations of�. For each vector�j ; j = 1; � � � ; 3m, the state
vector belongs to a specific region calledregion of saturation. Each
region of saturation is defined by the intersection of half-spaces of
type F(i)x � d(i) or �F(i)x � d(i), whered(i) can beumin(i);
�umin(i); umax(i), or �umax(i).

Thus, by defining bothdj 2 IRl from the entries ofumax; �umax;
umin and�umin, andRj 2 IRl �n from the rows ofF and�F , the
region of saturation associated to�j is generically defined as:

S(Rj ; dj) = fx 2 IRn; Rjx � djg: (5)

Notice that the region corresponding to�j = 0m is the polyhedron
S(F ; �). In the other regions, there is at least one control entry that
is saturated.

Inside each region of saturation,S(Rj ; dj), the motion of system
(1) can be described by a linear dynamical equation given by

x(k + 1) = (A+B diag(1m � j�j j)F )x(k) +Bu(�j) (6)

where

u(i)(�j)
�
=

�umin(i); if �j(i) = �1
0; if �j(i) = 0
umax(i); if �j(i) = 1.

(7)

Generically, ifx(k) 2 S(Rj ; dj) it follows that

x(k + 1) = Ajx(k) + pj (8)

with Aj
�
= A + B diag(1m � j�j j)F andpj

�
= Bu(�j).

III. CONTRACTIVITY AND LOCAL ASYMPTOTIC STABILITY

In this section, based on the representation defined in the previous
section, we study the contractivity and the local asymptotic stability
w.r.t. polyhedral sets and system (1). The idea is to divide the analysis
in some polyhedral subdomains ofS(G; w).

Assume that S(G;w) is a compact polyhedron. Let

@iS(G; w)
�
= fx 2 IRn; G(i)x = w(i) and G(l)x � w(l) if

l 6= ig be the ith facet of polyhedronS(G; w). Define the
polyhedral coneKi, generated by the facet@iS(G; w), as follows:

Ki
�
= x 2 IRn;

G(l)

w(l)
x �

G(i)

w(i)
x; 8 l = 1; � � � ; g; l 6= i :

(9)
Consider the setJ

�
= fj; S(G; w) \ S(Rj ; dj) 6= ;g. For each

j 2 J , let Ij be the set of indicesi such that the coneKi has

a nonempty intersection with the regionS(Rj ; dj), i.e., Ij
�
= fi;

Ki \ S(Rj ; dj) 6= ;g.
Theorem 1: Consider the description of system (1) in the region

of saturationj; j 2 J , given by (8). For eachi 2 Ij define the
following linear programs forl = 1; � � � ; g:

LPj(l;i)

yj(l;i) = max
x

G(l)Aj �
w(l)

w(i)
G(i) x+G(l)pj

subject to

x 2 (Ki \ S(Rj ; dj) \ S(G; w)):

(10)

Define yj = maxfyj(l; i); i 2 Ij , l = 1; � � � ; gg. The polyhedron
S(G; w) is contractive w.r.t. system (1) if and only if the following
conditions hold:

i) yj < 0 for eachj 2 J such thatS(Rj ; dj) 6= S(F; �);
ii) yj = 0 for j such thatS(Rj ; dj) = S(F; �) and, in this

case, the optimal solution to each linear program LPj(l; i) is
unique and obtained forx = 0.

