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ABSTRACT

Efficient exploration of unknown environments is a fundamental requirement for modern

autonomous mobile robot applications. The traditional exploration approach focuses on

sensing the world to build a map and using the generated map to decide where to go next.

In the specific case of collaborative exploration by multi-robot systems, map sharing and

merging is often employed. Such methods tend to result in high computational costs,

which can restrict their application in scenarios with limited memory and processing re-

sources. An alternative to this is to employ mapless navigation when performing explo-

ration. However, defining a resilient exploration strategy is not a straightforward task,

especially in a mapless fashion. Concurrently, the employment of Deep Reinforcement

Learning (DRL) has enabled optimal or near-optimal solutions for several complex prob-

lems with high-dimensional inputs. To the best of our knowledge, there are no works that

investigate the application of DRL solutions for mapless exploration aiming at efficient

area coverage, without pre-determined goal positions. In that context, this dissertation

reviews recent research works that use RL to design unknown environment exploration

strategies for single and multi-robots. Based on the gathered information, we propose

an end-to-end mapless exploration framework based in DRL, suitable for single robots

and teams of n robots. The exploration policy is trained and tested in different simula-

tion environments. Our solution enabled exploration with efficiency comparable to DRL

methods that use much more complex representations of the environment. The method

also promoted cooperation between agents without the need of map merging algorithms,

being able to generalize to different environments.

Keywords: Mobile robotics. Unknown environment exploration. Deep Reinforcement

Learning. Single robot exploration. Cooperative exploration. Multi-Robot Systems.



Avaliação da navegação sem mapa para exploração de ambientes internos

desconhecidos por robôs móveis autônomos usando Aprendizado por Reforço

Profundo

RESUMO

A exploração eficiente de ambientes desconhecidos é uma condição fundamental para

aplicações modernas de robôs móveis autônomos. A abordagem de exploração tradi-

cional consiste em usar medidas de sensores para construir um mapa, e se basear no

mapa gerado para decidir para onde ir. No caso específico da exploração colaborativa

por sistemas multi-robôs, o compartilhamento e a fusão de mapas são frequentemente

empregados. Tais métodos tendem a resultar em altos custos computacionais, o que pode

restringir sua aplicação em cenários com recursos limitados de memória e processamento.

Uma alternativa para isso é empregar a navegação sem mapa ao realizar a exploração. No

entanto, definir o funcionamento de uma estratégia de exploração resiliente e apropriada

não é uma tarefa simples, especialmente de forma sem geração de mapa. Ao mesmo

tempo, o emprego do Aprendizado por Reforço Profundo (ARP) tem permitido soluções

ótimas ou quase ótimas para vários problemas complexos com entradas de alta dimen-

sionalidade. No entanto, até onde sabemos, não existem trabalhos que investiguem a

aplicação de soluções DRL para exploração sem mapa visando a cobertura eficiente da

área, sem posições alvo pré-determinadas. Nesse contexto, esta dissertação revisa pesqui-

sas recentes que usam Aprendizado por Reforço para projetar estratégias de exploração

de ambientes desconhecidos. Com base nas informações coletadas, propomos uma es-

trutura de exploração sem mapeamento de ponta a ponta baseada em ARP e adequada

para n robôs. A política de exploração é treinada e testada em diferentes ambientes de

simulação. Nossa solução permitiu a exploração com eficiência comparável aos métodos

DRL que usam representações muito mais complexas do ambiente. O método também

promoveu a cooperação entre os agentes sem a necessidade de algoritmos de fusão de

mapas, podendo generalizar para diferentes ambientes.

Palavras-chave: Robótica móvel, Exploração de ambientes desconhecidos, Aprendiza-

gem por Reforço Profundo, Exploração de um único robô, Exploração cooperativa, Sis-

temas Multi-Robôs.



LIST OF ABBREVIATIONS AND ACRONYMS

RL Reinforcement Learning

DRL Deep Reinforcement Learning

MRS Multi-Robots System

PPO Proximal Policy Optimization

LR Learning Rate

UGV Unmanned Ground Vehicle

UAV Unmanned Aerial Vehicle

AUV Autonomous Underwater Vehicle ML

SAR Search and rescue

USAR Urban search and rescue

ISR Intelligence, surveillance and reconnaissance

AGV Automated guided vehicles

SLAM Simultaneous localization and mapping

GVG Generalized Voronoi Graph

MDP Markov decision process

POMDP Partially observable Markov decision process

GPI Generalized Policy Iteration

SAC Soft Actor-Critic

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

TRPO Trust Region Policy Optimization

SARSA State-action-reward-state-action

DQN Deep Q-Network

MC Monte Carlo



NN Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

OS-ELM Online Sequential Extreme Learning Machine

D3QN Deep double Q-network

DPG Deterministic Policy Gradient

DDPG Deep Deterministic Policy Gradient

TD3 Twin-delayed deep deterministic policy gradient

TD Temporal Difference

CL Curriculum Learning

GPS Global Positioning System

EM Exploration Module

CM Communication Module

NM Navigation Module

SS Sensors Suite

DM Decision-making module

IMU Inertial Measurement Unit

EKF Extended Kalman Filter

FIFO First In First Out

AFCQN Fully Convolutional Q-Network with Auxiliary task

BP Back Propagation



LIST OF FIGURES

Figure 2.1 Competences for robotic navigation, with highlight for the exploration
task. .........................................................................................................................16

Figure 3.1 Agent–environment interaction. At every new time step (t+1), the agent
receives a new state St+1 and the reward Rt+1 associated with performing
action At from previous state St. ............................................................................20

Figure 3.2 General policy iteration using value based approach. ...................................23

Figure 4.1 Classification of mobile-robot exploration strategies that employ Rein-
forcement Learning techniques, including End-to-End and 2-Stage approaches. ..28

Figure 5.1 Simplified diagram of the proposed exploration system, suitable for n
robots.......................................................................................................................41

Figure 5.2 Exploration Module in details. ......................................................................43
Figure 5.3 a) Schematic representing how the 360 laser measurements spaced by

one degree are equally divided into eight proximity zones. b) Scale that illus-
trate the proximity status each zone can assume depending on the measured
distances..................................................................................................................44

Figure 5.4 State vector representation of robot R1 at time t, considering that com-
munication was established with robot R2. ............................................................46

Figure 5.5 Simplified schematic of how data is gathered at each rollout during the
training phase. .........................................................................................................48

Figure 5.6 Simplified schematic of the inference framework after training is done.......49

Figure 6.1 Simulation framework elements and communication flow............................50
Figure 6.2 Communication between decision-making model and robot controller

from the decision-making model perspective during a training process. ...............51
Figure 6.3 Communication between decision-making model and robot controller

from the decision-making model perspective during a inference process. .............51
Figure 6.4 Robot controller thread. .................................................................................52
Figure 6.5 Maps used for the exploration policy validation. ..........................................53
Figure 6.6 Maps used for the exploration policy train and test.......................................54

Figure 7.1 Training metrics of single agent in Simple Maze learning collision avoid-
ance. ........................................................................................................................58

Figure 7.2 Training metrics of single agent in Simple Maze learning exploration
by finetuning the collision avoidance policy. ..........................................................59

Figure 7.3 Training metrics of single agent in Simple Maze learning exploration
from scratch. ...........................................................................................................60

Figure 7.4 Training metrics of single agent in Simple Room learning collision
avoidance. ...............................................................................................................62

Figure 7.5 Training metrics of single agent in Simple Room learning exploration
by finetuning the collision avoidance policy. ..........................................................63

Figure 7.6 Training metrics of single agent in Simple Room learning exploration
from scratch. ...........................................................................................................64

Figure 7.7 Training metrics of single agent in Simple Room learning exploration
from scratch, using different reward functions. ......................................................65

Figure 7.8 Training metrics of single agent in Simple Room learning exploration
from scratch, using different trajectories. ...............................................................66



Figure 7.9 Three stages of a single agent exploring the Simple Room map. The
taken path is illustrated in pink and the explored area is represented by the
green cells. ..............................................................................................................67

Figure 7.10 Training metrics of one agent in Simple room learning cooperative
exploration between two robots. .............................................................................70

Figure 7.11 Metrics of single agent in Reference Map using different training con-
figurations. ..............................................................................................................73

Figure 7.12 Three stages of a single agent exploring the Reference Map. The taken
path is illustrated in pink and the explored area is represented by the green cells. 75

Figure 7.13 Three stages of a single agent exploring the Test Map 1. The taken
path is illustrated in pink and the explored area is represented by the green cells. 76

Figure 7.14 Three stages of a single agent exploring the Test Map 2. The taken
path is illustrated in pink and the explored area is represented by the green cells. 77

Figure 7.15 Training metrics of one agent in Reference Map learning cooperative
exploration between two robots. .............................................................................77

Figure 7.16 Three stages of two agents exploring the Reference Map. The agents
are represented by the red and blue circles, and the explored area is repre-
sented by the green cells. ........................................................................................79

Figure 7.17 Three stages of two agents exploring the Test Map 1. The agents are
represented by the red and blue circles, and the explored area is represented
by the green cells. ...................................................................................................79

Figure 7.18 Three stages of two agents exploring the Test Map 2. The agents are
represented by the red and blue circles, and the explored area is represented
by the green cells. ...................................................................................................80



LIST OF TABLES

Table 4.1 How RL algorithms compose 2-Stage Single-Agent exploration strategies. ..30
Table 4.2 How RL algorithms compose End-to-End Single-Agent exploration strate-

gies. .........................................................................................................................31
Table 4.3 How RL algorithms compose 2-Stage MRS exploration strategies. ...............36
Table 4.4 How RL algorithms compose End-to-End MRS exploration strategies. ........37

Table 6.1 Validation maps’ dimensions and resolution...................................................53
Table 6.2 Baselines maps dimensions and resolution. ....................................................55

Table 7.1 Set of PPO parameters.....................................................................................57
Table 7.2 Inference results of exploration policies for a single robot in the Simple

Maze environment...................................................................................................61
Table 7.3 Inference results of exploration policies for a single robot in the Simple

Room environment..................................................................................................67
Table 7.4 Results of testing the Simple Room exploration policy in the Reference

Map using different exploration radius. ..................................................................71
Table 7.5 Results of the three models trained in the Reference Map and tested in

the Reference Map, test map 1 and test map 2. ......................................................74
Table 7.6 Comparing different exploration methods for single robot in the Refer-

ence Map.................................................................................................................75
Table 7.7 Comparing different exploration methods for single robot in the Test

Map 1. .....................................................................................................................76
Table 7.8 Comparing different exploration methods for single robot in the Test

Map 2. .....................................................................................................................76
Table 7.9 Tests of one and two robots in the Reference Map .........................................78
Table 7.10 Tests of one and two robots in Test Map 1....................................................79
Table 7.11 Tests of one and two robots in Test Map 2....................................................80



CONTENTS

1 INTRODUCTION.......................................................................................................12
1.1 Motivation................................................................................................................12
1.2 Research Goals and Contributions........................................................................13
1.3 Dissertation Overview ............................................................................................14
2 EXPLORATION IN MOBILE ROBOTICS ............................................................15
3 REINFORCEMENT LEARNING............................................................................19
3.1 Reinforcement Learning Problem .........................................................................19
3.2 Methods and Algorithms........................................................................................22
3.3 Proximal Policy Optimization algorithm..............................................................24
4 REINFORCEMENT LEARNING AND ROBOTICS ............................................26
4.1 Reinforcement Learning in Robotics Applications ..............................................26
4.2 Exploring Unknown Environments using Reinforcement Learning..................27
4.3 Single robot exploration .........................................................................................29
4.3.1 RL algorithms in the exploration strategies ...........................................................29
4.3.2 Approaching common problems............................................................................32
4.4 Multi-robot exploration..........................................................................................34
4.4.1 RL algorithms in the exploration strategies ...........................................................35
4.4.2 Approaching common problems............................................................................37
5 MAPLESS COOPERATIVE EXPLORATION USING DRL................................40
5.1 Sensors suite ............................................................................................................42
5.2 Exploration Module ................................................................................................42
5.2.1 Data pre-processing ...............................................................................................43
5.2.2 Decision-making Module.......................................................................................46
6 EXPERIMENTS .........................................................................................................50
6.1 Simulation................................................................................................................50
6.2 Method validation ...................................................................................................52
6.3 Comparison with baselines ....................................................................................54
7 RESULTS AND DISCUSSION..................................................................................56
7.1 Method validation ...................................................................................................56
7.1.1 Training parameters ...............................................................................................56
7.1.2 Single Robot ..........................................................................................................57
7.1.2.1 Simple maze........................................................................................................57
7.1.2.2 Simple room........................................................................................................61
7.1.3 Two robots..............................................................................................................67
7.1.3.1 Simple room........................................................................................................67
7.2 Comparison with baselines ....................................................................................71
7.2.1 Single robot............................................................................................................71
7.2.2 Two robots..............................................................................................................77
8 CONCLUSION ...........................................................................................................81
REFERENCES...............................................................................................................83
APPENDIX A — RESUMO EXPANDIDO ................................................................92
A.1 Contribuições e Objetivos Alcançados .................................................................93
A.2 Trabalho Futuro .....................................................................................................94



12

1 INTRODUCTION

In recent years, the advancement of new technologies applied to robotics has

boosted the interest in academic research and practical application of mobile robots in

different domains. Such applications include, for example, search and rescue (SAR)

missions, intelligence, surveillance and reconnaissance (ISR), and planetary exploration,

among others [Alatise e Hancke 2020]. Several situations require robotic autonomy when

a map of the environment is not previously known. The employment of mobile robots in

such complicated contexts depends on a robust and efficient exploration strategy. In the

literature, mobile robotic exploration was described as the attempt to answer the ques-

tion "Given what you know about the world, where should you move to gain as much

new information as possible?" [Yamauchi 1997]. Exploratory behavior is a fundamental

mobile robotic competence and represents a vast and complex research field. Several ex-

ploration methods were proposed in the past few decades, such as the Artificial Potential

Fields [Krogh e Thorpe 1986] and the well-known Frontier-based exploration [Yamauchi

1997], enabling exploration for many applications.

1.1 Motivation

The traditional approach for autonomous mobile robotic exploration in unknown

environments is to use sensor data to build a map of the agent’s surrounding world. Then,

the decision-making process regarding where to go next is based on the generated map. A

limitation of this method is that the computational costs rapidly increase with the expan-

sion of the explored area. Also, the efficiency of the exploration strategy heavily relies

on precise maps [Juliá, Gil e Reinoso 2012]. Furthermore, when a multi-robot system

performs a collaborative exploration, the maps generated by each agent are often shared

between the team. The shared maps must usually be merged, which is not a trivial task, of-

ten associated with high computational costs [Velásquez Hernández e Prieto Ortiz 2020].

Such characteristics can restrict the application of these methods in scenarios where lim-

ited memory and processing resources are available.

Alternatively, if a robot could perform exploration without keeping an accurate

map of the world, it would free memory and computational resources that could be used

for faster decision making. However, developing an appropriate and resilient exploration

strategy is not a straightforward task, especially in a mapless fashion. Concurrently, Re-
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inforcement Learning techniques are based on letting the agent acquire skills through

environment interaction instead of explicitly designing the desired behaviors.This Ma-

chine Learning (ML) paradigm tries to emulate the human learning process, which occurs

through trial and error.

Recently, the employment of deep neural networks as powerful function approx-

imators for RL algorithms (Deep Reinforcement Learning) has enabled optimal or near-

optimal solutions for several complex problems with high-dimensional inputs [Wang et

al. 2022]. Hence, RL and DRL are being highlighted as promising alternatives to develop

solutions to robotics problems. It is no coincidence that the number of research works

proposing solutions to the robotic exploration problem using RL algorithms has signif-

icantly increased in the past years [Garaffa et al. 2021]. In what concerns the mapless

exploration problem, several works use DRL to navigate unknown environments aiming

to reach a known target position. However, to the best of our knowledge, there are no

works that investigate the application of DRL solutions for mapless exploration aiming at

efficient area coverage, without pre-determined goal positions.

1.2 Research Goals and Contributions

The general objective of this dissertation is to investigate if Deep Reinforcement

Learning can enable efficient and robust mapless exploration strategies for single and

multiple robots. First, we review recent research works that use RL to design unknown

environment exploration strategies for single and multi-robots. The review tries to com-

pile the current state of research that links these two knowledge domains, aiming to com-

prehend how the two fields are being integrated. The study elaborated for this dissertation

resulted in a survey published in the IEEE Transactions on Neural Networks and Learning

Systems [Garaffa et al. 2021].

Based on the gathered information, we propose an end-to-end mapless exploration

framework based in DRL and suitable for single robots and teams of n robots, which is

the main contribution of this work. Through the proposed system, we evaluate if DRL

is able to learn what actions result in an efficient environment coverage out of simplified

information about the environment, such as laser measurements and odometry data. The

proposed solution focuses on indoor environments and was designed to prioritize coverage

efficiency and collision avoidance. Using a decentralized approach, each robot locally

runs a system that determines the individual exploration policy. The idea is to obtain



14

agents capable of exploring the environment alone, but able to optimize their decision-

making process if information from other agents is received. The basis of the decision-

making process is the Proximal Policy Optimization (PPO) algorithm, and deep artificial

neural networks are employed as the function approximators. The exploration policy is

trained and tested in different simulation environments, and the results are compared with

other exploration methods.

