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1 INTRODUCTION 

 
 

The next-generation sequencing (NGS) technologies have been 

contributing to the human and other animals' microbiome studies. [1–3]. 

Through these studies, it is observed that the composition of the microbiota 

plays a key role in animal physiology (i.e. immune system, digestion, and 

development) [4–7]. Regarding the microbiome analysis, the 16S rRNA 

sequencing provides quick and reduced computational and financial costs with 

scientifically relevant results from Bacteria and Archaea communities [8]. The 

analysis of bacteria communities through large scale sequencing of the 16S 

rRNA encoding gene allowed us to understand, in a deeper manner, the 

relationships of these communities in spatial and temporal resolution from a 

single individual to a complete ecosystem [9]. 

 

In recent years, microbiome studies have been growingly applied to the field of 

wildlife conservation, an area that aims to understand and reduce the human 

impacts on biodiversity [10,11]. Ecosystem and habitat destruction, and the 

consequent fragmentation of natural habitats, result in a mixing of a wide variety 

of species, increasing contact between animals, including humans, which can 

increase the frequency of infectious diseases [12]. The anthropogenic impact, 

more specifically, can alter the gut microbiome, cause dysbiosis, and play an 

important role in the emergence and spread of antibiotic-resistant bacteria [13]. 

Due to the importance of microorganisms in animal diseases, and the imminent 

decline of wild populations, the maintenance of healthy microbiomes must 

become an integral part of conservation biology [14,15]. 
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Empirically, this issue can be envisaged when one looks at wild canids, globally 

and in regional ecosystems, being even possible to identify the indirect effects 

of anthropogenic actions in the environment using metagenomic analysis. 

Anthropic actions in North America have reduced drastically the population of 

Red wolves [16]. The species is facing serious risks of being extinct - which has 

prompted scientific attention to their microbiome both in the wild and in 

captivity [17,18]. On the other hand, South America has a diversity of wild 

canids (11 in total), although still lacks studies that manage to understand the 

human impact on these animals. In Brazil, the maned wolf (Chrysocyon 

brachyurus) is facing a decline in its population because of agriculture [19], 

although no research using NGS seems to have been conducted to analyze the 

effects of this activity on their gut microbiome. 

Pampa is one of the six biomes present in Brazil. It covers 1.76% to 2.07% of 

the Brazilian territory and stretches through Paraguay, Argentina, and Uruguay 

[20]. In the south of Brazil, the Pampa covers 63% of the state of Rio Grande 

do Sul [21]. Due to the favorable conditions for the expansion of large-scale 

agriculture and cattle ranching in the region, the Pampa biome has been 

undergoing major changes in its natural characteristics [21]. This biome harbor 

more than 100 species of mammals, which have been increasingly affected by 

these distortions; among them is the species Lycalopex gymnocercus, 

commonly known as Pampas fox [21]. The Pampas fox is a medium-sized canid 

with a size that ranges from 58.5 to 64 cm (in length) [22]. It has thick fur, a bulky 

tail, and a gray to yellowish color on the back; the belly and the inner surface of 

the limbs are pale gray to white [22]. Lycalopex gymnocercus can be found in 

the south of Brazil, Uruguay, Argentina,
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Chile, and Bolivia (Figure 1) [23]. Regarding its eating habits, the Pampas fox is 

an omnivorous canid, and its generalist diet consists of fruits, insects, carcasses, 

and small mammals [24]. 

 
 
 

 
Figure 1: Lycalopex gymnocercus (on the left) and the species distribution (on the right). Source: Luciano 
Queiroz and International Union for Conservation of Nature (IUCN).  
 

 
 

 
Generalist species are frequently more resistant to environmental changes and 

can serve as reservoirs of pathogens and vectors of zoonotic diseases [25]. As 

such, they can carry emerging resistant bacteria and genes, as well as facilitate 

their dissemination in the environment [26]. Because they are more flexible 

concerning diet, they may exhibit alterations in gut bacterial diversity from 

consuming anthropogenic food and, consequently, exhibit poorer health 

conditions [27]. Although the species L. gymnocercus has been classified as 

Least Concern (LC) by IUCN, modifications in the Pampa biome may alter its 

behavior, such as foraging habits, thus influencing the diet of the Pampas fox 

[23,28,29]. Also, the Pampas fox has been considered a vital livestock predator 

and has been actively persecuted by ranchers [22]. 



