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V. CONCLUSION Local Stabilization of Discrete-Time Linear Systems with

This note has developed a sliding-mode controller which requires ~ Saturating Controls: An LMI-Based Approach

only output information for a class of uncertain linear systems. The

controller comprises both linear and nonlinear components and is static
in nature, i.e., no compensation/observation is included. The novelty
of the approach is in the rationale and method used to synthesize th@pstract—This note deals with the problem of local stabilization of linear
linear control component. The reachability condition is not requireatiscrete-time systems subject to control saturation. A linear matrix inequal-
to be satisfied globally. Instead, sliding is only expected to take plaite-based framework is proposed in order to compute a saturating state

within a subset of the state-space containing the origin referred to as back that stabilizes the system with respect to a given set of admissible
initial states and, in addition, guarantees some dynamical performances

sliding patch. This region is shown to be rendered invariant by the CQpen the system operates in the zone of linear behavior (i.e., when the con-
trol law. The linear static output feedback control component is synthgols are not saturated).

sized using an LMI optimization. The resulting LMI formulation can . ) ) . .
. . . Index Terms—Piscrete-time systems, control saturation, linear matrix

t_)e solved easily by standard commercially available softwgre. The squalities, local stability.

ficacy of the approach has been demonstrated on a numerical example

taken from the sliding-modeliterature.
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requirements. Since the numerical solution of BMIs is a difficult 1. All the trajectories of system (5) emanating frok converge
task to accomplish, an LMI-framework, based on some relaxation  asymptotically to the origin.
schemes combined with an optimization problem, is proposed to 2. A certain degree of performance is guaranteed when the system
handle the problem. Finally, the application of the proposed results in  operates inside the region of linear behalgf, p).
the semi-global stabilization context and in the design of piecewise
control laws are presented. l1l. SATURATED SYSTEM MODEL

1) Notations: For any vector: € R", 2 > 0 means that all the
components of, denoted:(,), are nonnegative. For two vectarsy of
R", the notation: > y means that;, —y;) > 0,Vi=1,...,n.The
elements of a matrid € R™*" are denoted by(; ;y,i = 1,...,m,
Il = 1,...,n. Ag;) denotes théth row of matrix A. For two sym-
metric matricesA andB, A > B means thatd — B is positive
definite. AT denotes the transpose df diag«) denotes a diagonal
matrix oAbtained from vector. I,,, denotes thex-order identity matrix
andl,, =[1...1]7 € ®R™. 8S denotes the boundary of the s&tCo N ) _ o1
{} denote[.\s a co]nvex hull. ulk)) = sat(Fx(k) = alx()n Fox(k) ®

In order to state the main results of the note, we define an appropriate
representation for the saturated system. The basic idea is to represent
the saturated system by a polytopic model. This kind of representation
was first introduced in [8] and has been applied in the specific case of
system (5) in [5], [9], and [10].

Note that each component of the control law defined by (4) can be
also written as

where
[l. PROBLEM STATEMENT
EILON :
Consider a linear discrete-time system Froa(k) if Floye(k) < —p
N A .
, aa(k))i = § L. if —piy < Froye(k) <piy  (9)
x(k+1) = Azx(k) 4+ Bu(k) 1) P . ' '
m it Foyz(k) > pey
wherez(k) € R" andu(k) € R are respectively the state vector '
and the control vector. Matrice$ and B are real constant matrices ofwith 0 < a(x(k))i) < 1,i =1,...,m.
appropriate dimensions. For system (1), we suppose that the followingrhe coefficienix(x(k)) ;) can be viewed as an indicator of the de-
assumptions hold. gree of saturation of th&h entry of the control vector. In fact, smaller
A1)  The control vector is subject to amplitude constraints whicl¥ (2 (k) (., farther is the state vector from the region of linearity (6).
define the polyhedral compact regiehC R Notice thata(z(k))(; is a function ofz(k). For a sake of simplicity,
in the sequel we denote(x(k)) ;) asa(k)).
Qé{u ER™ —p<u=p} p 0. 2 Define from the vectora(k) € R™ a diagonal matrix

D(a(k)) 2 diag a(k)). System (5) can be rewritten as

A2) The pair( A, B) is controllable.

