
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 1, JANUARY 2001 119

V. CONCLUSION

This note has developed a sliding-mode controller which requires
only output information for a class of uncertain linear systems. The
controller comprises both linear and nonlinear components and is static
in nature, i.e., no compensation/observation is included. The novelty
of the approach is in the rationale and method used to synthesize the
linear control component. The reachability condition is not required
to be satisfied globally. Instead, sliding is only expected to take place
within a subset of the state-space containing the origin referred to as the
sliding patch. This region is shown to be rendered invariant by the con-
trol law. The linear static output feedback control component is synthe-
sized using an LMI optimization. The resulting LMI formulation can
be solved easily by standard commercially available software. The ef-
ficacy of the approach has been demonstrated on a numerical example
taken from the sliding-modeliterature.
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Local Stabilization of Discrete-Time Linear Systems with
Saturating Controls: An LMI-Based Approach

J. M. Gomes da Silva, Jr. and S. Tarbouriech

Abstract—This note deals with the problem of local stabilization of linear
discrete-time systems subject to control saturation. A linear matrix inequal-
itie-based framework is proposed in order to compute a saturating state
feedback that stabilizes the system with respect to a given set of admissible
initial states and, in addition, guarantees some dynamical performances
when the system operates in the zone of linear behavior (i.e., when the con-
trols are not saturated).

Index Terms—Discrete-time systems, control saturation, linear matrix
inequalities, local stability.

I. INTRODUCTION

In the last years, the problem of the stabilization of linear systems
subject to control saturation have been received the attention of many
authors (see, for example, [1] and [2]). The interest in this problem is
mainly motivated by the fact that the negligence of the control bounds
can be source of limit cycles, parasitic equilibrium points, and even
of the instability of the closed-loop system. The works found in the
literature can be classified in three contexts of stability, namely the
global, the semiglobal, and the local stability.

It is well known that the global stability can be achieved only when
the open-loop system is not strictly unstable, i.e., in the discrete-time
case, it has its poles inside or on the unite circle of the complex plane
(see, for example, [3]–[5] and the references therein). However, the
physical interest of the global stability is questionable since, in gen-
eral, the system is restricted to operate in a limited zone of the state
space. In this case, under the same hypothesis of open-loop stability, the
semi-global approach seems to be more realistic. In particular, given
any control bounds, it is possible to compute a linear state or output
feedback (i.e. the saturation is avoided) guaranteeing the asymptotic
stability of the closed-loop system with respect to (w.r.t) any bounded
set of admissible initial conditions (see, for example, [6] and [7]). In our
point of view, the main drawbacks of these two approaches are, first the
open-loop stability requirements, secondly that, in general, the com-
puted stabilizing control law does not provide significant improvement
of the time-domain performance of the closed-loop system. Hence,
when the open-loop system is unstable and/or some performance re-
quirements should be satisfied, only the local stabilization is possible.

This note focuses on the local stabilization problem. Given a set of
admissible initial conditionsX0 to be stabilized, our objective is to
compute a saturating state feedback control law that guarantees both
the asymptotic convergence to the origin of all trajectories emanating
from X0 and a certain degree of time-domain performance for the
closed-loop system in a neighborhood of the origin. In this aim, we
use a local representation of the saturated system deduced from the
difference inclusions theory. This representation consists in a polytopic
model valid in a certain polyhedral set in the state space. Based on this
model, some conditions expressed as linear matrix inequalities (LMIs)
and bilinear matrix inequalities (BMIs) are stated for determining
a state feedback gain to satisfy both stabilization and performance
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requirements. Since the numerical solution of BMIs is a difficult
task to accomplish, an LMI-framework, based on some relaxation
schemes combined with an optimization problem, is proposed to
handle the problem. Finally, the application of the proposed results in
the semi-global stabilization context and in the design of piecewise
control laws are presented.

