
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

MARCOS VINICIUS LUDWIG PIVETTA

A Machine Learning Approach for
Petroleum Production Forecasting in a

Digital Twin

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Joel Luis Carbonera

Porto Alegre
April 2024

CIP — CATALOGING-IN-PUBLICATION

Pivetta, Marcos Vinicius Ludwig

A Machine Learning Approach for Petroleum Production
Forecasting in a Digital Twin / Marcos Vinicius Ludwig Pivetta.
– Porto Alegre: PPGC da UFRGS, 2024.

86 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2024. Advisor: Joel Luis Carbonera.

1. Time Series Forecasting. 2. Petroleum Production Forecast.
3. Machine Learning. 4. Digital Twin. I. Carbonera, Joel Luis.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ACKNOWLEDGEMENTS

This work was performed under the Petwin research project (PeTWIN.org). The

research was supported by Higher Education Personnel Improvement Coordination

(CAPES) code 0001, Brazilian National Council for Scientific and Technological Devel-

opment (CNPq), Brazilian Federal Agency for Innovation FINEP financing, and Libra

Consortium.

I want to thank my advisor, Prof. Luis Carbonera, who guided me thoroughly

in the path of completing this master’s, even with the multiple obstacles presented in its

course. I would also like to thank Prof. Mara Abel and Prof. João Cesar Netto for being

exceptional supervisors for all involved in the Petwin research project. Thanks to all

my research group colleagues, who helped me immensely with the practical side of the

scientific task. A special thanks to Artur Henrique Simon for providing feedback on my

work and developing our architectural solution’s front end.

Finally, thanks to my family and girlfriend Julia, who all provided additional sup-

port through the years and certainly will keep doing so for the upcoming ones.

ABSTRACT

Digital Twins (DTs), a forefront technology in Industry 4.0, find extensive applications

in O&G, particularly in asset performance management. By virtually replicating a phys-

ical asset, DTs provide a digital platform for exploring various scenarios and problem-

solving strategies without disrupting operational processes. Integrating DT principles and

Machine Learning (ML) techniques holds significant promise for enhancing production

forecasting capabilities in the O&G industry, enabling more informed decision-making

and efficient production management. Traditional production forecasting methods in the

industry face limitations such as dependence on expert experience, data availability, and

computational costs. Leveraging ML algorithms offers a promising alternative to complex

methods. In this work, we proposed a Proof of Concept (POC) digital twin component

able to train ML petroleum forecasting models, execute them within what-if scenarios

and present their results to end-users. We also gather results and raise insights from a

model selection strategy executed by this DT component. This strategy investigated the

impact on model performance of: (1) different lookback and horizon sizes for the training

samples, (2) the use of future operational variables, and (3) the choice of different data

sampling frequencies. The proposed architecture fulfilled the stakeholder’s requirements

and serves as an adequate digital twin component for the upstream sector. Results of the

model comparison framework showed that the ensemble tree-based model XGBoost per-

formed better than deep learning techniques for this particular dataset. We found that the

optimal training window size depends on the sampling frequency of the data. We also

determined that incorporating future operational features overall improves model perfor-

mance. We conclude that better standards for data-driven petroleum forecasts are needed,

especially in pre-processing and feature selection practices, which need further evalua-

tion.

Keywords: Time Series Forecasting. Petroleum Production Forecast. Machine Learning.

Digital Twin.

Uma Abordagem de Aprendizado de Máquina para Previsão de Produção de

Petróleo para Gêmeos Digitais

RESUMO

Os Gêmeos Digitais (GDs), uma tecnologia de ponta na Indústria 4.0, encontram amplas

aplicações no setor de Óleo e Gás (O&G), especialmente na gestão de desempenho de

ativos. Ao replicar virtualmente um ativo físico, os GDs fornecem uma plataforma digital

para explorar vários cenários e estratégias de resolução de problemas sem interromper os

processos operacionais. A integração dos princípios dos GDs e técnicas de Aprendizado

de Máquina (AM) oferece uma promessa importante para aprimorar as capacidades de

previsão de produção na indústria de O&G, possibilitando uma tomada de decisão mais

informada e uma gestão de produção mais eficiente. Métodos tradicionais de previsão

de produção na indústria têm limitações, como dependência da experiência especializada,

disponibilidade de dados e custos computacionais. A utilização de algoritmos de AM

oferece uma alternativa promissora aos métodos complexos. Neste trabalho, propomos

um componente Prova de Conceito (POC) para GDs capaz de treinar modelos de AM

para previsão de petróleo, executá-los em cenários hipotéticos e apresentar os resultados

ao usuário final. Também reunimos resultados e insights de uma estratégia de seleção de

modelo executada por esse componente de GD. Esta estratégia investigou o impacto no

desempenho do modelo de: (1) diferentes tamanhos de janelas amostrais de treinamento,

(2) uso de variáveis operacionais futuras e (3) escolha de diferentes frequências de amos-

tragem de dados. A arquitetura proposta atendeu aos requisitos das partes interessadas

e serve como um componente de gêmeo digital adequado para o setor de upstream. Os

resultados da estratégia de comparação de modelos mostraram que o modelo de árvore

ensemble XGBoost apresentou melhor desempenho do que as técnicas de aprendizado

profundo para este conjunto de dados específico. Verificamos que o tamanho ideal da

janela amostral depende da frequência de amostragem dos dados. Também determina-

mos que a incorporação de características operacionais futuras melhora o desempenho do

modelo. Concluímos que são necessários melhores padrões para previsões de petróleo

baseadas em dados, especialmente quanto as práticas de pré-processamento e seleção de

features, que necessitam de uma avaliação mais aprofundada.

Palavras-chave: Previsão de Séries Temporais. Previsão de Produção de Petróleo. Apren-

dizado de Máquina. Gêmeos Digitais.

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

ARIMA Autoregressive Moving Average

CLI Command-Line Interface

CNN Convolutional Neural Network

CV Cross-Validation

DCA Decline Curve Analysis

DT Digital Twin

EDA Exploratory Data Analysis

EnKF Ensemble Kalman Filter

EOR Enhanced Oil Recovery

ES Exponential Smoothing

EWT Extended Well Test

FDM Finite Difference Method

FNN Feed-Forward Neural Network

FPSO Floating Production Storage and Offloading

GOR Gas-Oil Ratio

GPR Gaussian Process Regression

GRN Gated Residual Network

HONN Higher Order Neural Network

ICV Inflow Control Valve

IoT Internet of Things

IQR Interquartile Range

LR Linear Regression

LSTM Long Short-Term Memory

MBE Material Balance Equation

MIF Mixed Input Forecaster

ML Machine Learning

MLMVN Multilayer Neural Network with Multi-Valued Neurons

MLR Multiple Linear Regression

MPFM Multiphase Flow Meter

MSE Mean Squared Error

NN Neural Network

NEA Nonlinear Extension for Linear Arps

O&G Oil and Gas

PIMS Plant Information Management System

P/T Pressure/Temperature

POC Proof of Concept

PSC Production Sharing Contract

PVC Persistent Volume Claim

RNN Recurrent Neural Network

RMSE Root Mean Squared Error

SARIMA Seasonal Autoregressive Moving Average

TFT Temporal Fusion Transformer

TSA Time Series Analysis

VAR Vector Autoregression

VFM Virtual Flow Metering

XGBoost eXtreme Gradient Boosting

LIST OF FIGURES

Figure 2.1 Digital Twin architecture proposed by Tao and Zhang (2017)17
Figure 2.2 Schematic of a generic subsea production system. PRO: Production

wellhead; INJ: Injector wellhead; S: Separator; ⧖ Valve..18
Figure 2.3 Diagram from a smart well and its basic components...................................19
Figure 2.4 Life cycle of an oilfield..20
Figure 2.5 An example of a predictor time series X and response time series Y24
Figure 2.6 Cross-Validation values between X and Y for each lag k of X24
Figure 2.7 ML model training with Cross-Validation and hyperparameter tuning.........28
Figure 2.8 Day-chaining Nested Cross-Validation Strategy ...29
Figure 2.9 Diagram for an LSTM cell ..34
Figure 2.10 Temporal Fusion Transformer Architecture ..35

Figure 4.1 Sample construction from sliding window strategy with lookback size
of 6 and output size of 2..45

Figure 4.2 Correlation between lagged features and the target feature (oil produc-
tion) at 1-day frequency ..48

Figure 4.3 Correlation between lagged features and the target feature (oil produc-
tion) at 1h frequency ...48

Figure 4.4 Correlation between lagged features and the target feature (oil produc-
tion) at 10-min frequency..49

Figure 4.5 Distribution of all input features with MinMax normalization49
Figure 4.6 Box Plot diagram of features with MinMax normalization...........................50
Figure 4.7 Missing values for all input features..50
Figure 4.8 Average RMSE of each technique for 1-day frequency54
Figure 4.9 Average RMSE of each technique for 1h frequency54
Figure 4.10 Average RMSE of each technique for 10-min frequency............................55
Figure 4.11 1d average RMSE error across all lookback sizes.......................................56
Figure 4.12 1h average RMSE error across all lookback sizes.......................................56
Figure 4.13 10-min average RMSE error across all lookback sizes56
Figure 4.14 Schematic representation of use cases and abstract architecture com-

ponents ..61

Figure C.1 Architectural diagram of the solution consisting of a frontend and a
backend component ..77

Figure C.2 Communication between MLFlow client, database, and artifact store.........80
Figure C.3 MLFlow Interface Showing Runs from a Specific Training81
Figure C.4 Creation of a Scatter Plot: Error vs. Lookback Size.....................................81
Figure C.5 Front-end Interface..82

Figure D.1 Front-end Interface ...86

LIST OF TABLES

Table 3.1 Analysis of selected papers ...43

Table 4.1 Variables selected for training, for each sampling frequency48
Table 4.2 Value ranges for each hyperparameter of the techniques52
Table 4.3 RMSE errors for 1-day frequency ...53
Table 4.4 RMSE errors for 1h frequency ..53
Table 4.5 RMSE errors for 10-min frequency...54
Table 4.6 RMSE errors for 1-day frequency without considering future choke open-

ing % ..57
Table 4.7 RMSE errors for 1h frequency without considering future choke opening % 57
Table 4.8 RMSE errors for 10-min frequency without considering future choke

opening %...57

Table B.1 Statistical description of each selected variable ...76

LIST OF ALGORITHMS

1 Model comparison methodology ...46

CONTENTS

1 INTRODUCTION...13
2 THEORETICAL FOUNDATION...16
2.1 Digital Twins..16
2.2 Oil Production Systems and Libra block..17
2.3 Estimating petroleum production..21
2.4 Time Series Forecasting..22
2.4.1 Loss and error functions...23
2.4.2 Multivariate time series..23
2.4.3 Cross-correlation..24
2.4.4 Stationarity...25
2.4.5 Granger Causality ..25
2.4.6 Prediction methods...26
2.4.7 Machine Learning Methods ...26
2.4.7.1 Linear Regression ...31
2.4.7.2 XGBoost ...31
2.4.7.3 Long Short-Term Network..32
2.4.7.4 Temporal Fusion Transformers ...35
3 RELATED WORKS ...38
4 AN APPROACH FOR BUILDING A PETROLEUM FORECASTING MOD-

ULE FOR A DIGITAL TWIN...44
4.1 Evaluating Machine Learning Approaches for Petroleum Production Fore-

casting...44
4.1.1 Methodology ..44
4.1.1.1 Dataset...46
4.1.1.2 Feature Selection...47
4.1.1.3 Pre-processing...50
4.1.1.4 Model Training and Evaluation Strategy ..51
4.1.1.5 Hyperparameter Tuning ..51
4.1.2 Results..52
4.1.3 Discussion ..57
4.2 A digital twin module for production forecasting ..59
5 CONCLUSION ...62
5.1 Limitations...63
5.2 Future work...63
REFERENCES...65
APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS71
A.1 Introdução...71
A.2 Metodologia ..73
A.2.1 Abordagem de Avaliação para Modelos de Previsão..73
A.2.2 Arquitetura de Previsão de Petróleo baseada em Microsserviços para um

Gêmeo Digital...74
A.3 Resultados e conclusão...74
APPENDIX B — ADDITIONAL DATA..76
APPENDIX C — IMPLEMENTATION OF THE ARCHITECTURE....................77
C.1 Training Backend...77
C.1.1 Forecasting Client ...78
C.1.2 Tracking Server ...79
C.2 Prediction Front-end..81

APPENDIX D — TRAINING AND VISUALIZATION USE CASE........................83

13

1 INTRODUCTION

Digital Twins (DTs), a cutting-edge technology of industry 4.0, have many appli-

cations in the O&G domain, including asset performance management (WANASINGHE

et al., 2020). DTs offer a concise way to deal with the problem of sensor data commu-

nication between assets, history keeping, and what-if scenario execution in massive oil

production facilities. It gives companies a digital environment where diverse scenarios

and problem-solving strategies can be performed without disrupting reservoir, well, or

platform operations (SIRCAR et al., 2023; GEP, 2020). By creating a virtual replica of

a real asset using multiple data acquisition hardware and computational models, DTs can

gather and apply data that helps drive decisions on the physical asset. Integrating DT

principles and Machine Learning (ML) techniques is a promising way to add value to

processes within upstream production operations (Honeywell, 2020), such as petroleum

production forecasting. DTs and ML, in conjunction, when applied to this task, enable

more informed decision-making and efficient production management.