11 
 

Due to the proximity of Pampas foxes to urban environments, it is important to 

detect the presence of antibiotic resistance genes (ARG) as a way of correlating 

the impact of anthropogenic interactions in food habits and bacterial composition 

[26,30]. In that way, we can evaluate the role of microorganisms in the health and 

conservation of wild canids [12,15]. Studying the microbiota of wild animals has 

become necessary, taking into consideration the prevention of future zoonoses, 

and also the protection of wildlife, the conservation of the environment, and 

consequently, the improvement of human health - as per the strategic objectives 

of the World Health Organization and its AMR Global Action Plan [31]. 

 

One way of carrying out monitoring is through the study of the animal microbiome. 

However, there is a lack of data regarding this species [22]; to our best 

knowledge, this is the first work analyzing the microbiome of a wild canid from 

South America. In this sense, we used high-throughput sequencing of 16S 

rRNA to characterize the bacterial composition of four pampas foxes captured in 

the south of Brazil. We aimed to give a first-ever description of the Pampas foxes’ 

gut microbiome and to analyze the level of anthropogenic contact by qualifying 

the presence of antibiotic resistance genes. 
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2 OBJECTIVES 

 

 
2.1. Primary objective 

 
 

To characterize the gut microbiome of Lycalopex gymnocercus and to identify the 

presence of antibiotic resistance genes 

 
 

2.2. Secondary objectives 

 
 

To identify the bacterial communities, in the phylum and family level, in the 

Pampas fox rectal samples. 

 

 
To compare the gut microbiome diversity of the wild Pampas fox with the 

microbiome of other wild canids described in the literature. 

 

 
To analyze the presence of the antibiotic resistance genes msr(C), tet(W), 

blaCTX-M, bla-TEM, tet(M), and erm(B) in the Pampas fox rectal samples. 
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ABSTRACT 

 
 

The Pampa biome, located in the southern cone of South America, has been 

undergoing major changes due to the expansion of agriculture in the region. The 

Pampas fox (Lycalopex gymnocercus), a generalist-omnivorous canid, is one of 

the mammals that inhabits the Pampa biome. Generalist animals are generally 

more resistant to environmental changes and can serve as reservoirs of 

pathogens and vectors of zoonotic diseases. Although the species L. 

gymnocercus has been classified as Least Concern (LC) by the IUCN, 

modifications in the Pampa biome may alter its behavior, such as foraging habits, 

thus influencing the diet of the Pampas fox. Because they are more flexible 

concerning diet, they may exhibit alterations in gut bacterial diversity. In this 

study, we used high-throughput sequencing of 16S rRNA to characterize the 

bacterial composition of four pampas foxes and analyzed the presence of six 

antibiotic resistance genes (ARGs), aiming to give a first look into the Pampas 

foxes’ gut microbiome and analyze the level of anthropogenic contact. 

Regarding the bacterial composition, the dominant phylum observed was 

Proteobacteria. All samples were negative for the presence of the ARGs msr(C), 

blaCTX-M, and bla-TEM. Four samples presented the gene tet(M). The high 

abundance of Proteobacteria and the presence of tet(M) could be related to 

anthropic actions. Our study reinforces the importance of conducting research 

related to the impact of human activities on the Brazilian Pampa biome. 

 
 

Keywords: Pampas fox; Lycalopex gymnocercus; wild canids; gut microbiota; 

antibiotic resistance; conservation biology. 
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INTRODUCTION 

 

 
During the past years, microbiome studies have been growingly applied to 

the field of wildlife conservation [1,2]. Ecosystem and habitat destruction, and the 

consequent fragmentation of natural habitats, result in a mixing of a wide variety 

of species, increasing contact between animals, including humans, which can 

boost the frequency of infectious diseases [3]. Due to the importance of 

microorganisms in animal diseases, and the imminent decline of wild populations, 

the maintenance of healthy microbiomes must become an integral part of 

conservation biology [4,5]. 

