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Polyhedral Regions of Local Stability for Linear about how matrixF was computed, in general the global asymptotic
Discrete-Time Systems with Saturating Controls stability of system (1) cannot be ensured [17], [15]. Thus, it is
important to determine domains of initial states that are driven asymp-
Jado Manoel Gomes da Silva, Jr., and Sophie Tarbouriech totically to the origin under the action of the saturation control law
u(k) = sat(Fz(k)). These regions areegions of local asymptotic
o ] stability, and therefore can be viewed asnes of safe operatidior
Abstract—The study and the determination of polyhedral regions of

local stability for linear systems subject to control saturation is addressed. SyStem, @) . L .

The analysis of the nonlinear behavior of the closed-loop saturated system N this note, we deal with the determination of such regions. In
is made by dividing the state space in regions of saturation. Inside particular, we consider polyhedral regions defined as follows:

each of these regions, the system evolution can be represented by a
linear system with an additive disturbance. From this representation, a
necessary and sufficient condition relative to the contractivity of a given
convex compact polyhedral set is stated. Consequently, the polyhedral
set can be associated with a Lyapunov function and the local asymptotic with w¢;) > 0, Vi = 1, ---, g. Note that by definitionS(G, w) is
stability of the saturated closed-loop system inside the set is guaranteed. 5 convex set.

Furthermore, it is shown how, in some particular cases, the compactness Th bl f det . Ivhedral . f stabilit )
condition can be relaxed in order to ensure the asymptotic stability . e pro em Of determining Poy e .ra rgglons Of stability gon
in unbounded polyhedra. Finally, an application of the contractivity tained in (or equal to) the region of linearity of system (1), i.e.,
conditions is presented in order to determine local asymptotic stability S(G, w) C S(F, p) was widely studied in the literature (see, for

S(G, w)={r e R"; Gu < w}, GeRI™ 4

regions for the closed-loop saturated system. example, [1], [3], [6], [7], [11], [18], [20], and references therein).
Index Terms—Contractivity, control saturation, local stability, polyhe- ~ The approaches for dealing with this problem are mainly based on
dral Lypunov function. the concept of positive invariance (see [5] for an interesting survey).

The principle consists in guaranteeing th&tG, w) is positively
invariant w.r.t. thelinear system (3). In this case, provided that

) _ I _INTRODUCTlON ) all the eigenvalues ofA + BF') are placed inside the unit circle,
Consider the discrete-time system described by all the trajectories originating ir6(G,w) are confined in it and
2(k +1) = Aw(k) + Bsat(Fa(k)) @ converge to the origiwithoutcontrol saturation. Note that, in general,

these regions are very conservative approximations of the region of
wherez(k) € R", 4 € R™™, B € R™™", F € R™" and each attraction of system (1).
component of the saturation term is definétf, = 1, ---, m, as If we are interested in determining regions of stability not contained
follows: in S(F, p), i.e., S(G,w) ¢ S(F, p), we have to consider the
nonlinear behavior of system (1). In this case, the guarantee of

(sat(Fa(k)))w) =sat(Fow(k)) positive invariance ofS(G, w) w.r.t. system (1) (see in [9] a

—Umin(i), I Foa(k) < —tming necessary and sufficient condition for this) is not sufficient to ensure
=9 Faoa(k), if —uminty < Fiya(k) < umaxi)  the convergence of trajectories to the origin, even if the eigenvalues
Umax(i)s if Fioya(k) > tmaxi of (A + BF) are strictly stable. Since the behavior of the system
WIth Upmin(i)» Umax(i) > 0, for i = 1, .-+, m. System (1) represents is nonlinear, the possible existence of limit cycles and/or parasitic

the closed-loop system obtained from the application of a saturatiguilibrium points insideS(¢G, w) have to be considered. Hence,
state feedback control law(k) = sat(Fz(k)) to a linear system Pefore concluding that the polyhedrdf{G. w) is also a region of

2(k+ 1) = Az(k) + Bu(k). In the polyhedral region asym_p_tgtic stability_f_or ;ystem Q) it 'is necessary t_o_ el_iminate_ this
possibility. The verification of the existence of equilibrium points,
S(F. p) ={z € R"; Fau < p} other than the origin, insid&(G, w) is trivial. Nevertheless, in
={2 €R"; —ttmin < F2 < thmax} (2) general, it is not easy to verify if there exist limit cycles inside
S(G, w). In this case, a way to ensure the asymptotic stability inside
where S(G, w) is to guarantee the contractivity of this set w.r.t. system (1).
Al F A [Umax Definition 1 (Contractivity): Let 85(G, w) be the boundary of
;= {—F} and p = {umm} S(G, w). The setS(G, w) is contractive with respect to system