1.3 Dissertation Overview

This dissertation is organized as follows: Chapter 2 contains a brief overview of

the exploration problem in the field of mobile robotics. Chapter 3 presents background on

Reinforcement Learning, including the definition of RL problem and the most traditional

methods. It dives into more details into the Proximal Policy Optimization algorithm, used

in this work. Chapter 4 reviews research works that combine mobile robotic exploration

with Reinforcement Learning solutions. Then, the proposed architecture for mapless co-

operative exploration is described in 5. The simulation environments and the experiments

to train, validate and test the method in different conditions are formulated in 6. Chapter

7 presents the experiments’ results and a discussion about the exploration strategy perfor-

mance, strong points, and limitations. Finally, Chapter 8 presents our conclusions and the

suggested future work.
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2 EXPLORATION IN MOBILE ROBOTICS

A mobile robot is a robotic platform that is able to move through an environment

using locomotive elements (e.g. wheels, propellers, legs) [Tzafestas 2013]. In the 1950s,

mobile robots were first introduced in industrial production processes, being mainly auto-

mated guided vehicles (AGVs) that followed a predefined trajectory in order to transport

tools [Li, Yan e Li 2018]. Nowadays, however, mobile robots are operating in unstruc-

tured and dynamic environments, being employed in an increasing number of applications

as medical care, personal services, planetary exploration, search and rescue operations,

construction, subaquatical or aerial operations, entertainment, surveillance, among oth-

ers [Garcia et al. 2007]. This kind of application demand autonomous systems capable

of choosing appropriate actions from its perception and interaction with the environment.

Hence, the robotics research field is increasingly focusing on the development of robust

software solutions that enable robots to autonomously transpose the challenges arising

from unknown and dynamic environments [Thrun, Burgard e Fox 2005].

One of the biggest challenges in developing autonomous robots is the navigation

problem [Makarenko et al. 2002]. Navigation comprehends the robot’s ability to se-

lect and perform actions based on its knowledge and sensor values, aiming to reach its

goal positions reliably. In unknown environments, the robot has to learn how to navigate

without an initial map or model. Ideally, an autonomous agent starts from an arbitrary po-

sition and explores the environment, while simultaneously collecting information about

the surrounding world, building an appropriate map or model, and localizing itself on

this map [Siegwart e Nourbakhsh 2004]. As illustrated in Figure 2.1, different elements

compose a robot navigation strategy. The three basic navigation competences - mapping,

localization, and path planning, compose the Simultaneous Localization and Mapping

(SLAM) and active localization tasks, as well as the integrated approach. Each of these

competences represents a vast and complex research area. However, this work focuses on

an imperative aspect for mobile robot’s autonomy: the exploratory behavior.

Autonomous exploration encompasses the ability of autonomously moving through

an unknown environment, while collecting the necessary measurements and information

in order to accomplish a pre-defined goal. In the literature, mobile robotic exploration

was described as the attempt to answer the question "Given what you know about the

world, where should you move to gain as much new information as possible?" [Yamauchi

1997]. The most common problems solved by the exploratory planning are map acqui-
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Figure 2.1 – Competences for robotic navigation, with highlight for the exploration task..
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Adapted from: [Makarenko et al. 2002].

sition (non-guided task) and single and multi targets identification (guided task). Is the

exploratory behavior that makes human guiding or pre-planed trajectories unnecessary,

being especially important in hostile or inaccessible environments (e.g Urban Search and

Rescue (USAR) in post-disaster scenes, planetary exploration, Intelligence, Surveillance

and Reconnaissance (ISR)) [Lluvia, Lazkano e Ansuategi 2021].

In a generic exploration algorithm, the agent collects information about the en-

vironment in its current state and uses this information to decide its next goal posi-

tion or next movement. This process is repeated until the exploration goal is accom-

plished [Nehmzow 2012]. However, the strategies are widely dependent on the system

application, and the techniques employed in each step of the process must be decided

considering the application specifications. Some situations require a high quality map,

some focus on robustness, while for others a reduced operation time is essential. There-

fore, composing an exploration strategy is not a simple, straightforward process and there

is not an ideal approach for every specific application. Instead, different methods com-

binations and approaches for composing a mobile robotic exploration strategy have been

proposed and investigated over the years.

The exploration methods can compose robotic architectures classified according

to the three paradigms for organizing intelligence in robotics: reactive, deliberative, and

hybrid [Mohr et al. 2014]. Reactive strategies are behavior-based, which means that the

robot exhibits behaviors as a reaction to events. Also, there is no planning stage, and the

agent does not learn with experience: the defined event-reaction pairs remain fixed during
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the exploration [Arkin e Arkin 1998]. A simple example of a reactive approach that can be

employed for exploration is random search. Statistics show that after some time, moving

using random potential fields makes the robot cover an entire area [Chupeau, Bénichou

e Voituriez 2015]. Other behaviors commonly employed by reactive strategies are Avoid

Obstacles [De Silva e Ekanayake 2008], Avoid Past [Balch 1993] and Follow Walls [Ando

e Yuta 1995]. More complex reactive architectures must be able to handle multiple con-

current behaviors. In this context, the two main examples of proposed and extensively

investigated methods are the Subsumption architecture [Brooks 1987] and the Potential

Fields Methodology [Krogh e Thorpe 1986]. The reactive paradigm enables an important

range of behaviors while being easy to implement and presenting a fast execution time.

However, the absence of learning and planning abilities, and problems like local Minima,

make purely reactive methods usually inefficient for complex applications.

The exploration strategies can also be a part of control architectures based on a

Deliberative approach. Deliberative strategies (also called hierarchical), are based on

a fixed events sequence: the agent senses the world, plans its actions, and then acts.

Through this process, the robot creates a global world model, which contains all the in-

formation employed in the planning phase. The deliberative is the oldest of the three

paradigms and was vastly adopted between 1967 and 1990. However, the planning stage

is very heavy in terms of processing and execution time, making it difficult to respond

appropriately to unexpected changes in the the environment [Lazzeri et al. 2018].

Finally, there are the strategies that employ an Hybrid approach. The hybrid

paradigm is the most recent one, proposed in 1990, and has been the main focus of cur-

rent research [Mohr et al. 2014]. It combines the desirable characteristics of both delib-

erative and reactive approaches: planning capability and fast response time, respectively.

Thus, the robot is able to perform long-term planning based on the world model (which

is necessary for performing more elaborated tasks), while being able to deal with the en-

vironment unpredictability. The great majority of current exploration methods fit into the

Hybrid paradigm.

Some successful exploration methods divide the world representation and rank the

resulting regions in order to make logical decisions. One example is employing clustering

algorithms such as K-means [Solanas e Garcia 2004] or spectral clustering [Kaleci et al.

2015] to divide the map into different regions. Other methods use Generalized Voronoi

Graphs (GVG) [Park e Roh 2016] to represent the world, so that the agent attempts to

stay equidistant to surrounding obstacles while moving. However, the most widespread
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method is the Frontier-based approach, proposed by Yamauchi et al. in 1997 [Yamauchi

1997]. Frontiers are the boundaries between open space that has been sensed and unex-

plored space, and the robot moves to new frontiers until the exploration process is over.

The frontier-based approach has been widely studied, adapted, and combined with other

techniques to perform exploration [Jain, Tiwari e Godfrey 2017].

A crucial part of exploration strategies that include a planning stage, whether it di-

vides and rank regions or not, is deciding where to go. The autonomous exploration prob-

lem can be described as the travelling salesman problem, in which the agent must plan

the order to visit the remaining unexplored regions while minimizing the total traveled

distance [Adler e Karaman 2016]. Some frontier-based methods define interest attributes

to decide the next target region (e.g., nearest, farthest, most extensive frontier). A com-

mon alternative is to use a cost-utility model to select destination positions that are not

too costly in terms of time and distance while providing relevant information about the

environment. One case is the Next-Best-View selection algorithms, which adopt scoring

systems based on a utility function to select the appropriate waypoint candidate [Wang et

al. 2020]. It is also possible to model the exploration problem using Markov Decision

Process (MDP) or a Partially Observable Markov Decision Process (POMDP), that can

be solved, for example, with dynamic programming algorithms, value iteration, or Rein-

forcement Learning (RL). Both (PO)MDP and RL are further discussed in the following

sections. It is important to mention that these are not necessarily excluding methods, but

instead can be combined to compose an exploration strategy.
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3 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a computational approach inspired by the biolog-

ical learning process of animals. The nature of learning is to interact with the environment

and gain knowledge about cause and effect from the sensory feedback received as a con-

sequence of actions. Based on that, Reinforcement Learning consists in learning desired

behaviors through interactions with the environment, without explicit examples or exter-

nal instructors. Through trial-and-error, the agent seeks to learn an optimal policy (π∗) or,

in other words, learn how to optimally map situations into actions, by maximizing a nu-

merical reward signal [Puterman 2014]. Reinforcement Learning is considered the third

Machine Learning paradigm, alongside supervised learning and unsupervised learning.

The term "Reinforcement Learning" refers simultaneously to a problem, to a class

of methods that work as solutions to the problem, and to the field that studies the problem

and its solutions [Sutton e Barto 2018]. With that in mind, this chapter tries to summarize

the basic concepts of these different but overlapping descriptions. In Section 3.1, the

mathematical formalization of the RL problem and its key elements are defined. Section

3.2 presents an overview of the main RL solutions categories, with a special focus on

Policy Gradient and Actor-Critic methods. Finally, the Proximal Policy Optimization

algorithm, which is the core of the robotic exploration architecture proposed in this work,

is described in Section 3.3.

3.1 Reinforcement Learning Problem

The fundamental elements that compose a Reinforcement Learning problem setup

are the agent and the environment. The agent is an entity that learns and makes decisions,

while the environment is everything that surrounds the agent and that it interacts with.

Figure 3.1 illustrates the interactions between agent and environment. At time step t,

the agent uses the observation of its current state in the environment (St) to decide what

action (At) to perform. Taking action At leads the agent to a new state St+1 and results

in a reward Rt+1, which depends on the impact action At had on the environment. By

consecutively executing this closed loop, the agent can improve its strategy by trying to

maximize the received reward.

The RL problem can be mathematically formalized as a Markov Decision Process

(MDP). A tuple ⟨S,A, P,R⟩ defines a finite MDP, where:
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Figure 3.1 – Agent–environment interaction. At every new time step (t+ 1), the agent receives a
new state St+1 and the reward Rt+1 associated with performing action At from previous state St.

Environment

Agent

Rt+1

St+1

RtSt At

Source: [Sutton e Barto 2018].

• S represents a finite set of states (st ∈ S)

• A represents a finite set of actions (at ∈ A)

• P is the transition probability associated with the states (P (st+1∥st, a))

• R is the reward function, where R(st, at, st+1) is the immediate reward received for

going from state st to state st+1 after action at.

In the RL framework, P and R are fixed and unknown. The system attends the

Markov property: "The future is independent of the past given the present" [Feldman

e Valdez-Flores 2010]. In other words, only the current state impacts the future state

decision. In mathematical terms, a state St attends the Markov property if it captures all

the information from the past, as expressed in Equation 3.1. An MDP also assumes that

the environment is fully observable, with no uncertainty in the observations.

P (st+1|st) = P (st+1|s0, s1, s2, ..., st) (3.1)

Some key elements compose this mathematical structure. As defined in Equation

3.2, a trajectory or episode (τ ) is a sequence of states, actions and rewards that results

from the agent-environment interaction illustrated at Figure 3.1. A Policy (π) is a function

that maps the state space into the action space. It can be either deterministic (π(st)),

returning a specific action given a specific state, or stochastic (π(at|st)), outputting an

action probability distribution.

τt = (s0, a0, r1, s1, a1, r2, ..., st, at, rt + 1) (3.2)

The goal of the agent is to maximize the expectation of the cumulative episode

return (R(τ)), which is the reward accumulated over a trajectory. It can be defined by
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Equation 3.3, where T is the trajectory length, γ ∈ [0, 1) is a discount factor, and rt is

the reward at time step t. Considering that both policy (π(at|st)) and state transitions (P )

are stochastic, the probability of a trajectory with T steps is expressed in Equation 3.4.

So, the expected return (J(π)) can be defined as the integral of the product between the

probability of the trajectory and the cumulative return over that trajectory, as expressed in

Equation 3.5. Finally, the optimal policy (π∗) is formulated as the one that maximizes the

expected reward, according to Equation 3.6.

R(τ) =
T−1∑
t=0

γtrt (3.3)

Pπ(τ) =
T−1∏
t=0

P (st+1|st, at)π(at|st) (3.4)

J(π) =

∫
τ

Pπ(τ)R(τ) = Eπ[R(τ)] (3.5)

π∗ = argmaxπ(J(π)) (3.6)

The expected return of a trajectory that starts in a state s and follows a policy π

is defined as the state value. The state value function (V π(S)) measures "how good"

a state is, and is defined according to Equation 3.7. Analogously, the action-state value

function (Qπ(a, s)) estimates the value of a action-state pair, that is, the expected return

after taking action a at state s while following policy π (Equation 3.8). The difference be-

tween the state-action value function and state function is called advantage, as expressed

by Equation 3.9. As the name implies, it estimates the advantage of taking a specific

action, depending on whether the state-action value is higher or lower than the current

state value. The state value, action-state value, and advantage functions are useful in the

process of searching for an optimal policy.

V π(S) = Eτ π[R(τ)|s0 = s] (3.7)

Qπ(a, s) = Eτ π[R(τ)|s0 = s, a0 = a] (3.8)

Aπ(s, a) = Qπ(a, s)− V π(S) (3.9)
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3.2 Methods and Algorithms

A large group of learning algorithms has been proposed to solve RL problems.

These algorithms can be divided into two main classes: Model-based and Model-Free.

Model-based methods use learning and a model of the environment’s transitions to ap-

proximate a global value or policy function. The model can be learned, meaning that the

agent learns both the model and a value or policy, or the model can be known, where the

agent knows the model and uses planning to learn a global value or policy [Moerland,

Broekens e Jonker 2020]. On the other hand, Model-Free methods do not rely on an en-

vironment model, and the agent learns the policy or value directly through trial-and-error

with the physical system [Polydoros e Nalpantidis 2017]. Model-Free RL approaches are

able to solve problems that can not be solved mathematically, but they return non-optimal

solutions.

Both model-free and model-based methods aim at learning an optimal policy by

maximizing the expected return (3.5). This learning process is based on the Generalized

Policy Iteration (GPI), which is divided in to phases: policy evaluation and policy im-

provement. By repeatedly executing this two steps, an optimal policy can be learned.

Depending on how the policy iteration process is formulated, the algorithms can be cate-

gorized as value-based, policy-based, or actor-critic.

In Value-Based algorithms, the agent’s trial-and-error process results in a value

function from which the policy is derived. This value function estimates how advanta-

geous it is for the agent to be in a specific state or to perform a given action considering

a specific state [Sutton e Barto 2018]. The general logic of value-based algorithms is il-

lustrated in Figure 3.2. It demonstrates that the policy π evaluation depends on the value

function V, while it follows a greedy behavior considering the value function. Therefore,

the policy decides the action based on the optimum value of V. Among the most famous

algorithms are the classic Q-Learning [Watkins 1989] and the Deep Q-Networks (DQN),

which use deep learning to estimate the value function in a Q-Learning framework [Mnih

et al. 2013]. Other important value-based algorithms the Monte Carlo (MC) [Bouzy e

Chaslot 2006], State–action–reward–state–action (SARSA) [Rummery e Niranjan 1994]

and its variations like the SARSA(λ). The advantage of value-based methods is the low

variance in the expected return evaluation results in fast and stable policy evaluation steps.

However, they only learn deterministic policies, and are only suitable to discrete action

spaces.
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Figure 3.2 – General policy iteration using value based approach.

V
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Improvement

V V

greedy(V)

* V*

Source: [Sutton e Barto 2018].

Unlike value-based approaches, policy-based methods learn the policy directly

from the agent’s interaction with the environment. This means that the search happens

directly in the policy space, so the problem becomes a case of stochastic optimization.

To optimize the policy parameters, the expected return J (Equation 3.5) is evaluated.

According to [Sutton e Barto 2018], the gradient of the return can be calculated as:

∇θJ(θ) =
1

N

N∑
i=1

(
T∑
t=1

∇θlogπθ(ai,t|si,t)
T∑
t=1

r(si,t, ai,t)

)
(3.10)

where N represents the number of trajectories. Many policy search algorithms use

descent ascent to optimize their parameters (θ) as described by Equation 3.11, where α

represents the learning rate. Some advantages of policy-based over value-based methods

is that they are able to learn stochastic policies, and are suitable to continuous action

space. However, the policy convergence can be slow and unstable due to high variance in

the expected return evaluation.

θ ← θ + α∇θJ(θ) (3.11)

Finally, Actor-Critic algorithms adopt a hybrid approach, aiming to combine the

advantages of both value and policy-based methods. The actor is a parameterized policy

that maps the state of the environment into the selected action. This policy is improved

the direction suggested by the critic, which is a value function. At the end of the learning

process, the actor correspond to the optimal policy, and the critic to the optimal value

function. [Zeng 2019]. Some widespread actor-critic algorithms include the Soft Actor-

Critic (SAC) [Haarnoja et al. 2018], Asynchronous Advantage Actor-Critic (A3C) [Mnih

et al. 2016], and the Advantage Actor-Critic (A2C), and the Trust Region Policy Opti-

mization (TRPO) [Schulman et al. 2015]. The Proximal Policy Optimization algorithm,
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used in this dissertation also fits into the actor-critic category, and is explained in further

details in the following section.

3.3 Proximal Policy Optimization algorithm

The Proximal Policy Optimization is a Policy Gradient method proposed in 2017

by Schulman et al. [Schulman et al. 2017]. PPO was chosen as the algorithm used in

this work because it has achieved good performance in state-of-the-art works in different

fields, while being more robust to perturbations than other actor-critic algorithms. Usu-

ally, small changes in the underlying parameters of the neural network (NN) can cause

large jumps in policy space of actor-critic methods. PPO addresses this problem by lim-

iting the updates to the policy network. It bases the update on the ratio of new policy

to old policy, constraining this ratio to be in a specific range. To avoid the loss func-

tion from growing too large, it is clipped and the lower bound is considered. PPO also

provides a good balance between ease of implementation, parameters tuning, and sample

complexity.