In Brazil, the Pampa is one of the six biomes and comprehends 1.76% to 2.07% 

of its territory [6]. In the south of Brazil, the Pampa covers 63% of the state of 

Rio Grande do Sul [7]. Due to the expansion of large-scale agriculture and cattle 

ranching in the region, mainly due to the favorable conditions for their 

implementation, the Pampa biome has been undergoing major changes in its 

natural characteristics [7]. This biome harbor more than 100 species of 

mammals, which have been increasingly affected by these distortions; among 

them is the species Lycalopex gymnocercus, commonly known as Pampas fox 

[7]. The Pampas fox can be found in the south of Brazil, Uruguay, Argentina, 

Chile, and Bolivia [8]. Regarding its eating habits, the Pampas fox is an 

omnivorous canid, and its generalist diet consists of fruits, insects, carcasses, 

and small mammals [9]. 

 

Generalist species are frequently more resistant to environmental changes and 

can serve as reservoirs of pathogens and vectors of zoonotic diseases [10]. As 
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such, they can carry emerging resistant bacteria and genes, as well as facilitate 

their dissemination in the environment [11]. Because they are more flexible 

concerning diet, they may exhibit alterations in gut bacterial diversity from 

consuming anthropogenic food and, consequently, exhibit poorer health 

conditions [12]. Although the species L. gymnocercus has been classified as 

Least Concern (LC) by IUCN, modifications in the Pampa biome may alter its 

behavior, such as foraging habits, thus influencing the diet of the Pampas fox [8, 

13]. Also, the Pampas fox has been considered a vital livestock predator and has 

been actively persecuted by ranchers [14]. 

 

Due to the proximity of Pampas foxes to urban environments, it is important to 

detect the presence of antibiotic resistance genes (ARG) as a way of correlating 

the impact of anthropogenic interactions in food habits and bacterial composition 

[11, 15]. In that way, we can evaluate the role of microorganisms in the health 

and conservation of wild canids [3, 5]. Studying the microbiota of wild animals 

has become necessary, taking into consideration the prevention of future 

zoonoses, and also the protection of wildlife, the conservation of the environment, 

and consequently, the improvement of human health - as per the strategic 

objectives of the World Health Organization and its AMR Global Action Plan [16]. 

 

One way of carrying out monitoring is through the study of the animal microbiome. 

However, there is a lack of data regarding this species [13]. To our best 

knowledge, this is the first work analyzing the microbiome of a wild canid from 

South America. In this study, we used high-throughput sequencing of 16S rRNA 

to characterize the bacterial composition of four pampas foxes captured in the 

south of Brazil. We aimed to give a first-ever description of the Pampas foxes’ gut 



20 
 

 

microbiome and to analyze the level of anthropogenic contact by qualifying the 

presence of antibiotic resistance genes. 

 
MATERIAL AND METHODS 

 

 
Study area and Samples collection 

 

 
Pampas foxes were captured in four different sites near the city of 

Candiota, Rio Grande do Sul State, Brazil (31◦33′06.73′′S; 53◦40′40.63′′W), as 

shown in Figure 1. Rectal swabs were collected from wild Pampas foxes (n = 

4) by veterinarians after being captured with the assistance of Tomahawk traps 

and anesthetized via intramuscular (100 mg/mL of ketamine hydrochloride and 

20 mg/mL of xylazine hydrochloride). All animals were clinically healthy (e.g. 

rectal temperature, heart rate, and respiratory rate) and were classified according 

to gender, age, and weight. The summary of the sample’s information is shown 

in Table 1. 