A3)  The region of admissible initial states, denoted by, is x(k+1) = (A4 BD(a(k))F)x(k) = Arx(k) (10)
known.

Consider the saturating feedback control law where at each instarit the matrix.A; is a function ofa(k) and in

consequence depends @tk ).

u(k) = sat(Fx(k)) (3) Letnow0 < a() <1 be a lower bound tex(%);, and define
the vectora = [y - .L_I(m)]T. The vector is associated to the fol-
where each component is defingth, = 1, ..., m, as follows: lowing region in the state space:
L[ ren i EGe(k) < —pa) S(F,p™) 2 {z € R";—p™ < Fu < p} (11)
S?Lt(F(i)X(k)) = F(Z'):L’(k), if —pi) < F(,-);L’(]C) <pwy  (4)
PG) if Fipyz(k) > py- wherep(; 2 (p(iy/ap)- Infact, for allz(k) € S(F, p™), it follows

. . that1 > 78)) > Q-
By applying this control law to system (1) the closed-loop system be- cqngjger now allthe possible-order vectors such that thih entry
comesnonlinear takes the value 1 on,,. Hence, there exists a total of* different
vectors. By denoting each one of these vectorshy = 1,...,2™,

e(k +1) = Az(k) + Bsat(F(k)). () define the following matrices:
It is worth noticing that inside the domaB{ F, p) defined as D, (o) = D(v;) = diag(y,)
S(F.p) 2 {x € R —p < Fr < p) (6) 4j = A+ BD;(@)F (12)

rom the definition of matriced ;, it follows thatvx(k) € S(F, p®),
» € Co{A,;7 = 1,...,2™}. Hence, system (5) can be locally
represented by the polytopic model

the control inputs do not saturate and therefore, the evolution of t
closed-loop system is described by the followlimgar model:

z(k+1)=(A+ BF)z(k). @ gm
, p(k+1) = AjeAju(k) (13)
Outside S(F, p), the control inputs saturate and the stability of the j=1

system must be analyzed by considering (5).
Under the above assumptions, the problem addressed in this noteith Zf; Ak = 1, A > 0. In other words, at each instaht

the following: matrix.A; can be obtained as a linear convex combination of matrices
Problem 11.1: Compute a matrix¥’ such that A;. It should be pointed out that model (13) represents the saturated
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system only inS(F, p). Actually, if x(k) € S(F, p*), the polytopic Proof: If there exist matrice$V = W7 > 0,Y and a vector
model (13) can be used to determine the state of the saturated systesatisfying the matrix inequalitie§)—(v7) it follows that:
at the instantk + 1). 1. LMI (i) guarantees that all the eigenvalues(gf+ BF) are
contained in regiorD [11];
IV. LOCAL ASYMPTOTIC STABILIZATION 2. from inequality(ii), one obtains

Problem Il.1can be interpreted as a problemlajcal Asymptotic o - - B
Stabilization In fact, to solve it we should calculate a state feedback S { w WA" +Y"D;(a)B" S 0
that guarantees the local stability of system (5) in a region that con- PELAW + BD;(a)Y W
tains the seft,,. Furthermore, when this system operates in the region - (17)
of linearity, i.e., the closed-loop system is described by (7), a certain  ith Z‘]%’:”l Nk =1, > 0;
degree of time-domain performance should be guaranteed. This kind - inequality(iii) ensures that ellipsoifl(17*, 1) is contained in
of specification can, in general, be achieved by placing the poles of  the regionS(F, p*) with F = YW~ [9];

(A 4+ BF) in a suitable region of the unit disk of the complex-plane 4 | mis (iv) and(v) guarantee that, defined by (14) is contained
[11]. In this way, if we are able to compute a matfixsuch that a sef in the ellipsoide (W1, 1) [12], [13].
containingYy is contractive w.r.t the saturated system (5) and the p0|eSSuppose now thaf(k) € &WL1). Since&(W=1,1) C

of (4 4+ BF)_ are located in a suitable regidn of the unit disk then S(F, p™), the state of the saturated system (5) at instant 1) can
Problem II.1is solved. be computed by using the polytopic model (13) with approptiate,
Jj = 1,...,2™ and matricesd; defined from the coefficients of

saturationy ;) andF' = YW~". From (17) it follows that:

A. Main Result

Consider the following data:

* a vectorp of control bounds; om r am
+ a set of initial conditionsY;, defined as an union of ellipsoidal u(%)” (Z )\jvaJ) wt (Z )\Jv’kvAj) (k)
sets and a polyhedral set described by its vertices j=1 j=1

—2(k)'Wla(k) < 0

Xy =ZU (U Es(PsHl)) (14

s=1 that is,

with £.(P.,1) 2 {x € R0 Pow < 1}, P, = PY > 0, e(k+ D)W a(k+1) — 2(k)" W™ 2(k) < 0.

Vs = 1,....n, and 2 £ Co{vi,...,vn, },vi € R", Vi =

1,...,n0; Since this reasoning is valide(k) € S(W™', 1), (k) # 0, we can

* aregionD, contained in the unit disk of the complex plane, deeonclude thaV(«x(k)) 2 (k)" W x(k) is alocal strictly decreasing

fined as [11] Lyapunov function for the saturated system (5§iiV ', 1) and thus

the ellipsoidS (W™, 1) is a contractive domain w.r.t system (5). Since
pa {zeC(H+:2Q+ z07) < 0} (15) & C E(W™1,1), the asymptotic convergence to the origin of all tra-

jectories of system (5) emanating froki is guaranteed. The LM})

whereH and( arel « | symmetric real matrices andis a com- 9guarantees the performance in the region of line&ity’. ). =

plex number with its conjugate. We assume that if the poles of
(A + BF) are located in the regioR the time-domain require- B- LMI Framework
ments in the zone of linear behavior of the system (5) are satisfied The variables to be found by applying Proposition (1)WfgY", and
Proposition IV.1: If there exist matricedV = W7 > 0, W € «.However, inequalitie§ii) and(iii) of (16) are bilinear (BMI) in the
R, Y € R and a vectom € R, satisfying the following decision variable$” anda, whereas relationg), (iv)—(vi) of (16) are
matrix inequalities: linear (LMI) in W, Y anda.
An easy and straightforward way to overcome this problem is to fix,
@) HupyW + Qupy (AW + BY) + Q. (AW + BY)T < o apriori, the value of the components af In this case, inequalities
(i7) and (i17) become LMIs and, giverip, Xo, D), it is possible to

1<l < S . o .
- == . 7 solve constraintéi )—(vi) of Proposition IV.1 as a feasibility problem,
. W WA* +Y" D;(a)B - . . . A !
(i1) - i A > 0 with efficient numerical algorithms [12]. Of course, considering a fixed
-AU + BDf(%L)) W vectora and the given data, it may actually be impossible to find a fea-
) Vi = 1 2 e sible solution. In fact, considering a scaling factord > 0, the
(i) W Q(i)y Im(i):| >0 Vi= m maximum homothetic set td}, 5, that can be stabilized by con-
e IngY i - Y sidering the fixedy, can be obtained by solving the following convex
) 1 o7 optimization problem with LMI constraints:
(iv) >0 Vr=1,...,n,
Lo W
[P, I, max 3
(V) I, 1/V:| 2 0 Vs= 1, P SUbjECt to
(vi) 0 < ag <1, i=1,....m (16) 1 gt >0
{ 3o, Wﬁ } >0 Vi=1,....n, (18)
then F = YW™' solves Problem 1.1 and the ellipsoid /P’ I
EW 1) 2 {x € R 2" W2 < 1} is a domain of asymptotic {3; WT} >0 Vs=1,....,n

stability for system (5). relations(i), (ii).