] ) Q) if Va(k) € A0S(G, w), A € R, 0 < Ap < 1, there exists
t_he saturation does not occur and system (1) admits the classtggjrl, 0 < At < Ac such thate(k + 1) € A\g1dS(G, w) for
linear model all integerk > 0.

v(k+1)=(A+ BF)a(k). (3) In other words, the contractivity implies that if(k) belongs to
the boundary of an internal homothetic §{G, w), thenx(k + 1)

Due to the saturation term, the system (1) is nonlinear. Singelongs to the interior of this homothetic. Note thék) € S(G, w),
no particular hypothesis is made about stability of matdixand .y (k) # 0, implies thatz(k) € A9S(G, w) for someX € IR,
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Ozbay. the asymptotic convergence to the origin.
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second-order continuous-time saturated systems is proposed. Henclaside each region of saturatiof( R;, d;), the motion of system
the aim of this note is to furnish a new method of analysis ifll) can be described by a linear dynamical equation given by
order to guarantee the local asymptotic stability, inside polyhedral
sets, of linear multivariable discrete-time systems subject to control #(k + 1) = (4 + Bdiag(1. — |&|)F)=(k) + Bu(E)) (6)
saturation. Our approach is based on the contractivity concept.

The note is organized as follows. First, a suitable representatiéfiere
for the nonlinear behavior of the closed-loop system is presented.

Based on this representation, a necessary and sufficient condition for v —Umin(i), If §iy = —1
guaranteeing the contractivity of a compact polyhedral set is stated. u(y(&5) 2 0, if £y =0 ©)
Consequently, a polyhedral Lyapunov function can be associated to Umax(s), If §y = 1.

the contractive set and the local asymptotic stability of the saturated
closed-loop system in this set is ensured. Relaxing the compactne
condition of the polyhedral set, the analysis of stability inside
unbounded polyhedra is discussed. Finally, in order to determine a
local asymptotic stability region for system (1), an algorithm based on
linear programming is proposed for computing homothetic expansionsth
of contractive polyhedra over the zone of nonlinear behavior of tHe
closed-loop system.

Notations: For any vectorr € IR", x > 0 means that all the m

components of, denotedr(;), are nonnegative. For two vectarsy ) ) ) i ) )
of IR, the notation: > y means that ;) —y(;) > 0,Vi=1,---, n In this section, based on the representation defined in the previous

|| is the vector composed by the absolute values of the compone?g§tion. we study the contractivity and the local asymptotic stability
of . For any real matrixiZ, square or not)/;, denotes itsth row. yv.r.t. polyhedral sets and systc_em (1). The idea is to divide the analysis
M" andKer M denote, respectively, the transpose and the null spafeSOme polyhedral subdomains 6{G, w).

of M. For a polyhedral s, intS, S, andd;S denote, respectively, ~Assume Athat 5(G,w) is a compact polyhedron. Let
the interior, the boundary and thi¢h facet of S. Given a vector 9:S(G, w) = {z € R"; Gz = wy and Gyr < wy if

2 € R, diag(x) denotes am-order diagonal matrix generated from! # i} be the ith facet of polyhedronS(G, w). Define the

. Finally, 1,,, £ [L--- 17 e R™ and0,, 2 [0 07 e R™. polyhedral coneC;, generated by the facé{S(G, w), as follows:

SBenerically, ifz(k) € S(R,. d;) it follows that
w(k+1) = Ajz(k) +p; ®)

A; 2 A+ Bdiag(1,, — |&;)F andp,; = Bu(&)).