1) Notations: For any vectorx 2 <n, x � 0 means that all the
components ofx, denotedx(i), are nonnegative. For two vectorsx, y of
<n, the notationx � y means thatx(i)�y(i) � 0,8i = 1; . . . ; n. The
elements of a matrixA 2 <m�n are denoted byA(i;l), i = 1; . . . ;m,
l = 1; . . . ; n. A(i) denotes theith row of matrixA. For two sym-
metric matrices,A andB, A > B means thatA � B is positive
definite.AT denotes the transpose ofA. diag(x) denotes a diagonal
matrix obtained from vectorx. Im denotes them-order identity matrix
and1m

�
= [1 . . . 1]T 2 <m. @S denotes the boundary of the setS . Co

f�g denotes a convex hull.

II. PROBLEM STATEMENT

Consider a linear discrete-time system

x(k + 1) = Ax(k) +Bu(k) (1)

wherex(k) 2 <n andu(k) 2 <m are respectively the state vector
and the control vector. MatricesA andB are real constant matrices of
appropriate dimensions. For system (1), we suppose that the following
assumptions hold.

A1) The control vector is subject to amplitude constraints which
define the polyhedral compact region
 � <m



�
= fu 2 <m;�� � u � �g; � � 0: (2)

A2) The pair(A;B) is controllable.
A3) The region of admissible initial states, denoted byX0, is

known.
Consider the saturating feedback control law

u(k) = sat(Fx(k)) (3)

where each component is defined,8 i = 1; . . . ;m, as follows:

sat(F(i)x(k))
�
=

��(i); if F(i)x(k) < ��(i)
F(i)x(k); if ��(i) � F(i)x(k) � �(i)
�(i); if F(i)x(k) > �(i):

(4)

By applying this control law to system (1) the closed-loop system be-
comesnonlinear

x(k + 1) = Ax(k) +Bsat(Fx(k)): (5)

It is worth noticing that inside the domainS(F; �) defined as

S(F; �)
�
= fx 2 <n;�� � Fx � �g (6)

the control inputs do not saturate and therefore, the evolution of the
closed-loop system is described by the followinglinear model:

x(k + 1) = (A+BF )x(k): (7)

OutsideS(F; �), the control inputs saturate and the stability of the
system must be analyzed by considering (5).

Under the above assumptions, the problem addressed in this note is
the following:

Problem II.1: Compute a matrixF such that

1. All the trajectories of system (5) emanating fromX0 converge
asymptotically to the origin.

2. A certain degree of performance is guaranteed when the system
operates inside the region of linear behaviorS(F; �).

III. SATURATED SYSTEM MODEL

In order to state the main results of the note, we define an appropriate
representation for the saturated system. The basic idea is to represent
the saturated system by a polytopic model. This kind of representation
was first introduced in [8] and has been applied in the specific case of
system (5) in [5], [9], and [10].

Note that each component of the control law defined by (4) can be
also written as

u(k)(i) = sat(F(i)x(k)) = �(x(k))(i)F(i)x(k) (8)

where

�(x(k))(i)
�
=

��(i)
F(i)x(k)

; if F(i)x(k) < ��(i)

1; if ��(i) � F(i)x(k) � �(i)
�(i)

F(i)x(k)
; if F(i)x(k) > �(i)

(9)

with 0 < �(x(k))(i) � 1, i = 1; . . . ; m.
The coefficient�(x(k))(i) can be viewed as an indicator of the de-

gree of saturation of theith entry of the control vector. In fact, smaller
is�(x(k))(i), farther is the state vector from the region of linearity (6).
Notice that�(x(k))(i) is a function ofx(k). For a sake of simplicity,
in the sequel we denote�(x(k))(i) as�(k)(i).

Define from the vector�(k) 2 <m a diagonal matrix
D(�(k))

�
= diag(�(k)). System (5) can be rewritten as

x(k + 1) = (A+BD(�(k))F)x(k) = Akx(k) (10)

where at each instantk the matrixAk is a function of�(k) and in
consequence depends onx(k).