Proof:
Sufficiency: For all x 2 S(G; w); x 6= 0, it follows that there

exists � 2 IR; 0 < � � 1 such thatx 2 �@S(G; w). In
other words,x belongs at least to one facet ofS(G; �w), i.e.,

x 2 @iS(G; �w)
�
= fx 2 IRn; G(i)x = �w(i), G(l)x � �w(l),

8 l 6= i, l = 1; � � � ; gg for some i and it follows thatx 2 Ki.
Moreover,x belongs to some region of saturationS(Rj ; dj) and
thus Ki \ S(Rj ; dj) 6= ; and it follows that@iS(G; �w) �
(Ki \ S(Rj ; dj) \ S(G; w)). Hence, sincex is supposed to be
different from zero, if conditions i) and ii) hold it follows that
(G(l)Aj � (w(l)=w(i))G(i))x + G(l)pj < 0; 8 l = 1; � � � ; g, where
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if x(k) = x:

G(l)x(k + 1) <
w(l)

w(i)
G(i)x(k) = �w(l) 8 l = 1; � � � ; g (11)

and thereforeGx(k + 1) < �w which implies thatx(k + 1) 2
@S(G; �1w) = �1@S(G; w) with �1 2 IR; 0 � �1 < �. Since this
reasoning can be applied8x 2 S(G; w); x 6= 0, the contractivity of
S(G; w) is guaranteed if i) and ii) hold.

Necessity: Suppose thatS(G; w) is contractive and i) or ii) does
not hold. Then for some somej 2 J ; i 2 Ij , and l there exists
x 2 (Ki \ S(Rj ; dj) \ S(G; w)); x 6= 0, (i.e., x 2 @iS(G; �w)
with 0 < � � 1), such that

G(l)Aj �
w(l)

w(i)
G(i) x +G(l)pj � 0: (12)

Suppose now thatx(k) = x for some k > 0. Since x(k) 2
@iS(G; �w), it follows that G(i)x(k) = �w(i) and we obtain
G(l)(Ajx(k)+pj)��w(l) � 0, i.e.,G(l)x(k+1) � �w(l). Therefore
it follows that x(k + 1) 2 @S(G; �1w); �1 � � which contradicts
the hypothesis thatS(G; w) is contractive and thus the necessity of
conditions i) and ii) is proven.

The principle of Theorem 1 is to analyze the trajectories behavior
of system (1) in some subdomains ofS(G;w). These subdomains
are delimited by a polyhedral coneKi and a region of saturation
S(Rj ; dj). For any x(k) belonging toS(G; w), it follows, that
x(k) belongs both to one of these subdomains and anith facet of
an internal homothetic ofS(G; w) (�S(G; w), 0 < � � 1). In
order to prove the contractivity of the domain, we must guarantee
that x(k + 1) verifiesGx(k + 1) < �w. Since, in each subdomains
x(k + 1) is described from (8), this condition is equivalent to have
(G(l)Aj�(w(l)=w(i))G(i))x+G(l)pj < 0; 8 l = 1; � � � ; g. Roughly
speaking, this condition is tested by means of linear programs (10)
for all possible vectorx(k) belonging toS(G; w). Thus, Theorem
1 provides a condition that guarantees the contractivity of all the
trajectories originating inS(G; w). Hence, it is ensured that there is
neither limit cycle nor parasitic equilibrium points insideS(G; w).
Since S(G; w) is a convex compact polyhedron it is possible to
associate to it aLyapunov polyhedral function[3], [4], [10], [18]. This
function is strictly decreasing along all the trajectories of system (1)
originating inS(G; w). Hence, we can state the following corollary.

Corollary 1: If conditions of Theorem 1 hold, then we have the
following.

i) System (1) is locally asymptotically stable inS(G;w).
ii) The polyhedral function

V(x(k)) = max
i

G(i)x(k)

w(i)

is a strictly decreasing Lyapunov function for system (1).

Proof: i) It follows directly from the fact thatS(G; w) is
compact, contains the origin and is contractive. ii) SinceS(G; w)
is compact and contains the origin, it follows thatV(x(k)) > 0;
8x(k) 6= 0 and V(x(k)) = 0 if and only if x(k) = 0. Since
S(G; w) is contractive, we haveV(x(k + 1)) � V(x(k)) < 0;
8x(k) 2 S(G; w); x(k) 6= 0; 8 k � 0. ThusV(x(k)) is a strictly
decreasing Lyapunov function for system (1).