Estimating oil wells’ current and future production performance is a crucial task

within oil field management (TARIQ et al., 2021). Many complex computational models

based on multiphase substance flow through reservoir and facility equipment have been

devised to address this problem. Nonetheless, highly uncertain factors relating to the

fluid and subsurface dynamics pose a problem for this specific task (HUBBERT, 1940;

HUBBERT, 1956; MUSKAT, 1946; BEAR, 1988). Furthermore, factors such as well-to-

well interference, well completion, changes in the petrophysics of the reservoir over time,

political decisions, and facility operational plans can also significantly impact the volume

of petroleum produced by wells. To ensure the economic well-being of oil companies,

it is essential to reduce the risks and uncertainties associated with petroleum extraction

by estimating desirable and undesirable production behavior and determining the optimal

parameters for production.

The more complex methods for production forecasts have disadvantages, such as

reliance on professional experience, data availability, data acquisition, and computational

costs. Furthermore, they are based on assumptions about fluid physics or oversimpli-

fications (BALAJI et al., 2018). These downsides hinder their applicability in specific

contexts. For example, the production engineer might want to quickly run a what-if sce-

nario of production volume based on specific opening settings of flow-restricting valves

on the well and the platform. It is unlikely that they will find the answer in a short period

14

using more complex numerical models. The same can be said for situations where mul-

tiple what-if scenarios are queued for execution. Moreover, data acquisition constraints

could be such that no reliable numerical model exists for that field.

The adoption of the Industry 4.0 mindset in the Oil and Gas (O&G) industry led

to an increased instrumentation of wells and production facilities (NGUYEN; GOSINE;

WARRIAN, 2020), resulting in greater availability of real-time measurements of reser-

voir and well conditions, such as pressure and temperature in different well segments,

valve operations, and fluid rates. Soft computing methods can leverage these data to train

mathematical models that estimate current and predict future petroleum production. Fu-

ture facility operational plans can also be used to feed training, allowing for hypothetical

or what-if scenarios, depending on the operational plans used as input. Instead of the

model-driven approach, this data-driven approach removes or reduces the need for pro-

fessional experience, costly geological data acquisition, computational costs, and well

shut-ins required to calibrate Multiphase Flow Meters (MPFMs).

As backed previously, short and long-term oil production estimation and forecast-

ing are critical tasks in the O&G industry. Even with today’s trend of collecting more

granular real-time data from assets, the improvement of ML models that handle time

series data, and the greater availability of hardware for training and inference of such

models, literature still lacks works that compare ML models’ accuracy at forecasting pro-

duction time series and that simultaneously:

• test the impact and usefulness of future covariate models that take into account the

plans of flow-restricting valve actuation.

• systematically compare the impact of different window sample sizes when training

different data-driven models.

• use as input real-world hourly and sub-hourly observation from wells.

We hypothesized that new insights about using data-driven models in this task

could be revealed if submitted to the different parameters and configurations in the list

above and evaluated on real-world production data. A prior study we conducted has

assessed partial results of such analysis (PIVETTA et al., 2023), but on a more limited

scale. We constrain this pure data-driven analysis to a scenario where a reservoir model

is non-existent or incomplete, reservoir behavior is similar to the data being analyzed,

computational power is limited, and decision-making must be done promptly. At the same

15

time, knowing the prevalence of DTs for asset performance management in the current

industry, we planned and developed a Proof of Concept (POC) digital-twin component

for the prediction task. The POC was also used to execute the previously described model

evaluation and generate results.

In summary, the objectives of this dissertation are:

1. to review and discuss studies that propose methods of production forecast that rely

on temporal characteristics of the data.

2. to bring new insights about using data-driven production forecasting models by

analyzing, in conjunction, the impact of future covariates, different window sizes,

and sampling frequencies and evaluating them on the same real-world oil data with

off-the-shelf ML techniques.

3. to propose and make available a deployable POC architecture that acts as a digital-

twin component for forecasting oil production and for generating this work results.

This work is organized as follows. Section 2 gives the theoretical basis for un-

derstanding the subsequent work. We describe the concept of digital twins, petroleum

production systems, and the main techniques to estimate petroleum production. Sec-

tion 3 reviews the current literature for this task, highlighting the most recent state of

research, the most prominent techniques, and observed methodological limitations. Sec-

tion 4.1 presents our experimental setup, including the problem definition, description

of the private dataset used, data exploration, preprocessing, feature selection rule, and

Cross-Validation technique. The results of the experiments are discussed in Section 4.1.2.

Section 4.2 describes the proposed DT component as a deployable model training and

inference full-stack architecture. Finally, Section 5 concludes the work by summarizing

our findings, discussing their implications, and suggesting future research directions.

16

2 THEORETICAL FOUNDATION

In the following subsections, we provide the theoretical foundation for understand-

ing the problem of petroleum production forecasting and its connection to DTs. Section

2.1 explains the concept of DTs and how they can be used to create a virtual replica of

an oil production system and the associated oil forecasting component for asset perfor-

mance management. Section 2.2 describes, in general, how oil production systems work

and the specific description of the oilfield where the data for experiments was taken from

Libra. Section 2.3 details the challenges of effectively estimating petroleum production.

Section 2.4 introduces the concept of time series forecasting and the leading techniques

and concepts involved in this task. We dive deeper into ML methods for forecasting, such

as Linear Regression (LR), eXtreme Gradient Boosting (XGBoost), Long Short-Term

Memory (LSTM), and Temporal Fusion Transformer (TFT).

2.1 Digital Twins

Digital Twins (DTs) are an approach that integrates sensor technologies and com-

putational models to replicate processes and physical assets in a virtual space. Industry 4.0

mindset has led companies to acquire Internet of Things (IoT) devices and technologies

to deal with big data and analytics. Coupled with computing hardware and ML tech-

nology advances, these feats have enabled the recent steep growth of DTs in industries.

Raw business-specific data gathered from IoT devices can be fed to computational models

to provide real-time monitoring, prediction, optimization, controlling, and aid decision-

making (RASHEED; SAN; KVAMSDAL, 2020) in the context of complex systems.

The concept of DTs, first conceived by Grieves (2015), has been iterated mul-

tiple times and sparked a series of debates about its true definition. Literature reviews

(RASHEED; SAN; KVAMSDAL, 2020; SEMERARO et al., 2021; BARRICELLI; FOGLI,

2022; FULLER et al., 2020) have tried elucidating the concept and providing common

reference architectures. Industries across different sectors aim to incorporate DTs be-

cause of their potential to enhance operational efficiency. Wanasinghe et al. (2020) have

done an extensive literature review of DT tools in the O&G industry and highlighted that

asset monitoring and lifecycle management is one of its most prominent fields of applica-

tion. These findings drive our choice of proposing and building an architecture for the oil

production forecast.

17

We fit our work in the five-component architecture proposed by Tao and Zhang

(2017). Figure 2.1 shows the five components in action: (1) the physical asset, (2) the

virtual asset, (3) the data management layer, (4) service systems, and (5) connections.

The data management layer is the centerpiece of the architecture, receiving data from the

other components and, in response, driving their execution. The service system compo-

nent provides models, simulators, and visualizations as encapsulated sub-services. Our

proposed architecture, described in Section 4.2, fits as a deployable service in this layer,

ingesting sensor data from the data management layer, internally building models, and

feeding back predictions.

Figure 2.1 – Digital Twin architecture proposed by Tao and Zhang (2017)

Source: (WANASINGHE et al., 2020)

2.2 Oil Production Systems and Libra block

Under a Production Sharing Contract (PSC) in Brazil since 2013, Libra is a block

comprising a large and thick oil carbonate reservoir located 180 kilometers off the coast

of Rio de Janeiro in Santos Basin Pre-Salt ultra-deep waters with depths ranging from

1,700 m to 2,400 m. Libra has one recognized oilfield. Oilfields are subsurface or surface

areas located in or on a unique geological structural feature and stratigraphic condition

that contain single or multiple reservoirs (American Petroleum Institute, 1988).

To produce petroleum from these reservoirs, drilling boreholes into the subsurface

where hydrocarbons are believed to be present was required. Specialized equipment was

18

then introduced into these holes for transportation and flow control at the many depths

the wells produce from. Flowlines connected these wells to Floating Production Storage

and Offloading (FPSO) vessels or other surface equipment. Figure 2.2 shows a simplified

offshore oil production system analog to those in Libra. This production system in the

figure comprises a producer well and injector well connected by a riser to a platform

equipped with a device that separates the multiphase fluid into its parts: oil, gas, water,

and solids. At the platform, a flow-restricting valve (also called a choke) can be seen, as

well as valves within the wells to control the flow between different production depths,

called Inflow Control Valves (ICVs).

Figure 2.2 – Schematic of a generic subsea production system. PRO: Production wellhead; INJ:
Injector wellhead; S: Separator; ⧖ Valve

Source: Author

Libra was first explored under an Extended Well Test (EWT) project, mainly in

the northwest section. EWT in Libra was part of a de-risking plan for reducing uncertain-

ties in developing unconventional reservoirs. More specifically, it was done to evaluate

the productivity and characteristics of the reservoir and fluid within, guiding future de-

velopment plans. Libra’s prospect area is around 1,500 km², the reservoir fluid has a

GOR (Gas-Oil Rate) of 440 Sm³/Sm³, gravity of 29 °API, H2S of around 15 ppm, and

CO² contamination ranging from 40 to 45% in volume. Beneath a big layer of salt, the

block can be divided into three production zones at most, with oil columns exceeding 400

m. It comprises structures formed by thick microbial carbonate reservoirs with relatively

high heterogeneity from the Barra Velha and Itapema formations. Faults, intrusive and

extrusive igneous rocks are also present in the block, which add to its complex structure

19

(COSTA et al., 2019; MOCZYDLOWER; FIGUEIREDO; PIZARRO, 2019; ANJOS et

al., 2020; SILVA et al., 2020; ROVINA et al., 2019; COCCOLI et al., 2019).

Another essential characteristic of Libra is its use of smart wells. Innovations in

sensor hardware, data transmission, and remote control systems have led to the adoption

of this advanced type of well by many O&G companies (GAO; RAJESWARAN; NAKA-

GAWA, 2007). Smart wells provide constant access to downhole measurements, such as

pressures, temperatures, and rates in different parts of the wells. They also allow remote

actuation of downhole valves, such as ICVs (YETEN et al., 2004). All wells in Libra

received intelligent completion and were equipped with ICVs and Pressure/Temperature

(P/T) gauges. Figure 2.3 shows the essential elements of an intelligent oil well. Note the

P/T gauges on different segments of the well and the ICVs that control flow from different

production intervals.

Figure 2.3 – Diagram from a smart well and its basic components

Source: Author

Since we focus on forecasting production volumes, it’s essential first to understand

how the whole-field production evolves in the long term (months to years) and short term

(seconds to days). Figure 2.4 denotes an oilfield’s usual production life cycle, with phases

I-IV representing the different regimes the oilfield and, consequently, the oil wells go

through.

As can be seen, the aggregate production rate of all wells in an oilfield goes

through build-up (I), production maintenance (II), decline (III), and abandonment (IV)

phases. The initial increase in production potential (I) is due to the digging and operating

20

Figure 2.4 – Life cycle of an oilfield

Source: Author

of new wells that exploit different reservoir regions. Phases (I) and (II) happen as natural

drive mechanisms of the reservoir push the petroleum up to wells and the production fa-

cility. Existing pressure from multiple layers above allows for various production mech-

anisms: dissolved gas drive, gas cap drive, water drive, combination drive, and gravity

drainage (CLARK, 1969). Production reaches a plateau in II, dictated by the production

capacity of the surface installation. This stage also fluctuates because the reservoir loses

its initial pressure, and the natural drives weaken. Additional recovery methods are ap-

plied to the reservoir to increase its production and compensate for this. Water and gas

can be injected into the rock to increase its pressure. Enhanced Oil Recovery (EOR) can

be made by introducing substances into the reservoir that change the physical attributes

of the fluid (LAKE, 1989). Stimulating the flow of hydrocarbons to the well can also be

done by acidization and fracturing (NNANNA; AJIENKA, 2005), especially in tight and

unconventional shale reservoirs. Once additional recovery methods give diminishing re-

turns, production rates decline steadily (III), as little or no intervention is done to improve

production. Once the economic limit is reached, that is, the sale of produced hydrocar-

bons is no longer enough to maintain the facility’s operational costs, and the oilfield is

abandoned (IV).