Let now0 < � (i) � 1 be a lower bound to�(k)(i) and define

the vector�
�
= [�(1) . . .�(m)]

T . The vector� is associated to the fol-
lowing region in the state space:

S(F; ��)
�
= fx 2 <n;��� � Fx � ��g (11)

where��(i)
�
= (�(i)=�(i)). In fact, for allx(k) 2 S(F; ��), it follows

that1 � �(i) � �(i).
Consider now all the possiblem-order vectors such that theith entry

takes the value 1 or�(i). Hence, there exists a total of2m different
vectors. By denoting each one of these vectors by
j , j = 1; . . . ; 2m,
define the following matrices:

Dj(�) = D(
j) = diag(
j)

Aj = A+BDj(�)F: (12)

From the definition of matricesAj , it follows that8x(k) 2 S(F; ��),
Ak 2 CofAj ; j = 1; . . . ; 2mg. Hence, system (5) can be locally
represented by the polytopic model

x(k + 1) =

2

j=1

�j;kAjx(k) (13)

with 2
j=1 �j;k = 1, �j;k � 0. In other words, at each instantk

matrixAk can be obtained as a linear convex combination of matrices
Aj . It should be pointed out that model (13) represents the saturated
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system only inS(F; ��). Actually, if x(k) 2 S(F; ��), the polytopic
model (13) can be used to determine the state of the saturated system
at the instant(k + 1).

IV. L OCAL ASYMPTOTIC STABILIZATION

Problem II.1can be interpreted as a problem ofLocal Asymptotic
Stabilization. In fact, to solve it we should calculate a state feedback
that guarantees the local stability of system (5) in a region that con-
tains the setX0. Furthermore, when this system operates in the region
of linearity, i.e., the closed-loop system is described by (7), a certain
degree of time-domain performance should be guaranteed. This kind
of specification can, in general, be achieved by placing the poles of
(A + BF ) in a suitable region of the unit disk of the complex-plane
[11]. In this way, if we are able to compute a matrixF such that a setS
containingX0 is contractive w.r.t the saturated system (5) and the poles
of (A + BF ) are located in a suitable regionD of the unit disk then
Problem II.1is solved.

A. Main Result

Consider the following data:

• a vector� of control bounds;
• a set of initial conditionsX0 defined as an union of ellipsoidal

sets and a polyhedral set described by its vertices

X0 = Z [

n

s=1

Es(Ps; 1) (14)

with Es(Ps; 1)
�
= fx 2 <n; xTPsx � 1g, Ps = P T

s > 0,
8s = 1; . . . ; ne andZ

�
= Cofv1; . . . ; vn g, vi 2 <n, 8i =

1; . . . ; nv ;
• a regionD, contained in the unit disk of the complex plane, de-

fined as [11]

D
�
= fz 2 C; (H + zQ+ zQ

T ) < 0g (15)

whereH andQ arel � l symmetric real matrices andz is a com-
plex number with its conjugatez. We assume that if the poles of
(A+BF ) are located in the regionD the time-domain require-
ments in the zone of linear behavior of the system (5) are satisfied.

Proposition IV.1: If there exist matricesW = WT > 0, W 2
<n�n, Y 2 <m�n and a vector� 2 <m, satisfying the following
matrix inequalities:

(i) H(i;j)W +Q(i;j)(AW +BY ) +Q(i;j)(AW +BY )T < 0

1 � i; l � q

(ii)
W WAT + Y TDj(�)B

T

AW +BDj(�)Y W
> 0

8j = 1; . . . ; 2m

(iii)
W �(i)Y

T ITm(i)

�(i)Im(i)Y �2(i)
� 0 8i = 1; . . . ;m

(iv)
1 vTr

vr W
� 0 8r = 1; . . . ; nv

(v)
Ps In

In W
� 0 8s = 1; . . . ; ne

(vi) 0 < �(i) � 1; i = 1; . . . ;m (16)

then F = YW�1 solves Problem II.1 and the ellipsoid
E(W�1; 1)

�
= fx 2 <n;xTW�1x � 1g is a domain of asymptotic

stability for system (5).

Proof: If there exist matricesW = WT > 0, Y and a vector
� satisfying the matrix inequalities(i)–(vi) it follows that:

1. LMI (i) guarantees that all the eigenvalues of(A + BF ) are
contained in regionD [11];

2. from inequality(ii), one obtains

2

j=1

�j;k
W WAT + Y TDj(�)B

T

AW +BDj(�)Y W
> 0

(17)
with 2

j=1 �j;k = 1, �j;k � 0;
3. inequality(iii) ensures that ellipsoidE(W�1; 1) is contained in

the regionS(F; ��) with F = YW�1 [9];
4. LMIs (iv) and(v) guarantee thatX0 defined by (14) is contained

in the ellipsoidE(W�1; 1) [12], [13].