During training, a fixed length trajectory of memories is collected. This stage

is called rollout, or game. When the rollout is over, the policy is updated adopting a

minibatch stochastic gradient ascent. The update rule for the actor network is defined by

Equation 3.12. It determines that the Loss of the Conservative Policy Iteration (LCPI(θ))

equals the Expectation value of the product of the ratio of the policy under the current

parameter (πθ) and the policy under the old parameters with the advantage (πθold). This

rate is represented by rt(θ), at is the action taken, st is the state, and At is the advantage

value at time t.

LCPI(θ) = E
[

πθ(at|st)
πθold(at|st)

At

]
= E[rt(θ)At] (3.12)

LCLIP (θ) = E[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (3.13)

To constrain the space of the loss function, the parameter ϵ is added to clip the loss

function, resulting in Equation 3.13. The Critic loss function (LC(θ)) is represented by

Equation 3.14, where MSE is the mean square error, Vold is the critic value from memory

and Vt is the current critic value from the network. The total loss function (Lt(θ)) is

described by Equation 3.15, where c1 and c2 are positive constants, and Sπθ
is the entropy
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of the exploration policy at state. Algorithm 1 presents an overview of the PPO-Clip

learning process implemented in this work.

LC(θ) = MSE(At + Vold − Vt) (3.14)

Lt(θ) = LCPI(θ) + c1LC(θ)− c2Sπθ
(3.15)

Algorithm 1 PPO-Clip. Adapted from [Schulman et al. 2017]
Input: Initial policy parameters θ0 and value function parameters ϕ0

1: for k = 0, 1, 2, ... do
2: Collect set of trajectories Tk = τi by running policy πk = π(θk)
3: Computes advantage estimates Aπ

t from current value function Vϕk

4: Using stochastic gradient ascent with Adam optimizer [Kingma e Ba 2014], update
the policy by maximizing the PPO-Clip objective:

θk+1 =θ
1

|Tk|N
∑
τ∈Tk

N∑
t=0

min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), clip(A
πθk(st, at), i+ ϵ, i− ϵ)

)
5: Using backpropagation, fit value function by regression on mean-squared error:

ϕk+1 =ϕ
1

|Tk|N
∑
τ∈Tk

N∑
t=0

(Vϕ(st)−Rt)
2

6: end for=0
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4 REINFORCEMENT LEARNING AND ROBOTICS

This chapter reviews how robotics and Reinforcement Learning are combined in

modern applications, especially for mobile robot exploration. First, Section 4.1 discusses

the motivation and challenges for integrating the two fields. Then, Section 4.2 presents the

common approaches to employing Reinforcement Learning algorithms to address the mo-

bile robotic exploration problem. Finally, recent academic works that propose solutions

for single and multiple robot exploration strategies using RL algorithms are reviewed in

Sections 4.3 and 4.4.

4.1 Reinforcement Learning in Robotics Applications

As remarkably described in [Kober, Bagnell e Peters 2013], the disciplines of rein-

forcement learning and robotics compose a promising relationship, given that RL makes

hard-to-engineer behaviors feasible for robotics applications, while robotics challenges

inspire and validate RL solutions. The intrinsic function of robots is to replicate animal

behavior to assist or replace humans in different tasks. Therefore, the idea of integrating

learning capability to robotic devices arises almost naturally. Simultaneously, reinforce-

ment learning tries to emulate how humans and other animals learn through trial-and-error

interactions with the environment, being even used to study the brain functioning in re-

search fields like Neuroinformatics. Hence, the application of reinforcement learning

techniques to robotics is increasingly being investigated by the academics, lead by the

goal of letting the robot autonomously learn how to plan and control its actions, having

generalization capability and becoming suitable for complex and dynamic tasks.

However, robotics differ in several essential aspects compared with domains where

RL was already successfully employed, such as video games. Robotics applications take

place in the real world, which means that the agent must cope with partially observable

systems, measurement noise and delays, impossibility to speed up the training phase in

the real environment, expensive hardware that requires safe exploration, among others.

The most commonly adopted alternative to limit the interaction with the real world is to

perform the training phase through simulation, which also presents issues. Transferring

the behaviors learned through simulation to the real robot is not usually a straightfor-

ward task, given that errors in the simulated environment model can easily accumulate

and cause the behavior to diverge from the expected [Dulac-Arnold, Mankowitz e Hester
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2019]. Other RL problems that are highlighted in robotics are the reward shaping diffi-

culty and the curse of dimensionality, that refers to the exponential raise of computational

effort given the increase of spatial dimensions [Venkat 2018].

To solve the aforementioned problems and make the employment of RL in real

robotic applications viable, several tools and strategies have been exploited. It is possi-

ble to reduce the dimensionality curse impact and enhance the RL algorithm convergence

and generalization with smart approaches to discretize the state or action spaces [Akrour

et al. 2018, Arai et al. 2018]. Function approximation can be used to help predict

the reward functions [Lim, Ha e Choi 2020] and to make value based RL algorithms

suitable for robotics [Yang, Juntao e Lingling 2020], using methods like Gaussian Re-

gression and Neural Networks. An alternative to speed up training and increasing the

convergence probability is transferring auxiliary information or knowledge to the agent

before or during the learning phase. This can be accomplished by, for example, employ-

ing Transfer Learning techniques [Chalmers et al. 2018], using demonstration [Nair et

al. 2018, Shimizu et al. 2015], learning forward environment models [Hirata, Iizuka e

Yamamoto 2020, Le, Le e Nguyen 2017], incorporating human feedback during train-

ing [Pérez-Dattari et al. 2019] and decomposing a task into simpler components [Jain,

Iscen e Caluwaerts 2019, Yang et al. 2018].

From a general perspective, it is possible to state that applying reinforcement

learning to robotics remains a challenge. In the next sections, the aforementioned prob-

lems and solutions are evaluated in the state-of-the-art work in the specific context of

mobile robotics exploration of unknown environments.

4.2 Exploring Unknown Environments using Reinforcement Learning

In the past decades, different methods to address the mobile-robots autonomous

exploration problem have been proposed and successfully tested, including the famous

frontier-based and the cost-utility approaches. So, what justifies using Reinforcement

Learning to tackle autonomous exploration, considering its computational costs and al-

ready discussed limitations in robotic applications? The fact is that traditional exploration

techniques usually make strong assumptions about the environments and the tasks, which

may restrict their adaptability to dynamic complex environments and thus limit their ap-

plication in real-world practices. The need for methods that provide robust and flexible

solutions to robotic problems and the great advances in Machine Learning techniques have
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made the combination of the two research fields become a hot topic in recent years. In that

context, the employment of Reinforcement Learning for robotic exploration tasks is being

increasingly investigated, driven by the idea of letting the agents automatically learn skills

from environment interaction, instead of receiving explicit instructions. Furthermore, RL

does not require dataset labeling, which represents a large cost for Supervised Learning

solutions.

Figure 4.1 – Classification of mobile-robot exploration strategies that employ Reinforcement
Learning techniques, including End-to-End and 2-Stage approaches.

Source: The Author.

The great majority of the recently proposed exploration techniques fit into the Hy-

brid paradigm, being able to use global environment information to plan the next actions,

but also reacting to unseen events. To clearly synthesize how the RL algorithms usu-

ally compose the proposed exploration strategies, a new classification were developed,

dividing the methods into two categories, as illustrated in Figure 4.1. In both classes,

the inputs are composed by raw sensor measurements, such as camera images, sets of

distances or velocities, by processed sensor measurements, like partial maps, robot tra-

jectory and robot pose, or by a combination of both. In some less common cases, human

feedback is also used as an input.

Strategies with an End-to-End approach accomplish robot exploration tasks as a

black box. The inputs are fed to the RL or deep RL algorithm, that directly returns the



29

robot control actions, like linear and angular velocities or the movement the robot must

perform (e.g move forward, backwards, right or left). As the name states, the 2-Stage

strategies divide the robot decisions in two parts, integrating RL with non-learning-based

approaches. First, the inputs are used by an algorithm that decides the next location

the robot must move to. Then, the selected location, together with other sensory inputs,

are used to perform the path planning and guide the agent from the current to the target

position. RL algorithms can be employed in the first, second or both stages. In the next

section, the proposed classification is taken as reference for evaluating the research works.

4.3 Single robot exploration

This section reviews the state-of-the-art exploration strategies designed for a sin-

gle robotic agent using Reinforcement Learning techniques. The applications targeted by

the academic works are divided into goal-guided, regarding tasks whose goal is to find

or reach a specified target, and non-guided, regarding tasks whose main goal is to cover

a whole area, usually with mapping purposes. The most common identified non-guided

application is mapping unknown indoor environments [Tai e Liu 2016, Liu, Liu e Wang

2017, Tai e Liu 2016, Guerra et al. 2020]. For instance, in [Zhu et al. 2018] the prob-

lem of mapping an unknown office is tackled, and in [Craye, Filliat e Goudou 2016] the

exploration is used for learning a saliency map of the environment.

Currently, goal-guided applications are being studied in a larger quantity and with

a greater task diversity. Some examples include finding victims in post-disaster scenes

[Niroui et al. 2019, Pham et al. 2018], finding the original location of a chemical leaking

source in underwater environments [Hu, Song e Chen 2019], traversal of land vehicles in

undiscovered tracks [Josef e Degani 2020], and goal-driven map-less navigation [Shi et

al. 2019, Tai, Paolo e Liu 2017, Zhelo et al. 2018, Zhu et al. 2017]. The great majority of

both kinds of applications include obstacle avoidance.

4.3.1 RL algorithms in the exploration strategies

Tables 4.1 and 4.2 summarize how the identified RL algorithms compose, respec-

tively, the proposed 2-Stage and End-to-End single-agent exploration strategies. Two

approaches were identified in the 2-stage strategies. The first and more common one is
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using the RL algorithm to decide the next location the robot should move to and then em-

ploying complementary methods to guide the robot towards the target point. In [Niroui

et al. 2019], DRL is combined with the classic frontier-based exploration. An A3C net-

work receives the known map, the robot location, and the frontiers locations, returning

the coordinates of the next goal frontier. Similarly, an A3C network receives the current

map, the agent’s location and orientation in [Zhu et al. 2018], and returns the next visiting

direction, given that the space around the agent is equally divided into six sectors.

Table 4.1 – How RL algorithms compose 2-Stage Single-Agent exploration strategies.
Application

Goal
Research

Work
RL

Algorithm DRL State
Space

Action
Space Reward Complementary

Method

2-Stage
Single Agent
Exploration
Strategies

RL algorithm to
decide where to go

Goal-Guided [Niroui et al. 2019] A3C Yes* Discrete Discrete Sparse
A* to find path and ROS
Move Base package to

generate control movements

Non-Guided

[Zhu et al. 2018] A3C Yes* Discrete Discrete Dense

Next Best View with Bayesian
Optimization to choose a point

in the region selected by the DRL,
and A* for path planning

[Li, Zhang e Zhao 2019] DQN Yes* Discrete Discrete Dense
A* for path planning and

Timed-Elastic-Band (TEB) for
setting the robot’s velocities

[Craye, Filliat e Goudou 2016] Q-Learning No Discrete Discrete Sparse
Method to control robot
movements not specified

RL algorithm to
decide how to go Non-Guided [Liu, Liu e Wang 2017]

OS-Q-ELM
Network Yes Continuous Discrete Dense

Choose the furthest point
measured by RPLIDAR

* Neural Netowrks with Convolutional Layers.

In [Li, Zhang e Zhao 2019], a DQN returns the goal points in the grid map, us-

ing as input the map, the current, and the historical robot positions. The three men-

tioned works employ the well-studied A* algorithm for path planning. In [Craye, Filliat

e Goudou 2016], Q-learning is used to decide whether the agent must move to one of its

four adjacent nodes or if it must learn from the current node by capturing useful images

to create a saliency map of the environment. The reviewed works prove that this approach

is a smart way to discretize and reduce the action space while using RL to solve the main

exploration problem, which is to decide the next region the robot should visit. However, a

possible drawback is that the methods focus on the trajectory generation from one point to

another, not prioritizing the full coverage of explored areas in the path planning process.

Another approach in 2-Stage strategies is employing a non-learning method to

decide the next goal location and then using Reinforcement Learning to guide the robot

towards the selected point. For single agents, this approach is less common. In [Liu, Liu

e Wang 2017], the goal point is randomly selected between the set of the furthest points

measured by an RPLIDAR sensor with scanning range 360◦. An Online Sequential Ex-

treme Learning Machine (OS-ELM) is used to estimate the Q-values and lead the robot

towards the target with object avoidance. The network receives the sensors’ measure-

ments, the distance between robot and goal, the angle between robot orientation and goal,

and returns the robot action, which can be moving 0.3m, turning left, or turning right. The

downside of this approach is that it does not use the RL algorithm for the critical explo-
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ration decision-making process, but to plan the trajectory between two known points. At

the same time, there are much more efficient and well-established path planning methods

in the literature.

Table 4.2 reveals the most investigated approach for single robot exploration using

RL: tackling goal-guided problems in an end-to-end fashion. Within this context, many

works use neural networks with convolutional layers aiming to reproduce human behavior

and directly translate pixels into actions. For example, the Rainbow network architecture

was used to generate local paths toward goal positions in unknown rough terrain environ-

ments while maintaining the UGV’s safety [Josef e Degani 2020]. Some works employ

DQN algorithms’ variations to improve their performance and avoid problems caused by

estimation errors. Double Deep Q-Networks, proposed by H. V. Hasselt [Hasselt, Guez

e Silver 2016] and based on decoupling action selection from evaluation, were used to

define the next robot action between 5 possible movement controls [Issa et al. 2020,Çetin

et al. 2019].

Table 4.2 – How RL algorithms compose End-to-End Single-Agent exploration strategies.

End-to-End
Single Agent
Exploration
Strategies

Application
Goal

Research
Work

RL
Algorithm DRL State

Space
Action
Space Reward

Non-Guided
[Cardona et al. 2019] Q-Learning No Discrete Discrete Dense

[Tai e Liu 2016] DQN Yes* Discrete Discrete Dense
[Tai e Liu 2016] DQN Yes* Discrete Discrete Sparse

Goal-Guided

[Issa et al. 2020] Double DQN Yes* Discrete Discrete Dense
[Zhou et al. 2018] DQN Yes Discrete Discrete Dense
[Yijing et al. 2017] DQN Yes* Continuous Discrete Dense
[Pham et al. 2018] Q-Learning No Discrete Discrete Dense

[Hu, Song e Chen 2019] DPG Yes Continuous Continuous Sparse
[Josef e Degani 2020] DQN with Rainbow network Yes* Discrete Discrete Dense

[Ruan et al. 2019]
Dueling Double
DQN (D3QN) Yes* Discrete Discrete Dense

[Shi et al. 2019] A3C Yes* Discrete Discrete Sparse
[Çetin et al. 2019] Double DQN Yes* Discrete Discrete Dense
[Fan et al. 2020] SAC Yes* Continuous Continuous Dense

[Tai, Paolo e Liu 2017]
Asynchronous

DDPG Yes Continuous Continuous Dense

[Zhelo et al. 2018] A3C Yes* Continuous Discrete Dense
[Jiang, Huang e Ding 2019] DQN Yes* Continuous Discrete Sparse

[Zhu et al. 2017]
Deep Siamese

Actor-Critic Network Yes* Discrete Discrete Dense

[Rana et al. 2020] TD3 Yes Continuous Continuous Sparse
Non-Guided

and
Goal-Guided

[Guerra et al. 2020] Q-Learning No Discrete Discrete Dense

* Neural Netowrks with Convolutional Layers.

A dueling architecture based deep double Q network (D3QN), which combines

Double DQN and Dueling Network Architectures, was used with a similar action space

[Ruan et al. 2019]. To tackle the common RL problem of lack of generalization capability

to new goals, the authors of [Zhu et al. 2017] propose a new deep neural network called

Siamese Actor-Critic network, which receives an RGB image of the current environment

observation and an RGB image of the target, and returns the movement the agent should

perform next. Other works also propose end-to-end exploration solutions combining con-
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volutional layers for feature extraction with the A3C algorithm [Shi et al. 2019, Zhelo et

al. 2018], and the Soft Actor-Critic (SAC) [Fan et al. 2020]. As previously mentioned,

these methods take images as inputs. A limitation of all mentioned works is that the

models are trained with synthetic, rendered scenarios, which generally do not generalize

appropriately to real-world images.

Within the goal-guided end-to-end solutions, there are the ones that do not employ

convolutional neural networks. To guide the robot to reach a specific point at an unknown

environment with obstacle avoidance, a Back Propagation (BP) network is used in [Zhou

et al. 2018] to estimate the Q-values. A continuous action space for the robot control

is employed in [Hu, Song e Chen 2019] and in [Tai, Paolo e Liu 2017] by using, respec-

tively, an actor-critic model with Deterministic Policy Gradient (DPG) and Asynchronous

Deep DPG. End-to-end solutions for non-guided applications are not as numerous in the

literature. In both [Tai e Liu 2016] and [Tai e Liu 2016], CNNs are used to extract fea-

tures from raw RGB images and depth information from an RGB-D sensor, respectively,

and DQN define the next agent’s movement to explore an unknown environment entirely.

With the same goal, classic Q-Learning is used in [Cardona et al. 2019].

Finally, few end-to-end solutions adapt for both goal-guided and non-guided ap-

plications. In [Guerra et al. 2020], a Q-Learning algorithm uses the UAV position, a

binary parameter that indicates the presence or absence of a signal source (target) in the

environment, and each grid cell’s state to guide the robot to map the environment and de-

tect targets. It is important to notice that the integrated approach of end-to-end solutions

also has its limitations. The main downfall is the need to control the vehicle reactively

through on-board real-time computing. Moreover, end-to-end methods still experience

limited generalization capabilities and they are tightly dependent on the system (e.g., type

of vehicle, sensors) [Guastella e Muscato 2021].