All the small oscillations of oil production in the previous graph can be explained

by short-term oil production behavior, which is more affected by the dynamics of the oil

flow in the pipelines, gas-lift pump actuation, separators, and other surface facilities than

by the long-term effect of reservoir physics (AL-JASMI et al., 2013). This is important

to know if we want to identify a system that simultaneously considers whole-reservoir

(long-term) effects and in or near-well (short-term) effects.

21

2.3 Estimating petroleum production

Petroleum production is mainly based on mechanistic fluid modeling through the

reservoir rock and well pipelines. Darcy (1856) was the first to describe multiphase sub-

stance flow through porous media. While well-established, his principles do not accu-

rately represent the flow of hydrocarbons through a reservoir or an oil well (GOVIN-

DARAJAN, 2019). The multiphase and compressible nature of petroleum, as well as the

highly heterogeneous and discontinuous nature of subsurface reservoirs, introduce com-

plexities and uncertainties in the modeling of subsurface hydrocarbon flow (HUBBERT,

1940; HUBBERT, 1956; MUSKAT, 1946; BEAR, 1988).

Traditionally, different model-driven methods, and reservoir simulators are com-

monly employed for simulating full-reservoir long-term dynamics and production estima-

tion at wells. These include numerical, analytical, and production decline curve methods,

with numerical models being the most common (LI et al., 2022a). Numerical reservoir

models use computationally demanding Finite Difference Methods (FDM) to solve dif-

ferential equations representing the fluid’s physics flowing through the medium. They

also commonly go through a tuning process, where their parameters are fitted to reflect

the actual behavior of production, a process called history matching, which can be done

manually with the current knowledge about the reservoir (MATTAX; DALTON, 1990), or

through more automated, but still laborious, optimization methods (RWECHUNGURA;

DADASHPOUR; KLEPPE, 2011). Analytical or semi-analytical methods incorporate

properties related to flow transport and geophysics in a less computationally expensive

way, though they struggle in simulating reservoir heterogeneity (WANG et al., 2019).

Analytical methods are also only suitable for simple flow geometries, such as linear or

radial flow problems, but often overlook more complex effects like capillary pressure and

compressibility (PAL, 2021). The simplest method is fitting a declining curve to extrapo-

late production rates since wells in conventional reservoirs follow the empirical equations

of Arps (1945) because of the loss of reservoir pressure over time.

In addition to whole-reservoir simulation, we can estimate the oil flow in a well by

considering the more immediate physical principles that dictate the inflow of multiphase

fluid from the reservoir into wells through the pipelines and chokes. The so-called Virtual

Flow Meters (VFMs) consider temperatures, pressures, valve opening measurements, and

completion data near or at the well and infer production rates using mechanistic models

of the fluid inflow from the reservoir, the thermal-hydraulic dynamics of the fluid within

22

the flowlines of the facility, the fluid properties, and the flow-restricting valve operations

(BIKMUKHAMETOV; JÄSCHKE, 2020).

Many algorithms have been proposed to simplify the estimation of petroleum pro-

duction without relying on complex methods. They go from simple analogy assumptions

to what is known as a proxy model. Proxy models are mathematical simplifications of

physics dictating fluid flow through a porous medium. They are mainly used for uncer-

tainty analysis, risk analysis, and production optimization (SILVA; AVANSI; SCHIOZER,

2020). Out of these proxy models, we can highlight Machine Learning (ML) algorithms,

that rely solely on the large amount of field data available to make assumptions. ML algo-

rithms can use this data to infer complex system behavior related to petroleum production

through an unrestrained optimization problem (BIKMUKHAMETOV; JÄSCHKE, 2020).

This approach uses the same variables to build mechanistic models but assumes no do-

main knowledge.

Our work focuses on using time series data from the production system to predict

oil rates with ML methods. We consider using the system’s past data and temporal char-

acteristics to model future transient oil flow phenomena. Estimating future oil rates using

past system behavior is expected to align with the previously cited physical principles

governing oil flow. It is important to note that our approach of using past data to forecast

oil production has been previously documented in the scientific literature and commonly

falls into the realm of time series forecasting. The concept of using ML methods for time

series forecasting is explained in Section 2.4.

2.4 Time Series Forecasting

Time series forecasting is a type of Time Series Analysis (TSA) method in which

past values of a time-labeled event are used to predict (or forecast) future values of this

event. Take the finite sequence S, made up of y values observed sequentially at every

same frequency, from time t − l to t.

S = {yt−l, . . . , yt−1, yt} (2.1)

We would like to know how these values are extrapolated into the future. We can

take horizon k of some size, our sampled values in S, and come up with a function that

extrapolates ŷt+1, ŷt+2, . . . , ŷt+k with minimal deviation from the real set. We call that our

23

forecast function ŷ(k). The best ŷ(k) for a problem depends on how it minimizes this

deviation, measured by a loss function (LEE, 2008). Important concepts involving time

series analysis are described in the following sections.

2.4.1 Loss and error functions

A loss function measures the difference between predicted values of a model Ŷ

and actual values Y . Time series forecasting aims to optimize model parameters and

minimize the value of a properly chosen loss function to achieve the best forecasting

generalization possible. The choice of the loss function is crucial because it affects the

accuracy of the forecast. The loss function should be chosen based on the data distribution

and business choices. It should reduce data bias, long-term error accumulation, and the

effect of multicollinearity and outlier data (JADON; PATIL; JADON, 2022). A common

loss function is the Mean Squared Error (MSE) (Equation 2.2)

MSE =
1

N

N

∑
i=1

(yi − ŷi)2 (2.2)

There are also other more comprehensible loss functions such as Root Mean

Squared Error (RMSE) (Equation 2.3), which is commonly used to provide error met-

rics of a forecasting model on an evaluation dataset that was purposefully not used during

training.

RMSE =

√
√√√√√⎷

1

N

N

∑
i=1

(yi − ŷi)2 (2.3)

2.4.2 Multivariate time series

In more complex scenarios, where more system variables are available, we can

build a multivariate vector Zt = (z1t, . . . , zkt) of size k × 1 where zi is a time series of in-

terest (BOX et al., 2015). Multivariate analysis can help us comprehend the interconnec-

tions among the series over time and enhance the precision of forecasts by incorporating

information from the related series into the forecasting process (BOX et al., 2015). The

concept of multi-variability is important in scenarios where multiple system variables, or

covariates, exist, like in oil production forecasting.

24

Figure 2.5 – An example of a predictor time series X and response time series Y

Source: (Holmes E. E.; Scheuerell M. D.; Ward E. J., 2021)

2.4.3 Cross-correlation

Verifying the degree of similarity between series is essential. The cross-correlation

formula (Equation 2.4) allows us to determine the effect of l-lagged Y series on X . In

simpler terms, this allows us to investigate whether one series precedes or follows another

(or itself). It also allows us to measure the effect of every lag l of Y on the response X .

rk(X, Y) =
∑((Yt − Ȳ)(Xt−k − X̄))

[∑(Yt − Ȳ)2]1/2 [∑(Xt − X̄)2]1/2
(2.4)

Cross-correlation is a valuable tool for feature selection, as it can give insight into

possible predictors and their effect on the response variable. Figure 2.5 shows two time

series. Consider the top one as X and the bottom as Y . From the cross-correlation graph

in Figure 2.6, it’s possible to see a significant negative correlation, for example, at lags of

-3 to -5. The value of X in lags -3 to -5 negatively correlates to the value of Y in lag 0.

Figure 2.6 – Cross-Validation values between X and Y for each lag k of X

Source: (Holmes E. E.; Scheuerell M. D.; Ward E. J., 2021)

25

2.4.4 Stationarity

One of the most essential properties of a time series is stationary. When the un-

derlying distribution function that generated a series does not vary with time, we call the

series stationary. By consequence, a stationary series has a (I) mean µX (t) independent of

t and (II) auto-covariance ∑((Xt−X̄)(Yt−l−Ȳ))
n−1

independent of t for every l (BROCKWELL;

DAVIS, 2002). In simpler terms, a stationary series behaves the same statistically across

different time periods. Many classical time series analyses assume the input time se-

ries has constant mean and variance over time. Oil production and its related covariates

are known to be non-stationarity (NING; KAZEMI; TAHMASEBI, 2022; SAGHEER;

KOTB, 2019), posing a significant challenge for classical TSA, which assumes the sta-

tionarity of the time series. We can apply differencing to a time series to make it sta-

tionary, but this process is not always straightforward, especially in complex systems.

Differencing can also negatively affect the model’s capability of modeling specific tem-

poral dependencies because the joint distribution changes which happen over time are lost

in the process (LIU et al., 2023).

2.4.5 Granger Causality

Granger’s causality (GRANGER, 1969) is a hypothesis test determining whether

one time series can predict another. In a given context considering two time series, X and

Y , if X passes the Granger causality test for causing Y , or in other words, rejects the null-

hypothesis of non-Granger causality, it means the observations contained in X decrease

prediction errors beyond the case where only the past values of Y are used to predict

itself. If we consider the Vector Autoregressive Model (VAR) of a time series (Equation

2.5), where lmax is the maximum lookback length we want to consider. X causes Y if any

coefficient bl is not 0, rejecting the null hipothesis. Granger causality is a useful feature

selection tool, as we can use it to disconsider variables that are proven not to cause the

response variable.

Yt =

lmax

∑
l=1

alYt−l +
lmax

∑
l=1

blXt−l + ηt (2.5)

26

2.4.6 Prediction methods

There are roughly two categories for how forecasting models can output a multi-

step prediction of size h (STEFANI, 2022):

1. Single output models work by iterating or concatenating the results of regressors

with an output size of one and can be further divided into:

(a) Iterative strategy learns a one-step model f (X) = Yt+1 to predict the next value

and uses it recursively h times to output the entire horizon.

(b) Direct strategy uses a separate model to predict each element in the horizon

directly. That is, it trains h models and concatenates their output, which are,

respectively, f1(X) = Yt+1, f2(X) = Yt+2, . . . , fh(X) = Yt+h.

2. Multiple output models use a single model that returns a vector of future values at

once; this can be represented by f (X) = (Yt+1, Yt+2, . . . , Yt+h).

Iterative methods are the most straightforward to implement and train, as they

only require one model for any forecasting horizon. However, they are prone to error

accumulation and propagation, as any prediction error in the previous step will affect the

subsequent predictions (BONTEMPI, 2008). Direct methods are generally more robust

to model misspecification and error accumulation compared to iterative methods (MAR-

CELLINO; STOCK; WATSON, 2006). Nonetheless, they do not consider dependency

between future values since none of the h models are trained with all of them (BON-

TEMPI, 2008). The multi-output strategy, which has been applied to several real-world

applications (BONTEMPI, 2008), fixes the direct approach by considering the depen-

dencies between future values, although its significant variance and low bias present a

challenge.

2.4.7 Machine Learning Methods

The traditional or classical methods in the field of TSA are based on statistical in-

ference to achieve this goal. The most prominent ones are Autoregressive Integrated Mov-

ing Average (ARIMA), Seasonal Autoregressive Integrated Moving-Average (SARIMA),

Vector Autoregression (VAR), and Exponential Smoothing (ES). These approaches have

27

been studied and used in econometrics for many years and usually provide a good base-

line for more complex methods. They have disadvantages, including the aforementioned

stationary assumption described in Section 2.4.4.

Aside from classical TSA techniques, a new contender for time series forecasting

has appeared in recent years: Machine Learning. ML falls under the Artificial Intelli-

gence (AI) umbrella, enabling systems to improve their performance through experience,

essentially learning from data (GOODFELLOW; BENGIO; COURVILLE, 2016). When

labeled data is used for learning, that is, all features of the data points along with their

ground truth label are known, we call it supervised learning. Supervised learning in ML

aims to discover a function that maps input data to corresponding output labels. The train-

ing process involves iteratively adjusting the model’s parameters to minimize a predefined

cost function, ultimately optimizing the model’s performance. In recent years, ML models

have increased in popularity. Specifically, Neural Networks (NN) have been demonstrated

to be the go-to method for ML-based forecasting in the O&G field, as suggested by our

literature review (Section 3).

In a ML sense, time series forecasting is often treated as a regression problem.

That is, to predict a continuous numerical output based on a set of input features. ML al-

gorithms such as Gradient-boosted trees, NNs, and Transformer-based architectures rely

on a training phase where samples are fed into the model, and its parameters, or weights,

are tuned using some optimization procedure like Gradient Descent. In summary, ML

model training adheres to the steps described in Figure 2.7 and is explained in the subse-

quent text.