Suppose now thatx(k) 2 E(W�1; 1). Since E(W�1; 1) �
S(F; ��), the state of the saturated system (5) at instant(k + 1) can
be computed by using the polytopic model (13) with appropriate�j;k,
j = 1; . . . ; 2m and matricesAj defined from the coefficients of
saturation�(i) andF = YW�1. From (17) it follows that:

x(k)T
2

j=1

�j;kAj

T

W
�1

2

j=1

�j;kAj x(k)

�x(k)TW�1
x(k) < 0

that is,

x(k + 1)TW�1
x(k + 1)� x(k)TW�1

x(k) < 0:

Since this reasoning is valid8x(k) 2 E(W�1; 1), x(k) 6= 0, we can
conclude thatV(x(k))

�
= x(k)TW�1x(k) is a local strictly decreasing

Lyapunov function for the saturated system (5) inE(W�1; 1) and thus
the ellipsoidE(W�1; 1) is a contractive domain w.r.t system (5). Since
X0 � E(W�1; 1), the asymptotic convergence to the origin of all tra-
jectories of system (5) emanating fromX0 is guaranteed. The LMI(i)
guarantees the performance in the region of linearityS(F; �).

B. LMI Framework

The variables to be found by applying Proposition (1) areW ,Y , and
�. However, inequalities(ii) and(iii) of (16) are bilinear (BMI) in the
decision variablesY and�, whereas relations(i), (iv)–(vi) of (16) are
linear (LMI) in W , Y and�.

An easy and straightforward way to overcome this problem is to fix,
a priori, the value of the components of�. In this case, inequalities
(ii) and (iii) become LMIs and, given(�;X0;D), it is possible to
solve constraints(i)–(vi) of Proposition IV.1, as a feasibility problem,
with efficient numerical algorithms [12]. Of course, considering a fixed
vector� and the given data, it may actually be impossible to find a fea-
sible solution. In fact, considering a scaling factor�, � > 0, the
maximum homothetic set toX0, �X0, that can be stabilized by con-
sidering the fixed�, can be obtained by solving the following convex
optimization problem with LMI constraints:

max �

subject to
� > 0

1 �vTi

�vi W
> 0 8i = 1; . . . ; nv

Ps �In

�In W
� 0 8s = 1; . . . ; ne

relations(i); (ii); (iii); and (vi) of Proposition IV.1

(18)
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Henceforth, if the optimal value of�, �?, is greater than or equal
to one, it means that it is possible to find a solution considering the
fixed � and the given data(�;X0;D). We conjecture that smaller are
the components of vector�, greater is the optimal value of the scalar
�, that is, it is possible to stabilize larger domains of admissible initial
states (see the numerical example in Section V-C). Note that the idea is
to render the problem less conservative by allowing more control satu-
ration. Hence, for a given regionD and a regionX0, we can consider
an iterative scheme where we decrease the components of� in each
iteration until finding an optimal solution(W ?; Y ?; �?) for (18) with
�? � 1. In this case, two issues arise: how to choose the initial vector�
and how exactly to decrease the components of� (if �? < 1 with the
considered�). These issues can be considered as open problems and
one simple way of handling them is to apply trial and error procedures.

Another solution consists in solving (18) by considering directly
the problem with BMI constraints. However, as pointed in [14], the
methods proposed in the literature for solving BMIs present exponen-
tial worst case complexities and therefore the required computational
effort may be unreasonably large. Moreover, BMI-based problems are
not convex, and thus, we cannot guarantee that the obtained solution is
a global optimum. In order to overcome this computational difficulty
in solving BMIs, we can approximate the solution of BMI optimization
problems via polynomial-time algorithms, by using, for example, some
relaxation schemes based on LMI relations (LMIR) (see for instance
[14] and references therein). With this aim, we propose the following
two-step iterative algorithm:

• Step 1.Given�, solve (18) forW , Y , and� (LMIR 1).
• Step 2.GivenY , solve (18) forW , �, and� (LMIR 2).