These procedures were made with the authorization of the Brazilian Institute of 

Environment and Renewable Natural Resources (IBAMA) and the Chico Mendes 

Institute for Biodiversity Conservation (ICMBio). The protocol was approved by 

the Information Authorization System in Biodiversity (SISBIO) number 0200 

1.007 9 10 12006-32. After the collection of samples, the animals were returned 

to their habitats in healthy conditions. Rectal swabs were stored in Stuart 

transport medium (Kasvi, Paraná, Brazil), and transported to our laboratory, 

where they were kept at 4◦C until DNA extraction. 
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DNA extraction 

 
 

Rectal swabs samples were suspended in 2mL of saline solution 0,85% 

and kept under agitation (100 rpm) for 2 hours (37°C ±1ºC). We used 1,5mL of 

the solution for DNA extraction. According to the manufacturer's instructions, we 

extracted the total DNA of each sample using MoBio’s PowerSoil DNA extraction 

kit (ThermoFisher Scientific). DNA concentration was determined using the Qubit, 

and its quality was verified using the NanoDrop ND-1000 (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA). 

 
PCR-amplification of bacterial 16S rRNA gene and sequencing 

 
For the characterization of the bacterial community of each sample, we 

used the primers 515F and 806R [17] to amplify the V4 region of the 16S rRNA. 

The samples were further sequenced using 316 chips - PGMTM Ion Torrent 

(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer's 

specifications. 

Samples were PCR-amplified with barcoded primers linked with the Ion adapter 

“A” sequence and Ion adapter “P1” sequence to obtain a sequence composed of 

adapters plus primers. We performed PCR assays with the Platinum Taq DNA 

Polymerase High Fidelity kit (Invitrogen, Carlsbad, CA, USA), in a volume of 25 

μL containing 1 × High Fidelity PCR buffer, 2U of Taq Polymerase, 2 mM MgSO4, 

0.2 mM dNTP Mix, 25 μg of Ultrapure BSA (Invitrogen, Carlsbad, CA, USA), 0.1 

μM of each primer and approximately 50 ng of DNA template and ultrapure water 

to complete the volume. 

The PCR condition of the first cycle was 94ºC (5 min), while the subsequent 30 

cycles were: 94ºC (45 s), 56ºC (45 s), and 68ºC (1 min), with a final extension of 
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68ºC (10 min). Afterwards, the sequencing was performed at the Federal 

University of Pampa (UNIPAMPA, São Gabriel, RS, Brazil). We purified the 

amplicons using Agencount AMPure Beads (Beckman Coulter), and the library 

preparation was carried out with the Ion OneTouchTM 2 System fitted with the 

Ion PGMTM OT2 400 Kit Template (Thermo Fisher Scientific, Waltham, MA, 

USA) using an initial amount of 100ng of PCR product. Since we have sequenced 

all samples in a multiplexed PGMTM run, barcode sequences were applied for 

the identification of each sample from the output. 

 
Bacterial community and bioinformatics analyses 

 
 

We conducted all analyses using the galaxy@pasteur platform [18]. We 

evaluated the raw data quality with FastQC [19] and constructed a report with 

MultiQC [20]. Elimination of the adapters was done with Cutadapt v.2.3 [21], and 

the quality-filtered sequences were imported into the FROGS (Find Rapidly OTUs 

with Galaxy Solution) pipeline [22] to obtain the Operational Taxonomic Units 

(OTUs). The sequences were filtered by length (250–300 bp) and then pooled 

into OTUs with SWARM [23] with the distance parameter d =3. 

 

Chimeras were removed with VSEARCH [24] and OTUs corresponding to at least 

0.1% of the whole dataset were maintained. These steps resulted in the retention 

of OTUs, which were affiliated with SILVA 132 SSU databases [25], delimited at 

97% identity [26]. 

We perform the statistical analyses with the FROGSSTAT, which utilizes R 
 

v.4.0.3 and the phyloseq package (v1.28.0) [27]. For the alpha diversity analysis, 

we used the ‘Phyloseq Alpha diversity’ and selected the following indexes: 

Chao1, Shannon, Simpson, and Inverse Simpson. The relative abundance of 
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species present in the samples was plotted with the ‘Phyloseq Composition 

Visualization’ function; a phylogenetic tree was also created utilizing the same 

function. To analyze the beta diversity, we used the ‘Phyloseq Beta Diversity’ 

function to construct a distance matrix (Jaccard index), and with the ‘Phyloseq 

structure visualization’ we built an ordination plot (MDS/PCoA) and a heatmap of 

the OTUs. Statistics were performed with ANOVA. 