. CONTRACTIVITY AND LOCAL ASYMPTOTIC STABILITY

G G
]C;é{;L’E]R"I;L[)wgﬁw, Vi=1,---, g, lFi,.
W W)
©)

Consider the set/ = {j; S(G, w) N S(R;, d;) # 0}. For each

Before studying the stability properties related to saturated systemse 7, let Z; be the set of indices such that the coné’; has
we define a mathematical representation for these kinds of sySteg'%onempty intersection with the regic(R,, d,), i.e., I, A {i:
This representation consists of dividing the state space in regiops  g(p.. d,) + p}. o '

called regions of saturationinside each region of saturation, the Theorem 1: Consider the description of system (1) in the region
system (1) can be modeled as a linear system with an additiéf?saturationj,j € 7, given by (8). For eachi € Z, define the

Il. SATURATED SYSTEM REPRESENTATION

disturbance [14]. following linear programs foi = 1, ---, g:
Consider avectaf € IR™ such thateach entéy;), i =1, ---, m,
takes the values 1, 0, ot1 as follows. Yy = max <G(,)Zj _wy G(i));n +Gups
o If uy = wmax() then gy = 1, that is, = is such that LD . * e (10)
Fy > Umax(i)- 319 subject to
o If ugy = Fiyyx theng;y = 0, that is,z is such that-u,n ) < . - ‘. q. G.ow)
FM;) S uf,,lx(z). () () x € (Ki N S(R;, d;) N S(G, w)).
o If uyy = —umine) then &,y = —1, that is, z is such that Definey; = max{y;q, ;i € Z;,1 = 1, -+, g}. The polyhedron
Fiyr < —Umin(i- S(G, w) is contractive w.r.t. system (1) if and only if the following
Hence, each vectaf represents a possible combination betweefPnditions hold:
saturated and nonsaturated control entries. There3dralifferent i) y; <0 foreachj € 7 such thatS(R;, d;) # S(F, p);
combinations of¢. For each vectog;, j = 1, ---, 3™, the state i) y; = 0 for j such thatS(R;, d;) = S(F, p) and, in this
vector belongs to a specific region callestjion of saturation Each case, the optimal solution to each linear program LB is
region of saturation is defined by the intersection of half-spaces of ~ unique and obtained for = 0.
type Fiye < dgy or —Fix < dg;y, whered(;, can beu,,i,e), Proof:
—Unin(i)> Ymax(i)s OF —Umax(i)- Sufficiency: For all z € S(G, w), x # 0, it follows that there

Thus, by defining botd; € IR'/ from the entries Ofimax, —tmax, exists A € R, 0 < A < 1 such thatz € AJS(G, w). In
Umin ANd—Umin, andR; € R'5*" from the rows ofF and—F, the other words,= belongs at least to one facet &f(G, \w), i.e.,

region of saturation associated p is generically defined as: z € 8;8(G, \w) N {r € R"; Gz = dwgy, Gur < Mg,
Vi #i,1=1---, ¢} for somei and it follows thatz € K.
S(Rj, dj) ={x € R"; Rz < d;}. (5) Moreover, z belongs to some region of saturati¢i{ ?;, d,) and

thus K; N S(R;, d;) # § and it follows thatd;S(G, \w) C
Notice that the region correspondinggp= 0, is the polyhedron (K; N S(R;, d;) N S(G, w)). Hence, sincer is supposed to be
S(F, p). In the other regions, there is at least one control entry thdifferent from zero, if conditions i) and ii) hold it follows that
is saturated. (G(I)Kj - (’lU(l)/'w(l'))G(i));E + G(l)pj <0, VvVli=1,---,9, where
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if z(k) = = Assumption 1:Consider thatS(G, w) is unbounded and there
o exists0 < 3, 8 € R, such thatS(G, gw) C S(F, p). Suppose

Goyz(k+1) < RO Gyz(k) = M vi=1,---,g (11) also thatCerG is an A-invariant subspace.
O] This assumption implies thaterG C KerF. In this case, a

and thereforeGz(k + 1) < Aw which implies thatz(k + 1) € necessary condition to the contractivity G, w) w.r.t. the system

y : y ; ; . (1) is thatKerG is an A-invariant subspace [7].

9S(G, Mw) = M IS(GE, w) with A1 € R, 0 < A1 < A. Since this ( . _ R, nx(n—g)
reasoning can be applisth: € S(G, w), « # 0, the contractivity of Consu.:ierQ = [Q. @], QAE R, Wherer < IR !
S(G., w) is guaranteed if i) and ii) hold. is a basis for the subspack = KerG andQ; is a basis for the

Necessity: Suppose thaf(G, w) is contractive and i) or i) does COMplementary subspace SgTdenoted byS,. Define the change of

not hold. Then for some somg € 7, i € Z;, and! there exists Pasisiz = [Qo Qrllzs = o )
z e (K0 SR, dy) N S(G, w)), 2 #0, (ile.,z € 8:5(G, Aw) SinceKerG is supposed to bel-invariant and KerG C Ker F

with 0 < A < 1), such that it follows that F'(Q, = 0 and system (1) can be rewritten in the new
- basis as
— w
<G(1)A;’ -0 G(,;)),r +Guyp; > 0. (12)
W(4) zo(k+1) =Rozo(k) + Roz, (k) + Bosat(Fz,.(k)) (13)