The iteration between these two steps stops when a desired preci-
sion for� is achieved. If�? � 1, it means that it is possible to stabilize
system (5) for all initial conditions inX0 by considering the pole place-
ment of(A + BF ) insideD. In particular, all intermediate solutions
with � � 1 are solutions toProblem 1. Hence, this kind of approach
solves, in part, the problem of the choice of vector� by using robust
and available packages to solve LMIs [15].

Remark IV.1: It is worth noticing that if we start the algorithm with
� = 1m, the convergence to a solution(�?, W ?, Y ?, �?), is ensured
provided that the pair(A;B) is controllable. This follows from the
fact that an optimal solution for LMIR 1 is also a feasible solution for
LMIR 2 and vice versa. Of course, taking different initial vectors� the
proposed algorithm can converge to different values of(�?, W ?, Y ?,
�?).

Remark IV.2: The result ofProposition IV.1can be applied to stable
or unstable open-loop systems. However, we should take into account
that Proposition IV.1furnishes only a sufficient condition to solve
Problem II.1by considering the data(�;X0;D). Moreover, when the
open-loop system is unstable the setX0 may be not contained in the
controllable region of the system (1) with constrained controls. In this
case there is effectively no solution toProblem II.1.

V. APPLICATIONS

A. Semi-Global Stabilization

Consider the following assumption.

A4) All the eigenvalues ofA are located inside or on the unit disk
of the complex plane.

Under this assumption, from the result presented in [7] it follows that
given any bounded set of initial conditionsX0 and for any control
bounds given by a vector�, it is possible to determine a control law
u(k) = Fx(k) such that for all initial conditions belonging toX0

(x(0) 2 X0) the corresponding trajectories converge asymptotically
to the originwithout control saturation. In other words, system (1) is

said to be semi-globally stabilizable. More specifically, it is proven in
[7] that under assumptionsA1), A2), A3), andA4) there always exists
� > 0 such that the parameter-dependent Riccati equation

P (�) = ATP (�)A+ �In �ATP (�)B(BTP (�)B + Im)�1

� BTP (�)A (19)

has a solutionP (�) and the control lawu(k) = Fx(k) =
�(BTP (�)B + Im)�1BTP (�)Ax(k) is such that

1) the eigenvalues of(A+ BF ) are inside the unit disk;
2) the inclusion relation

X0 � E(P (�); c) � S(F; �) (20)

holds for somec > 0, with E(P (�); c)
�
= fx 2

<n; xTP (�)x � cg.
A consequence of this result is the following.
Proposition V.1: Consider system (1) under AssumptionsA1), A2),

A3), andA4). LetX0 be defined as in (14), then

(a) There always exists a matrixW = WT > 0, W 2 <n�n and
a matrixY 2 <m�n that verify the following set of LMIs.

(i)
W WAT + Y TBT

AW +BY W
> 0:

(ii)
W Y T IT

m(i)

Im(i)Y �2(i)
� 0 8i = 1; . . . ;m:

(iii)
1 vTr
vr W

� 0 8r = 1; . . . ; nv

(iv)
Ps In
In W

� 0 8s = 1; . . . ; ne: (21)

(b) If (W;Y ) is an admissible solution for the set of LMIs (21), then
the control lawu(k) = Fx(k) = Y W�1x(k) guarantees that
all the trajectories of system (1) emanating fromX0 converge
asymptotically to the origin without control saturation.

Proof: (a). Since there always exist a positive scalar� and a ma-
trix P (�) solutions to (19) such that the inclusion relation (20) holds
for somec > 0 with F = �(BTP (�)B + Im)�1BTP (�)A, it
is easy to verify thatW = (P (�)=c)�1 andY = �c(BTP (�)B +
Im)�1BTP (�)AP (�)�1 satisfy the set of LMIs (21).(b). The proof
mimics the one ofProposition IV.1.

It is worth noticing that, in our case, all the solutions to the semi-
global stabilization problem obtained with the Riccati approach are
contained in the set of solutions to the LMIs (21) but the converse does
not hold. Furthermore, the LMI formulation allows to incorporate to
the problem other control specifications. Convex optimization prob-
lems, with the LMIs (21) as constraints, can be formulated in order to
find solutions to the semi-global problem that satisfy performance re-
quirements.