 
Antibiotic resistance genes analysis 

 

 
We used the total DNA to analyze the presence of antibiotic resistance 

genes commonly in clinical and environmental samples. All the information 

regarding the genes, primer sequences, pair of bases (pb), and references, can 

be found in Supplementary Table 1. The ARG evaluated were: erm(B), msr(C), 

tet(M), tet(W), bla CTX-M, and blaTEM. 

 
PCR amplifications were conducted with a total volume of 25 μL containing: 100 

ng of template DNA, 1 X reaction buffer (Ludwig Biotechnology), 0.4μM of each 

primer (Ludwig Biotechnology), 1.5mM MgCl2, 200μM of dNTPs (Ludwig 

Biotechnology), 1U Taq DNA polymerase (Ludwig Biotechnology), and MilliQ 

water. We performed the PCRs in a conventional thermocycler (Applied 

Biosystems 2720 Thermal Cycler) according to the following program: 94◦C for 5 

min followed by 35 cycles of 94◦C for 1 min, appropriate annealing temperature 

for each primer for 1 min, extension at 72◦C for 1 min, and a final extension at 

72◦C for 5min. We analyzed the DNA fragments amplified in 1.5% (w/v) agarose 

gels stained with SYBR® Safe DNA Gel and visualized on a photo-documenter. 
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RESULTS 

 
 

We obtained a total of 125,621 high-quality reads. The rarefaction plot is 

available in Figure 2a. We apply a filter to obtain the significant OTUs only (0.1%). 

After the filter application, 99.4% OTUs were removed and 291 OTUs remained. 

OTUs resulted in 11 different bacterial phyla in total (Figure S1). Through a 

phylogenetic tree, it is possible to visualize how the OTUs were assembled 

(Figure S2). Some of the samples presented multi-affiliations, which means that 

the database could not classify precisely some OTUs. Also, some OTUs were 

classified as unknown family. Differences in bacterial composition were observed 

among samples, especially when comparing the female (LG2) to the male 

samples. The dominant phylum was Proteobacteria in the males (58.9–65.1%), 

while LG2 presented a notable higher abundance of Fusobacteria (70%) (Figure 

3a). Bacteroidetes abundance was considerably low and similar among all four 
 

samples, varying between 1.56% and 1.24%. Contrariwise, Firmicutes showed 

differences among the Pampas foxes’ gut. Only one of the male samples was 

Firmicutes enriched. 

 

From the taxonomic family level, a total of 32 families were observed. However, 

most of the groups presented low relative abundances >1%. There was a 

significant number of multi-affiliations in the male samples (Figure 3b). From the 

families identified, Enterobacteriaceae and Fusobacteriaceae were present in all 

samples. Following the same pattern as with the phyla, LG2 presented 

Fusobacteriaceae as the main family (70%). The Comamonadaceae family was 

observed in sample LG4 (14.1%). 
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Alpha diversity metrics (i.e., Shannon, Chao1, Simpson, and InvSimpson indices) 

did not exhibit statistical significance (p>0.05) in the bacterial composition of the 

Pampas fox samples analyzed in our study (Figure 2b). The beta diversity 

distance matrix (binary Jaccard distance, Figure 4) was used in the construction 
 

of the Multidimensional scaling (MDS), as a way of visualizing the level of 

similarity between the samples. The most diverse samples regarding the bacterial 

composition were LG1 and LG3, although all of them were considerably divergent 

from each other (Figures 5 and 6). Looking at the heatmap, the occurrence and 

frequencies of OTUs were more similar between the male samples when 

compared to the female (Figure 6). Although the mean distances between 

males and female were calculated, no statistically significant differences were 

observed. 