IV. UNBOUNDED POLYHEDRA

From Theorem 1, we can conclude stability inS(G; w) only if it is
a compact set. However, in some cases, the condition of compactness
can be relaxed as we will show in this section. For this, consider the
following assumption.

Assumption 1:Consider thatS(G; w) is unbounded and there
exists 0 < �; � 2 IR, such thatS(G; �w) � S(F ; �). Suppose
also thatKerG is anA-invariant subspace.

This assumption implies thatKerG � KerF . In this case, a
necessary condition to the contractivity ofS(G; w) w.r.t. the system
(1) is thatKerG is anA-invariant subspace [7].

ConsiderQ = [Qo Qr]; Q 2 IRn�n, whereQo 2 IRn�(n�g)

is a basis for the subspaceSo
�
= KerG andQr is a basis for the

complementary subspace ofSo denoted bySr. Define the change of
basis:x = [Qo Qr][z

T
o zTr ]

T .
SinceKerG is supposed to beA-invariant andKerG � KerF

it follows thatFQo = 0 and system (1) can be rewritten in the new
basis as

zo(k+ 1) =Rozo(k) +R2zr(k) +Bosat(Frzr(k)) (13)

zr(k+ 1) =Rrzr(k) +Brsat(Frzr(k)): (14)

The projection of the polyhedronS(G; w) in Sr alongSo is given
by

S(Gr; w)
�
= fzr 2 IRg; Grzr � wg (15)

with Gr = GQr.
Property 1: The unbounded polyhedronS(G; w), under Assump-

tion 1, is a contractive set for system (1) if and only ifS(Gr; w) is
a contractive set for system (14).

Proof: Recalling thatGx = G[Qo Qr][z
T
o zTr ]

T =
[0 Gr][z

T
o zTr ]

T = Grzr then the proof directly follows.
Proposition 1: Consider thatS(G; w) is an unbounded polyhe-

dron satisfying Assumption 1. IfS(Gr; w) is contractive for system
(14) and all the eigenvalues of matrixRo are located inside the
unit disk of the complex plane, thenS(G; w) is a domain of local
asymptotic stability for system (1).

Proof: Since S(Gr; w) is a compact set, ifS(Gr; w) is a
contractive set, it is also a domain of local asymptotic stability for
the reduced order system (14). It follows thatzr(k)! 0 ask !1;
8 zr(0) 2 S(Gr; w). Since all the eigenvalues ofRo are located
inside the unit disk of the complex plane, from Theorem 1 in [15]
we can conclude thatzo(k) ! 0 ask ! 1; 8 zr(0) 2 S(Gr; w);
8 zo(0) 2 IRn�g. Since zo(k) 2 KerG; 8 k � 0, it follows
that 8x(0) 2 S(G; w), the corresponding trajectory converges
asymptotically to the origin.

Thus, under Assumption 1, we can conclude that the contractivity
and the local asymptotic stability inside an unbounded polyhedron
S(G; w) can be verified by considering a reduced order system with
saturating controls and the projection ofS(G; w) in the complemen-
tary subspace ofKerG. SinceS(Gr; w) is compact, the verification
is accomplished by applying Theorem 1.

The use of Assumption 1 means that we consider a particular case.
Note that when Assumption 1 is satisfied and all the eigenvalues
of matrix Ro are located inside the unit disk of the complex plane,
the basin of attraction of the origin for system (1) is unbounded in
the directions ofKerG. It should be pointed out that, without this
assumption, we cannot directly apply the results of Section III. In
particular, whenKerG 6� KerF , system (13)-(14) is not equivalent
to system (1).