1. Choose dataset

A proper dataset is chosen and downloaded from a data source, such as a database

or static file.

2. Preprocess data

Domain knowledge and insights from the Exploratory Data Analysis (EDA) phase

are used to propose data preprocessing techniques. Those usually act upon filtering

out outliers and correctly filling gaps in the data. Common preprocessing tech-

niques involve removing outliers by a defined threshold or distance from the mean.

Filling gaps in the data is usually done by filling with the last known value, linear

interpolation, or training an ML model that can estimate missing features.

3. Feature selection

28

Figure 2.7 – ML model training with Cross-Validation and hyperparameter tuning

Source: Author

Feature selection involves choosing a subset of pertinent features from a broader

dataset. It aims to decrease data collinearity and dimensionality, speed up model

training, and enhance the ML model’s performance (BACCIU, 2016). There are

roughly three ways of selecting features: wrapper, filter, and embedded (JIMÉNEZ

et al., 2020). The wrapper method trains multiple models with a subset of features

until an optimal subset is found. Filter methods involve using some metric to filter

out irrelevant features before model training. These metrics can involve statistical

tests like Pearson’s correlation, cross-correlation, Granger Causality, Chi-Square,

etc. Since filter methods do not require training multiple models, they are typically

the fastest to use. Examples of filtering in time series context (SUN et al., 2015;

CUKUR et al., 2015; WANG; LI; QIN, 2013; SAIKHU; ARIFIN; FATICHAH,

2019) proved the usefulness of a Granger causality and correlation-based feature

selectors. Finally, the embedded strategy performs a combination of both wrapper

and filter methods.

4. Cross-validation

Cross-validation (CV) is an evaluation technique where models are trained on dif-

ferent subsets of the dataset. It’s often used to evaluate if a technique (LR, XG-

Boost, NN, etc.) will generalize well to an independent dataset. A common CV

technique is called k-fold, where k equally sized sets (folds) are extracted from the

dataset. In each split, k − 1 of these folds are used to train a model, and the remain-

29

ing fold is used for validation. CV output is an average prediction error calculated

by taking the mean of the error of all splits. This average error allows us to assess

the robustness of a specific ML technique on varying sets of data instead of the

whole dataset.

K-fold CV works well for most regression and classification tasks but does not

preserve the sequence of samples since the training folds can come after the test

fold. Time series are a unique kind of data because they are often not independent

over time and may exhibit autocorrelation. Additionally, the distribution of a time

series may change over time, making it non-identically distributed (non-i.i.d). This

nonadhesion to independent and identically distributed (i.i.d) asks for a unique CV

technique, which preserves the sequential nature of the data. Day-chaining Nested

CV, based on the expanding origin strategy (TASHMAN, 2000), is a type of CV

that can adequately handle time series data. Figure 2.8 exemplifies a 3-split Day-

chaining Nested CV, where the dataset is divided multiple times, with each division

incorporating a progressively larger portion of the data. As previously noted, the

training fold precedes the validation and test fold. The prediction error of each

division is evaluated on the test set, while hyperparameters are selected based on

a previous step utilizing the validation set. Finally, the average prediction error is

calculated to assess the technique’s prediction error.

Figure 2.8 – Day-chaining Nested Cross-Validation Strategy

Source: Author

5. Split dataset

The dataset is split into training, validation, and test (or holdout) sets. Samples

from the training dataset are used in model training. The validation set evaluates

training performance on unseen data, and the test set provides the final metric of

model performance.

6. Train model

30

(a) Tune parameters with training set

Samples from the training dataset, that is, a set {(Xi, Yi)}Ni=1 with N amount

of members, where X are features and Y are response values, are effectively

used for tuning the model parameters. Samples are fed in batches to the model,

and a training loss is generated after each batch of samples is processed, and

Gradient Descent tunes the parameters.

(b) Validate model on the evaluation set

For every model epoch, when the model has seen all training data, the valida-

tion set loss is also calculated. Validation samples are not used during training,

so its loss measures the models’ performance on an unknown data set. Vali-

dation loss is used in tandem with training loss for checking model overfitting

and underfitting, as well as a good metric to determine when a model should

stop training (early stopping parameter).

(c) Evaluate model on the test set

Finally, when training is finalized, the model is evaluated on a holdout or test

set, giving us the final performance metric.

7. Tune hyperparameters

Hyperparameters are configurations set before model training, as opposed to model

parameters (or weights) tuned and decided after model training. Hyperparameters

describe learning rate, number of NN layers, number of units, depth of decision

trees, etc. They can be (I) arbitrarily chosen, (II) found through extensive grid-

search search, or (III) found through some heuristic procedure that best guides them

to an optimal configuration. When a search algorithm is used, model training is run

n times, with each n constituting a “trial” until an ideal set of hyperparameters is

found. The heuristic procedure is usually favored because it can reasonably con-

verge to the set of optimal hyperparameter candidates and abandon training when a

hyperparameter configuration does not show promising results. Common heuristic

methods for sampling favorable hyperparameter values utilize Bayesian optimiza-

tion. Tree-Structured Parzen Estimator (TPE) (WATANABE, 2023), for example,

at each trial, decides the values of the following parameters by maximizing the ratio

between two Gaussian Mixture Models (GMMs), l(x) and g(x). l(x) corresponds to

the parameter values linked with the best objective results, while the second GMM,

g(x), is associated with the remaining parameter values. In addition to a sampling

31

algorithm, heuristic procedures can “prune” unpromising trials. For example, we

can trim a trial if its best intermediate result falls below the median from prior trials

at the same step.

The following sections describe the ML methods used in this work. We decided to

include candidates from multiple groups: regression-based (LR), tree-based (XGBoost),

RNN-based (LSTM), and Transformer-based (TFT).

2.4.7.1 Linear Regression

Linear regression (LR), usually generalized to Multiple Linear Regression (MLR)

(NETER; WASSERMAN; KUTNER, 1983), is a statistical procedure for calculating the

value of a dependent variable from one or more independent variables. The coefficients

of a linear predictor function that describes the linear relationship between two or more

variables are estimated from data to minimize the error ε. An LR model with an arbitrary

number of k regressors has the notation:

Yi = β0 +
k

∑
j=1

βjXij + εi, (2.6)

where Yi is the i
th observation of the dependent variable, βj is the regression coefficient

for the j
th regressor, Xij is the i

th observation of the j
th regressor and εi is the i

th error

term. Fitting the coefficients β̂ of the LR model can be done through the Ordinary Least

Squares, Maximum-Likelihood estimation, Moore-Penrose pseudoinverse, and Gradient

Descent:

β̂ = (X ′
X)−1X ′

Y (2.7)

To use LR for time series forecasting, every past and future known predictor from

t− l to t+k, where l is the lookback window and k is the forecast size becomes an element

in the regressor matrix X .

2.4.7.2 XGBoost

XGBoost (CHEN; GUESTRIN, 2016) is a type of ensemble ML technique that

involves boosting decision trees based on parameter tuning and error reduction through

the Gradient Descent algorithm. The intuition behind ensemble learning is that combin-

ing multiple models can help reduce the individual models’ variance and bias, leading

32

to better overall performance. Ensemble learning can be used for both classification and

regression tasks. XGBoost works on an ensemble of decision trees, a tree-like structure

in which each internal node represents a decision based on a particular feature, and each

leaf node corresponds to the predicted outcome or classification. Decision trees are con-

structed by decision tree learning algorithms that identify the tree structure that can make

suitable decisions for a dataset using different criteria (for example, information gain). It

is one of the most widely used, practical, and fast methods for supervised learning.

XGBoost minimizes a regularized objective function (Equation 2.8) that combines

a convex loss function L measuring the dissimilarity between predicted and target outputs,

with a penalty term Ω addressing the complexity of the model, specifically the regression

tree functions.

L =

n

∑
i=1

L(yi, ŷi) +
K

∑
k=1

Ω(fk) (2.8)

The training process of XGBoost unfolds iteratively, introducing new trees that

predict the residuals or errors of previous trees, and optimize the objective function fur-

ther. Take x as the input features, α as the learning rate, g and h as the gradient and

hessians respectively of loss function L. For every m weak learner in M , we update the

model f̂ in the following way:

ϕ̂m = argmin
ϕ∈Φ

N

∑
i=1

1

2
ĥm (xi) [ϕ (xi) −

ĝm (xi)
ĥm (xi)

]
2

f̂m(x) = αϕ̂m(x)

f̂(m)(x) = f̂(m−1)(x) + f̂m(x)

(2.9)

Since XGBoost uses weak learners sequentially trained to correct prior models’

predictions, it reduces prediction bias.

2.4.7.3 Long Short-Term Network

Long Short-Term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997)

networks are a type of Recurrent Neural Network (RNN) architecture specifically tailored

to excel at learning long-term dependencies in sequential data. Unlike standard RNNs,

LSTM’s architecture is projected to solve the vanishing gradient problem of deep NNs.

This problem arises because gradients tend to become very small as they backpropagate

through the network during training, making it challenging to learn long-term dependen-

33

cies. LSTMs have successfully been used in machine translation, speech recognition, and

time series forecasting.

The main element within an LSTM cell is the cell state C, which propagates for-

wards for every cell. It is depicted as a horizontal line on the top of the diagram in Figure

2.9. The cell state determines the prediction (ht) of that cell after linear operations with

the outputs of the forget, input, control, and output gates. The predicted value is deter-

mined after the following operations in the LSTM cell:

1. The initial stage in an LSTM cell involves determining which information to discard

from the cell state. The “forget gate” ft (Equation 2.10) applies a sigmoid function

to the previous prediction ht−1, the current input xt, weights Wf and bias terms bf ,

outputs values between 0 or 1.

ft = σ (Wf ⋅ [ht−1, xt] + bf) (2.10)

2. The “input gate” it (Equation 2.11), also a sigmoid layer, identifies and outputs the

values to be updated.

it = σ (Wi ⋅ [ht−1, xt] + bi) (2.11)

3. The “control gate” gt (Equation 2.12) a hyperbolic tangent layer, formulates a vector

of candidate values to modify the cell state.

gt = tanh (WC ⋅ [ht−1, xt] + bC) (2.12)

4. The following step sets the new cell state Ct to a pointwise multiplication of ft and

the old cell state Ct−1 plus the pointwise multiplication of it and gt (Equation 2.13).

Ct = ft × Ct−1 + it × gt (2.13)

5. Finally, we set the predicted value ht (Equation 2.15) to a pointwise multiplication

of ot, the “output gate” (Equation 2.14), and Ct.

ot = σ (Wo [ht−1, xt] + bo) (2.14)

34

ht = ot × tanh (Ct) (2.15)

Figure 2.9 – Diagram for an LSTM cell

Source: Author

In this work, we use a fully recurrent LSTM architecture, where the target value ht

is set to the prediction of the previous cell. A prediction with a forecasting horizon of n is

formulated through n iterations of RNNModel predictions, necessitating the availability

of n future covariates.

35

Figure 2.10 – Temporal Fusion Transformer Architecture

Source: (LIM et al., 2019)

2.4.7.4 Temporal Fusion Transformers

Temporal Fusion Transformer (TFT) (LIM et al., 2019) is a recently proposed

attention-based deep NN for multi-horizon forecasting that claims to achieve high perfor-

mance and interpretability. TFT implements an encoder-encoder architecture with several

components designed to handle the heterogeneity and complexity of multi-horizon fore-

casting inputs, such as static covariates and known future inputs. TFTs use gating mech-

anisms to skip over parts of the network when deemed fit. It also uses variable selection

networks to select relevant input variables at each time step and suppress noisy features. A

sequence-to-sequence layer is employed to enhance the locality of temporal features, and

a self-attention layer captures long-term dependencies across different time steps. The

whole TFT architecture can be seen in Figure 2.10. Its most important components are:

1. Gated Residual Network (GRN)

An essential component of TFT is its gating mechanism, called the Gated Residual

Network, represented in Equation 2.16. The GRN’s main task is to suppress unnec-

essary components of the architecture. Take a as the primary input, c as the optional

36

context vector, ω as the index to denote weight sharing, W and b as the weights and

biases, σ as the sigmoid function, and ELU as the exponential linear unit. The GRN

takes the input and optional context vector and applies a nonlinear transformation

to them, followed by a Gated Linear Unit (GLU) based gating mechanism that con-

trols how much of the transformed input is added to the original input. The GLU

controls how much the nonlinear contributions are added to a, meaning it could

skip them altogether. A standard layer normalization operation then normalizes the

output of the GRN.

GRNω(a, c) = LayerNorm(a + GLUω(η1))

η1 = W1,ωη2 + b1,ω1

η2 = ELU(W2,ωa +W3,ωc + b2,ω)

(2.16)

2. Variable Selection Network

This component consists of the variable selection strategy for static, past, and fu-

ture inputs, using GRNs and softmax layers to generate variable selection weights.