4.3.2 Approaching common problems

Exploration–Exploitation dilemma: The great majority of academic works about

single mobile robot exploration using RL employ the classic ϵ-greedy or some simple

variations of the algorithm to handle the Exploration-Exploitation dilemma. Considering

ϵ a positive scalar between 0 and 1, the agent selects the action with maximum value

with probability 1 − ϵ, and selects a random action with probability ϵ. If the ϵ value in-

creases during training, the exploratory behavior is more stimulated in the early learning
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stages, and as time passes, the agent selects the optimal action more frequently. Further-

more, a fewer number of works employ different techniques, but with a similar approach.

Stochastic Switching is used in [Rana et al. 2020], and in [Yijing et al. 2017] the Boltz-

mann distribution is employed to define the probability of choosing one action given the

current state. In [Fan et al. 2020], the Temperature Decay training paradigm is proposed,

working similarly to ϵ-greedy, but adapted to obtain an uncertainty-averse behavior.

Curse of dimensionality: To avoid the curse of dimensionality, the most common

approach is to employ deep neural networks to perform function approximation. Another

function approximation technique used in [Pham et al. 2018] is called Fixed Sparse Rep-

resentation (FSR), and maps the original Q table to a parameter vector. The discretization

of the states and action spaces is also a commonly adopted alternative, as can be ob-

served in both Table 4.1 and Table 4.2. In the analysed works, the algorithms that directly

return motion controls with a discrete set of actions used between 3 and 9 possible al-

ternatives. It is important to observe that although adopting a small and discrete set of

actions accelerates training convergence, in motion control applications it may limit the

robot performance, resulting in tortuous paths.

Reward shaping: In general, the examined research works use heuristic strategies

to define the reward functions for the robotic exploration applications. The application

goal directly influences how the rewards are modeled: in a search and rescue mission, the

reward usually encourages the agent to find the most quantity of information in the early

stages of exploration [Pham et al. 2018], for example. For goal-driven navigation, the

reward encourages the distance narrowing between the agent and the target [Zhou et al.

2018,Yijing et al. 2017]. Collisions with obstacles are associated with punishments in all

strategies. The rewards can be either dense, which means they are assigned to the agent in

many different states, or sparse, usually returning zero for most states and only rewarding

the agent in a few states or events.

Table 4.1 and Table 4.2 indicate the kind of reward used for each reviewed work.

In all cases, the agent receives the most significant reward if it achieves the exploration

goal and gets a considerable punishment if the mission fails (e.g., takes too much time,

a collision happens). The difference is that dense strategies adopt intermediate rewards.

Sparse rewards are easier to be defined and are adopted by many strategies [Niroui et

al. 2019, Craye, Filliat e Goudou 2016, Tai e Liu 2016, Hu, Song e Chen 2019, Shi et al.

2019, Jiang, Huang e Ding 2019, Rana et al. 2020], but they can increase the learning

convergence time. Therefore, despite the difficulty to properly determine dense rewards,
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they are the most adopted option among the single robot exploration works. Common

approaches include: punishing the agent at every time-step to decrease exploration time

[Pham et al. 2018, Çetin et al. 2019, Zhu et al. 2017]; small positive rewards if getting

away from obstacles or closer to target; minor punishments otherwise [Cardona et al.

2019, Zhou et al. 2018, Yijing et al. 2017, Josef e Degani 2020, Tai, Paolo e Liu 2017].

Learning Convergence: Different strategies to accelerate learning convergence

were identified in the robotic exploration works. The solutions used to tackle all previ-

ously mentioned aspects - exploration-exploitation dilemma, the curse of dimensionality,

and reward shaping - directly impact the learning convergence. The discretization of the

state and action spaces, widely adopted in the reviewed works, contributes to faster con-

vergence. Curiosity-driven intrinsic rewards are used in [Shi et al. 2019] and [Zhelo et al.

2018] to stimulate the agent to explore new areas after many failures in familiar positions,

improving data efficiency and avoiding possible deadlocks.

A method that is especially present is the Experience Replay (EP), which employs

past experiences in the training process to reduce the correlation between successive sam-

ples, make the learning process smoother, and improve data efficiency [Tai e Liu 2016,Li,

Zhang e Zhao 2019, Çetin et al. 2019, Fan et al. 2020, Tai e Liu 2016, Jiang, Huang

e Ding 2019]. An attention mechanism that analyses the importance of the algorithm’s

inputs is employed in [Josef e Degani 2020], aiming to increase data efficiency. Trans-

fer learning techniques were also employed in the single-robot exploration context. Dy-

namic programming was used to find approximate solutions to initialize the actor-critic

networks [Hu, Song e Chen 2019]. Similarly, the weights of the CNN trained with RL

were initialized using a supervised learning model trained with real-world data [Tai e Liu

2016]. Another identified strategy is to increase the training difficulty gradually and share

knowledge between different agents [Zhu et al. 2017].

4.4 Multi-robot exploration

Multi-robot systems (MRS) can be defined as a group of two or more robots that

are able to cooperate or compete with each other to achieve a specified goal [Gautam e

Mohan 2012]. Research on MRS has attracted considerable attention in the past years,

driven by its advantageous characteristics such as high levels of fault tolerance, increased

efficiency in task accomplishment, situational awareness from multiple locations, greater

flexibility in operations, and distributed payloads. This set of features make MRS suitable



35

for several complex and important applications [Yan, Jouandeau e Cherif 2013], including

unknown environment exploration. However, the multi-robot teams’ success relies on the

agents’ autonomy skills and on the design of a proper cooperation strategy, which is a

non-trivial task and represents the core challenge for multi-robot cooperation viability.

In this context, Reinforcement Learning algorithms are being highlighted as a promising

alternative to compose MRS coordination strategies. This section contains an overview

of the most recent academic works that propose MRS cooperation strategies for unknown

environment exploration using RL techniques.

The analysed research works were recently published and encompass UAVs, UGVs,

and AUVs applications. Some commonly identified non-guided MRS goals are collec-

tively exploring or covering entire unknown areas, and mapping a strange environment as

soon as possible, which are suitable skills for applications such as exploring cluttered ur-

ban search and rescue (USAR) scenes and uncertain environment patrolling. On the other

hand, usual goal-guided applications include goal-driven map-less navigation through un-

known complex environments, and searching static or dynamic multi-targets in unknown

environments. The target searching goal were investigated in contexts such as underwater

environments, victims identification in USAR scenes, and pursuit-evasion game, where a

group of predator agents are trained to capture the prey agents cooperatively. Collision

avoidance, either with objects or between agents, is a highlighted concern of all non-

guided and goal-guided applications. Again, to the best of our knowledge, there is no

work approaching non-guided map-less exploration for MRS using RL.

4.4.1 RL algorithms in the exploration strategies

Tables 4.3 and 4.4 summarize how the identified RL algorithms compose, respec-

tively, the so far proposed 2-Stage and End-to-End MRS exploration strategies. Three

approaches were identified in 2-Stage strategies. First, there are the works that use RL

to decide where each agent should move next, and employ a complementary method to

perform the path planning between current position and goal destination. Both [Luo et al.

2019] and [Zhou et al. 2019] propose a coordination strategy for non-guided applications

employing topological maps, in which the RL algorithm determines the next nodes the

agents should move to. As the goal of the RL is to decide between a finite set of possible

locations, the action spaces are inherently discrete. Again, a benefit of this approach is

the employment of RL in the key decision-making process of exploration, while using a
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discrete action space. However, the path planning do not focus on efficient area coverage.

Table 4.3 – How RL algorithms compose 2-Stage MRS exploration strategies.
Application

Goal
Research

Work
RL

Algorithm DRL State
Space

Action
Space Reward Complementary

Method

2-Stage
Cooperation

Strategies

RL algorithm to
decide where to go

Non-Guided [Luo et al. 2019] DQN Yes* Discrete Discrete Not Specified Any path planning
algorithm that

suits graph search[Zhou et al. 2019]
Monte Carlo
(DGSMCP) No Discrete Discrete Sparse

RL algorithm to
decide how to go

Non-Guided [Hu et al. 2020] DDPG Yes Continuous Continuous Dense
Voronoi-based
target selection

Goal-Guided [Walker et al. 2020] TRPO Yes Continuous Discrete Dense POMD solver

[Cai, Yang e Xu 2013] MAXQ No Discrete Discrete Not Specified
Hungarian

Method

RL algorithm
for both decisions Goal-Guided

[Jin et al. 2019] Where: DQN Yes* Discrete Discrete Dense ______How: DDPG Yes Continuous Continuous

[Cao, Sun e Yan 2019] Where: A3C Yes* Discrete Discrete Dense ______How: DQN Yes* Continuous Discrete

* Neural Netowrks with Convolutional Layers.

When it comes to RL usage for guiding the agents towards selected locations, the

proposed strategies are more diverse. In [Hu et al. 2020], each robot is assigned a different

target location based on dynamic Voronoi partitions. As DDPG can handle continuous

action spaces, it is used to decide the linear and angular velocities of the robots, increasing

behavior possibilities and enabling smoother movements. With focus on target searching,

in [Walker et al. 2020] a POMDP solver defines if the agent should explore its current

node or for which node it should move next, and in [Cai, Yang e Xu 2013] the Hungarian

method is used to obtain the best arrangement of cooperative sub-tasks and distribute it

between the robots. In both works, the RL algorithm receives the next goal location and a

set of sensor measurements, and return the agents movement. Unlike [Hu et al. 2020], the

action spaces are discrete and composed of 3 and 4 movements possibilities, respectively.

Finally, there are the works that use two different RL algorithms to assign where

to go and how to reach the defined locations. As DQN is more suited to discrete action

spaces, in [Jin et al. 2019] it is used to indicate the coordinates of the next location,

and DDPG is used to guide the agents selecting rotation angles in a continuous action

space. In [Cao, Sun e Yan 2019], the traditional frontier exploration method is combined

with DRL, whre the A3C algorithm decides the next goal frontier and the DQN defines

the movements to guide the agents. This approach results in smart path planning and

cooperation strategies. However, the use of two deep neural networks can represent high

computational costs that must be considered, especially in applications with energy, area

and computational constrains.

As previously defined, end-to-end systems are a integrated approach, taking raw

and/or processed sensors measurements as inputs and returning the robots’ control ac-

tions. The state spaces of the MRS End-to-End exploration strategies are in general a

combination of some or all of the following parameters: the robot’s pose, the sensor mea-

surements union, the location of the other agents and the known map. From Table 4.4, it is
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possible to notice that all methods with continuous state spaces use neural networks with

convolutional layers. These layers are able to extract features from the inputs, and are

connected to a fully-connected neural network that returns each agent actions. As for the

action space, the great majority of research works employ a discrete space, defining, in

average, between 3 and 9 possible moving directions or spinning angles. At the same time

that this discretization makes the training time decrease and facilitates the algorithms con-

vergence, it was repeatedly pointed as a limitation for the MRS performance, as it causes

abrupt behaviors and tend to make the solutions less effective in realistic complex scenar-

ios. Similar to single-robot end-to-end strategies, on-board real time computing to control

the vehicles’ movements must be considered as a project requirement, which can limit its

application.

Table 4.4 – How RL algorithms compose End-to-End MRS exploration strategies.

End-to-End
Cooperation

Strategies

Application
Goal

Research
Work

RL
Algorithm DRL State

Space
Action
Space Reward

Non-Guided

[Chen, Subagdja e Tan 2019] PPO Yes* Continuous Discrete Dense
[Geng et al. 2019] PG Yes Discrete Discrete Dense
[Cruz et al. 2020] DQN Yes* Discrete Discrete Dense
[Pham et al. 2018] Q-Learning No Discrete Discrete Dense

Goal-Guided

[Yue, Guan e Xi 2019] Q-Learning No Discrete Discrete Dense
[Venturini et al. 2020] Double DQN Yes* Discrete Discrete Sparse

[Yu et al. 2020] DQN Yes* Discrete Discrete Sparse
[Jun, Kim e Lee 2019] TD Actor-Critic Yes Discrete Discrete Sparse

[Lin et al. 2019] PPO Yes* Continuous Continuous Dense

* Neural Netowrks with Convolutional Layers.

4.4.2 Approaching common problems

Exploration-Exploitation dilemma: Like the single-agent exploration works, ϵ-

greedy is the most adopted method to balance exploration and exploitation during the

learning process [Liu, Nejat e Vilela 2013, Venturini et al. 2020, Pham et al. 2018, Luo

et al. 2019, Jin et al. 2019, Cao, Sun e Yan 2019]. In [Cao, Sun e Yan 2019] a switching

strategy based on collision risk is also used to choose the actions, in combination with

a self-decay probability to smooth the switch. Alternatively, the Boltzmann distribution

mechanism is used in [Yue, Guan e Xi 2019] to determine the probability of choosing

one action considering the current state. Given that many solutions to this dilemma have

recently been proposed and proved successful in different applications [Hester, Lopes e

Stone 2013, McFarlane 2018, Ecoffet et al. 2021], it is possible to conclude that there is

space to investigate different methods in the robotic exploration context.

Curse of dimensionality: To avoid the curse of dimensionality, one approach is
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to employ RL, specially the value-based algorithms, only for tasks that inherently have a

limited and discrete set of states and actions, such as choosing for which node the agent

should move next [Jin et al. 2019, Luo et al. 2019, Zhou et al. 2019]. A widely used

strategy is to efficiently reduce the space representation. In [Pham et al. 2018], Fixed

Sparse Representation approximation maps the original Q-values to a low-dimension pa-

rameter vector. As already discussed, DRL solutions can be employed to learn the low-

dimensional state features of the high-dimensional state from the sensory data, and pro-

vide robust function approximation. Due to its great performance improvements in recent

years, CNNs are being increasingly adopted as feature extractors of raw images or other

high-dimensional sensor data [Chen, Subagdja e Tan 2019, Luo et al. 2019, Cao, Sun e

Yan 2019, Venturini et al. 2020, Yu et al. 2020, Lin et al. 2019].

Reward shaping: When it comes to reward shaping, the approach of the MRS

works is very similar to the identified in single-agent research. Heuristc functions are

by far the most adopted approach, being designed in accordance with the application

objective. For example, in goal-guided tasks it is usual to give a positive reward when

an agent finds a target, as well as giving a positive reward for finding new unexplored

areas in non-guided tasks. For both kinds of multi-robot tasks, it is common to apply a

negative reward in case of collision between agents or with objects, and to specify rewards

for maintaining connectivity or learning to cooperate with other agents. Again, the most

common approach is employing dense rewards, probably because it usually accelerates

the agent’s comprehension of how it should behave.

Learning convergence: To decrease the amount of time spent on training and

to improve learning effectiveness, some MRS works make use of Transfer Learning

techniques. One example are the Curriculum Learning (CL) techniques, in which the

agents learn from increasingly difficult scenarios to progressively acquire complex skills.

In [Chen, Subagdja e Tan 2019], CL is applied to simplify and direct the learning process

in a teacher-student fashion, exposing the agents to four different environments with dif-

ferent complexity or difficulty. The strategy is tested with and without curriculum learn-

ing, and only succeed when the technique is applied. In [Geng et al. 2019], new obstacles

are gradually introduced to the training environment, stimulating the agents to explore

with the smallest number of collisions when faced with different dynamic environments.

A similar approach is used in [Jin et al. 2019], in which a target selection policy is

pre-trained in obstacle-free environments, and then new obstacles are added during train-

ing. This technique makes the algorithm converge much faster than classic multi-agent
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DDPG. In [Venturini et al. 2020], the agents trained in sparse environments are able to

quickly adapt to clutter scenarios. Some methods use Experience Replay to improve data

efficiency. Both [Venturini et al. 2020] and [Liu, Nejat e Vilela 2013] enable experi-

ence sharing between different robots, which allows faster convergence of the learning

algorithms. Prioritized Experience Replay is proposed in [Hu et al. 2020], which sam-

ples important experience data more frequently by calculating the priority of each state

transition.

From the performed academic research review and to the best of our knowledge,

no works investigate the application of DRL solutions for mapless unknown environ-

ment exploration focusing on non-guided applications. In this work, mapless exploration

refers to strategies that do not build an explicit map of the environment to decide where

to go next. In that context, no mapless methods aim at efficient area coverage without

pre-determined goal positions. As previously mentioned, some limitations arise from

founding the exploration decisions on an online built map. First, the computational costs

rapidly increase with the expansion of the explored area. Also, the efficiency of the explo-

ration strategy heavily relies on precise maps [Juliá, Gil e Reinoso 2012]. Furthermore,

when a multi-robot system performs a collaborative exploration, the maps generated by

each agent are often shared between the team. The shared maps must usually be merged,

which is not a trivial task, often associated with high computational costs [Velásquez

Hernández e Prieto Ortiz 2020].

At the same time, there are applications where an entire area must be covered,

but the final goal is not mapping the environment, as search and rescue or multi-target

search. In situations with limited memory and processing resources, such applications

could benefit from an exploration strategy that does not rely on an accurate world map.

Therefore, using the information of how recent works are dealing with problems of RL

applied to robotics, the following sections present the proposal of a mapless exploration

framework suitable for n robots based on DRL.
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5 MAPLESS COOPERATIVE EXPLORATION USING DRL

The main problem tackled by this work is the mapless multi-robot collaborative

exploration. In this thesis, mapless exploration refers to a strategy that does not build an

explicit map of the environment. Instead, it keeps track of a fixed-size quantity of sensor

information that is not heavily processed, such as laser measurements and the robot’s

trajectory. The work focuses on indoor environment exploration, where GPS signal is

unavailable. We assume that the environment is completely unknown, which means the

agents do not have prior access to the environment’s map. Thus, the team’s goal is to

efficiently explore a 3D environment in a 2D fashion as fast as possible. In other words,

the purpose of the exploration problem is to find the set of waypoints ((x, y)) that result in

the fastest cooperative environment coverage. In the context of RL, as detailed in Section

3.1, this problem can be regarded as a sequential decision-making process, where the

agent chooses a sequence of actions to maximize the accumulated discounted reward. So,

in this work, the exploration problem is formulated as a Markov Decision Process.