V. DETERMINATION OF LOCAL ASYMPTOTIC STABILITY REGIONS

In this section, we show how to use the contractivity condition
stated in Theorem 1 in order to determine compact polyhedral regions
of local asymptotic stability for the system (1).
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VI. DETERMINATION OF LOCAL ASYMPTOTIC STABILITY REGIONS

In this section, we show how to use the contractivity condition
stated in Theorem 1 in order to determine compact polyhedral regions
of local asymptotic stability for the system (1).

A. Numerical Procedure

The problem of determining contractive polyhedral setscontained
in the region of linear behavior(2) of the saturated system has
been addressed in many papers. For example, by using the method
described in [4] and [8] it is possible to compute the maximal
invariant and contractive set contained inS(F ; �) for the linear model
(3). Furthermore, there exist techniques based on eigenstructure
assignment (see, for example, [11] for an interesting survey) and
linear programming [20] for computing a matrixF which makes
contractive a given setS(G;w) andS(G; w) � S(F; �).1

Hence, if we assume that a compact polyhedronS(G; w), con-
tractive with respect to the linear model (3), was computed from
one of the techniques found in the literature, we can apply Theorem
1 for calculating the maximum coefficient of homothesis,�max, for
whichS(G; �maxw) preserves the property of contractivity w.r.t. the
saturated system (1). The algorithm is based on iterative computations
and linear programming schemes.

Algorithm:

• Step 0: Initialize � = �0. Choose a computational accuracy.
• Step 1: DetermineJ w.r.t. S(G; �w). For eachj 2 J and
i 2 Ij , solve the following linear programs,l = 1; � � � ; g:

yj(l; i) = max
x

G(l)Aj �
w(l)

w(i)
G(i) x+G(l)pj

subject to

Rj

G
x �

dj
�w

G(l)

w(l)
�

G(i)

w(i)
x � 0 8 l 6= i:

(16)

• Step 2: For eachj 2 J computeyj = maxfyj(l; i); i 2 Ij ; l =
1; � � � ; gg. If conditions i) and ii) of Theorem 1 hold, go to Step
4 otherwise go to Step 3.

• Step 3: Decrease� and return to step 1.
• Step 4: If the difference between the� of this iteration and the

last iteration is greater than the chosen accuracy, increase�.
Otherwise stop:�max = �.

When S(G;w) is compact, the maximal homothetic set to
S(G;w), for which the asymptotic stability is guaranteed by Theorem
1, can be considered as a conservative approximation of the region
of attraction of the origin [17] for system (1). This conservativeness
is inherent to the use of Lyapunov functions that lead, by definition,
to convex domains [12]. Actually, in general the basin of attraction
of the origin is nonconvex and not analytically determinable. In order
to overcome this problem, we can consider, for example, the union
of different polyhedra s

i=1 S(Gi; �max iwi).
In this case, the final domain of stability may be enlarged and

may be nonconvex. Moreover, this algorithm can be used in a
complementary way to the one proposed in [19] in order to obtain
nonhomothetic expansions of a contractive set w.r.t. to system (1).

In particular, if we have determined an initial contractive un-
bounded polyhedronS(G; w) contained inS(F; �) (see, for in-
stance, [7] and references therein), we can use the result of Propo-

1In these cases, matricesF; G, and vectorw satisfy in particular the
propertiesG(A + BF ) = HG andHw < w, whereH is a nonnegative
matrix [1], [3], [7]. They also satisfyNG = F andNw � � whereN
is a nonnegative matrix [11]. Note thatF is such that matrixA + BF is
asymptotically stable and the origin belongs toS(G; w).

sition 1 in order to generate an unbounded region of asymptotic
stability for system (1) not included inS(F; �). In this case it suffices
to apply the above algorithm considering the reduced order system
(14) and the polyhedronS(Gr; �w). The obtained�max is such that
S(G; �maxw) is an unbounded region of asymptotic stability and
nonlinear behavior for system (1).