—

iii), and (vi) of Proposition IV.1
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Henceforth, if the optimal value of, 5*, is greater than or equal said to be semi-globally stabilizable. More specifically, it is proven in
to one, it means that it is possible to find a solution considering ttié] that under assumptionsl), A2), A3) andA4) there always exists
fixed « and the given datép, Xs, D). We conjecture that smaller aree > 0 such that the parameter-dependent Riccati equation
the components of vecter, greater is the optimal value of the scalar
A, thatis, it is possible to stabilize larger domains of admissible initial  P(e) = A P(e)A + eI, — A P(e)B(B* P(¢)B + I,,,) "

states (see the numerical example in Section V-C). Note that the idea is BT P(e)A (19)
to render the problem less conservative by allowing more control satu-
ration. Hence, for a given regiadl and a regionY;, we can consider has a solutionP(e) and the control lawu(k) = Fa(k) =

gn ite_rative _sc_her_ne where _We decre_ase the componegtéméa}ch _(BTP(E)B + Im)le’l’P(e)Al,(k) is such that
iteration until finding an optimal solutiofV*, Y*, 3*) for (18) with
3* > 1.Inthis case, two issues arise: how to choose the initial vector
and how exactly to decrease the components @f 5* < 1 with the
consideredy). These issues can be considered as open problems and
one simple way of handling them is to apply trial and error procedures.
Another solution consists in solving (18) by considering directly ] A
the problem with BMI constraints. However, as pointed in [14], the ~ holds for somec > 0, with E(P(¢e),c) = {x €
methods proposed in the literature for solving BMIs present exponen- R 2" P(e)z < c}.
tial worst case complexities and therefore the required computationa consequence of this result is the following.
effort may be unreasonably large. Moreover, BMI-based problems areProposition V.1: Consider system (1) under Assumptidk), A2),
not convex, and thus, we cannot guarantee that the obtained solutiof33 andA4). Let X, be defined as in (14), then
a global optimum. In order to overcome this computational difficulty (a) There always exists a mati¥ = W’ > 0, W € ®"*" and
in solving BMIs, we can approximate the solution of BMI optimization amatrixY € R™*" that verify the following set of LMIs.
problems via polynomial-time algorithms, by using, for example, some

1) the eigenvalues dfd + BF') are inside the unit disk;
2) the inclusion relation

Xy CE(P(e),¢) C S(F,p) (20)

relaxation schemes based on LMI relations (LMIR) (see for instance . [ w wAr +YT BT
[14] and references therein). With this aim, we propose the following ® AW + BY W } > 0.
two-step iterative algorithm: W YL,
S . ‘ S ) (i1) . Zm(l):| >0 Vi=1,..., m

» Step 1.Givena, solve (18) forlV, Y, andj (LMIR 1). | L)Y 0

» Step 2.GivenY’, solve (18) forlV, «, and3 (LMIR 2). 1 Wt

The iteration between these two steps stops when a desired preci- (iii) o W} 20 Vr=1....n
sion for3 is achieved. If3* > 1, it means that it is possible to stabilize :PS I,
system (5) for all initial conditions ity by considering the pole place- (iv) I W} >0 Vs=1,...,n.. (21)

ment of (4 + BF) insideD. In particular, all intermediate solutions
with 3 > 1 are solutions td>roblem 1 Hence, this kind of approach () if (W, Y) is an admissible solution for the set of LMIs (21), then

solves, in part, the problem of the choice of vegioby using robust the control lawu(k) = Fx(k) = YW '2(k) guarantees that
and available packages to solve LMIs [15]. ) _ all the trajectories of system (1) emanating frdea converge
Remark IV.1: Itis worth noticing that if we start the algorithm with asymptotically to the origin without control saturation.

a = 1., the convergence to a soluti¢n™, W*, Y, a”), is ensured Proof: (a). Since there always exist a positive scaland a ma-

provided that the pai(A,_B) is controlla_ble. This fOHC_)WS from' the trix P(e) solutions to (19) such that the inclusion relation (20) holds
fact that an optimal solution for LMIR 1 is also a feasible solution fof . <10 . > Owith F = —(BTP(e)B + I,,) ' BT P(e)A, it

LMIR 2 and vice versa. Of course, taking different initial vectorthe ;¢ easy to verify thatV’ = (P(e)/c) ' andY = —c(BLP(¢)B +

proposed algorithm can converge to different valuegidf, W™, Y™, 1,,)" BT P(¢)AP(¢)~" satisfy the set of LMIs (21)b). The proof