These weights are then used to scale the input features before feeding them into

the temporal processing component. Equation 2.17 shows how the variable selec-

tion network works. vχt
, a vector of variable selection weights, ξ̃

(j)
t , the processed

feature vector for variable j are combined into ξ̃t, the weighted vector of features.

vχt
= Softmax (GRNvχ (Ξt, cs))

ξ̃
(j)
t = GRNξ̃(j) (ξ

(j)
t)

ξ̃t =

mχ

∑
j=1

v
(j)
χt
ξ̃
(j)
t

(2.17)

3. Temporal Fusion Decoder

The Temporal Fusion Decoder layer uses a series of components to learn the tem-

poral relationship of the data (Equation 2.18). First, an LSTM encoder-decoder

structure is used to extract local patterns. This step generates a set of temporal fu-

tures used in the next step of this layer. If static covariates are used, an additional

enrichment step is executed based on GRN. Next, the enriched features are fed

into an Interpretable Multi-Head Attention mechanism, a modified version of the

standard multi-head attention used in Transformer models for learning long-term

relationships. Multi-head attention employs different heads for different represen-

37

tations of subspaces. The creators of TFT made it so the same value vectors were

shared across all attention heads instead of using different values for each head.

They also made it so that the attention outputs from other heads were aggregated by

taking their average. These two changes make it easier to interpret the importance

of each input feature based on the attention weights.

InterpretableMultiHead (Q,K,V) = H̃WH

H̃ = Ã(Q,K)V W V

= {1/H
mH

∑
h=1

A (QW
(h)
Q ,KW

(h)
K)}V W V

= 1/H
mH

∑
h=1

Attention (QW
(h)
Q ,KW

(h)
K ,V W V)

(2.18)

4. Output

TFTs generate prediction intervals using quantile regression, which outputs multi-

ple percentiles at each horizon. It also enables three interpretability use cases: identifying

globally important variables, visualizing persistent temporal patterns, and detecting sig-

nificant events or regimes.

38

3 RELATED WORKS

In recent years, there has been a surge in the utilization of data-driven methods

for oil production forecasting, considering oil production system variables. This section

reviews papers that use past temporal data and state-of-the-art machine learning methods

to predict oil flow and better model transient phenomena. We include works that mea-

sure the effectiveness of tree-based regressors, classic Feed-Forward Neural Networks

(FFNN), RNNs, and Transformer-based methods. While classical time series forecast-

ing and curve-fitting methods have been used for extrapolating oil production, such as

Holt-winters, ARIMA, Decline Curve Analysis (DCA), and VAR, we only consider ML

methods for this work.

Yan et al. (2019) described a workflow and application for training an XGBoost

model that can predict the oil production of wells based on historical data and optimize

production values by recommending future steam allocation plans. The authors train one

global model to forecast the production of multiple wells. The paper demonstrates that

the XGboost model outperforms the naive baseline. The paper also demonstrates the

effectiveness of using steam allocation plan as a future covariate (3% improvement).

Aizenberg et al. (2016) present a method for long-term forecasting of oil produc-

tion using a multilayer Neural Network with Multi-Valued Neurons (MLMVN). MLMVN

is a complex-valued NN that can approximate nonlinear functions without using deriva-

tives. The authors apply MLMVN to a real-world data set of monthly oil production from

14 wells in the Gulf of Mexico and compare it with other methods such as ES, ARIMA,

Elman, and RNNs. The production data was used to predict itself without additional

covariates or future known values. The authors show that MLMVN can achieve better

accuracy and stability for univariate and multivariate, one-step and multi-step ahead pre-

diction. They also highlight the usefulness of predicting local variations instead of only a

smooth curve projection.

Werneck et al. (2022) compare off-the-shelf data-driven approaches to perform 30-

day production and pressure forecasting in wells in a carbonate reservoir. Experiments

were done using real and synthetic data from a reservoir model, with varying numbers

of pre-processing techniques and injection data. The authors could not determine the

usefulness of using injection data as input, which may happen due to geological reasons

like lack of connectivity between injector and producer well, operational reasons such as

sub-optimal injection strategy, or modeling flaws in the data or the model itself. Compared

39

to Convolutional Neural Networks (CNNs), classic Transformers, N-beats, and Prophet,

the best results were achieved using stacked RNN layers to consider long time-frames as

input, such as LSTM and GRU.

LSTM-based NNs are widely used in time series forecast tasks due to the capa-

bility of capturing dependencies in sequential data and minimizing the vanishing gradient

problem of traditional RNNs. By leveraging this capability, LSTMs can model intricate

temporal patterns, such as oil production’s inherently sequential nature.

Li et al. (2022b) proposed using LSTM and sliding window prediction to predict

well flow rate considering manual operations of choke valve and operational time. The

trained LSTM model showed better prediction accuracy when considering the manual

operation variables. Horizon and lookback size of 3 days for the model showed better

prediction accuracy. Using LSTM with a limited lookback length might be a limitation

of this approach compared to a model with an attention layer that can absorb long-term

behavior better.

Andrianov (2018) uses LSTM and sliding windows to estimate and forecast the

multiphase flow rates of oil, gas, and water in O&G production systems. The paper shows

that the LSTM model outperforms the FFNN, encoder-decoder-based LSTM, and numer-

ical model in terms of accuracy and forecasting capability in a synthetic case of flow

slugging and a variable rate well test. A sampling frequency of seconds and minutes was

adopted by the authors, with an input and output window size of ≈ 100-200 seconds, with-

out the use of future known variables. The authors highlight the importance of choosing

the correct number of pressure and temperature variables that serve as input. They also

point out that their LSTM architecture model is limited to output size = input size.

Razak et al. (2021) proposed an LSTM-based technique for long-term production

forecasting of monthly rates in unconventional reservoirs using transfer learning. Com-

pletion parameters, geological, fluid, control variables, and past production data were

used as input for models exposed to various flow regimes and shale plays. Although the

results using transfer learning were promising, this technique requires data from other

sources with similar operational conditions and geological and physical conditions of the

reservoirs.

Wang et al. (2021) present a method for point-predicting daily flow rate in oil-

fields using an LSTM with downhole temperature and pressure data. The developed

model has been validated with two production wells in the Volve Oilfield, North Sea.

Results demonstrate that the technique is applicable for flow rate prediction in oilfields.

40

LSTM performs better for flow rate prediction when compared to other six ML methods,

including Support Vector Machine (SVM), LR, tree-based methods, Gaussian Process Re-

gression (GPR), and Bi-LSTM. The performance of the LSTM network is improved by

incorporating a dropout layer. Achieving the best prediction results involves adjusting the

number of LSTM layers and hidden units, yet increasing these components also prolongs

training and prediction times. It’s worth noting that a higher number of LSTM layers

and hidden units may render the LSTM model unstable and hinder convergence. When

comparing prediction accuracies, utilizing both downhole pressure and temperature data

simultaneously as input parameters yields superior results compared to using only one at

a time.

Loh, Omrani and Linden (2018) propose a method to predict 10-min frequency gas

production from mature gas wells using a modified deep LSTM model and update flow

rate predictions using Ensemble Kalman Filter (EnKF). The authors tested their approach

on real data from two wells in the North Sea and compared it with a baseline approach

without EnKF. The results show that the EnKF updated model can improve the accuracy

and robustness of the predictions, especially for wells with complex end-of-life behavior

and salt precipitation issues. The paper also discusses the challenges and benefits of

applying deep learning and data assimilation methods to the O&G industry.

Omrani et al. (2019) compared first-principle physics-based approaches, DCA,

deep learning, and hybrid models for 15-minute and daily frequency oil production. The

results indicate that each production forecasting model’s effectiveness depends on the

complexity of the production behavior, the forecasting horizon, and the availability and

accuracy of the data used. The performance of both hybrid and physical models was

found to be dependent on the quality of the calibration (history matching) of the models

employed. The study also found that deep learning models were more accurate in cap-

turing the dynamic effects observed during production, especially for mature fields with

frequent shut-ins and interventions. Moreover, hybrid models could better predict long-

term production due to considering long-term reservoir depletion behavior given by the

first-principle physics model.

Sagheer and Kotb (2019) propose an LSTM network to model the monthly time

series data of petroleum production from two different oil fields. The method is compared

with other models such as Nonlinear Extension for Linear Arps (NEA), ARIMA, Higher

Order Neural Networks (HONN), and different RNN architectures. The results show

that the proposed model outperforms the others, and stacking more LSTM layers ensures

41

better accuracy when long interval time series are used. A limitation of this work is that

no other covariate was used except for the oil production itself.

Abdrakhmanov et al. (2021) proposed a novel approach to data-driven modeling

of daily transient production of oil wells in the Volve field using the standard transformer

encoder-decoder architecture. They demonstrate that transformers can capture transient

dependencies and outperform RNNs in forecasting the bottom hole pressure and flow rate

values. The authors found that training a “global model” (a model trained with data from

more than one well) significantly improves the quality of predictions. Transfer learning

was used to transfer the pre-trained weight of a well model to another. However, only

bottom hole pressure was analyzed in this case.

Al-Ali and Horne (2023b) used a TFT model on daily sensor data from a Norwe-

gian oil field called Volve. The model considers past data from various sensors and valves

as input features and predicts the probabilistic oil production rate. The model is evaluated

against a recurrent-based model named BlockRNN and proves superior in accuracy and

uncertainty estimation.

More broad comparisons between deep-learning techniques have been made in

the literature. Thavarajah et al. (2022) compared three deep-learning approaches: Mixed

Input Forecaster (MIF), DeepAR, and TFT. The objective was to forecast ten months of

multiphase rates of 166 wells in an unconventional reservoir. Lookback size between 1

and 15 months yielded better results than a naive baseline. The authors conclude that

these deep-learning frameworks can capture dependencies between different flow phases,

estimate confidence intervals, and extrapolate results for a new well with unique geology

spacing and completion characteristics. MIF model performs best according to MAE and

R2̂, especially on short histories; TFT has the best mean MASE and is better for longer

histories when compared to MIF; DeepAR has the most conservative confidence intervals.

While future-known operational variables are possible inputs to these models, the authors

only used static variables representing geology, spacing, and completion characteristics.

Alali and Horne (2023) compared N-BEATS to TFT, Block-RNN, and ARIMA

to predict about 500 days of production. While TFT can model nonstationary behavior

efficiently and output probabilistic forecasts, N-BEATS has beaten all the models when

predicting the daily production of 2 oil wells. A similar methodology was applied in

(AL-ALI; HORNE, 2023a), comparing LSTM and a BlockRNN pre-trained on the M4

time series competition multi-domain dataset. The N-BEATS model, which required no

extensive hyperparameter tuning, outperformed BlockRNN.

42

Table 3.1 summarizes all the studies discussed in this Section, including the method-

ology, model training parameters, and results. As can be seen, most papers that include

LSTMs, except for (AL-ALI; HORNE, 2023a), state that they beat methods such as

CNNs, RNNs, sequence-to-sequence models, DeepAR, N-BEATS, classic Transformer

architecture, Prophet, SVM, LR, GPR, Bi-LSTM, ARIMA and HONN. Al-Ali and Horne

(2023a) controversially showed that a pre-trained N-BEATS architecture could outper-

form an LSTM network in the task, although in a reasonably limited scenario (daily fre-

quency and model output size of 1). Thavarajah et al. (2022) show TFTs’ competitiveness

in forecasting monthly production compared to MIF and DeepAR, mainly when longer

lookbacks are used. Al-Ali and Horne (2023b) state the superiority of TFTs over LSTMs

in a daily scenario.

Notably, most works don’t consider a wide range of lookback sizes, nor do they

adequately describe the choices of window sizes or procedures used to choose them, ex-

cept for Thavarajah et al. (2022), Sagheer and Kotb (2019) and Wang et al. (2021), who

laid out cos between different lookback sizes. For horizon sizes, most papers fixed an ar-

bitrary value. Only Andrianov (2018) and Omrani et al. (2019) used sampling frequencies

lower than one day, 1s and 1min, and 15min, respectively. Moreover, only about half the

papers consider future covariates when training the forecasting models. Of those, only Li

et al. (2022b), Loh, Omrani and Linden (2018), Thavarajah et al. (2022) and Yan et al.

(2019) use plannable features such as choke opening or amount of steam injection. While

the papers mentioned earlier use 1-day, 10-min, and 1-min sampling frequencies, none

make any comparisons with models trained on all these sampling frequencies on the same

dataset.

In summary, there appears to be no research examining the impact of various ML

approaches, different window sizes, operational variables, and sampling frequencies for

the same set of data, which are the gaps in the literature we investigate with our model

selection methodology in Section 4.1.