To approach the collaborative exploration problem, a system was designed ac-

cording to the architecture illustrated in Figure 5.1. A multi-robot system NR formed of

n ∈ N∗ robots R1, R2,...Rn is considered. Each agent that composes the robot network

comprises the same building blocks: sensors suite, communication, exploration, and nav-

igation modules. The exploration strategy is decentralized, meaning each robot locally

runs a system that determines the individual exploration policy. The idea is to obtain

agents capable of exploring the environment alone, but that can optimize their decision-

making process when information from other agents is received. As previously stated, in

the proposed method, the exploration happens independently from any mapping process.

The system information flow happens as follows: at time t, the Sensors Suite

(SS) sends laser measurements (Lt) and the robot’s current pose (pt) to the Exploration

Module (EM). Using the updated pose, the EM assembles the robot trajectory (t1), and

sends it to the Communication Module (CM), that tries to broadcast it to other robots.

The CM also receives other robots trajectories (t2, t3,..., tn) if available, and sends them

to the Exploration Module. Using the information from Sensors Suite and Communica-

tion Module, the Exploration Module defines the next action the robot should perform

(at). Finally, the Navigation Module (NM) receives the selected action and translates the

high-level abstraction into electrical and mechanical variables that control the robot for

performing the selected action.
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Figure 5.1 – Simplified diagram of the proposed exploration system, suitable for n robots.
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The main focus of this work is the exploration strategy. Therefore, the proposed

system was designed to be modular, meaning that the blocks connecting to the exploration

module are not limited to a specific method. Provided some determined assumptions are

respected, the sensors, communication, and navigation can use different implementations.

A considered premise is that at each time step, the agents try to communicate with each

other. Data can be transmitted and received between the agents when the communication

link is established. The mechanisms that the Communication Module employs to establish

communication can vary. On the other hand, the Navigation Module is responsible for

controlling the robot to perform the action selected by the exploration policy. The robot

action space is discrete, and the robot moves in fixed steps. Therefore, the navigation

system can use different techniques to control the robot, such as path planning methods,

or simply using odometry data to rotate the robot in the target direction and to activate its

propellers to drive a specific distance. It is valid to notice that the better the performance

of the peripheral blocks, the better the performance of the exploration strategy.

The Sensor Suite and the Exploration Module are explained in further details in

the next sections. Section 5.1 defines which sensors compose the sensors module and how

odometry data are combined to estimate the robot’s position and rotation in the environ-

ment. The main contribution of this work is documented in Section 5.2: the exploration

module. The core of the exploration is an end-to-end decision-making module based on

the deep reinforcement learning algorithm Proximal Policy Optimization. Section 5.2.1

presents how sensor data and information received from other agents are pre-processed

and combined into the environment state. The set of states, rewards, and actions, as well

as the training and inference processes, are characterized in Section 5.2.2.
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5.1 Sensors suite

The Sensors Suite is responsible for sensing the world around the agent and for

tracking its movements. The proposed exploration strategy assumes that the vehicle is

equipped with an odometry module and a laser distance sensor. Because the proposed

system is not limited to a specific kind of robot (e.g., UGV, UAV, AUV), the sensors that

compose the odometry module can vary (e.g., wheel odometer, inertial measurement unit

(IMU), camera). On the other hand, the exploration algorithm was designed to specifically

receive data from a 2D laser scanner capable of sensing all directions around the robot.

A mobile robot must be able to localize itself in the environment to perform any

autonomous navigation task. This work focuses on indoor environments, so using GPS in-

formation to determine the agents’ localization is not appropriate. Therefore, to approach

the localization problem, the information from the odometry module is employed to per-

form position tracking, or dead reckoning. Considering that a robot’s pose is the specifi-

cation of its 2D position and its orientation (p = (x, y, θ)), dead reckoning is the process

of estimating a robot’s current pose by using a previously determined pose. Different

localization methods could be employed without changing the underlying exploration ar-

chitecture, such as raw odometry data, or the Extended Kalman Filter (EKF) [Fujii 2013].

In a system formed of n ∈ N∗ robots, each robot is initialized in a random and

distinct position. All robots are localized in the same coordinate frame. Robot r1 is

considered the coordinate frame reference, being initialized in a position defined as (x =

0, y = 0). The other robots starting positions are defined considering their distance to

robot r1. Finally, the output of the Sensor Suite is the robot current pose (pt) and a vector

Lt with the obtained laser measurements.

5.2 Exploration Module

As previously mentioned, the Exploration Module (EM) configures the main con-

tribution of this work. Figure 5.2 expands the exploration module so its sub-processes can

be visualized. The processes are divided into two main stages: data pre-processing and

decision-making module. The following sections describe the two stages in detail.
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Figure 5.2 – Exploration Module in details.
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5.2.1 Data pre-processing

The data pre-processing stage transforms raw sensor measurements received from

the Sensors Suite into data that is ready to be processed by the exploration policy. In

this work, the exploration policy is the function approximated by a deep neural network

(DNN). As any deep learning process, the DNN is trained to optimize its parameters and

find patterns from a provided dataset. In the case of DRL, the dataset inputs are the

environment states. Therefore, defining what kind of information comprises a state and

how this information is presented to the policy model is one the most crucial factors for

the success of the exploration strategy.

A fundamental precondition for autonomous navigation is collision avoidance. To

be able to avoid collisions, the agent must receive information about the distance of obsta-

cles in its surroundings. Furthermore, knowing which directions lead either to open areas

or closer to obstacles can help determine the critical exploration question: where to go

next. In this context, the proposed method uses the Sensors Suite’s laser measurements

to extract this information. A possible strategy would be simply using raw laser infor-

mation to compose the environment state. However, this approach results in a large state

space and is very susceptible to noisy measurements, which can make exploration policy

convergence difficult. Therefore, the proposed solution employs an encoding method to

compact the laser measurements, decreasing the state space dimensionality and reducing

the impact of measurement noise. Figure 5.3 illustrates the schematic of the proposed

encoding method.

The encoder idea is to divide the laser measurements into eight proximity zones
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Figure 5.3 – a) Schematic representing how the 360 laser measurements spaced by one degree are
equally divided into eight proximity zones. b) Scale that illustrate the proximity status each zone

can assume depending on the measured distances.
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(Z = (Z1, Z2, ..., Z8)), as shown in Figure 5.3.a. Throughout the text, the proximity zones

can also be referred to as proximity regions. Given that the 360◦ around the robots are

equally divided, each zone represents the lasers contained in 45◦. A scale with four possi-

ble statuses is proposed to comprise the measurements into a single value, as represented

in Figure 5.3.b. The possible statuses are safe, caution, risk, and collision, that are rep-

resented in the state vector by the values 1, 2, 3, and 4, respectively. A zone assumes

a different status depending on the distances measured by its lasers. It is defined that at

least kl laser measurements must fit into a distance condition to make a region assume a

worse status. For example, consider a proximity zone ZM , with 45 measurements lm. If

at least kl laser readings fit into the condition 0 ≤ lm < d1, the status of ZM becomes col-

lision, regardless of the other measurements. Otherwise, if kl readings fit into condition

d1 ≤ lm < d2, the status of ZM becomes risk. If that is still not the case, when kl laser

readings fit into condition d2 ≤ lm < d3, the status become caution. Finally, if there are

not kl measurements that result in a distance smaller than d3, then the zone is considered

safe. The exact distances d1, d2, and d3 depend on the dimensions of the employed robot,

and the minimum number of laser readings kl is empirically determined.

Besides the knowledge of the agent’s surroundings, information about already

visited regions can impact the exploration decision-making process. Traditional meth-

ods usually extract such information from the environment map built during exploration.

Because the goal is to perform mapless exploration, another form of comprising visited

regions is proposed. At each time step t, the agent has access to its current pose in the

environment. That means it is possible to keep track of the robot’s trajectory by saving its

poses while the agent moves. Here, we are only interested in the robot positions, repre-
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sented by a (x, y) point. As explained in Section 5.2.2, the robot action space is discrete,

and the robot moves at fixed steps, which facilitates this trajectory representation. Simi-

larly to the laser pre-processing reasoning, a possible approach would be to use the entire

robot trajectory to compose the environment state. However, this strategy makes the state

rapidly grow as the exploration happens, causing an increase in computational effort and

making policy convergence challenging. Therefore, the proposed method represents the

robot’s trajectory as a vector (tn) with a fixed size ktr.

Suppose the trajectory vector (tn) stores k robot’s positions. Considering that

each position is a (x, y) point, the total size of the trajectory vector is ktr = 2k. When

the robot is initialized in the environment, the two first vector elements correspond to

the robot’s starting coordinates, and the remaining vector values are set to zero. At each

time step t, the robot takes a new step. While the number of steps is smaller than k,

the points of the trajectory vector tn(t − 1) are shifted so that the new current robot

position corresponds to the first vector elements. When the robot performs more than k

steps, trajectory information is processed so that tn size remains fixed. Three methods for

processing the trajectory are proposed:

• Drop Random Points: Except for the first and last trajectory points (that represent

the agent’s current and starting position, respectively), random points are dropped

from the trajectory vector.

• FIFO: As the name implies, the first position to fill the vector is the first one to be

dropped. Only method that does not preserve the agent’s starting position.

• Merge Last Positions: The first 20% of the vector elements are updated normally,

and the last position contains the agent’s starting position. The remaining points

are sequentially merged, so that the resulting point is the average of two points.

This method aims to provide more precise knowledge on the most recently visited

positions without losing all data about past trajectories. So, although information

about previously visited regions becomes more sparse, the vector maintains the

information about where the robot started and does not completely neglect older

positions.

As previously described, the robots try to broadcast their trajectory vectors to the

team. Considering that the exploration is collaborative, it is intuitive to affirm that an

agent can benefit from knowing which regions were visited by other agents. That way, it

can make more intelligent decisions and avoid visiting already explored areas. The same
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logic of avoiding rampant state growth must be considered when incorporating shared

trajectories into the state. So, the proposed method also combines the other robots’ tra-

jectories in a fixed-sized vector (tot). At time t = 0 all tot positions are initialized as

zero. Each robot tries to send its trajectory vector to the other robots at every new step.

For a system composed of n robots, each robot receives n − 1 trajectory vectors from

the other robots. Then, each agent combines the received information into a single vector

of fixed size kot. If only two robots are considered, both trajectories are simply concate-

nated. If more robots are collaborating, duplicate points are eliminated, the vectors are

concatenated, and random points are dropped until the desirable vector size is achieved.

5.2.2 Decision-making Module

In general terms, the decision-making module combines the data processed by the

former stage into the environment state, applies the state into the exploration policy, and

returns the robot next action. The exploration problem was already formulated as a MDP,

and the proposed strategy uses DRL to search for the optimal policy. The elements of

the RL problem, which are the state space, the action space and the reward function, are

defined as follows:

States: The environment state is the result of the concatenation of the proximity

zones (Z), the robot trajectory (tn) and the other robots’ trajectories (tot), resulting in a

vector with fixed size 8+ktr +kot. Figure 5.4 illustrates the state vector representation of

robot R1 at time step t. To facilitate the comprehension of the vector structure, the other

robots trajectory only contains the trajectory of robot R2. However, the final state vector

structure and size would remain the same, regardless of how many agents trajectories are

received.

Figure 5.4 – State vector representation of robot R1 at time t, considering that communication
was established with robot R2.
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Source: The Author.

Action: The action space is a probability distribution of discrete actions including

the possible directions the robot can move towards at a fixed step. Four possibilities
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are considered: move forward, backwards, left, or right. This set of actions makes

the exploration model an end-to-end solution, because it directly translates the sensor

measurements into movements.

Reward: In general, the approach for reward shaping of most research works that

apply DRL to mobile robotics exploration is to elaborate heuristic strategies [Garaffa et

al. 2021]. Also, in similar applications dense rewards usually perform better than sparse

rewards [Mohtasib, Neumann e Cuayáhuitl 2021]. Dense systems adopt intermediate

rewards which are assigned to the agent in many different states. With that in mind, the

reward function was designed aiming to punish collisions and encourage the exploration

of new regions. The basic structure for reward function is illustrated in Listing 5.1.

Listing 5.1 – Basic reward function structure.

if collision:

R(t) = max_penalty

else if (explored_rate >= max_explored_rate):

R(t) = max_reward

else if (explored_rate (t) - explored_rate (t-1))>0:

R(t) = R_1

else if (explored_rate (t) - explored_rate (t-1)) == 0

and new_position:

R(t) = R_2

else if (explored_rate (t) - explored_rate (t-1)) == 0

and old_position:

R(t) = R_3

If a robot collides, the reward assumes the value of max_penalty, which must be a

negative value. If it does not collide and the next step results in a coverage equal or higher

than a pre-defined value (max_explored_rate), the exploration is considered successful

and the reward is max_reward, a positive value. Considering that the computation of the

exploration rate is performed using the positions visited by all agents in the team, this

reward should encourage cooperation between agents. If the robot next step does not

result in a collision nor in a successful exploration, but the robot new position increased

the explored region rate, the reward R1 is proportional to the increase in the exploration.
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If the robot does not explores new regions, but its current position has never been visited

before, the reward is R2. Finally, if none of the previous scenarios occur, it means the

robot has already visited its current position. The reward R2 is a negative value much

smaller than max_penalty, that should encourage short paths.

The algorithm used to optimize the policy parameters is the Proximal Policy Opti-

mization, whose equations and advantages were described in Section 3.3. The algorithm

uses an actor-critic model, where actor and critic are fully-connected neural networks

with two hidden layers of 64 neurons. The exploration is decentralized, meaning each

robot has its own neural network. A simplified training framework of the proposed DRL

actor-critic model is shown in Figure 5.5. Let us consider the training of a single robot.

During the training phase, the agent performs several policy rollouts, or in other words,

plays several games. Each rollout has a fixed number of steps (steps_roll). The agent and

the neural networks’ parameters are initialized when training starts.

Figure 5.5 – Simplified schematic of how data is gathered at each rollout during the training
phase.
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The initialized agent collects data and assembles the state vector. The state is used

as input to the critic, which outputs the state value (V (s)), and to the actor that returns the

next action (at). The robot acts, resulting in a new environment state. Taking the selected

action has consequences in the environment (e.g. robot collided, new region is visited,

etc.). Such consequences are considered to determine the reward associated with the state-

action pair. At each step, the state, action, state value, reward, and action probabilities

are stored as rollout data. When a rollout is over, such information is used to update
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the actor and critic neural networks parameters according to the Equations presented in

3.3. One training process has a maximum number of steps (max_steps), which means

that the number of NNs updates is equal to the quotient of max_steps and steps_roll.

Figure 5.6 illustrates a simplified inference framework, where a trained robot performs

exploration. The critic network and the reward computation is removed, and the resulting

actor network configures the exploration policy.

Figure 5.6 – Simplified schematic of the inference framework after training is done.
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6 EXPERIMENTS

This chapter describes the experimental setup employed to implement, validate

and test the proposed mapless collaborative exploration architecture. Section 6.1 presents

the simulation framework built to train and test the agents in different environments. Sec-

tion 6.2 describes the experiments elaborated to validate the proposed strategy in simple

rooms and to define the parameters and training configurations that yield the best per-

formances. Finally, Section 6.3 describes the experiments performed in more complex

environments to compare the performance between different exploration methods.

6.1 Simulation

In order to train and test the proposed exploration architecture, a simulation frame-

work was built. Figure 6.1 illustrates the three main communicating elements that com-

pose the framework logic: the simulated world/environment, the robot controller, and

the decision-making model. The simulated world and the robot controller were imple-

mented using OpenAI Gym, a widespread environment for developing and testing learn-

ing agents [Brockman et al. 2016]. A customized environment was implemented to rep-

resent the evaluated maps as virtual grids. Considering that the robot moves with fixed

steps of 20cm, each grid cell presented an area of 20cmx20cm. The simulator simpli-

fies the robot representation as a circle that occupies a 20cmx20cm cell. It can move

forwards, backward, right, or left without turning. The simulator also used vectorized

environments, a method for stacking multiple independent environments into one. That

way, the agent gets information of n environments per step. The developed simulation

environment aims to increase data collection efficiency, make the training process faster,

and facilitate parameters’ tunning.

Figure 6.1 – Simulation framework elements and communication flow.
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The decision-making model (DM) was already detailed in Section 5.2.2. It works

as the "brain" of the robot, using processed sensor data as the input of the exploration
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policy neural network, and returning an appropriate next action. The flowchart in Figure

6.2 represents the communication with the robot controller from the decision-making

model perspective. At the start of a new train, the DM receives the robot’s current state

from the controller and uses it to define the next action. Then, it communicates the action

to the controller and waits until the next state is received. The data resulting from this

interaction is saved. If there is no need to reset the training, the last received state is used

to define the next action, and the process is repeated normally. This process is repeated

until the rollout phase is over. When a rollout ends, the saved data is used to update the

actor and critic neural networks. The reset is defined depending on the last state, and the

end training is defined depending if the robot reached a pre-defined number of steps. Both

statuses are sent to the controller, and the whole process is repeated until training is over.

Figure 6.2 – Communication between decision-making model and robot controller from the
decision-making model perspective during a training process.
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Figure 6.2 represents the decision-making model communication with the robot

controller when a trained agent is used for inference. All the steps related to saving data

and updating the neural networks are removed. The DM receives the first state, defines

the following action, and communicates the action to the controller. After a new state

is received, it evaluates if the taken action resulted in a reset. If that is not the case, the

inference continues. Otherwise, the DM thread is killed.