Suppose now that(k) = z for somek > 0. Since z(k) € ze(k+1) = Rrz (k) + Brsat(F.z. (k). (14)

9;5(G, Aw), it follows that G;yx(k) = Aw() and we obtain

Guy(Aja(k)+p;)—Awyy > 0,ie,Gua(k+1) > \w(. Therefore The projection of the polyhedrafi(G, w) in S, alongS, is given

it follows that«(k + 1) € 5(G, Aiw), A1 > A which contradicts by

the hypothesis tha$ (G, w) is contractive and thus the necessity of

conditions i) and ii) is proven. O S(Gr, w) 2 {2, €RY; Grzy < w) (15)
The principle of Theorem 1 is to analyze the trajectories behavior

of system (1) in some subdomains 8{G,w). These subdomains with G, = GQ,.

limi lyh I i f i
are delimited by a polyhedral con€; and a region of saturation Property 1: The unbounded polyhedrd#(G, w), under Assump-

S(R;, d;). For any xz(k) belonging to S(G, w), it follows, that . ) ) . . IR
z(k) belongs both to one of these subdomains andtarfacet of tion 1, is a contractive set for system (1) if and onhSiGr, w) is
a contractive set for system (14).

an internal homothetic o6 (G, w) (AS(G, w), 0 < A < 1). In ) ) Rl T T
order to prove the contractivity of the domain, we must guarantT& Opg?gf, Bﬁfaﬂng }hazagrf the rC(;JEJ%jSreC%I)T]f[(;IOIows & O
thata(k + 1) verifies Ga(k + 1) < \w. Since, in each subdomains Prc;pc:(s)itic;; 1: Eongaer thal‘S((?. w) is an i/mbound.ed polyhe-

x(k+1)i i f hi ition i ival h . . . .
v(k + 1) s described from (8), this condition is equivalent to aV%ron satisfying Assumption 1. I§(G., w) is contractive for system

(G(I)A_j - (71!(1) /U)(,;) )G(,;) )J‘—i—G(l)]?]’ <0,vli=1,---, g. Roughly . . Lo
O : AN : ) and all the eigenvalues of matri®, are located inside the
speaking, this condition is tested by means of linear programs (1u(&rﬂt disk of the complex plane, the$i(G, ) is a domain of local

for all possible vector (k) belonging toS(G, w). Thus, Theorem . o

1 provides a condition that guarantees the contractivity of all tr%symptotl_c St_ab'“ty fc3r systgm (@) . .
trajectories originating irb (G, w). Hence, it is ensured that there is Proqf. Smcc_e S(G“ w) s a compact set, 'S(G'ﬂ’ w) S a
neither limit cycle nor parasitic equilibrium points iNsiG4G, w). contractive set, it is also a domain of local asymptotic stability for
Since S(G, w) is a convex compact polyhedron it is possible t he reduced order systt_am (14). It f0||9WS thatk) — 0 ask — oc,
associate to it &yapunov polyhedral functiof8], [4], [10], [18]. This . zr(0) € 5(Gy, w). Since all the eigenvalues dt, are located
function is strictly decreasing along all the trajectories of system ( side the unllt d'Sl:] of t,h'e Complex. plang, fr(?m Theorerr’1 Lin [15]
originating inS(G, w). Hence, we can state the following corollaryve can conclude that, (k) — 0 ask — oo, ¥2:(0) € S(Gr. w),

~ n—g 1 - . N . i
Corollary 1: If conditions of Theorem 1 hold, then we have the 2o(0) € IR"79. Since zo(k) € J(erG,_ vk 2 0, it follows
that V2(0) € S(G, w), the corresponding trajectory converges

asymptotically to the origin.

Thus, under Assumption 1, we can conclude that the contractivity
and the local asymptotic stability inside an unbounded polyhedron
Gye(k) } S(G, w) can be verified by considering a reduced order system with

following.
i) System (1) is locally asymptotically stable 5(G, w).
ii) The polyhedral function

we saturating controls and the projection$fG, w) in the complemen-
tary subspace oferG. SinceS(G.., w) is compact, the verification
is a strictly decreasing Lyapunov function for system (1). is accomplished by applying Theorem 1.