Moreover, the solutions considered by the Riccati approach and by
Proposition V.1suppose that the control does not saturate. This fact can
lead to slow closed-loop dynamics. In this case, it can be useful to allow
the control saturation in order to improve the speed of convergence
of the trajectories to the origin. For example, we can use the result of
Proposition IV.1and consider the following optimization problem:

min �

subject to

(i)
�W WAT + Y TBT

AW +BY �W
> 0

relations(ii); (iii); (iv); (v); and (vi) of Proposition IV.1.
(22)
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Constraint(i) means that the considered regionD is a disk of ray�.
Hence, minimization of� implies the minimization of the spectral ray
of (A + BF ). Furthermore, LMIR 1 and 2 described in Section IV-B
can be applied considering the optimization problem (22) instead of
(18). In this case the optimization problem (22) is a generalized eigen-
value problem (GEVP) [12].

B. Piecewise Control

The idea of the piecewise control is to apply higher feedback gains
to the system as the state approaches the origin. This is an interesting
way to deal with the problem of control saturation and, at the same
time, to improve the rate of convergence of the closed-loop trajectories
to the origin. The main problem of this kind of control law is to de-
termine appropriate switching sets and the associated gains in order to
avoid limit cycles or unstable behavior. In [13], for example, an inter-
esting method is proposed to compute piecewiselinearcontrol laws for
continuous-time linear systems. This approach is based on the solution
to Riccati equations. We show now how to compute a piecewisesatu-
rating control law based on the condition given inProposition IV.1.

LetN be the number of desired switching sets. The piecewisesatu-
rating control law can be computed as follows.

Step 1) DefineN homothetical sets toX0 as follows:

Xq = �qX0; 0 < �q < 1; q = 1; . . . ; N ; �0 = 1

XN � XN�1 � . . . � X1 � X0:

Associate a vector of coefficients of saturation�q to each
regionXq .

Step 2) For eachq = 0; . . . ; N , solve an optimization problem of
type (22) by consideringXq and�q as data andWq; Yq; �

as the associated optimal solution.
Step 3) For eachq = 0; . . . ; N define

• the feedback matrix:Fq = YqW
�1
q

• the switching set:Sq = fx 2 <n; xTW�1
q x � 1g.

FromProposition IV.1, it follows that the application of the control
law defined as

u(k)
�
=

sat(F0x(k)); if x(k) 2 S0; x(k) 62 fS1;S2; . . . ;SNg
sat(F1x(k)); if x(k) 2 S1; x(k) 62 fS2;S3; . . . ;SNg

...
...

...
sat(FNx(k)); if x(k) 2 SN

(23)

to the system (1) guarantees the asymptotic convergence to the origin of
all the trajectories emanating fromX0. Note that we consider a vector
�q for each gainFq . The idea is to accelerate even more the conver-
gence by allowing the saturation at each time the trajectory enters a
new regionSq . Of course, if the effective saturation is not desired it
suffices to consider�q = 1m, 8q = 0; . . . ; N .

Remark V.1: Differently from [13], the ellipsoids do not need to
be nested in our case. It should be noticed that, from the definition
of the control law (23), ifx(k) 2 Sj , it is not possible to switch to
a previous saturating state feedbacksat(Fix(k)) with i < j and,
therefore, chattering cannot occur.

C. Numerical Examples

The numerical results presented in this section were obtained by
using the MATLAB LMI Control Toolbox [15].

Example V.1: Consider the simplified model of the vertical
dynamics of an helicopter borrowed from [16]. By considering a

sampling period of0:001s the matrices describing system (1) are the
following:

A =

0:9964 0:0026 �0:0004 �0:0460

0:0045 0:9038 �0:0188 �0:3834

0:0097 0:0263 0:9379 0:1223

0:0005 0:0014 0:0968 1:0063

B =

0:0444 0:0167

0:2935 �0:7252

�0:5298 0:4726

�0:0268 0:0241

:

Notice that matrixA is unstable (the eigenvalues ofA are:1:0284 �
0:0098i;0:9672;0:8203). The bounds on the control are given by� =
[3 2]T . The set of admissible initial conditions is an hypercube in<4:
X0 = fx 2 <4;�1 � x(i) � 1;8i = 1; . . . ; 4g. The regionD
corresponds to a half disk centered at the origin with a ray� < 1

D = fz 2 C;Refzg � 0 and(Refzg)2 + (Imfzg)2 � �
2
; � < 1g:

Notice that� represents the spectral ray of(A + BF ). Smaller is�,
closer to the origin are the poles of(A+BF ) and greater tends to be
the rate of the convergence of the trajectories to the origin.