*
a’). N2 Th op N ; | mimics the one oProposition 1V.1 O
Remark IV.2: The result oProposition IV.1can be applied to stable | ;o\ orth noticing that, in our case, all the solutions to the semi-

ohr unstable_o_pen-loolt) sy_st;ms. Hloweverﬁ_w_e shoulddt_qke into afcob'l%tbal stabilization problem obtained with the Riccati approach are

tpathIDropﬁsllttl)on IV.;durqls ehs odn ya ;u g:ler,:/lt condition ;O Sc;]Vecontained in the set of solutions to the LMIs (21) but the converse does
ro elm LDy con_S| erlngbtl ehaté':p,z 0> g oreover,_w den t r? not hold. Furthermore, the LMI formulation allows to incorporate to
open-loop syste_m Is unstable the sgtmay N nof[ contained in the the problem other control specifications. Convex optimization prob-
controllable region of the system (1) with constrained controls. In thigy,q \ith the LMIs (21) as constraints, can be formulated in order to
case there is effectively no solutionfeoblem I1.1 find solutions to the semi-global problem that satisfy performance re-

quirements.

V. APPLICATIONS Moreover, the solutions considered by the Riccati approach and by

) o Proposition V.1suppose that the control does not saturate. This fact can

A. Semi-Global Stabilization lead to slow closed-loop dynamics. In this case, it can be useful to allow

Consider the following assumption. the control saturation in order to improve the speed of convergence

«of the trajectories to the origin. For example, we can use the result of

A4) Allthe eigenvalues ofi are located inside or on the unit dis ' © ) : we ke
Proposition 1V.1and consider the following optimization problem:

of the complex plane.
Under this assumption, from the result presented in [7] it follows that

min &
given any bounded set of initial conditiorfs, and for any control subject to
bounds given by a vector, it is possible to determine a control law W WAL + YT BT
u(k) = Fz(k) such that for all initial conditions belonging (i) AW + BY S >0

(x(0) € .,xl’o) the corresponding trqjectories converge asymptoti(?ally relations(ii), (iii), (iv). (v), and (vi) of Proposition IV.1,
to the originwithout control saturationin other words, system (1) is (22)
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Constraint(i) means that the considered regibnis a disk of rays. sampling period of).001s the matrices describing system (1) are the
Hence, minimization of implies the minimization of the spectral rayfollowing:
of (A + BF). Furthermore, LMIR 1 and 2 described in Section IV-B

can be applied considering the optimization problem (22) instead of 10.9964 0.0026 —0.0004 —0.0460
(18). In this case the optimization problem (22) is a generalized eigen- A 0.0045 0.9038 —0.0188 —0.3834
value problem (GEVP) [12]. 7 10.0097 0.0263  0.9379  0.1223
10.0005 0.0014 0.0968  1.0063
B. Piecewise Control [ 0.0444  0.0167
The idea of the piecewise control is to apply higher feedback gains B 0.2935 —0.7252
to the system as the state approaches the origin. This is an interesting —0.5298  0.4726
way to deal with the problem of control saturation and, at the same | —0.0268  0.0241

time, to improve the rate of convergence of the closed-loop trajectories

to the origin. The main problem of this kind of control law is to deNotice that matrix4 is unstable (the eigenvalues dfare:1.0284 +

termine appropriate switching sets and the associated gains in orde.t998:,0.9672,0.8203). The bounds on the control are given by

avoid limit cycles or unstable behavior. In [13], for example, an intef3 2]7. The set of admissible initial conditions is an hypercub#&tn

esting method is proposed to compute piecelifesr control laws for Xy = {z € R*; -1 < iy < 1,Vi = 1,...,4}. The regionD

continuous-time linear systems. This approach is based on the soluttonresponds to a half disk centered at the origin with afray 1

to Riccati equations. We show now how to compute a piecesase-

rating control law based on the condition givenRmnoposition 1V.1 D ={z€C;Re{z} > 0and(Re{z})” + (Im{z})* < 6,6 < 1}.
Let N be the number of desired switching sets. The piecesase-

rating control law can be computed as follows. Notice thats represents the spectral ray (of + BF). Smaller iss,
Step 1) DefineV homothetical sets td&, as follows: closer to the origin are the poles @i + BF') and greater tends to be
the rate of the convergence of the trajectories to the origin.
Xy =0,X, 0<f8,<1i q=1,....N; fo=1 Considering the data above, Table | shows the final values of

andj obtained from the iterative algorithm proposed in Section IV-B
from different initial vectorsy and scalarg. The number of iterations
needed in each case is denoteddiser. Jinitial andj final denote
Associate a vector of coefficients of saturatigito each the optimal values of obtained by the iterative algorithm from respec-