 

Regarding the ARG analysis, all samples were negative to the presence of 

msr(C), blaCTX-M, and bla-TEM. The four samples presented the gene tet(M). 

LG1 and LG3 were positive for tet(W). Only LG4 had a positive result for erm(B). 

 
DISCUSSION 

 
 

We sequenced the V4 rRNA region of four rectal swab samples from 

Pampas foxes, a South American wild canid, to analyze the gut bacterial 

composition. Our results differ from most studies with wild canids, showing 

Proteobacteria as the most abundant phylum in the gut microbiota of Pampas 

foxes (Figure 7) [12, 34–51]. Previous studies have shown that the gut 

microbiome of wild canids usually presents a higher abundance of 
 

Bacteroidetes, Firmicutes, and/or Fusobacteria, as shown in Figure 7. In 
 

consonance with these studies, other paper analyzing the microbiota of 
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domestic dogs also showed these three phyla as preeminent in the gut/fecal 

microbiota of healthy dogs [52]. 

Proteobacteria is the most diverse bacterial phylum and is commonly present in 

the gut microbiota of healthy mammals [53,54]. In our study, we found 

Proteobacteria as the dominant phylum in all the males analyzed. In humans, 

Proteobacteria are mainly associated with diseases [53]. The 

Enterobacteriaceae family, more specifically, has been linked with chronic 

enteropathies [55]. In animal health, they are frequently highlighted as a 

microbial group of particular concern as they include several clinically important 

gastrointestinal pathogens, such as Escherichia coli, Campylobacter jejuni, 

Klebsiella pneumoniae, Salmonella typhimurium, and Yersenia enterocolitica 

[56]. 

The composition and diversity of the gut microbiome are influenced by a wide 

range of biological processes, such as social interactions, the host’s 

evolutionary history, and diet [57,58]. Pampas foxes are omnivorous, and their 

diet varies according to food availability and region [59]. Castillo et al. 2011 

performed a study analyzing the diet of Pampas foxes in the Chaco region, 

Argentina [60]. The results from [60] showed that adults eat insects and fruits, 

bringing more nutrient food to their cubs (i.e. rodents). According to this study, 

one of the fruits that Pampas foxes eat is from the genus Prunus sp. Plum trees 

(Prunus domestica) are one of the native species of this genus that can be 

found in the Pampa biome [61]. A study analyzing the microbiome of Prunus 

sp., discovered that Proteobacteria presented an abundance of 94% [62]. Also, 

the microbiome of insects is mainly composed of Proteobacteria [63]. These 

findings corroborate 
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the hypothesis that the prevalence of this phylum can be a result of the Pampas 

fox diet. 

Regarding LG4, a cub, its bacterial composition could also be related to the early 

microbiome composition observed in humans and mammals. Facultative 

anaerobes, including Proteobacteria, are among the earliest colonizers and 

dominant members in the neonatal gut [53]. The phylum plays a key role in 

preparing the gut for successive colonization by the strict anaerobes required 

for healthy gut function [53]. After birth, the dominant phyla in the feces of 

mammals, such as tiger cubs, were Proteobacteria, Firmicutes, and 

Cyanobacteria [64]. The abundance of Proteobacteria tended to decrease 

gradually throughout their early life [64]. 

We cannot ignore the fact that the predominance of Proteobacteria could also 

be a result of anthropogenic interference. Biles et al. (2021) performed a study 

analyzing the scat microbiome of red foxes (Vulpes vulpes) and coyotes (Canis 

latrans) in two parks in Virginia, United States [38]. Both wild canids presented 

high abundances of Proteobacteria and low abundances of Firmicutes. They 

hypothesized that their findings could indicate stress and poor health conditions, 

especially in the coyotes that live in the more developed park, Manassas 

National Battlefield Park (MANA). 