43

Table 3.1 – Analysis of selected papers

Authors
Techniques Freq Lookback Output Strategy Horizon Past vars Future Vars

Abdrakhmanov
et al. (2021)

Transformer, RNN, LSTM, GRU 1d 14 1 1d daily measurements of oil, gas, and water flow rates, bot-
tom hole temperature, and choke size in percentage

Aizenberg et al.
(2016)

MLMVN, ES, ARIMA, Elman,
NARX

1m 60 & 120 1 S 60m GOR

Alali and Horne
(2023)

ARIMA, BlockRNN, TFT, N-
BEATS

1d 1-9 M/S 1-500 oil rate, bottom hole pressure, wellhead pressure, wellhead
temperature, water rate, choke size

wellhead pressure

Al-Ali and
Horne (2023a)

LSTM, Pre-trained N-BEATS,
BlockRNN

1d 1 M 1 Bottom hole pressure data used in LSTM; N-BEATS did
not require specific past variables

Al-Ali and
Horne (2023b)

TFT, BlockRNN 1d Oil rate, bottom hole pressure, wellhead pressure, well-
head temperature, water rate, choke size

wellhead pressure

Andrianov
(2018)

LSTM 1s/1min 187/122 187/122 M Temperature and pressure readings

Li et al. (2022b) LSTM 1d 1-7 S Choke size, daily opening time, and production data of
previous days

Choke size, production
time

Loh, Omrani
and Linden
(2018)

LSTM-EnKF 10min 36 1 S 1 Flow rate, tubing head pressures, temperature, choke
opening

Choke opening

Omrani et al.
(2019)

ANN, Hybrid ANN 15min/1d 1y-4y 1 6w - 10y Cumulative gas production, wellhead pressure, reservoir
pressure, choke opening

Razak et al.
(2021)

LSTM 1m 1/3 1/6 S/M 10m/5y completion parameters, formation and fluid properties, op-
erating controls, and early production response data

control trajectories

Sagheer and
Kotb (2019)

LSTM, DRNN, DGRU, ARIMA,
NEA, HONN

1m 1-6 1 S 75m production data

Thavarajah et
al. (2022)

MIF, DeepAR, TFT 1m 1-30 10 M Static features (geology, spacing, completion characteris-
tics), historical production

Wang et al.
(2021)

LSTM, ensemble method, SVM,
LR, tree-based and Gaussian Pro-
cess

1d 80-300 1 S 300-700d Past downhole temperature and pressure data

Werneck et al.
(2022)

GRU, CNN, RNN seq2seq,
DeepAR, N-BEATS, Transformer,
Prophet

1d 85 30 S 400d production data, injection data, and well pressure

Yan et al. (2019) XGBoost 1d 30 M temperature, pressure, steam volume, well status, oil vol-
ume

Steam allocation plans

S = Single-output, M = Multiple-output

44

4 AN APPROACH FOR BUILDING A PETROLEUM FORECASTING MODULE

FOR A DIGITAL TWIN

This section describes our two main contributions. The first (Section 4.1) refers to

an analysis of the impact on data-driven forecasting model performance of the different

parameters and configurations previously described as gaps in the literature and evaluated

with experiments done with data from stakeholder Petrobras. From this evaluation, we ac-

quired important insights about model behavior using future covariates, different window

sizes, and multiple sampling frequencies. This evaluation helped our second contribution,

a POC architecture that acts as a DT component for production forecasting. Through con-

versations with Petrobras, we decided to describe and implement a microservice-based

full-stack architecture (Section 4.2), which was also used to generate the results of our

first contribution.

4.1 Evaluating Machine Learning Approaches for Petroleum Production Forecast-

ing

Using the architecture described in Section 4.2, we apply the approach outlined in

Section 4.1.1 to evaluate and compare the prediction error of four different time series ML

techniques in various combinations of lookback sizes and horizons, as well as sampling

frequencies. We also measured the impact of using a future operational feature, in this

case, the choke valve actuation. Our experiments considered the following ML techniques

for oil production forecasting: a Naive Baseline method, LR, XGBoost, LSTM, and TFT.

Our naive baseline method involves repeating the last known production value k-times.

For training models, we use python library Darts base classes, which extend on scikit-

learn and pytorch’s regression models. We evaluated the techniques with models trained

on the dataset from one of the early exploration missions in the Libra block called SPA-1.

4.1.1 Methodology

In this work, we assume P ∈ Rl, S ∈ Rs×l, and C ∈ Rc×(l+k) as the sets of time

series observations for our problem, representing respectively production, sensor, and

control variables of a well or platform. Production variables relate to the flow rate of

45

produced fluids of a well. Sensor variables relate to physical attributes of certain parts of

the well or platform, such as the temperature or pressure at the wellhead annular or choke

valves. Control variables are the ones whose future values are known and can be directly

controlled. An important example of a control variable is the choke valve opening and

the amount of fluids injected into the reservoir for enhanced recovery. In this context, we

can define a forecast function f that takes in l past values of C, S, P and k future known

values of C and map them to a forecast P̂ of size k (Equation 4.1). The variables s and c

denote the amount of sensor and control variables.

f (P, S,C) = [P̂ (t + 1) ⋯ P̂ (t + 2) P̂ (t + k)] , where

P = [P (t − l) ⋯ P (t − 1) P (t)]

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1(t − l) ⋯ S1(t − 1) S1(t)
S2(t − l) ⋯ S2(t − 1) S2(t)

⋮ ⋯ ⋮ ⋮

Ss(t − l) ⋯ Ss(t − 1) Ss(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1(t − l) ⋯ C1(t) ⋯ C1(t + k)
C2(t − l) ⋯ C2(t) ⋯ C2(t + k)

⋮ ⋯ ⋮ ⋮ ⋯

Cc(t − l) ⋯ Cc(t) ⋯ Cc(t + k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

For training, evaluating, and testing the ML methods, we rely on P , S, and C

to construct samples that are fed into the models using the sliding window strategy. This

strategy involves creating input-output pairs by sliding a window of size l+k over the time

series with a specified step size to generate overlapping segments. Figure 4.1 illustrates

this procedure, with l = 6 and k = 2.

Figure 4.1 – Sample construction from sliding window strategy with lookback size of 6 and
output size of 2

46

Pseudocode 1 describes our strategy for evaluating the errors of each ML method

plus a baseline over a combination of parameters. We applied a day-chaining nested CV

function (cross_val), described in Section 4.1.1.4, for each combination of lookback (l),

horizon (k), sampling frequency (freq), and for each ML method. The function returns

the average Root-Mean Squared Error (RMSE) (avg_pred_error) of all splits, which is

used in the comparisons presented in Section 4.1.2. The sampling frequencies we use are

10 minutes (10-min), hourly (1h), and daily (1-day). Ideal sizes for l and k are challenging

to estimate; therefore, for this work, we tested a combination of 15 lookbacks and horizon

sizes, where the horizon size is never greater than the lookback size. In summary, l and

k are chosen from window_sizes, which is equal to [1, 6, 12, 24, 168] for 10-min and 1h

frequency, and [1, 7, 30, 60, 90] for 1-day frequency.

Algorithm 1 Model comparison methodology
Input: Multivariate time series dataset D with n timesteps
Require: M , a forecasting model

1: for method in [baseline, lr, xgb, lstm, tft] do
2: for freq in [1day, 1h, 10min] do
3: for l, k in window_sizes do
4: if l ≥k then
5: Split D into Kouter splits
6: for i = 1 to Kouter do
7: Split Di into D

outer_train
i , Douter_validation

i and D
outer_test
i following

day-chaining CV strategy
8: for j = 1 to Kinner do
9: Train Mmethod on D

outer_train
i with suggested hyperparameter

set p
10: Evaluate Mmethod on D

outer_test
i and get error Etest

j

11: Train Mmethod on D
outer_train
i with hyperparameter set p from T

with the smallest Etest
j

12: Evaluate Mmethod on D
outer_test
i and get Etest

i

13: avg_pred_error ← ∑k

i=1E
test
i × 1/Kouter

4.1.1.1 Dataset

We used data from the SPA-1, which started around January 2018 and ended in

September 2019 in sector 2 of the Mero field, Libra block. SPA-1 consisted of one pro-

ducing well and one active injector well at a given moment. The producer was produced

in two intervals, while the active injector was in three different intervals.

The dataset includes 114 time series features downloaded from the Plant Infor-

mation Management System (PIMS) relating to rates, pressures, temperatures, and valve

47

openings of multiple sections of the wells, platform, and coupled components. The time

series do not have a regular frequency, but on average, every variable is observed every

30 seconds by the sensors. Still, variations occur due to signal errors and how data is

compressed before being inserted into the PIMS. In summary, the features include:

1. Well features:

(a) Wellhead pressures and temperatures.

(b) Tubing pressures and temperatures.

(c) Annular pressures and temperatures.

(d) ICV openings and pressures.

2. Platform:

(a) Choke openings, pressures, and temperatures.

(b) Gas, oil, and water rates.

4.1.1.2 Feature Selection

We performed Exploratory Data Analysis on the 114 features to determine their

completeness and start/end time of observations. We consider the features measured be-

tween January 2018 and August 2019 in the feature selection step. Our feature selection

strategy involved analyzing the temporal cross-correlation between time series and their

ability to pass the Granger causality hypothesis test. We selected features that, at the same

time:

1. have correlation value ≥ 0.65 or ≤ -0.65 with the production rate as the response

variable.

2. pass the Granger causality hypothesis test with p-value = 0.05 in the direction of

causing the production rate time series.

The correlation threshold of 0.65 was chosen from empirical experimentation.

Values different from this would select variables that worsened model performance. We

apply this analysis to every sample frequency (1-day, 1h, and 10-min). The cross-correlation

plots of the selected features can be seen in Figures 4.2, 4.3 and 4.4, where the X-axis

shows the lag value of the descriptive time series concerning the target time series, and

the Y-axis shows the degree of linear correlation that both have. Table 4.1 describes the

48

list of selected features, while Appendix B gives statistical measurements about these fea-

tures sampled to minute frequency. The choke position is the control feature whose future

values are known and fed into the model.

Table 4.1 – Variables selected for training, for each sampling frequency

Description Unit 1-day 1h 10-min
Measurement Date Date x x x
Well Oil Rate m3/h x x x
Well Gas Rate m3/h x x x
Choke Position % x x x
Downstream Temperature of Choke °C x
Top Annular Pressure kgf/cm² x
Top Tubing Pressure kgf/cm² x
Upstream Production Temperature °C x x x

Figure 4.2 – Correlation between lagged features and the target feature (oil production) at 1-day
frequency

−150 −100 −50 0
−1

−0.5

0

0.5

1
variable

Downstream temperature of choke
Choke Position
Well Oil Rate
Well Gas Rate
Top Annular Pressure
Top Tubing Pressure
Upstream Production Temperature

lag

co
rr

el
at

io
n

Figure 4.3 – Correlation between lagged features and the target feature (oil production) at 1h
frequency

−150 −100 −50 0
−1

−0.5

0

0.5

1
variable

Choke Position
Well Oil Rate
Well Gas Rate
Upstream Production Temperature

lag

co
rr

el
at

io
n

49

Figure 4.4 – Correlation between lagged features and the target feature (oil production) at 10-min
frequency

−150 −100 −50 0
−1

−0.5

0

0.5

1
variable

Choke Position
Well Oil Rate
Well Gas Rate
Upstream Production Temperature

lag

co
rr

el
at

io
n

Table 4.7 shows the number of missing values present for each feature, while

Figures 4.6 and 4.5 show the distribution of all input features. The rectangular box in

Figure 4.6 represents the interquartile range (IQR), and the two extending lines define the

range that encompasses most of the data, except outliers.

Figure 4.5 – Distribution of all input features with MinMax normalization

50

Figure 4.6 – Box Plot diagram of features with MinMax normalization

Figure 4.7 – Missing values for all input features

4.1.1.3 Pre-processing

Outlier removal was performed by removing data points outside the mean of the

last 12 hours’ standard deviation for each feature. Data points are then resampled to fre-

quencies of 10 minutes, 1 hour, or 1 day using the mean. In accordance with the PI’s

system’s inherent data compression strategy of removing redundant data points (AVEVA

Group Limited and its subsidiaries, 2023), empty data points are filled using linear inter-

polation. The empty values for each feature can be seen in Figure 4.7. Features are then

normalized using Min-Max (Xnew =
X−Xmin

Xmax−Xmin
).