A CAN_1 C...C A C A

regionty. tively ainitial anda final.
Step 2) Foreach = 0,..., N, solve an optimization problem of Regarding Table I, we can notice the following:
type (22) by considering’; anda, as data andV,, Y, 6 « Smaller are the components ®f greater is theJ obtained from
as the associated optimal solution. (18). This illustrates the fact that by allowing saturation we can
Step 3) Foreach = 0,..., N define stabilize the system for a larger set of initial conditions. Besides,
+ the feedback matrixt’, = Y, W, 7 more stringent is the performance requirement (smallar this
+ the switching setS, = {« € R";2" W, 2 < 1}. case), smaller is the region of admissible initial states for which
From Proposition V.1 it follows that the application of the control we can find a solution.
law defined as * In both case$ = 0.9 andé = 0.8, the better gain between
Binitial andg final is obtained forvinitial = 1.
sat(Fox(k)), if 2(k) € So, 2(k) & {S1,S2,...,Sn} « For the casé = 0.9, the smaller is choseminitial (and there-
A sat(Fiz(k)), if x(k) € Si,x(k) ¢ {S2,Ss,....Sn} fore a final), the greater igfinitial (and therefore? final).
u(k) = . - » For the casé = 0.8, itis not possible to find a solutioft > 1.

These facts illustrate the tradeoff between the performance require-
ments §), the minimal size of the set of initial state$)(@and the coef-
ficient of saturation ).

Example V.2: Consider the example treated in [6], for which system
to the system (1) guarantees the asymptotic convergence to the origi(i9fis described by the following matrices:
all the trajectories emanating froAt,. Note that we consider a vector

saf(FN.,r(k))., i.f r(k) € Sn
(23)

«, for each gainF,. The idea is to accelerate even more the conver- 0 1 0 0 0
gence by allowing the saturation at each time the trajectory enters a Ao 0 0 1 0 - 0
new regions,. Of course, if the effective saturation is not desired it “~ 1o 0 0 1 ~ 1o
suffices to consides, = 1,,, V¢ = 0,..., N. —1 202 —4 22 1

Remark V.1: Differently from [13], the ellipsoids do not need to
be nested in our case. It should be noticed that, from the definitighe bounds on the control are given py= 4. The set of initial
of the control law (23), ifz(k) € S;, itis not possible to switch to congitions is given by the hypercubsg, = {# € R || < 10,
a previous saturating state feedback(F;x(k)) with © < j and, ; =1 2 3 4}. Since the open-loop systemrist strictly unstableby
therefore, chattering cannot occur. applying the semi-global stabilization results developed in [6] the fol-

lowing gain is computed
C. Numerical Examples

The numerical results presented in this section were obtained by F, =[0.0394 0.0840 0.0796 0.0283].
using the MATLAB LMI Control Toolbox [15].

Example V.1:Consider the simplified model of the verticalWith this gain the convergence to the origin of all the trajectories em-
dynamics of an helicopter borrowed from [16]. By considering anating fromY, is ensured without control saturation.
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TABLE | 1.5 . . v T T y T T T
ALGORITHM PERFORMANCE

0 Qinitial ﬂinitial jSnal ,Bfinal Niter
09| [1 1T 09339 |[0.7398 0.5387]T | 1.4798 | 14
0.9 [ [0.5 0.5]T | 1.5580 | [0.0987 0.1250]T | 1.9721 | 3121
0.9 [[0.3 0.3)7 | 1.8790 | [0.0972 0.1264])T | 1.9718 | 1255
0.8 a7 0.3283 | [0.7216 0.7125]T | 0.4575 | 16
0.8 [[0.5 0.5]T | 0.4988 | [0.2060 0.1491]T | 0.5399 | 681
0.8 0.3 0.3]T | 0.5185 | [0.1925 0.1635]7 | 0.5402 | 426

2500

Fig. 2. State trajectories.