Proof: i) It follows directly from the fact thatS(G, w) is The use of Assumption 1 means that we consider a particular case.
compact, contains the origin and is contractive. ii) Sishe, w) NOte that when Assump@ior_l lis sati_sfie_d and all the eigenvalues
is compact and contains the origin, it follows thefz(k)) > 0, Of matrix R, are located inside the unit disk of the complex plane,
Va(k) # 0 and V(z(k)) = 0 if and only if (k) = 0. Since the bfasm.of attraction of the origin for.system Q) is uqboundeq in
S(G, w) is contractive, we have)(z(k + 1)) — V(z(k)) < 0, the dlrec_tlons ofCerG. It _should be pointed out that, wnth_out this
Va(k) € S(G, w), z(k) # 0, Yk > 0. ThusV(x(k)) is a strictly assumption, we cannot directly apply the results of Section Ill. In
decreasing Lyapunov function for system (1). O particular, v(v{w)eriCerG ¢ KerF, system (13)-(14) is not equivalent
to system (1).

V(a(k)) = m?x{

IV. UNBOUNDED POLYHEDRA
From Theorem 1, we can conclude stabilityS0G, w) only if it is V. DETERMINATION OF LOCAL ASYMPTOTIC STABILITY REGIONS
a compact set. However, in some cases, the condition of compactneds this section, we show how to use the contractivity condition
can be relaxed as we will show in this section. For this, consider thated in Theorem 1 in order to determine compact polyhedral regions
following assumption. of local asymptotic stability for the system (1).
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VI. DETERMINATION OF LOCAL ASYMPTOTIC STABILITY REGIONS sition 1 in order to generate an unbounded region of asymptotic
In this section, we show how to use the contractivity conditioftability for system (1) notincluded ifi( 7, p). In this case it suffices

stated in Theorem 1 in order to determine compact polyhedral regidRs2PPly the above algorithm considering the reduced order system
of local asymptotic stability for the system (1). (14) and the polyhedrof(G,, éw). The obtained.... is such that

S(G, dmaxw) is an unbounded region of asymptotic stability and

A. Numerical Procedure nonlinear behavior for system (1).

_ The proplem of_determlnlng_contractlve polyhedral smirtained B. Numerical Example
in the region of linear behavio(2) of the saturated system has ) ) ] .
been addressed in many papers. For example, by using the methdgonsider system (1) described by the following data:
described in [4] and [8] it is possible to compute the maximal Ao {1_2 0 } B {1 0 }

invariant and contractive set containediiiF, p) for the linear model 0.4 05 0 05
(3). Furthermore, there exist techniques based on eigenstructure

assignment (see, for example, [11] for an interesting survey) and F= {_9'95 0 } U = Urin = {2}
linear programming [20] for computing a matrik which makes 2203 4
contractive a given sef(G. w) andS(G. w) C S(F, p).* Consider a contractive polyhedral s&tG, w) C S(F, p) given

Hence, if we assume that a compact polyhedfqs, w), con- by
tractive with respect to the linear model (3), was computed from
one of the techniques found in the literature, we can apply Theorem 0
1 for calculating the maximum coefficient of homothegis.«, for G = 1 :
which S(G, smaxw) preserves the property of contractivity w.r.t. the -1 0 lr
saturated system (1). The algorithm is based on iterative computations 0 -1 4.5
and linear programming schemes. Matrix F' and control constraints define nine regions of saturation.
Algorithm: Since the polyhedr& (G, w) and S(F, p) are symmetric, we can
+ Step 0:Initialize 6 = §,. Choose a computational accuracy. analyze only five of these regions:
» Step 1:DetermineJ w.r.t. S(G, éw). For eachj € J and Region 1§, = [0 0]" < Reg. Linearity):
i € Z;, solve the following linear programé=1, - - -, g: { F}

2 0] T
15 0.65]

1

0 4.5
w =

1

j— wo — (
Vit i) = max <G(’>Aj - ufi Gm)” +Gwp; h=ArBE= {

subject to 0
i

.