51

4.1.1.4 Model Training and Evaluation Strategy

The choice of the best forecasting technique (LR, XGBoost, LSTM, TFT, or base-

line) required a robustness analysis involving the use of a specific CV technique for time

series. We adopted a strategy, also used in a previous work (PIVETTA et al., 2023), to

evaluate time series models, called day-chaining Nested CV. The technique’s average pre-

diction error is estimated from each CV split. For these experiments, the number of splits

is equal to 3. We train the best candidate model for each split using the best hyperpa-

rameters from the hyperparameter tuning procedure. Early stopping stops the training of

models based on the evolution of validation loss. We chose the early stopping parameters:

minimum delta of 0.01 and patience of 3. We emphasize that all models used to adopt

a multi-output prediction strategy (described in Section 2.4.6), except for LSTM, which

performs iterative predictions until the horizon size is reached.

4.1.1.5 Hyperparameter Tuning

Heuristic methods1 were used to determine the best hyperparameters for each

method based on multiple refining trials. We used a Tree-Structured Parzen Estimator

(TPE) to sample ideal hyperparameter values in each trial. For pruning unpromising tri-

als, we used the Median strategy, where a trial is pruned if its current value is worse than

the intermediate results at the same step of previous trials. Table 4.2 shows each tech-

nique’s search ranges for each hyperparameter. The Linear Regression (RL) technique

has no hyperparameters and is, therefore, not in the following table.

1We used the Optuna library to perform the search for the best hyperparameters for each model. TPE-
Sampler class is used for sampling ideal hyperparameter values, and MedianPruner class for pruning un-
promising trials.

52

Table 4.2 – Value ranges for each hyperparameter of the techniques

Method Hyperparameter Space

XGB

learning_rate (0.01, 0.1)
max_depth (1,32)
min_child_weight (1,10)
gamma (0,5)
colsample_bytree (0.5, 1.0)
n_estimators 300
trials_hypertuning 60

LSTM
units (1, 16)
n_layers (1, 4)
learning_rate (0.1, 1)
trials_hypertuning 60

TFT

hidden_size (1, 32)
hidden_cont_size (1, 32)
attn_head_size (1, 4)
batch_size [16,32]
learning_rate (0.001, 0.01)
dropout [0.1, 0.5, 0.9]
optimizer adam
lstm_layers {1, 2}
trials_hypertuning 60

4.1.2 Results

Tables 4.3, 4.4, and 4.5 display the average RMSE over all CV splits, for the

different models (LR, XGBoost, LSTM, and TFT) and across various combinations of

lookback, horizon, and sampling frequency. Values highlighted in blue show the overall

best candidate for the given horizon. The last two rows show the average RMSE of each

technique and lastly the average RMSE of the best candidates of each technique (average

of the values in italics for each column). In the last column, we also present the average of

all techniques for a particular lookback and horizon combination (excluding the baseline).

53

Table 4.3 – RMSE errors for 1-day frequency
horizon looback BASELINE RL XGBOOST RNN TFT avg

1 20.11 14.11 10.94 22.51 42.07 22.41
7 20.11 19.96 12.82 41.35 45.58 29.93

30 20.11 64.33 15.21 47.10 61.74 47.10
60 20.11 56.18 10.47 40.07 42.25 37.24

1

90 20.11 55.50 7.63 47.45 28.54 34.78
7 45.60 25.65 19.27 41.97 44.56 32.86

30 45.60 76.24 17.40 75.27 83.62 63.13
60 45.60 70.19 16.69 59.85 53.15 49.97

7

90 45.60 52.67 13.49 29.71 25.08 30.24
30 90.61 74.01 19.46 58.81 42.51 48.70
60 90.61 102.90 25.19 61.56 38.10 56.9430
90 90.61 47.90 24.85 26.99 29.41 32.29
60 117.10 67.02 43.93 36.35 53.91 50.3060 90 117.10 42.94 60.04 51.10 52.21 51.57

90 90 142.56 54.67 30.60 24.35 54.35 40.99
avg 83.20 56.56 26.78 41.72 47.94

best avg 83.20 37.05 23.02 27.98 37.92

Table 4.4 – RMSE errors for 1h frequency
horizon looback BASELINE RL XGBOOST RNN TFT avg

1 5.93 9.08 6.56 10.42 18.63 11.17
6 5.93 7.68 8.12 8.30 23.59 11.92

12 5.93 7.91 9.28 9.38 26.04 13.15
24 5.93 8.21 10.18 12.68 21.96 13.26

1

168 5.93 11.84 22.16 11.85 21.58 16.86
6 12.15 12.47 12.75 14.23 34.40 18.46

12 12.15 12.65 12.69 49.10 26.71 25.29
24 12.15 12.99 13.68 55.08 27.56 27.33

6

168 12.15 18.37 16.68 14.40 30.97 20.11
12 17.27 16.19 14.88 15.86 22.09 17.26
24 17.27 16.43 25.95 18.63 25.74 21.6912

168 17.27 22.54 29.74 25.47 24.47 25.56
24 24.75 20.84 17.04 20.85 27.52 21.5624 168 24.75 28.16 24.70 24.40 33.26 27.63

168 168 61.46 46.83 55.10 38.03 40.73 45.17
avg 24.31 22.56 24.94 24.87 29.5

best avg 24.31 20.80 21.27 19.45 27.14

54

Table 4.5 – RMSE errors for 10-min frequency
horizon looback BASELINE RL XGBOOST RNN TFT avg

1 5.48 8.31 8.66 30.47 31.03 19.62
6 5.48 7.57 11.34 10.34 53.36 20.65

12 5.48 7.49 6.91 12.51 30.48 14.35
24 5.48 6.70 9.24 13.43 9.87 9.81

1

168 5.48 7.15 5.86 12.07 39.43 16.13
6 9.04 11.31 8.14 16.15 26.10 15.43

12 9.04 11.22 12.02 29.59 33.61 21.61
24 9.04 10.17 20.14 9.67 14.43 13.60

6

168 9.04 11.14 24.14 14.08 27.30 19.17
12 11.34 12.97 14.21 36.32 50.79 28.57
24 11.34 12.12 25.81 42.00 55.33 33.8212

168 11.34 13.24 10.38 16.07 15.44 13.78
24 14.46 14.56 12.06 21.64 22.74 17.7524 168 14.46 15.69 12.70 16.34 16.12 15.21

168 168 33.60 28.74 28.44 28.24 43.23 32.16
avg 14.78 15.01 16.43 22.37 32.27

best avg 14.78 14.46 12.98 16.13 19.82

Figures 4.8, 4.9, and 4.10 compare the total average error (best avg of previous

tables) for each technique over the different sampling frequencies.

Figure 4.8 – Average RMSE of each technique for 1-day frequency

(a) best avg (average of only the best candidates
of each horizon) (b) avg (average of all candidates)

Figure 4.9 – Average RMSE of each technique for 1h frequency

(a) best avg (average of only the best candidates
of each horizon) (b) avg (average of all candidates)

55

Figure 4.10 – Average RMSE of each technique for 10-min frequency

(a) best avg (average of only the best candidates
of each horizon) (b) avg (average of all candidates)

By evaluating the average RMSE between the splits and various combinations

of lookback and horizon values, we determined that the XGBoost ensemble tree model

has the best overall performance, coming on top on the 10-min and 1-day sampling fre-

quencies. Tree ensemble methods show very good performance with tabular data and, in

most cases, outperformed more complex methods. XGBoost showed an overall 32.34%

decrease in prediction error over the baseline approach, compared to the second-best

method, RNN, which showed a 25.74% decrease over the baseline. LR came third with a

24.02% reduction, followed by TFT’s 2.89%.

Notably, TFT and RNN failed to beat the baseline, and LR was just slightly be-

low the threshold in 10-min frequency. TFT was the only method that failed to beat the

baseline in 1h frequency. XGBoost and LR were the only methods to beat the baseline

in all sampling frequencies. In the 1-day frequency, every method beat the baseline by

long margins (≈ 62.14% error decrease). If we consider the performance of all methods

for the 10-min and 1h frequency, error reduction over the baseline was more modest, at

12.34%, 5.43%, and 8.30% for XGBoost, RNN, and LR, respectively. TFT, on the other

hand, showed a 22.87% increase of errors in these sampling frequencies.

Figures 4.11, 4.12, and 4.13 evaluate the average RMSE over all lookback sizes,

making it clear that lookback size affects model prediction errors.

For all cases, errors tend to increase as the horizon value increases. For the 10-

min frequency, errors tend to decrease when a longer lookback is used but sometimes can

reach a local minimum before the biggest lookback. This behavior happens (but to a lesser

extent) in the 1-day sampling frequency. For the 1h frequency, the smallest lookback size

is mostly optimal.

56

Figure 4.11 – 1d average RMSE error across all lookback sizes

Figure 4.12 – 1h average RMSE error across all lookback sizes

Figure 4.13 – 10-min average RMSE error across all lookback sizes

57

For comparing the impact of the future covariate, we repeated the same training

procedure but without considering the future choke position % variable. We re-trained the

models in only the worst overall lookback for each horizon. The results (Tables 4.6, 4.7

and 4.8) were compared to previously trained models in the same window setting.

Table 4.6 – RMSE errors for 1-day frequency without considering future choke opening %
horizon lookback LR XGBoost LSTM TFT avg choke avg % difference

1 30 176.2 40.18 31.69 65.32 78.35 47.10 -39.89%
7 30 433 83.94 74.52 116.1 176.89 63.13 -64.31%

30 60 260.6 85.07 90.49 128.7 141.22 56.94 -59.68%
60 90 309.1 91.95 126.8 120.4 162.06 51.57 -68.18%
90 90 239.4 90.03 87.39 117.9 133.68 40.99 -69.34%

-60.28%

Table 4.7 – RMSE errors for 1h frequency without considering future choke opening %
horizon lookback LR XGBoost LSTM TFT avg choke avg % difference

1 168 12.27 13.92 7.959 22.19 14.08 16.86 19.74%
6 24 16.76 33.69 14.87 41.42 26.69 27.33 2.40%

12 168 29.28 30.88 30.31 51.44 35.48 25.56 -27.96%
24 168 41.82 54.25 43.9 91.42 57.85 27.63 -52.24%

168 168 94.23 87.99 121 125.7 107.23 45.17 -57.88%
-23.19%

Table 4.8 – RMSE errors for 10-min frequency without considering future choke opening %
horizon lookback LR XGBoost LSTM TFT avg choke avg % difference

1 6 7.74 8.94 7.50 39.58 15.94 20.65 29.55%
6 12 11.6 22.04 40.52 30.12 26.07 21.61 -17.11%

12 24 16.49 16.78 14.43 77.74 31.36 33.82 7.84%
24 24 12.9 19.42 28.5 56.73 29.39 17.75 -39.61%

168 168 42.79 44.83 73.04 86.13 61.70 32.16 -47.89%
-13.44%

As for consideration of the future variable, there was an overall 32.30% decrease

in error when models were trained with the future covariate, as opposed to without it.

Even in cases where RMSE didn’t improve with the inclusion of the future variable, the

difference was insignificant.

4.1.3 Discussion

Through the comparison of error metrics, it was determined that XGBoost, a tree-

ensemble ML method, exhibited the most favorable overall performance, even in the

absence of dedicated mechanisms for handling time series sequences, such as attention

layers and gating found in TFT and LSTM. We hypothesize that the challenges faced

58

by deep learning models may be attributed to the limited size and variability of the ob-

served data, comprising only two years’ worth of observations from a specific geological

and production environment involving a producer and two injector wells. LR performed

pretty well for its simplicity, even beating the baseline in all sampling frequencies. This

evidences the importance of considering simpler time series forecasting techniques before

parameter-heavy ones.

Additionally, our findings indicate that the effectiveness of prediction models re-

lies on the careful selection of lookback and horizon size. The accurate prediction of oil

production necessitates the use of historical data to anticipate future production, consid-

ering that reservoir and well pressure transients unfold gradually over time. The lookback

window influences the historical information available to the model. Large lookback win-

dows result in more adjustable parameters and higher training costs, while models with

limited past information tend to perform poorly but are computationally cheap. Our pro-

posed model evaluation strategy, employing appropriate nested CV for time series, has

proven to be a concise technique for selecting horizon size and lookback. Results indicate

that the sampling frequency affects the choice of horizon size, with 1h frequency models

not improving with increased lookback, while 10-min and 1-day ones do. This could be

due to the past 1h frequency data points not having the right granularity to provide the

models with new information about oil flow dynamics. Another complementary expla-

nation is that the naive prediction of the baseline makes it very close to the true value

because in this sampling frequency the values don’t change as much. Nonetheless, we

acknowledge that the analysis of the lookback impact for the biggest horizon sizes (90 for

1-day frequency and 168 for 1h and 10-min) is hindered by the fact that we adopted the

rule that horizon size is never greater than the lookback size.

We also stress the significance of integrating planned future operational data to im-

prove production forecasting. The results highlight an important influence of operational

variables in accounting for transient phenomena within the well and reservoir.