 

The Pampa biome, which represents a large proportion of the Pampas fox’s 

distribution range, have been affected by extensive cattle breeding and 

agriculture [6]. Approximately 0.1% of the original 500,000km² range remains 

unaffected. Due to the species’ adaptability, the Pampas fox seems able to 

withstand the loss and degradation of its natural habitat and hunting pressure 

[13]. Nevertheless, Caruso et al. (2016) showed that even species considered 
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more adaptable, such as the Pampas fox and the Molina’s hog-nosed skunk have 

shown some type of negative association with areas with human presence in the 

Pampa biome [65]. In Candiota, more specifically, 73,234 hectares are destined 

for agriculture and livestock production, which corresponds to 78.4% of its total 

area [66]. 

 

The sample LG2 showed Fusobacteria as the frequent phylum. Fusobacteria 

seems to be related with inflammatory bowel disease (IBD) and colorectal cancer 

in humans but not necessarily in dogs [67]. Interestingly, Fusobacteria has been 

associated with healthy dogs [68]. Also, its high abundance can be related to the 

high consumption of meat [54]. Nelson et al. 2014 showed that Fusobacteria 

were present at high abundances in canines, when compared to other terrestrial 

mammals [69]. 

Although no statistically significant differences were observed, the divergence 

observed between samples may be explained by the habits of these canids. 

Pampas foxes tend to be solitary animals, being in pairs only between the 

mating season [13]. In that sense, the availability of different nutritional sources 

found during foraging may favor the supply of different bacterial groups. Also, 

individual variations in the microbiome profile exist and should be considered 

especially when extrapolating findings from small sample groups. 

All samples analyzed in this study were positive for the gene tet(M), and two were 

positive for the gene tet(W). Tetracycline-resistant genes were also found in 

Pampas fox from Argentina [70]. In their research, in consonance with our study, 

they found tetracycline ARG as the most prevalent ARG group, with almost 85% 

of foxes being positive for at least one tet gene. Sample LG4 also had a positive 
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result of the erm(B) gene, which confers cross-resistance against macrolides, 

lincosamides, and streptogramin [71]. This gene has been described in a wide 

variety of bacteria both in humans and animal isolates [30, 72]. Interestingly, the 

erm(B) gene is often linked with the tet(M) gene [71]. 

 

The presence of tetracycline-resistant genes can be explained by the fact that 

this antibiotic has been widely used in medicine for treatment, but also as a 

growth promoter in livestock production [73]. Those genes (tet) have been found 

in a variety of bacteria present in human and livestock-impacted environments 

[74-76]. Another important fact to consider is that the Candiota region presents 

coal mining activities, due to its soil (rich in coal and limestone) [66]. The 

production of coal might facilitate the proliferation of ARGs due to the ionic liquid 

used in the process of coal liquidation [77]. Many heavy metals can also increase 

the proliferation of antibiotic resistance due to their antimicrobial properties [78]. 

The limitation of our study is the lower number of samples, due to the difficulty of 

obtaining samples from wildlife. We understand that the lower number of samples 

probably influenced the statistical power of our analysis. Notably, capturing and 

handling wild animals requires specialized equipment, the consideration of 

animal welfare concerns, and the efforts of experienced biologists and wildlife 

technicians to plan and study suitable capture methods. Considering it, the 

number of animals evaluated in the present study should be well-considered, 

although the results should be interpreted with caution. Our study reinforces the 

importance of conducting research related to the impact of human activities on 

the Brazilian Pampa biome. 
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CONCLUSION 

 
 

We present an overview of the Pampas fox microbiome. This study was the 

pioneer in identifying the microbiome in canids from South America, mainly in 

Brazilian biomes. Therefore, the analysis of the microbiome and resistance genes 

gives us clues about the impact of anthropic action in wild species. Studies such 

as the one presented here bring insights to understanding the conservation of 

local fauna. Hopefully, our study will become a foundation for new studies 

concerning the welfare of wild animals in the Pampa biome. 
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TABLES AND FIGURES 

 
 

Table 1: Description of the Pampas fox samples evaluated in this study. 
 