2
4
i = |,
4

<%—%)x§0 Vi Region 2 ¢, = [1 1]"):
w(y W) .
+ Step 2: For eachj € 7 computey; = max{y;«, i);i € Z,, | = As = A; Ry = {_2'_2 —03
1, ---, g}. If conditions i) and ii) of Theorem 1 hold, go to Step 9
4 otherwise go to Step 3. P2 = { }

« Step 3:Decrease and return to step 1.

e Step 4:If the difference between thé of this iteration and the
last iteration is greater than the chosen accuracy, incréase
Otherwise stopdmax = 6. 0.95 0

When S(G,w) is compact, the maximal homothetic set to A, = {0-25 0 } B3 = -0.95 0

S(G, w), for which the asymptotic stability is guaranteed by Theorem 0.4 05] -
1, can be considered as a conservative approximation of the region {0}
p3 = ;

Region 3 ¢ = [0 1]7):

of attraction of the origin [17] for system (1). This conservativeness
is inherent to the use of Lyapunov functions that lead, by definition,
to convex domains [12]. Actually, in general the basin of attraction 3
of the origin is nonconvex and not analytically determinable. In order Region 4 {& = [—-1 1]"):
to overcome this problem, we can consider, for example, the union _ —0.95 0
of different polyhedrd J;_, S(G:, dmaxiwi). Ay =4 Ry {_2_2 _0_3}
In this case, the final domain of stability may be enlarged and _9
may be nonconvex. Moreover, this algorithm can be used in a D4 :{ 2};
complementary way to the one proposed in [19] in order to obtain
nonhomothetic expansions of a contractive set w.r.t. to system (1).
In particular, if we have determined an initial contractive un-
bounded polyhedrorf (G, w) contained inS(F, p) (see, for in- —0.95 0
stance, [7] and references therein), we can use the result of Propo- A = {1.2 0 } Rs = 2.2 0.3

=4 = ¢
lin these cases, matrics, G, and vectorw satisfy in particular the 1.5 0.65 2.2 0-3
propertiesG(A + BF) = HG and Hw < w, whereH is a nonnegative -2 -2
matrix [1], [3], [7]. They also satisfyNG = F and Nw < p where N Ps = { 0};
is a nonnegative matrix [11]. Note thdt is such that matrixd + BF' is
asymptotically stable and the origin belongsS6G., w).

2
(i;;: 2
4

Region 5§ =[-1 0]7):
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controls and with both additive and input disturbances. This will be
addressed by the authors in a forthcoming publication.

(1]

(2]

(3]
(4]

(5]
(6]

(7]

By applying the algorithm described in Section V-A, one obtains

Smax = 9.99 (accuracy = 0.01). S(G, Smaxw) represents the
maximal homothetic set of (G, w) which is contractive w.r.t. the

closed-loop saturated system. Since it is a compact set, from Corolla|

(8]

1, it is a domain of asymptotic stability and a safe operation for

system (1).

The maximal homothetic positively invariant set is obtained for

§ = 10 (see [9]). In this case, there exist some trajectories thHCl

remain on the boundary of the domain. This fact is justified by the

existence of parasitic equilibrium points on the boundary of the sftl]
(e1 =[10 12]", e2 = [-10 —12]"). For s > 10 one gets unstable :

trajectories originating in the domain.

It is worth to notice that the maximal homothetic set%6G, w)
contained in the region of linearity(F,p) is obtained foré =
1.1268. Fig. 1 depictsS(G, w), S(F, p), S(G, bmaxw), the para-

(13]

[14]

sitic equilibrium points ¢; ande:) of the saturated system and the

regions of saturationl{;'s).

VIl. CONCLUSION

[15]

[16]

In this note, we considered the analysis of local stability insidﬁn
polyhedral regions for discrete-time systems with saturating controls.
This analysis was based on the property of contractivity of such

polyhedral sets. In this sense, a necessary and sufficient condition

stated in order to guarantee the contractivity of a compact polyhedral
set having nonempty intersection with the nonlinear behavior regigro]
of the saturated system. In this case, there exists a Lyapunov
polyhedral function, strictly decreasing, for all the states belonging

to the considered polyhedral set. Consequently, the local asymptct%]
stability of the saturated system is ensured. An algorithm based on
linear programming was proposed to compute polyhedral regions
of stability and nonlinear behavior (i.e., the controls effectively

saturate in these regions) for the closed-loop system. Since the exact

determination of the region of attraction of the origin is, in general,
not possible for systems with saturating controls, the use of the
proposed algorithm can be seen as an interesting way to compute

approximations of this region.

The results presented in this note considered the case of state feed-

back. Nevertheless, their application to the case of output feedback
(static or dynamic) is straightforward. In this case, we have to redefine
the region of linearity and the regions of saturation in function of the

matrices that define the considered feedback. The proposed approach

should also allow to treat the problem of systems with saturating
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