Figure 6.3 – Communication between decision-making model and robot controller from the
decision-making model perspective during a inference process.
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The robot controller is the interface between the decision model and the simulated

world. It is responsible for receiving sensor measurements from the simulated environ-

ment, processing the received data, and transmitting the current state to the decision-
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making model. Then, it gets the action defined by the model and translates this high-level

information into appropriate commands to move the robot in the simulated world. In our

simulator, such command is just updating the robot’s position in a discrete fashion. The

communication with the decision model from the controller perspective is represented in

Figure 6.4.

Figure 6.4 – Robot controller thread.
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When the training of one robot is performed, a main process in the robot con-

troller launches a single robot thread. If a reset happens, this thread is killed, and if the

train is not over, it is launched again. At each reset, the robot is initialized in a random

free position in the environment. For inference the process is the same, but the thread is

not relaunched after reset. In both training and inference, the decision-making model and

the simulated world continuously run throughout the process. The process is syncronous,

so all robots in the simulation move one step per timestep. The Bresenham’s line al-

gorithm [Kuzmin 1995] is used to determine the simulated laser measurements and the

explored region around the robot. The code for the simulation framework can be found

in: https://github.com/luizagaraffa/mobile_robotic_exploration_PPO

6.2 Method validation

The method validation consists in verifying if the exploration algorithm converges

when the proposed methodology is implemented. It also is used to evaluate what are the

training parameters, reward functions, trajectory methods, exploration radius, and train-

ing configurations that facilitate the algorithm convergence. Different reward functions

are tested based on the structure proposed in Section 5.2.2, depending on the experiment

characteristics. The trajectory methods proposed in Section 5.2.1, including Drop Ran-

dom Points, Merge Last Points, and FIFO, are evaluated. The exploration radius refers

to the area around the robot that is considered as explored. Different values were defined

according to the environment dimensions.

As for training configurations, the experiments can use curriculum learning or

learn to explore from scratch. Fine-tuning is a way of utilizing transfer learning where
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a model that has already been trained for one given task is furthered tuned to make it

perform a second task. Therefore, in the curriculum learning trains, the agent first learns

how to avoid collisions based on the proximity zones status, and then the resulting neural

networks are finetunned so that the agent learns how to optimize the exploration path.

On the other hand, trains where the agent learns how to explore from scratch mean that

the agent has no previous training and must learn how to avoid collisions and how to

optimize exploration in the same training. To perform validation, a really simple set of

maps is considered, as illustrated in Figure 6.5. The dimensions and resolutions of the

maps are presented in Table 6.1.

Figure 6.5 – Maps used for the exploration policy validation.

(a) Simple maze map (b) Simple room map

Source: The Author.

Table 6.1 – Validation maps’ dimensions and resolution.
Map Name Resolution Real Size (m)

Simple Maze 8x9 1.6x1.8
Simple room 20x13 4.0x2.6

As previously described, during training, the number of data saved in a rollout

phase and the number of updates in the actor-critic neural network are fixed and pre-

defined. On the other hand, an episode can be composed of a different number of steps.

An episode starts when the robot is initialized in the world and ends when it meets a reset

condition. Depending on the experiment goal, the robot will reset if it collides, if the num-

ber of steps exceeds a maximum number of steps per episode, or if the robot has explored

more than a percentage of the environment. The parameters that result in the highest ratio

between explored environment rate and path length are used in the experiments in more

complex maps.
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6.3 Comparison with baselines

To evaluate the proposed exploration framework in more complex maps and com-

pare its performance with other exploration methods, the research work published by

Haoran Li et al. is used as a reference [Li, Zhang e Zhao 2019]. The work also proposes

an exploration strategy based on Deep Reinforcement Learning, called Fully Convolu-

tional Q-network with Auxiliary task (AFCQN). It compares their results with the classic

Deep Q-network (DQN) method. The paper contains the used maps with dimension and

resolution information. So, some of the maps were reproduced as illustrated in Figure

6.6. The idea is to train and test our method in the same (or at least very similar) maps,

and compare the obtained exploration region rate and path length with the AFCQN and

DQN performance. Another simple baseline that was implemented for comparison is the

random walk. The agent chooses a random action between moving forward, backward,

left, or right as long as this action does not result in a collision. The exploration ended

every time the path length was equal to 60m, and the explored region rate was calculated.

Figure 6.6 – Maps used for the exploration policy train and test.

(a) Reference Map (b) Test Map 1

(c) Test Map 2

Adapted from: [Li, Zhang e Zhao 2019]

The experiments using the baseline maps consist in training the agent(s) in the

Reference Map, and testing the resulting exploration policies in the Reference Map itself,

Test Map 1, and Test Map 2.The experiments in the test maps are used to evaluate the

method’s generalization capacity or, in other words, to evaluate how well it performs



55

Table 6.2 – Baselines maps dimensions and resolution.
Map Name Resolution Real Size (m)

Reference Map 40x25 8.0x5.0
Test map 1 40x25 8.0x5.0
Test map 2 40x25 8.0x5.0

in an environment that is different from the training one. The experiments are perform

for one and two agents, and the aspects evaluated are path length, exploration rate, and

generalization capability. The details of the tests and training parameters are described in

detail in the following section.
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7 RESULTS AND DISCUSSION

This chapter presents and discusses the results obtained from the experiments pro-

posed in Chapter 6. Section 7.1 defines the parameters used in training and presents the

validation results for one and two robots in the simple maze and the simple room envi-

ronments. Section 7.2 presents the results for a single robot and for two robots in more

complex environments, comparing the achieved exploration efficiency and generalization

capability with different exploration methods.

7.1 Method validation

The proposed mapless exploration framework was validated in the simple maps

illustrated in Figure 6.5. Different configurations were employed for training the agents,

and the next sections presents which reward functions, model parameters, trajectory logic,

and exploration radius resulted in the most efficient exploration. As previously mentioned,

the configurations that achieve the best performance in the validation phase are employed

in the more complex baseline maps.

7.1.1 Training parameters

As described in Section 3.3, one of the Proximal Policy Optimization algorithm

advantages is that it provides a good balance between ease of implementation and pa-

rameters tuning. At the same time, proper parameter initialization can be decisive in

improving policy performance. Different works that use PPO were consulted [Schulman

et al. 2017] [Chen, Subagdja e Tan 2019], and the most commonly used parameters were

selected as described in Table 7.1. Learning Rate (LR) annealing was used as described

by Equation (7.1), where U represents the total number of policy parameters updates dur-

ing training, ut represents how many updates have been performed at time t, and LRt=0

represents the initial learning rate value. The total number of updates (U ) can be defined

as the quotient of the total number of training steps and the number of steps per rollout.

This way, the LR decreases linearly as the number of policy updates increases.

LRt =
1.0− (ut − 1)

U
LRt=0 (7.1)
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Table 7.1 – Set of PPO parameters.
Parameter Best Value

Clip Coefficient (ϵ) 0.2
Learning rate initial value 0.0025

Value Function Coefficient (c1) 0.5
Entropy Coefficient (c2) 0.01
Number of mini batches 4

Steps per Rollout 128
Number of vectorized environments 4

7.1.2 Single Robot

7.1.2.1 Simple maze

The Simple Maze experiment with a single robot is the most basic environment

used to confirm the method convergence. The first experiment uses curriculum learning

so that the robot first learns how to avoid collisions and then learns how to optimize the

exploration path. Thus, the state vector only updates the proximity regions’ status. The

positions that would receive the trajectory remain filled with zeros. The reward is shaped

differently than for experiments that aim at optimizing exploration. Considering the goal

of collision avoidance, the agent receives a punishment of −1 when it collides. If the

robot moves 100 steps without colliding, it receives a reward of +1. A small reward of

0.01 is defined every time a new position is visited to encourage the agent to move to

different places instead of repeating the same movements (e.g., back and forward), as this

behavior would also successfully avoid collisions. If none of the previous conditions is

met, the reward is 0. An episode ends if there is a collision or the robot moves 100 steps.

The agent is initialized in a random free position at the start of every episode. Training

ends when the robot completes a total of 150k steps.

Figure 7.1 illustrates the results of the collision avoidance training for a single

robot in the Simple Maze environment. The graphs were generated using the Tensor-

Board, a visualization tool developed by TensorFlow [Abadi et al. 2016]. To facilitate

visualization, the curves were smoothed with a feature of Tensorboad that applies an

exponential moving average to the metrics. The absolute values are represented by the

fading colors. In Figure 7.1a, it is possible to observe that the path length is small in the

first 600 episodes, when the agent has not learned yet to avoid collisions. As the training

progresses, the path length converges to 100 steps per episode, which was the defined stop

criteria. Figure 7.1b confirms that logic since the episodic return starts at−1, which is the
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punishment for collisions and then converges to a value slightly higher than 1, represent-

ing the sum of the 0.01 reward per new positions and the +1 reward for completing 100

steps.

Figure 7.1 – Training metrics of single agent in Simple Maze learning collision avoidance.
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The Learning Rate is demonstrated in Figure 7.1f, linearly decreasing as the num-

ber of policy updates increases. That means that at the last episodes, the variation in the

neural networks’ weights updates become smaller. By that logic, in successful trains it

is expected that the policy loss, critic loss, and the entropy adapt their behaviors to the

number of steps, presenting higher variation in early episodes and gradually converging.

As the behavior of the learning rate is the same for all trains performed in this work,

only adapting the angular coefficient depending on the total number of steps, learning

rate graphs are omitted in the following experiments.

The remaining graphs reinforce that the learning process was successful. Policy

loss correlates to how much the policy changes during training. As mentioned in Section

3.3, the policy parameters are updated using gradient ascent. In Figure 7.1c, it is possible

to observe that the policy loss increases over time, converging to a value close to zero.

Figure 7.1d shows the critic loss, which correlates to how well the model can predict the

value of each state. The critic parameters are updated using backpropagation and gradient

descent. Its values should increase while the agent is learning and then decrease once the

reward stabilizes, which is precisely what happens in the training process. Finally, en-

tropy represents how random are the policy decisions. It should slowly decrease during a

successful training process, as shown in Figure 7.1e. The variance in path length observed
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in the final episodes shows that the agent can still collide in certain situations. However,

the overall results demonstrate that the resulting policy sufficiently learns how to avoid

collisions, being suitable for the base neural network for exploration finetuning.

The next train goal is to teach the robot how to explore the environment with the

smallest possible number of steps. The agent is initialized with the collision avoidance

policy, whose parameters are updated during training. Considering that this experiment is

supposed to validate the method and the that the maze presents a small size, it was con-

sidered that the agent only explores an area of 20cm around its position. Furthermore, 30

trajectory points form the state vector. The drop random points trajectory logic, presented

in Section 5.2.2, is employed, meaning that when more than 30 positions are visited, ran-

dom points are discarded. The reward shape changed accordingly to the new goal. The

base for the reward function was presented in Section 5.2.2. If a collision happens, the

reward is −1. If the exploration rate is 100%, the reward is 100. If the exploration delta,

or in other words, the number of new explored cells, is higher than zero, the reward is the

number of new explored cells. If no new cell is explored, the reward is −0.1. An episode

ends if the agent collides or the exploration rate is 100%. Again, the agent is initialized

in a random free position at the beginning of each episode. Training ends when the agent

completes 2M steps. A high number of steps is chosen to evaluate how long the policy

takes to optimize exploration, and to compare to the results of learning exploration from

scratch.

Figure 7.2 – Training metrics of single agent in Simple Maze learning exploration by finetuning
the collision avoidance policy.
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The results presented in Figure 7.2 demonstrate that the agent successfully learns
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to explore the environment efficiently. The episodic path length starts with a high number

of steps, as the agent already knows how to avoid collisions. Around episode 20k, the

path length decreases and converges to a value close to 13 steps. Given that each step

represents 20cm, the average path length is 2.6m. Given that the exploration radius was

defined as 20cm around the agent, 2.6m is the approximate length to cover the maze

optimally. Also around episode 20k, the exploration rate converges to 100% and the

accumulated reward to 100. The policy loss, critic loss, and entropy behaviors confirm

the training convergence.

The final experiment in the Simple Maze employs the same configuration used

for the exploration finetuning. However, the actor and critic weights are randomly ini-

tialized instead of using pre-trained neural networks. Figure 7.3 illustrates the obtained

results. The agent takes more steps to learn how to optimize exploration compared to the

finetuning results. This behavior makes sense, considering that when training starts the

agent does not know how to avoid collisions, which is demonstrated by the small path

lengths obtained in the first episodes. Around episode 60k, path length significantly in-

creases, which can be interpreted as the policy understanding that more rewards can be

accumulated if collisions are avoided. Finally, around episode 120k, the agent learns how

to optimize the exploration, reducing the path length to around 13 steps, achieving 100%

of exploration rate, and presenting an episodic return of 100. Policy loss decreases, and

critic loss and entropy increase when the agent starts learning how to explore, to later

converge to values close to zero.

Figure 7.3 – Training metrics of single agent in Simple Maze learning exploration from scratch.
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To test the performance of the resulting models, the achieved policies were used to

perform inference in the Simple Maze map 50 times, and the path length and exploration

rate were collected. The mean and standard deviation results are demonstrated in Table

7.2. The model trained using curriculum learning, referred in the Table as Finetunne,

presented slightly better results, with an smaller average path length (2.49m) for a higher

average explored rate (99%). However, the Simple Maze experiments demonstrated that

the proposed mapless framework was able to achieve an efficient exploration with or

without curriculum learning.

Table 7.2 – Inference results of exploration policies for a single robot in the Simple Maze
environment.

Path Length (m) Exploration RateMap Train Mean Std Mean Std
Finetunne 2.49 0.03 0.99 0.01

Simple Maze
From scratch 2.73 0.01 0.98 0.02

7.1.2.2 Simple room

Similar to the Simple Maze experiments, the first set of trains in the Simple Room

uses curriculum learning. Therefore, the first train’s goal is to learn how to avoid col-

lisions based only on the proximity regions’ status. The reward function is the same as

the one employed for the Simple Maze, except for the number of steps used as a success

criterion. Because the Simple Room presents higher dimensions than the maze, the max-

imum number of steps per episode was considered 200 instead of 100. Thus, the reward

was −1 for collision, +1 for completing 200 steps, +0.01 for discovering new positions,

and 0 otherwise. The number of steps for ending the training process was increased to

1M .

Figure 7.4 demonstrates that the agent can learn to avoid collisions, given that

the path length converges to an average of 200 steps. The episodic return starts close

to −1, the penalty for collisions, and ends with an average value slightly higher than

1. Interestingly, performing inference with the resulting model showed that the agent

starts moving to different positions but ultimately ends up repeating the same limited

movements. This behavior is consistent with the experiment design, given that the robot

must perform 200 steps and there are less than 200 free positions in the map. Eventually,

the robot visits all unseen cells, and the reward for performing any movement that does

not end up in collision is the same.
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Figure 7.4 – Training metrics of single agent in Simple Room learning collision avoidance.
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The resulting collision avoidance actor and critic neural networks were finetuned

so that the agent learns how to optimize exploration. 50 positions form the trajectory

vector, and the drop random points trajectory logic is employed. Considering the size

of the map, the exploration radius was defined as 80cm. The same radius is employed

in all Simple Room experiments. To reinforce collision avoidance, a reward of −100

was determined for every collision. If the exploration rate is 98%, the reward is +100.

If the agent explores previously unseen cells, the reward becomes the quantity of newly

explored cells. If no new cells are explored, but the robot is in a position that was not

visited before, the reward is +0.5. Finally, if no new cells are explored and the robot has

already visited its current position, a penalty of −0.5 is applied. An episode ends when

a collision happens or when the exploration rate is 98%. Training ends when the agent

performs 10M steps.

The training metrics illustrated in Figure 7.5 demonstrate that the agent learns how

to explore the environment, since the average exploration rate per episode converges to

98%. It is possible to observe that the path length starts with high values, as the agent

already knows how to avoid collisions, decreases because of the penalty for visiting re-

peated positions, and then grows again to achieve the 98% exploration rate. The path

length is expected to present a higher variation in the Simple Room experiments consid-

ering that, differently from the maze, the optimal trajectory can be significantly distinct



63

depending on the robot’s starting position.

Figure 7.5 – Training metrics of single agent in Simple Room learning exploration by finetuning
the collision avoidance policy.
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In order to teach the robot to explore the environment without curriculum learn-

ing, the same configuration used for the exploration finetuning was employed, except that

the neural networks’ weights are randomly initialized. Figure 7.6 illustrates the resulting

training metrics. It is apparent that the agent first learns how to avoid collisions and later

learns how to optimize the path for exploration. Unlike the Simple Maze experiments, the

metrics suggest that learning exploration from scratch resulted in a more efficient explo-

ration strategy in the Simple Room map, considering the tested configurations. In other

words, the average path length converged to smaller values to cover the same exploration

rate as the finetuned policy.

The goal of the next experiment was to test different reward functions aiming to

improve exploration efficiency. For that, the configuration of learning exploration from

scratch was employed, given that it resulted in the best performance for the Simple Room.

The only changes are referent to the reward function, which is reshaped to further encour-

age the agent to move to positions that increase the exploration rate. A penalty of −5

is defined for moving to already visited positions. When the agent visits a new position,

but the exploration rate does not change (exploration delta is zero), three rewards are

tested: 0.0, −1.0, and −3.0. The goal is to reduce the agent average path length while

maintaining the exploration rate.

Figure 7.7 compares the training metrics of the three proposed reward functions.

The reward function that produced the worst results was the one that defined a reward of
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Figure 7.6 – Training metrics of single agent in Simple Room learning exploration from scratch.
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−3 for exploration delta zero. Because this penalty is more aggressive, the agent takes

longer to understand that it can accumulate more reward visiting regions that result in

no newly explored cells than colliding, as demonstrated in the path length graph. How-

ever, after the agent learns to avoid collisions, the episodic path length keeps increasing,

ending up with higher values than the other configurations. One hypothesis is that this

reward function would require more training steps to optimize the path length. The ex-

ploration rate converges to around 97%, but presents a higher variation compared to the

other experiments. Furthermore, the policy and critic loss also culminate in worse values.