 
Species 

Sample 
 

ID* 

 
Sex 

 
Age 

Weight 
 

(kg) 

Collection 
 

site 

Collection 
 

date 

     Candiota City 
 

(Site 1) 

10/12/2016 

 LG1 Male Adult 5.22  

    

Young 
 

 

 Candiota City 
 

(Site 2) 

15/12/2016 
 LG2 Female 3.95  

Pampas fox 
 

(L. gymnocercus) 

    

    Candiota City 
 

(Site 3) 

15/12/2016 

 LG3 Male Adult 4.88  

     Candiota City 
 

(Site 4) 

13/12/2016 

 LG4 Male Cub 1.45  

*LG1= L. gymnocercus sample 1; LG2= L. gymnocercus sample 2; LG3= L. 

gymnocercus sample 3; LG4= L. gymnocercus sample 4. 
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Figure 1: Samples collection site. Brazil is shown in the left highlighted in light 

grey. Rio Grande do Sul State is shown, detached from the main map, in the 

center. The collection sites in Candiota city are amplified. Site 1, LG1: Lat. 

31°28'34.28"S, Long. 53°48'45.61"W. Site 2, LG2: Lat. 31°29'00.60"S, Long. 

53°48'41.70"W. Site 3, LG3: La 31°28'18.52"S, Long. 53°49'8.32"W. Site 4, LG4: La 

31°28'37.62"S, Long. 53°48'59.23"W. 
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Figure 2: Quantification of microbial communities. 2a: rarefaction curve. 2b: 

Alpha diversity barplot. 
 

 

 
 

M= Male. F= Female. 
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Figure 3: Barplots of the bacterial composition. 3a: Phylum level. 3b: Family 

level. 
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Table 3: Antibiotic resistance genes (ARG) present in Pampas fox (Lycalopex 
gymnocercus) microbiota. 

 

 

ARG 
 Sample  

LG1 LG2 LG3 LG4 

erm(B) - - - + 

msr(C) - - - - 

tet(M) + + + + 

tet(W) + - + - 

blaCTX-M - - - - 

bla-TEM - - - - 
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Figure 4: Jaccard plot of similarity index and distance between samples. 
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Figure 5: Principal Coordinates Analysis (PCoA – MDS) plot. 
 

M= Male. F= Female. 
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Figure 6: Heatmap of the contribution and diversity of the taxa analyzed. 
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Figure 7: Overview of the main phyla observed in different studies with wild 

canids performed worldwide between 2016 and 2022. Phylum indicators 

expressed in colors related to qualitative taxonomic diversity. Elaborated by the 

author. 
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Supplementary Table 1: Conditions of the amplification of the ARGs used in this 

study. 
 

 

Gene 
Primers sequences (5’ – 3’) Size 

Reference 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

blaCTX-M (F) 
SCSATGTGCAGYACCAGTAA 

 
blaCTX-M (R) ACCAGAAYVAGCGGBGC 

 
585pb [32] 

 
 

 

 

bla-TEM (F) GCACGAGTGGGTTACATCGA 

 

 
bla-TEM (R) GGTCCTCCGATCGTTGTCAG 

 
 

310 pb 

 
[33] 

 
 

*F= Forward. R= Reverse. 

**pb= pair of bases. 

 (F and R*) (pb**)  

 

erm(B) (F) 
 

GAAAAGGTACTCAACCAAATA 
  

  639pb [28] 

erm(B) (R) AGTAACGGTACTTAAATTGTTTAC   

 

msr(C) (F) 
 

AAGGAATCCTTCTCTCTCCG 
  

  342pb [29] 

msr(C) (R) GTAAACAAAATCGTTCCCG   

 

tet(M) (F) 
 

GTTAAATAGTGTTCTTGGAG 
  

  660pb [30] 

tet(M) (R) CTAAGATATGGCTCTAACAA   

 

tet(W) (F) 
 

GAGAGCCTGCTATATGCCAGC 
  

  167 pb [31] 

tet(W) (R) GGGCGTATCCACAATGTTAAC   
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Supplementary Figure 1: Barplot of phyla composition. 
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Supplementary Figure 2: Phylogenetic tree of phyla composition. 
 
 
 