Consider now the application of the piecewise control law described
in Section V-B with five switching sets, that i8] = 4. For this, we
consider the following:

e Bo=1,8 =08,08: =006, 8 = 0.4, 34 = 0.2;

ca, =06V =0,...,4.
The obtained feedback gaink,, and matricesP, defining the

o 100 2é° 500 400 0 w0 Zéo %00 400 switching sets are the following:
Fig. 1. Time-responses. Fyo = [—0.4062 — 2.4064]
F; =[-0.9649 — 2.8880]
We apply now the proposed LMI-based approach to these data. By Fyy = [—2.2507 — 3.6029]
considering the optimization problem (22) with= 0.6, we obtain the Fa3 = [-5.2998 — 4.7812]

following feedback gain: Foy = [-16.1831 — 7.2979]

F, =10.1534 0.3328 0.3207 0.1161].

and
FromProposition IV.1 the control law. (k) = sat(F>x(k)) stabilizes Py — [0.9852 0.1138]
asymptotically the system for all initial conditions belonginge. B 10.1138  0.0935 |
Fig. 1 depicts the time-response of the first state variable and the control [1.5290 0.2011]
signal in both cases for the initial conditief0) = [~10 10 10 10]". Py = 0.2011 0.1376
Note that withF: (solid line) we obtain a time-response less oscilla- :2.7()83 ().3976:
tory and the convergence is faster than the one obtained with the appli- Py = oo -

. . . . 0.3976 0.2173
cation of F'; (dotted line). Furthermore, the maximal amplitude peak - . -
of the state response is reduced with the application of the saturating Py = 6'()9‘34 0.9473
control law (what is important if we have state amplitude constraints). [0-9473  0.3890 |
Of course, withF, the control saturates. These facts illustrate that the Py — 24.5113 3.3788 ‘
time-response of the closed-loop system can be improved by allowing | 3.3788  0.9030

the saturation.
Example V.3: Consider the linearized model of an inverted pen- Fig/.12 depicts the state trajectories for an initial conditig) =
dulum studied in [13]. For a sampling period @D01s one gets the [1 0]" by applyingu(k) = Fix(k) (dotted line), by applying the

discretized model described by the following data: piecewise control law without saturation (dashed line) and by applying
the piecewise control law resulting from matridgs, (solid line). Re-
0.9995  0.0100 0.0000 mark that the rate of convergence toward the origin is better with the
= Z0.1000 0.9995} = [0.0100} ‘ saturating piecewise control law.
The bounds on the control are given by= 5. The set of initial con- VI. CONCLUSION

ditions is a disk centered at the origin with a ray equal to 1. With theseThe major contribution of this note resides in the use of a local poly-
data and considering = 1 (i.e., saturation avoidance) the optimal soygpc representation of the saturation nonlinearity for studying the mul-
lution of problem (22) gives tiobjective problem of both local stabilization and performance require-
ments satisfaction with respect to a linear system with saturating con-
Fy =[0.0022 — 1.5214]. trols. Thanks to this representation and the use of relaxation schemes,
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numerical efficient techniques based on an LMI-framework are pro- Simultaneous Stabilization of Two Discrete-Time

posed in order to compute a effectively saturating state feedback con- Plants Using a 2-Periodic Controller
trol law that solves the problem.
Since efficient algorithms and software to solve LMI-based prob- Sarit K. Das

lems are available, the proposed method represents an interesting and

easy-implementable way to compute saturating control laws. More-
y th b d LMI¥ FI)< I tot gt tai t Abstract—A generic method for designing a 2-periodic controller for the
over, the propose ramework allows 10 treat uncertain systerg, ianeous placement of the closed-loop poles of two single-input—single-

and to incorporate to the problem other control requirements and stai€ut discrete shift-invariant plants at the origin is presented. The method
amplitude constraints. consists of first recasting the simultaneous pole-placement problem as one
of solving a coupled pair of linear polynomial equations involving three un-
known polynomials, and then obtaining the controller parameters in terms
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