The final entropy is higher than the other methods, demonstrating that the resulting policy

decisions have a more elevated randomness level.

On the other hand, the reward functions that used 0.0 and −1.0 for exploration

delta zero presented very similar results. Along the training process, the path length in-

creases before converging to comparable values, close to 45 steps. Both exploration rates

converge to values close to 98%. The policy loss, critic loss, and entropy also presented

similar behaviors. However, the metrics of the reward function that used a penalty of −1

were more stable, and the path length took fewer training steps to converge. Therefore,

this reward shaping is adopted in all subsequent experiments.

The last single robot experiment in the Simple Room uses the best training config-

uration identified so far to test different trajectory logics. As described in Section 5.2.1,

three methods to assemble the agent trajectory with a fixed number of positions are pro-

posed: Merge last points, drop random points and FIFO. For each training, the reward
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Figure 7.7 – Training metrics of single agent in Simple Room learning exploration from scratch,
using different reward functions.
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was −100 for collision and +100 for exploration rate 98%. If the agent explores unseen

cells, the number of new cells is the reward. If it does not find new cells, but its current

position was not visited before, the penalty is −1. Finally, a penalty of −5 is defined if

the agent previously visited its current position. The agents learn how to explore from

scratch. Figure 7.8 illustrates the resulting training metrics.

Critic loss, policy loss, and entropy converge to similar values for the three config-

urations. However, the trajectory method that resulted in the worst exploration efficiency

was the merge last positions. Besides the exploration rate presenting an increased vari-

ance, the path length converged to an average of 10 steps higher than the other methods. It

is possible to conclude that the model has more difficulty identifying patterns in this tra-

jectory logic to map the states into proper actions. On the other hand, the trajectory logic
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with the best performance was the drop random points. The path length presented the

lower final values, and the exploration rate converged stably to around 99%. Therefore,

the drop random points trajectory is employed in all following experiments.

Figure 7.8 – Training metrics of single agent in Simple Room learning exploration from scratch,
using different trajectories.
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Finally, inference tests were performed using the resulting finetuned exploration

policy and the best exploration policy learned without curriculum learning. The models

were tested 50 times in the Simple Room map, and in each test the agent was initialized

in a random free position. Table 7.3 demonstrate the path length and exploration rate’s

resulting mean and standard deviation. The model trained from scratch resulted in a more

efficient exploration, covering the same area (98%) while navigating a shorter average

path. Figure 7.9 illustrates the path and the explored area using the most efficient policy

and initializing the agent in a random position. Although presenting different levels of
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efficiency, the Simple Room experiments demonstrated that the proposed mapless frame-

work was able to learn how to explore with or without curriculum learning using a single

robot.

Table 7.3 – Inference results of exploration policies for a single robot in the Simple Room
environment.

Path Length (m) Exploration RateMap Train Mean Std Mean Std
Finetunne 9.54 2.07 0.98 0.01

Simple Room
From scratch 8.12 1.19 0.98 0.05

Figure 7.9 – Three stages of a single agent exploring the Simple Room map. The taken path is
illustrated in pink and the explored area is represented by the green cells.

7.1.3 Two robots

7.1.3.1 Simple room

The main goal of the two robots’ validation experiments is to verify if the pro-

posed framework can enable collaborative exploration between the agents. In the first

experiment, both agents were initialized with the exploration policy that, in Section 7.1.2,

resulted in the best performance for a single agent in the same map. Only one of the

agents (referred to as robot 1) receives the trajectory of the other agent (referred to as

robot 2), updating its actor and critic weights. The goal is that robot 1 learns to cooperate

and optimize exploration by finetuning the already trained single robot policy. In the sec-

ond training logic, robot 2 was initialized with the single agent policy, while the weights

of robot 1 neural networks were randomly initialized. The idea is to test if robot 1 is able

to learn how to cooperate from scratch.

Another critical aspect for enabling collaboration between agents is reward shap-

ing. The basic reward structure used in the single agent experiments was adapted to

encourage cooperation. To test different approaches, two reward functions are proposed.

Both attribute a high penalty for colliding with obstacles and with each other. Besides op-
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timizing collaborative exploration, robot 1 must learn how to avoid colliding with robot

2, which represents a dynamic obstacle. Also, a high reward is defined when a specific

exploration rate is achieved. It is important to notice that the exploration rate is now

calculated considering the area explored by the two agents.

The difference between the reward functions is the definition of when to reward

agent 1 if the exploration rate increases. Reward function 1 is represented in Listing 7.1.

It uses the individual performance of the agent being trained as a condition to determine

the reward. Therefore, robot 1 will only receive a positive reward if it explores new cells.

When that happens, the reward is the sum of the number of new cells discovered by

both robots at step t. The goal of including the cells discovered by robot 2 is to reward

cooperation, but only when robot 1 contributes to the exploration. If it does not discover

new cells but is in a new position, it receives a penalty of −1. If it is in an already

visited position, the penalty is −5. Reward function 2 rewards robot 1 considering the

performance of both robots at each step. Its logic is demonstrated in Listing 7.2. If any

of the two robots improves the exploration rate, the reward becomes the sum of all newly

explored cells.

Listing 7.1 – Reward function 1.

if collision:

R(t) = -100

else if (explored_rate >= 98%):

R(t) = +100

else if (robot_1_new_cells)>0:

R(t) = robot_1_new_cells + robot_2_new_cells

else if (robot_1_new_cells) == 0 and new_position:

R(t) = -1

else if (robot_1_new_cells) == 0 and old_position:

R(t) = -5

Four experiments were performed considering the proposed training configura-

tions (Finetunne and From scratch) and reward functions (Reward function 1 and Reward

function 2). The Drop random points trajectory logic was employed for both robots, and

each trajectory was composed of 50 points. Hence, the size of the state vector of robot

2 remains 108, and of robot 1 changes to 208 to include both trajectories. The robots’

exploration radius was 80cm. At each episode, the robots were initialized at different

random free positions. The reference for localization was robot 2, meaning that it starting
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position is locally represented as (0, 0), and robot 1 position is defined considering its

distance from robot 2. The resulting training metrics are depicted in Figure 7.10.

Listing 7.2 – Reward function 2.

if collision:

R(t) = -100

else if (explored_rate >= 98%):

R(t) = +100

else if (robot_1_new_cells)>0 or (robot_2_new_cells)>0:

R(t) = robot_1_new_cells + robot_2_new_cells

else if (robot_1_new_cells) == 0 and (robot_2_new_cells) == 0

and new_position:

R(t) = -1

else if (robot_1_new_cells) == 0 and (robot_2_new_cells) == 0

and old_position:

R(t) = -5

Results show that the experiments where robot 1 has to learn to explore and coop-

erate from scratch converged to lower exploration rates. Both configurations From Scratch

also ended the training with the higher entropy and critic loss values. One hypothesis that

justifies the results is that because robot 2 already knows how to explore the environment

individually, robot 1 does not have enough time to learn to avoid collisions and optimize

exploration before the episode ends. However, the experiment From Scratch using Re-

ward function 1 culminated in exploration rates close to 96% with path lengths around

24 steps (4.8m), which is almost half of the average path length achieved in single agent

experiments. Therefore, these metrics demonstrate that cooperation was achieved.

The Finetunne experiments presented a better performance, given that exploration

rate converged to 98%. The path length results present considerable variance through

episodes. This behavior can be justified by the fact that robot 1’s optimum path varies

depending on its starting position, on robot 2’s starting position and chosen path. Com-

paring the two reward functions in the finetunne configuration, it is possible to conclude

that Reward function 1 resulted in more efficient cooperation, given that path length cul-

minated in lower values for similar exploration rates. Its final entropy was also smaller.

Results demonstrate that a reward function that is more strict with individual performance

results in a more efficient exploration. Finally, the validation experiments demonstrated

that the proposed framework can promote cooperation between two agents in a simple

room environment.
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Figure 7.10 – Training metrics of one agent in Simple room learning cooperative exploration
between two robots.
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7.2 Comparison with baselines

In this section, the proposed exploration framework is evaluated in more complex

environments. Section 7.2.1 presents the results of training a single robot using different

laser ranges with and without curriculum learning. The best performance is compared

with different baselines, including the Random Walk method, the DQN and the AFCNQ,

proposed by [Li, Zhang e Zhao 2019]. Section 7.2.2 presents the exploration efficiency,

the generalization and the collaboration capability for two robots tested in different con-

figurations.

7.2.1 Single robot

Before training new policies, the exploration policy that presented the best perfor-

mance in the Simple Room experiments was tested in the Reference map. Considering

that the Reference Map is larger than the Simple Room, different exploration ranges were

employed: 80cm, which is the same radius used in the Simple Room experiments, 2m,

and 3m. 50 tests were performed for each configuration, and the path length and explo-

ration rate were recorded. As demonstrated in Table 7.4, regardless of the exploration

radius, the agent is not able to explore the environment successfully. In all tests, the agent

collides after covering an area similar to the Simple Room. This behavior is more clearly

observable in the experiment using the 80cm radius: the Simple Room represents 26% of

the area of the reference room, and the average exploration rate in the Reference Map was

28%. On the other hand, the policies trained in the Reference Map, which will be detailed

in this section, can explore the Simple Room. The results yield the conclusion that the

proposed method can only explore environments with a maximum size similar to the map

used for training the policy.

Table 7.4 – Results of testing the Simple Room exploration policy in the Reference Map using
different exploration radius.

Maps Exploration Radius (m) Path Length (m) Exploration Rate
Train Test Train Test Mean Std Mean Std

Simple Room Reference Map
0.8 0.8 13.96 8.08 0.28 0.09
0.8 2.0 16.92 6.75 0.53 0.17
0.8 3.0 14.0 6.23 0.51 0.18

The configurations that resulted in the best performance in the Simple Room val-

idation phase were used to train the single agent in the Reference Map. Thus, the uti-
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lized trajectory method was the drop random points, and 50 points were considered. The

reward was 100 for collision and +100 for exploration rate 93%. Compared to previ-

ous experiments, the exploration rate was reduced to 93% because the Reference Map

presents bigger dimensions and higher complexity. Using a value of 98%, for example,

could result in too many episodes before achieving the necessary exploration rate or even

in complete trains where the agent never gets the maximum reward. Continuing with the

reward function, if the agent explores unseen cells, the number of new cells is the reward.

If it does not find new cells, but its current position was not visited before, the penalty is

1. A penalty of 5 is defined if the agent previously visited its current localization. Like

previous experiments, an episode ends if a collision happens or the exploration rate is

higher than 93%, and the agent is initialized in a random free position. Training ends

when the agent performs 100M steps.

The research work from which the baseline maps are extracted does not specify

what area around the robot is considered explored [Li, Zhang e Zhao 2019]. Therefore,

different exploration radii are tested. Three models are trained in the Reference Map

with a single agent. The first initializes the actor and critic with the neural networks

resulting from the Simple Room experiment so that the agent learns how to explore a more

complex map by finetuning. The second initializes the weights with random values, so

the agent learns to explore the Reference Map from scratch. Both experiments determine

an exploration radius of 1.4m. The third experiment also aims at learning to explore

from scratch, but uses an exploration radius of 2m. As a reference, the laser range of a

Turtlebot3 robot is 3.5m, so it is possible to affirm that the robot could cover a 1.4m or a

2m exploration radius with sufficient precision.

Figure 7.11 compares the metrics of the three proposed training structures. The

figure legend refers to the exploration radius as Laser range. As explained in Section

7.1.2.1, an exponential moving average is used to smooth the curves and facilitate visual-

ization. However, observing the absolute values of each episode, it is possible to notice

a higher variance in all metrics compared to the experiments with smaller maps. This

behavior can be justified by the fact that with higher map dimensions, there are more pos-

sible interactions with the environment that the agent can explore. In the last episodes,

path length variance can still be significant even in successful training, given that there

are different possibilities of routes that result in an effective exploration. Path length can

also vary depending on the agent’s starting position.
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Figure 7.11 – Metrics of single agent in Reference Map using different training configurations.
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Analyzing the two experiments that employed a 1.4m range, it is possible to con-

clude that learning exploration from scratch presented better results. The last episodes

obtained higher exploration rates for similar path lengths, resulting in higher episodic

returns. However, the experiment that used 2m exploration radius surpassed the perfor-
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mance of both other experiments. It would be expected that a higher coverage radius

would result in a more efficient exploration, and the metrics confirm that prediction. In

the last episodes, the exploration rate stably converged to 93%, and the path length to ap-

proximately 120 steps (24m). Naturally, it also culminated in the highest episodic returns.

The final entropy values were the lowest of the three experiments, demonstrating that the

resulting policy presents a lower randomness level in its decision-making process.

To test the performance of the three resulting policies, inference was performed

in the Reference Map, in Test Map 1, and in Test Map 2, presented in Section 6.3. Each

model was tested 50 times on every map, and the path length and exploration rate were

recorded. Table 7.5 shows the results of the tests. All policies’ best performance resulted

from the Reference Map tests. The metrics mean and standard deviation confirm the

performance expected from the observation of the graphs in Figure 7.11. The model that

resulted in the most efficient exploration used 2m as the exploration radius. Naturally, the

models with a lower coverage range take longer paths to achieve similar exploration rates.

Table 7.5 – Results of the three models trained in the Reference Map and tested in the Reference
Map, test map 1 and test map 2.

Maps Model Configuration Exploration Rate Path Length (m)
Train Test Train Exploration Radius (m) Mean Std Mean Std

Finetunne from
Simple Room 1.4 0.92 0.04 36.82 4.22

From scratch 1.4 0.92 0.06 34.06 6.38
Reference

Map
Reference

Map
From scratch 2 0.94 0.004 24.88 3.13

Finetunne from
Simple Room 1.4 0.73 0.16 38.21 3.65

From scratch 1.4 0.75 0.09 39.57 1.96
Reference

Map
Test Map 1

From scratch 2 0.82 0.17 30.4 7.38
Finetunne from
Simple Room 1.4 0.66 0.19 39.28 3.05

From scratch 1.4 0.74 0.13 37.32 5.44
Reference

Map
Test Map 2

From scratch 2 0.81 0.14 28.88 7.32

The goal of testing the policies in Test Maps 1 and 2 was to evaluate the gen-

eralization capability of the exploration strategies. In other words, analyze the policies’

performance when a previously unseen map is presented. It is possible to notice that,

for all methods, the exploration efficiency decreases compared to the tests in the Refer-

ence Map. The agent takes longer paths to cover a smaller area. These results indicate

that some level of overfitting happens during training. The agent fits too closely to the

training map, and is not able to maintain the same efficiency in new environments. How-

ever, to more objectively analyze the performance in the different maps, the metrics of the

model with exploration radius 2m are compared to the baselines presented in Section 6.3:

Random Walk, AFCQN, and DQN.
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Tables 7.6 contains the comparison of test performed in the Reference Map using

our method and the selected baselines. Our method performance surpassed the classic

DQN in terms of exploration efficiency, covering in average 10% more of the environ-

ment with similar path lengths. The obtained results are comparable with the AFCNQ.

Although our average path length was higher, its standard deviation was lower, and the

average exploration rate was 94% in comparison with 91%. Figure 7.12 illustrates the

path and the explored area running our method in the Reference Map and initializing the

agent in a random position.

Table 7.6 – Comparing different exploration methods for single robot in the Reference Map.

Method Exploration Rate Path Length (m)
Mean Std Mean Std

Random Walk 0.36 0.12 60.0 0.0
AFCNQ 0.91 0.0028 24.39 6.61

DQN 0.84 0.21 23.19 5.9
Our method 0.94 0.004 24.88 3.13

Figure 7.12 – Three stages of a single agent exploring the Reference Map. The taken path is
illustrated in pink and the explored area is represented by the green cells.

For the experiments with Test Maps 1 and 2, the reference research work did not

present the metrics’ absolute values, but depicted them in a graphic format [Li, Zhang

e Zhao 2019]. Therefore, the values included in Tables 7.7 and 7.8 are approximations

based on the graphs observation. In Test Map 1, once more our method presented an av-

erage exploration rate close to 10% higher than the DQN baseline. Although the average

path length was longer, the standard deviation of the DQN is elevated (16.56m). So, it is

possible to affirm that our method presented better generalization capabilities in Test Map

1 and is generally more efficient than DQN. In Test Map 2, DQN results were objectively

better than ours. Figures 7.13 and 7.14 illustrate the path and the explored area running

our method in the Test Map 1 and in the Test Map 2, respectively. Although there is some

redundancy in the taken paths, it is possible to observe that the exploration coverage pre-

sented a consistent behavior in both maps. Therefore, although there was a performance

degradation from tests in Reference Map, the exploration is still comparable with baseline

methods, and it is consistent for maps of the same size with different obstacles.
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Table 7.7 – Comparing different exploration methods for single robot in the Test Map 1.

Method Exploration Rate Path Length (m)
Mean Std Mean Std

Random Walk 0.63 0.19 60.0 0.0
AFCNQ 0.96 0.011 20.01 8.3

DQN 0.73 0.26 23.12 16.56
Our method 0.82 0.17 30.4 7.38

Figure 7.13 – Three stages of a single agent exploring the Test Map 1. The taken path is
illustrated in pink and the explored area is represented by the green cells.

The AFCNQ method presented the most efficient exploration for the test maps.

The original publication does not include the number of layers and neurons used for ex-

ploration. Thus, it is impossible to objectively affirm that AFCNQ would present higher

computational costs than our method. However, it does use information about the envi-

ronment with higher degrees of data processing, including the environment occupancy

grid map, a frontier map, and a Q-value map. In the image that depicts the employed

CNN, at least 14 layers are used. The resolution of the input image is 161x201, and the

action space is composed of all grid map sampling points. Therefore, the performance

achieved by our method can be considered a competitive result, since the single agent

tests used an input with size 108, two hidden layers with 64 neurons each, an action space

of 4 possible actions, and only basic information about the robot localization. Further-

more, AFCNQ defines a localization the robot should go to, and a complementary path

planning method must be used to safely guide the robot to the position. Our exploration

strategy is end-to-end, directly mapping the states into movements and providing colli-

sion avoidance together with the exploration plan. Finally, both methods present different

advantages that should be evaluated according to each application constrains and goals.