Considering the data above, Table I shows the final values of�

and� obtained from the iterative algorithm proposed in Section IV-B
from different initial vectors� and scalars�. The number of iterations
needed in each case is denoted byniter. �initial and�final denote
the optimal values of� obtained by the iterative algorithm from respec-
tively �initial and�final.

Regarding Table I, we can notice the following:

• Smaller are the components of�, greater is the� obtained from
(18). This illustrates the fact that by allowing saturation we can
stabilize the system for a larger set of initial conditions. Besides,
more stringent is the performance requirement (smaller�, in this
case), smaller is the region of admissible initial states for which
we can find a solution.

• In both cases� = 0:9 and � = 0:8, the better gain between
�initial and�final is obtained for�initial = 12.

• For the case� = 0:9, the smaller is chosen�initial (and there-
fore�final), the greater is�initial (and therefore�final).

• For the case� = 0:8, it is not possible to find a solution� � 1.
These facts illustrate the tradeoff between the performance require-

ments (�), the minimal size of the set of initial states (�) and the coef-
ficient of saturation (�).

Example V.2: Consider the example treated in [6], for which system
(1) is described by the following matrices:

A =

0 1 0 0

0 0 1 0

0 0 0 1

�1 2
p
2 �4 2

p
2

B =

0

0

0

1

:

The bounds on the control are given by� = 4. The set of initial
conditions is given by the hypercubeX0

�
= fx 2 <4; jx(i)j � 10,

i = 1; 2; 3; 4g. Since the open-loop system isnot strictly unstable, by
applying the semi-global stabilization results developed in [6] the fol-
lowing gain is computed

F1 = [0:0394 0:0840 0:0796 0:0283]:

With this gain the convergence to the origin of all the trajectories em-
anating fromX0 is ensured without control saturation.
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TABLE I
ALGORITHM PERFORMANCE

Fig. 1. Time-responses.

We apply now the proposed LMI-based approach to these data. By
considering the optimization problem (22) with� = 0:6, we obtain the
following feedback gain:

F2 = [0:1534 0:3328 0:3207 0:1161]:

FromProposition IV.1, the control lawu(k) = sat(F2x(k)) stabilizes
asymptotically the system for all initial conditions belonging toX0.
Fig. 1 depicts the time-response of the first state variable and the control
signal in both cases for the initial conditionx(0) = [�10 10 10 10]T .
Note that withF2 (solid line) we obtain a time-response less oscilla-
tory and the convergence is faster than the one obtained with the appli-
cation ofF1 (dotted line). Furthermore, the maximal amplitude peak
of the state response is reduced with the application of the saturating
control law (what is important if we have state amplitude constraints).
Of course, withF2 the control saturates. These facts illustrate that the
time-response of the closed-loop system can be improved by allowing
the saturation.

Example V.3: Consider the linearized model of an inverted pen-
dulum studied in [13]. For a sampling period of0:001s one gets the
discretized model described by the following data:

A =
0:9995 0:0100

�0:1000 0:9995
B =

0:0000

0:0100
:

The bounds on the control are given by� = 5. The set of initial con-
ditions is a disk centered at the origin with a ray equal to 1. With these
data and considering� = 1 (i.e., saturation avoidance) the optimal so-
lution of problem (22) gives

F1 = [0:0022 � 1:5214]:

Fig. 2. State trajectories.

Consider now the application of the piecewise control law described
in Section V-B with five switching sets, that is,N = 4. For this, we
consider the following:

• �0 = 1, �1 = 0:8, �2 = 0:6, �3 = 0:4, �4 = 0:2;
• �q = 0:6 8q = 0; . . . ; 4.