B. Numerical Example

Consider system (1) described by the following data:

A =
1:2 0
0:4 0:5

;

F =
�0:95 0

2:2 0:3
;

B =
1 0
0 0:5

umax =umin =
2
4

:

Consider a contractive polyhedral setS(G; w) � S(F; �) given
by

G =

1 0
0 1

�1 0
0 �1

; w =

1
4:5
1
4:5

:

Matrix F and control constraints define nine regions of saturation.
Since the polyhedraS(G; w) and S(F; �) are symmetric, we can
analyze only five of these regions:

Region 1 (�1 = [0 0]T , Reg. Linearity):

A1 =A +BF =
0:25 0
1:5 0:65

;

p1 =
0
0

;

R1 =
F

�F

d1 =

2
4
2
4

:

Region 2 (�2 = [1 1]T ):

A2 =A;

p2 =
2
2

;

R2 =
0:95 0
�2:2 �0:3

d2 =
�2
�4

:

Region 3 (�3 = [0 1]T ):

A3 =
0:25 0
0:4 0:5

;

p3 =
0
2

;

R3 =
0:95 0

�0:95 0
�2:2 �0:3

d3 =
2
2

�4
:

Region 4 (�4 = [�1 1]T ):

A4 =A;

p4 =
�2
2

;

R4 =
�0:95 0
�2:2 �0:3

d4 =
�2
�4

:

Region 5 (�5 = [�1 0]T ):

A5 =
1:2 0
1:5 0:65

;

p5 =
�2
0

;

R5 =
�0:95 0

2:2 0:3
�2:2 �0:3

d5 =
�2
4
4

:
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Fig. 1. (a)S(G; w), (b) S(F ; �), and (c)S(G; �maxw).

By applying the algorithm described in Section V-A, one obtains
�max = 9:99 (accuracy= 0.01). S(G; �maxw) represents the
maximal homothetic set ofS(G; w) which is contractive w.r.t. the
closed-loop saturated system. Since it is a compact set, from Corollary
1, it is a domain of asymptotic stability and a safe operation for
system (1).

The maximal homothetic positively invariant set is obtained for
� = 10 (see [9]). In this case, there exist some trajectories that
remain on the boundary of the domain. This fact is justified by the
existence of parasitic equilibrium points on the boundary of the set
(e1 = [10 12]T , e2 = [�10 �12]T ). For � > 10 one gets unstable
trajectories originating in the domain.

It is worth to notice that the maximal homothetic set toS(G; w)
contained in the region of linearityS(F ; �) is obtained for� =
1:1268. Fig. 1 depictsS(G; w); S(F; �); S(G; �maxw), the para-
sitic equilibrium points (e1 and e2) of the saturated system and the
regions of saturation (Rj ’s).

VII. CONCLUSION

In this note, we considered the analysis of local stability inside
polyhedral regions for discrete-time systems with saturating controls.
This analysis was based on the property of contractivity of such
polyhedral sets. In this sense, a necessary and sufficient condition was
stated in order to guarantee the contractivity of a compact polyhedral
set having nonempty intersection with the nonlinear behavior region
of the saturated system. In this case, there exists a Lyapunov
polyhedral function, strictly decreasing, for all the states belonging
to the considered polyhedral set. Consequently, the local asymptotic
stability of the saturated system is ensured. An algorithm based on
linear programming was proposed to compute polyhedral regions
of stability and nonlinear behavior (i.e., the controls effectively
saturate in these regions) for the closed-loop system. Since the exact
determination of the region of attraction of the origin is, in general,
not possible for systems with saturating controls, the use of the
proposed algorithm can be seen as an interesting way to compute
approximations of this region.

The results presented in this note considered the case of state feed-
back. Nevertheless, their application to the case of output feedback
(static or dynamic) is straightforward. In this case, we have to redefine
the region of linearity and the regions of saturation in function of the
matrices that define the considered feedback. The proposed approach
should also allow to treat the problem of systems with saturating

controls and with both additive and input disturbances. This will be
addressed by the authors in a forthcoming publication.
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