Table 7.8 – Comparing different exploration methods for single robot in the Test Map 2.

Method Exploration Rate Path Length (m)
Mean Std Mean Std

Random Walk 0.52 0.19 60.0 0.0
AFCNQ 0.94 0.5 21.0 5.0

DQN 0.9 0.5 25.4 8.5
Our method 0.81 0.14 28.88 7.32
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Figure 7.14 – Three stages of a single agent exploring the Test Map 2. The taken path is
illustrated in pink and the explored area is represented by the green cells.

7.2.2 Two robots

As previously stated, the training configuration that resulted in the best perfor-

mance for two robots in the validation experiments was reproduced in the baseline maps.

That means both robots are initialized with the single agent exploration strategy for the

Reference Map, from Section 7.2.1. Because this environment presents a higher com-

plexity, the total number of steps for training is increased to 50M , and the maximum

exploration rate is decreased to 93%. The reward function and all training configurations

are described in detail in Section 7.1.3. Figure 7.15 presents the resulting metrics.

Figure 7.15 – Training metrics of one agent in Reference Map learning cooperative exploration
between two robots.
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The resulting metrics indicate that the agent learns how to cooperate to explore the

environment. Each robot’s path length converges to an average value close to 65 steps, or

13m, which is mostly half of the length obtained by a single agent in the Reference Map.

At the same time, the exploration rate culminated in 93% in the last episodes, increasing

the episodic return. However, to objectively verify the resulting policy performance, tests
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in the Reference Map, Test Map 1, and Test Map 2 are performed. In each map, four

experiments are compared. The first one is the single agent performance in the target map.

In the second experiment, both agents run the single agent policy so that they explore the

environment individually, without sharing information. In the third experiment, robot 1

runs the policy that resulted from the two robots train, while robot 2 runs the single agent

policy. Only robot 1 receives the other agent trajectory. Finally, both agents run the policy

trained with two agents, sharing trajectory information. The robots use an exploration

radius of 2m, and each experiment is repeated 50 times.

Table 7.9 contains the results of the tests in the Reference Map. The experiments

where each robot explored the environment independently resulted in an average explo-

ration rate of 87% covering a path length of 16.6m. The rate is lower than the single robot

results because the agents do not know how to avoid colliding with each other, result-

ing in shorter tests. On the other hand, running the two-agent policy in robot 1 and the

single-agent policy in robot 2 resulted in the most efficient exploration. This result could

be expected because this is the same configuration used for training the agents. Although

the exploration rate decreased to 89% compared to the single agent 94%, the path length

traveled by each agent was more than 2 times smaller.

Table 7.9 – Tests of one and two robots in the Reference Map

Map Number
of Robots Policy Robot 1 Policy Robot 2 Exploration Rate Path Length (m)

Mean Std Mean Std

Reference
Map

1
Single agent trained
in Reference Map - 0.94 0.004 24.88 3.13

2
Single agent trained
in Reference Map

Single agent trained
in Reference Map 0.87 0.08 16.6 10.07

2
Two agents trained
in Reference Map

Single agent trained
in Reference Map 0.89 0.09 10.95 2.33

2
Two agents trained
in Reference Map

Two agents trained
in Reference Map 0.81 0.11 11.65 2.64

Running the two-agent policy on both robots resulted in a similar average path

length but a lower exploration rate. A possible justification is that for one of the robots, the

trajectory order in the state vector is the inverse of what was presented in training, which

can mislead the policy. An alternative to improve the shared network would be employing

other multi-agent training techniques instead of training the networks separately. Figure

7.16 illustrates the explored area initializing the two robots in random positions. It is

possible to notice that in this example the robots start in similar positions, but are able to

split paths to cover opposite rooms.

The results of the experiments performed in Test Map 1 are shown in Table 7.10.

For all tests, the exploration rate presented similar values. However, running the two-
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Figure 7.16 – Three stages of two agents exploring the Reference Map. The agents are
represented by the red and blue circles, and the explored area is represented by the green cells.

robot policy in one agent and the single agent policy in the other resulted in the most

efficient exploration. The robots covered the same area as the single robot (82%) using

only one-third of its path length. It is possible to interpret that in this configuration, robot

1 successfully learns how to avoid the positions that robot 2 already visited. Although

losing some efficiency, the results demonstrate that the two-robot policy could generalize

to unseen maps. The two robots achieved the highest exploration rate with individual

exploration policies. However, the path length was almost 2x higher than the cooperative

methods. Because each robot does not know which areas have already been explored

by the other agent, it travels redundant paths. Figure 7.17 illustrates the explored area

initializing the two robots in random positions.

Table 7.10 – Tests of one and two robots in Test Map 1

Map Number
of Robots Policy Robot 1 Policy Robot 2 Exploration Rate Path Length (m)

Mean Std Mean Std

Test Map 1

1
Single agent trained
in Reference Map - 0.82 0.17 30.4 7.38

2
Single agent trained
in Reference Map

Single agent trained
in Reference Map 0.85 0.1 21.83 15.62

2
Two agents trained
in Reference Map

Single agent trained
in Reference Map 0.82 0.15 10.14 2.61

2
Two agents trained
in Reference Map

Two agents trained
in Reference Map 0.815 0.09 12.03 3.74

Figure 7.17 – Three stages of two agents exploring the Test Map 1. The agents are represented by
the red and blue circles, and the explored area is represented by the green cells.

Table 7.11 contains the results of the experiments performed in Test Map 2. The

metrics reinforce the conclusions of the other maps’ tests. Using the two-robot policy

in one agent and the single-robot policy in the other was, once more, the most efficient

method. It resulted in 79% of exploration rate compared to 81% of the single agent. How-
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ever, the path length covered by each robot was almost four times smaller. Figure 7.18

illustrates the explored area initializing the two robots in random positions. To conclude,

the experiments demonstrated that cooperation between two agents was effectively estab-

lished without the need of complex map merging algorithms. However, this conclusion is

true in the controlled environments and for the tested maps’ dimensions and complexity

levels. More experiments are needed to verify the method’s efficiency in larger maps,

with uncertainties in sensor readings and in the communication between robots.

Table 7.11 – Tests of one and two robots in Test Map 2

Map Number
of Robots Policy Robot 1 Policy Robot 2 Exploration Rate Path Length (m)

Mean Std Mean Std

Test Map 2

1
Single agent trained
in Reference Map - 0.81 0.14 28.88 7.32

2
Single agent trained
in Reference Map

Single agent trained
in Reference Map 0.82 0.08 14.62 11.49

2
Two agents trained
in Reference Map

Single agent trained
in Reference Map 0.79 0.11 7.45 2.66

2
Two agents trained
in Reference Map

Two agents trained
in Reference Map 0.71 0.14 7.84 3.42

Figure 7.18 – Three stages of two agents exploring the Test Map 2. The agents are represented by
the red and blue circles, and the explored area is represented by the green cells.
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8 CONCLUSION

This dissertation aimed to investigate whether Deep Reinforcement Learning can

enable efficient and robust mapless exploration strategies for single and multiple mobile

robots. An extensive literature review was performed and revealed that the employment

of DRL for mobile robotic exploration has significantly increased in the last few years.

This can be justified by the fact that several modern applications require robotic auton-

omy when a map of the environment is unknown. The employment of mobile robots in

such complicated contexts depends on a robust and efficient exploration strategy. At the

same time, employing deep neural networks as powerful function approximators for RL

algorithms has enabled optimal or near-optimal solutions for several complex problems

with high-dimensional inputs. Therefore, multiple works have successfully applied DRL

algorithms to compose exploration strategies for single and multiple agents. The tackled

applications include finding or reaching a specified target and covering a whole area to

map the environment.

However, no works that investigate DRL for mapless exploration aiming at effi-

cient area coverage were identified. Mapless exploration refers to strategies that do not

build an explicit map of the environment to decide where to go next. It is known that

some limitations can arise from basing the exploration decisions on an online built map.

The computational costs tend to increase with the expansion of the explored area, and the

efficiency of the exploration strategy heavily depends on accurate maps. For multi-robot

cooperative exploration, the maps generated by each agent are often shared between the

team and must be correctly merged, which is a challenging task. Concurrently, there are

applications where the agents must cover an entire area but the final goal is not mapping

the environment, as search and rescue or multi-target search. In situations with limited

memory and processing resources, such applications can benefit from an exploration strat-

egy that does not rely on a precise world map.

Therefore, based on the information gathered from the performed academic liter-

ature review, we proposed an end-to-end mapless exploration framework based on DRL

and suitable for single robots and teams of n robots. The agent keeps track of a fixed-size

quantity of sensor information that is not heavily processed, such as laser measurements

and the robot’s trajectory. The team’s goal is to efficiently explore a 3D environment in a

2D fashion as fast as possible. The idea is to obtain agents capable of exploring the en-

vironment alone, but that can optimize their decision-making process when information
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from other agents is received.

The proposed exploration architecture was trained and tested using one and two

robots in different simulation environments. The achieved exploration efficiency sur-

passed the random walk baseline and was comparable to the classic DQN method, which

relied on much more complex representations of the environment. The performance of

our approach was also more consistent than the DQN, presenting lower path length and

exploration rate variance. The method that raised the most efficient exploration for the

evaluated unseen maps was the AFCNQ, proposed in [Li, Zhang e Zhao 2019]. However,

AFCNQ uses information about the environment with higher degrees of data processing,

including the environment occupancy grid map, a frontier map, and a Q-value map. Fur-

thermore, unlike AFCNQ, our exploration strategy is end-to-end, directly mapping the

states into movements and providing collision avoidance with the exploration plan. Fi-

nally, both methods present different advantages that should be evaluated according to

each application’s constraints and goals.

The experiments using two robots demonstrated that the proposed architecture

can promote cooperation between agents without needing map merging algorithms. It

increased the explored region rate with smaller path lengths per individual robot. The

strategy also generalized between different environments, presenting small performance

drops for unseen maps. The experiments showed that proper reward shaping is essential to

learn the desired behavior successfully. The method to record the robot trajectory and the

decision of when to use curriculum learning also significantly impacted the exploration

policy’s success. Finally, it is crucial to notice that all results were obtained in controlled

environments and the presented conclusions are valid for the tested maps’ dimensions and

complexity levels.

In future works, we aim to evaluate the exploration framework performance for

more than two robots. Different reward shaping can be tested to increase coverage ef-

ficiency. The comparison with other MRS collaborative exploration strategies is also

an essential future analysis. Furthermore, the exploration strategy must be tested in a

non-ideal environment, with uncertainties in the sensor measurements. The evaluation of

the collaborative method will be tested considering unstable communication, where the

robots cannot share information at each new step. These experiments pave the way for

the final research goal: testing the exploration strategy in real robots.
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APPENDIX A — RESUMO EXPANDIDO

Nos últimos anos, o avanço de novas tecnologias aplicadas à robótica tem impul-

sionado o interesse pela pesquisa acadêmica e pela aplicação prática de robôs móveis em

diversos domínios. Tais aplicações incluem, por exemplo, missões de busca e resgate,

inteligência, vigilância e reconhecimento, e exploração planetária, entre outras [Alatise

e Hancke 2020]. Várias situações requerem autonomia robótica quando um mapa do

ambiente não é previamente conhecido. O emprego de robôs móveis em contextos tão

complicados depende de uma estratégia de exploração robusta e eficiente. Na literatura,

a exploração robótica móvel foi descrita como a tentativa de responder à pergunta "Dado

o que você sabe sobre o mundo, para onde você deve se mover para obter o máximo de

novas informações possível?" [Yamauchi 1997]. O comportamento exploratório é uma

competência robótica fundamental e representa um vasto e complexo campo de pesquisa.

Vários métodos de exploração foram propostos nas últimas décadas, como os Campos de

Potencial Artificial [Krogh e Thorpe 1986] e a conhecida exploração baseada em Fron-

teiras [Yamauchi 1997], permitindo a exploração em muitas aplicações.

A abordagem tradicional para exploração autônoma de robôs móveis em ambi-

entes desconhecidos é usar dados de sensores para construir um mapa do mundo ao redor

do agente. Então, o processo de tomada de decisão sobre onde ir a seguir é baseado no

mapa gerado. Uma limitação deste método é que os custos computacionais aumentam

rapidamente com a expansão da área explorada. Além disso, a eficiência da estraté-

gia de exploração depende fortemente de mapas precisos [Juliá, Gil e Reinoso 2012].

Além disso, quando um sistema multi-robô realiza uma exploração colaborativa, os ma-

pas gerados por cada agente são frequentemente compartilhados entre a equipe. Os ma-

pas compartilhados devem ser combinados corretamente, o que não é uma tarefa trivial,

muitas vezes associada a altos custos computacionais [Velásquez Hernández e Prieto Or-

tiz 2020]. Tais características podem restringir a aplicação desses métodos em cenários

onde a disponibilidade de memória e recursos de processamento são limitados.

Alternativamente, se um robô pudesse realizar exploração sem construir e ar-

mazenar um mapa preciso do mundo, seria possível liberar memória e recursos com-

putacionais que poderiam ser empregados em uma tomada de decisão mais rápida. No

entanto, desenvolver uma estratégia de exploração adequada e resiliente não é uma tarefa

simples, especialmente sem a utilização de mapas. Ao mesmo tempo, as técnicas de

Aprendizagem por Reforço baseiam-se em permitir que o agente adquira habilidades por
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meio da interação com o ambiente, em vez de projetar explicitamente os comportamen-

tos desejados. Esse paradigma de Aprendizado de Máquina tenta emular o processo de

aprendizagem humana, que ocorre por tentativa e erro.

Recentemente, o emprego de redes neurais profundas como aproximadores de

função poderosos em algoritmos de Aprendizado por Reforço tem viabilizado soluções

ótimas ou quase ótimas para vários problemas complexos, com entradas de alta dimen-

sionalidade [Wang et al. 2022]. Assim, técnicas de Aprendizado por Reforço Profundo

(ARP) vêm se destacando como alternativas promissoras para desenvolver soluções para

problemas de robótica. Não é por acaso que o número de trabalhos de pesquisa propondo

soluções para o problema de exploração robótica usando esses algoritmos aumentou signi-

ficativamente nos últimos anos [Garaffa et al. 2021]. No que diz respeito ao problema de

exploração sem geração de mapa, vários trabalhos usam ARP para navegar em ambientes

desconhecidos com o objetivo de atingir uma posição de destino conhecida. No entanto,

até onde sabemos, não existem trabalhos que investiguem a aplicação de soluções ARP

para exploração sem mapa visando uma cobertura eficiência de área, sem posições-alvo

pré-determinadas.

A.1 Contribuições e Objetivos Alcançados

O objetivo geral desta dissertação foi investigar se técnicas de Aprendizado por

Reforço Profundo podem viabilizar estratégias de exploração sem mapa eficientes e ro-

bustas para um ou mais robôs móveis. Primeiro, revisamos trabalhos de pesquisa recentes

que usam ARP para projetar estratégias de exploração de ambientes desconhecidos. A

revisão buscou compilar o estado atual da pesquisa que relaciona esses dois domínios de

conhecimento, com o objetivo de compreender como os dois campos estão sendo integra-

dos. O estudo elaborado para esta dissertação foi publicado na revista IEEE Transactions

on Neural Networks and Learning Systems [Garaffa et al. 2021].

Com base nas informações coletadas, propusemos uma arquitetura de exploração

sem mapa baseada em ARP e adequado para robôs individuais e equipes de n robôs, sendo

esta a principal contribuição deste trabalho. Por meio do sistema proposto, avaliamos se o

ARP é capaz de aprender quais ações resultam em uma cobertura eficiente do ambiente a

partir de informações simplificadas sobre o ambiente, como medições de laser e dados de

odometria. A solução proposta se concentra em ambientes internos e foi projetada para

priorizar a eficiência de cobertura e evitar colisões. Usando uma abordagem descentral-
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izada, cada robô executa localmente um sistema que determina a política de exploração

individual. A ideia foi obter agentes capazes de explorar o ambiente sozinhos, mas que

podem otimizar seu processo de tomada de decisão caso recebam informações de out-

ros agentes. A base do processo de tomada de decisão é o algoritmo Proximal Policy

Optimization (PPO), e redes neurais artificiais profundas são empregadas como aproxi-

madores de função. A política de exploração é treinada e testada em diferentes ambientes

de simulação usando um e dois robôs. Nossa solução viabilizou exploração com eficiên-

cia comparável a métodos que usam representações muito mais complexas do ambiente.

O método também promoveu a cooperação entre agentes sem a necessidade de algoritmos

de fusão de mapas, sendo capaz de generalizar para diferentes ambientes.

A.2 Trabalho Futuro

Todos os resultados obtidos neste trabalho foram coletados em ambientes contro-

lados e as conclusões apresentadas são válidas considerando as dimensões e os níveis de

complexidade dos mapas testados. Em trabalhos futuros, pretendemos avaliar o desem-

penho da arquitetura de exploração em ambientes não ideais, com incertezas nas medições

dos sensores. A avaliação do método colaborativo será realizada considerando uma co-

municação instável, onde os robôs não são capazes de compartilhar informações a cada

passo. Além disso, o método deve ser testado com mais de dois robôs. Ambientes mais

complexos e dinâmicos também devem ser considerados. Diferentes formatos de rec-

ompensa podem ser testados para aumentar a eficiência da cobertura. A comparação

com outras estratégias de exploração colaborativa também é uma análise futura essencial.

Esses experimentos abrem caminho para o objetivo final da pesquisa: testar a estratégia

de exploração em robôs reais.
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