The obtained feedback gainsF2q and matricesP2q defining the
switching sets are the following:

F20 = [�0:4062 � 2:4064]

F21 = [�0:9649 � 2:8880]

F22 = [�2:2507 � 3:6029]

F23 = [�5:2998 � 4:7812]

F24 = [�16:1831 � 7:2972]

and

P20 =
0:9852 0:1138

0:1138 0:0935

P21 =
1:5290 0:2011

0:2011 0:1376

P22 =
2:7083 0:3976

0:3976 0:2173

P23 =
6:0954 0:9473

0:9473 0:3890

P24 =
24:5113 3:3788

3:3788 0:9030
:

Fig. 2 depicts the state trajectories for an initial conditionx(0) =
[1 0]T by applyingu(k) = F1x(k) (dotted line), by applying the
piecewise control law without saturation (dashed line) and by applying
the piecewise control law resulting from matricesF2q (solid line). Re-
mark that the rate of convergence toward the origin is better with the
saturating piecewise control law.

VI. CONCLUSION

The major contribution of this note resides in the use of a local poly-
topic representation of the saturation nonlinearity for studying the mul-
tiobjective problem of both local stabilization and performance require-
ments satisfaction with respect to a linear system with saturating con-
trols. Thanks to this representation and the use of relaxation schemes,
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numerical efficient techniques based on an LMI-framework are pro-
posed in order to compute a effectively saturating state feedback con-
trol law that solves the problem.

Since efficient algorithms and software to solve LMI-based prob-
lems are available, the proposed method represents an interesting and
easy-implementable way to compute saturating control laws. More-
over, the proposed LMI framework allows to treat uncertain systems
and to incorporate to the problem other control requirements and state
amplitude constraints.
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Simultaneous Stabilization of Two Discrete-Time
Plants Using a 2-Periodic Controller

Sarit K. Das

Abstract—A generic method for designing a 2-periodic controller for the
simultaneous placement of the closed-loop poles of two single-input–single-
output discrete shift-invariant plants at the origin is presented. The method
consists of first recasting the simultaneous pole-placement problem as one
of solving a coupled pair of linear polynomial equations involving three un-
known polynomials, and then obtaining the controller parameters in terms
of the coefficients of these polynomials. The isolated cases for which such
pole placement is not possible have been listed. Simulation results show
that the performances of systems thus compensated are superior to their
performances when compensated using the higher periodicity controllers
suggested in literature.

Index Terms—Periodic controller, simultaneous stabilization.

I. INTRODUCTION

As is well known, the simultaneous stabilization of two SISO, linear,
time-invariant (LTI) plants using an LTI controller is not possible, ex-
cept when the poles and zeros of the plants satisfy a certain interlacing
property [1], [2]. In this note, we examine if a discrete periodic con-
troller can achieve the same for two discrete shift-invariant plants. Now,
although there exists a considerable number of works in the literature
that investigate different aspects of the capabilities of periodic con-
trollers [3]–[10] and the references therein), such a problem appears
to have been considered only in [4]. (It may be noted that the problem
of simultaneous pole placement of continous-time plants has been con-
sidered in [3]. The controller used there is of generalized sampled data
hold-function type.) In [4], a controllerC for the simultaneous stabi-
lization of M shift-invariant plants,Gi, i = 1; 2; . . . ;M , has been
obtained by patching up the dead-beat controllersCi corresponding to
eachGi in the following fashion:

C(N) =Ci; for Ni�1 � N < Ni

=0; for N = NM

=C(N +NM )

whereNi = n1 + n2 + � � � + ni, andni is the number of sampling
periods required byCi to bring the output ofGi to zero. Now, since
ni depends on the order ofGi, the total periodNM may become a
large number, and the main shortcoming of this controller is that for
NM�ni instants of the total period, the output ofGi will deviate from
zero (and may actually build up substantially) before being brought to
zero during theni instants whenCi is in force. Besides, since eachCi
may, by itself, be unstable, it is important to note that its internal states
must be reset to zero every time it is taken off the active loop.

In this note, we aim to stabilize two plants simultaneously using
only one 2-periodic controller, chosen, following [5], in the controller-
canonical form. The corresponding closed-loop characteristic equa-
tions for the two plants, as obtained following [5] and [6], are then sim-
plified to yield a simultaneous pair of linear polynomial equations in-
volving three unknown polynomials. The necessary and sufficient con-
ditions for the existence of these polynomials along with a method for
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