The feature selection step for time series forecasting presents unique challenges

due to the temporal nature of the data. Unlike traditional feature selection problems,

where static features can be assessed independently, time series data introduces depen-

dencies across observations. While cross-correlation is a valid metric to determine the

target response to a system variable, it might not be the best for this scenario. Using fea-

ture importance or other wrapper methods for selecting features proved unpractical due

to the sheer number of variables present at the start.

59

4.2 A digital twin module for production forecasting

This microservice-based architecture marks our proposal for a component that

can be integrated into a DT service system layer, previously described in Section 2.1.

From meetings with the stakeholders, we devised a list of functional and non-functional

requirements specialists saw as important to add to our solution. These are:

1. To enable training of different types of time series forecasting models and enable

the deployment of the best ones.

2. To create production forecasts, what-if scenarios, and backcasting based on histor-

ical data and future planned data from O&G production.

3. To take into account various time horizons (future periods) for forecasting and hy-

pothetical scenarios development.

4. To consider different sampling frequencies (days, hours, minutes, etc.) for produc-

tion forecasting.

5. To enable both forecasting and hypothetical scenarios creation efficiently (utilizing

fewer computational resources) and swiftly (providing near real-time responses).

It is noteworthy that efficiency and response time, in this context, are evaluated in

relation to other existing solutions at Libra, such as numerical simulation. While the

latter offers satisfactory precision in predictions, it demands a considerable amount

of computational resources and significant time to deliver responses.

6. To handle constant data flow, given that the DT’s state is continuously updated

based on sensor data monitoring various properties in the production plant.

We proposed and implemented the microservice architecture shown in Figure 4.14

to fulfill these requirements. It illustrates (1) the parts of the DT component and (2)

the use cases the two actors can partake in. Essentially, the DT component is made up

of self-contained units called microservices. The data source feeds the data needed for

model training and inference. Another microservice deals with experiment tracking, the

persistence of artifacts (generated models and other objects), and metrics (training errors,

training parameters, hyperparameters, etc.). Finally, a user interface is also provided,

which takes the required parameters for inference and can draw the forecasts for the end-

user. The full implementation 2 for the DT component is shown in Appendix C. We
2https://github.com/BDI-UFRGS/MLFlow-TimeSeries-Oil-Stack

60

present two actors for the use cases. Actor 1 is in charge of training models and deciding

which ones to use for inference later, while Actor 2 executes the saved models to generate

forecasts.

The possible use cases for Actor 1 within this architecture are:

1. Train model

A model is trained after Actor 1 chooses all possible training parameters: type of

ML model, number of cross-validation splits, sampling frequency, size of lookback

and horizon, hyperparameter intervals, selected features, preprocessing strategy,

and feature scaling strategy. The model is then saved in the experiments and model

tracking service for later use.

2. Register model

Actor 1 can visualize metrics relating to training and decide what models will be

chosen (or registered) for inference.

The possible use case for Actor 2 within this architecture is:

1. Perform backcast/forecast

A dedicated user interface is provided to them, which allows the input of mandatory

parameters: the date from which the forecast will start, the size of the horizon, and

sampling frequency. The optional parameter is the operational variable. The actor

will either use the existing historical values for the time they selected or input the

future plans. In the case of forecasts, where the origin date is in the future, the input

of future operational features is mandatory.

Appendix D shows the practical execution of these use cases.

61

Figure 4.14 – Schematic representation of use cases and abstract architecture components

62

5 CONCLUSION

Establishing a standard pipeline for training purely data-driven petroleum forecast

models is difficult due to numerous physical, geophysical, and operational factors. These

factors include complex dynamics within the reservoir rock, different types of reservoirs,

equipment malfunction, and the need for domain knowledge. Creating standards for train-

ing data-driven models in this task has, therefore, proven to be a challenging deal. In this

work, we employ a set of novel methodological steps to compare data-driven models

to forecast production, considering future covariates, multiple combinations of window

sample sizes, and various data sampling frequencies.

We compared error metrics and determined that XGBoost, a tree-ensemble ML

method, had the best overall performance, even without dedicated mechanisms to handle

time series sequences, such as attention layers and gating present in TFT and LSTM. We

believe these deep learning models may have struggled due to the limited size and vari-

ability of the observed data, which included only two years’ observations from a producer

and an injector well in a specific geological and production environment.

Our results also suggest that model performance depends on the appropriate se-

lection of lookback and horizon size. Accurate prediction of oil production relies on

historical data to anticipate future production, as reservoir and well pressure transients

occur over time and not instantaneously. The lookback window influences the amount

of historical information the model has from the past; larger windows allow models to

understand long-term behaviors better, while smaller windows make recent past changes

have a more significant influence on the final prediction. Therefore, it is crucial to design

models that receive just enough information about the past. Models with a very large

lookback window have more adjustable parameters and are more expensive to train. On

the other hand, models less informed about the past typically perform poorly. Our pro-

posed model evaluation strategy using appropriate CV for time series has proven to be

a concise technique for selecting horizon size and lookback in this domain, and results

show that increased lookback size can improve model accuracy.

We emphasize the importance of incorporating planned future operational data to

enhance production forecasting. Our findings demonstrate that this approach is crucial

for modeling the change in production rate caused by the opening and closing of flow

restriction valves. Our study shows that operational variables play a significant role and

are an important way to account for transient phenomena within the well and reservoir.

63

5.1 Limitations

Developing forecasting models for predicting petroleum production using ML

methods represents a complex problem encompassing the multiple systems involved in

oil flow. We identified some obstacles and limitations to our work, which include:

1. Data size, variability, and bias. ML techniques, especially those that rely on many

neural layers (deep NNs), must have enough input data to work as a robust predictor

that can address variations in production behavior in multiple physical settings. The

data used for training in this work is considerably small and biased as it relates to

a production system with only one production and one injector well. Moreover, it

only comprises about two years of production data in a novel reservoir submitted to

EWT.

2. Not using data generated by numerical simulators. While there are reasons to ex-

plore exclusive ML-based approaches, we acknowledge the importance of augment-

ing the training dataset with synthetic data. The lack of data augmentation is due to

a lack of system knowledge and data to build said simulators.

3. The decision not to predict gas or water and oil separately. Likewise, the decision

not to train a model that can provide an output for each fluid production. Water

production was only measured daily.

4. Not considering integrating numerical models or a hybrid approach involving nu-

merical models and ML. While numerical models offer detailed physics-based sim-

ulations, combining them with ML techniques can enhance predictive capabilities,

leveraging the strengths of both approaches for a more comprehensive understand-

ing of petroleum reservoir behavior. Works in literature have shown the usefulness

of hybrid models when modeling long-term production behavior. Due to data re-

straints and the scope of this work, we decide not to develop a hybrid approach.

5.2 Future work

1. Evaluate the accuracy of a single “global model” that’s trained with data from all

wells.

64

2. Consider training a weak model in one or multiple wells from one reservoir and

transfer learning its parameters to another model to be further trained by data from

wells in another reservoir. Similarly, do the same procedure but for wells in the

same reservoir.

3. Forecasting models could extend to predicting well behavior under specific recov-

ery technologies, such as cyclic steam injection. This application is particularly

relevant in the oil industry, where recovery techniques are prominent. ML algo-

rithms can analyze the response of wells to different recovery technologies, offer-

ing valuable insights for optimizing production processes. We could consider steam

allocation plans and other advanced recovery values in future works.

4. Consider lookback window size not as predefined values but as a hyperparameter

that’s chosen from a range of values via Bayesian hyperparameter tuning.

5. Include geographical location as a static feature, thus creating a spatiotemporal

aware model, a concept present in other papers in the literature.

6. Include reservoir static features to consider the subsurface geological aspects the

well is in when constructing the model.

7. Use a reservoir model, configure multiple scenarios of well placement and geo-

physical attributes of the subsurface, and generate data that serves as input to a

data-driven model.

8. Consider modifying the objective function to penalize model prediction overesti-

mation.

65

REFERENCES

ABDRAKHMANOV, I. R. et al. Development of Deep Transformer-Based Models for
Long-Term Prediction of Transient Production of Oil Wells. Society of Petroleum Engi-
neers (SPE), 10 2021.

AIZENBERG, I. et al. Multilayer Neural Network with Multi-Valued Neurons in time
series forecasting of oil production. Neurocomputing, v. 175, p. 980–989, 1 2016. ISSN
09252312.

AL-ALI, Z. A. A. H.; HORNE, R. Meta Learning Using Deep N-BEATS Model for
Production Forecasting with Limited History. Society of Petroleum Engineers - Gas and
Oil Technology Showcase and Conference, GOTS 2023, OnePetro, 3 2023. Available
from Internet: <https://dx.doi.org/10.2118/214214-MS>.

AL-ALI, Z. A.-A. H.; HORNE, R. Probabilistic Well Production Forecasting in
Volve Field Using Temporal Fusion Transformer Deep Learning Models. OnePetro, 3
2023. Available from Internet: </SPEGOTS/proceedings-abstract/23GOTS/3-23GOTS/
517872>.

AL-JASMI, A. et al. Short-Term Production Prediction in Real Time Using Intelligent
Techniques. In: All Days. [S.l.]: SPE, 2013.

ALALI, Z. H.; HORNE, R. N. A Comparative Study of Deep Learning Models and Tradi-
tional Methods in Forecasting Oil Production in the Volve Field. In: Day 3 Wed, October
18, 2023. [S.l.]: SPE, 2023.

American Petroleum Institute. Glossary of Oilfield Production Terminology (GOT). 1.
ed. [S.l.]: American Petroleum Institute (API), 1988.

ANDRIANOV, N. A Machine Learning Approach for Virtual Flow Metering and Fore-
casting. IFAC-PapersOnLine, Elsevier, v. 51, n. 8, p. 191–196, 1 2018. ISSN 2405-8963.

ANJOS, S. M. et al. Libra: Applied technologies adding value to a giant ultra deep water
pre-salt field - Santos Basin, Brazil. In: Offshore Technology Conference Brasil 2019,
OTCB 2019. [S.l.]: Offshore Technology Conference, 2020. ISBN 9781613996713.

ARPS, J. Analysis of Decline Curves. Transactions of the AIME, v. 160, n. 01, 12 1945.
ISSN 0081-1696.

AVEVA Group Limited and its subsidiaries. Compression testing. 2023. Available from
Internet: <https://docs.aveva.com/bundle/pi-server-da-admin/page/1021696.html>.

BACCIU, D. Unsupervised feature selection for sensor time-series in pervasive comput-
ing applications. Neural Computing and Applications, v. 27, n. 5, p. 1077–1091, 7
2016. ISSN 0941-0643.

BALAJI, K. et al. Status of Data-Driven Methods and their Applications in Oil and Gas
Industry. In: Day 3 Wed, June 13, 2018. [S.l.]: SPE, 2018.

BARRICELLI, B. R.; FOGLI, D. Digital Twins in Human-Computer Interaction: A Sys-
tematic Review. International Journal of Human–Computer Interaction, p. 1–19, 9
2022. ISSN 1044-7318.

https://dx.doi.org/10.2118/214214-MS
/SPEGOTS/proceedings-abstract/23GOTS/3-23GOTS/517872
/SPEGOTS/proceedings-abstract/23GOTS/3-23GOTS/517872
https://docs.aveva.com/bundle/pi-server-da-admin/page/1021696.html

66

BEAR, J. Dynamics of fluids in porous media. [S.l.]: Courier Corporation, 1988.

BIKMUKHAMETOV, T.; JÄSCHKE, J. First Principles and Machine Learning Virtual
Flow Metering: A Literature Review. Journal of Petroleum Science and Engineering,
Elsevier, v. 184, p. 106487, 1 2020. ISSN 0920-4105.

BONTEMPI, G. Long Term Time Series Prediction with Multi-Input Multi-Output Local
Learning. In: . [s.n.], 2008. Available from Internet: <https://api.semanticscholar.org/
CorpusID:137250>.

BOX, G. E. P. et al. Time series analysis: forecasting and control. [S.l.]: John Wiley &
Sons, 2015.

BROCKWELL, P. J.; DAVIS, R. A. Introduction to time series and forecasting. [S.l.]:
Springer, 2002.

CHEN, T.; GUESTRIN, C. XGBoost: A Scalable Tree Boosting System. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. New York, NY, USA: ACM, 2016. p. 785–794. ISBN 9781450342322.

CLARK, N. Elements of petroleum reservoirs. Dallas: Society of Petroleum Engineers
of AIME, 1969. 66–84 p. ISBN 978-0895202093.

COCCOLI, F. C. et al. Intelligent completion in extended well test. In: Proceedings of
the Annual Offshore Technology Conference. [S.l.]: Offshore Technology Conference,
2019. v. 2019-May. ISBN 9781613996416. ISSN 01603663.

COSTA, F. F. et al. EWT program - Enabling optimization and speed up for Libra block
production systems development in ultra-deepwater. In: Proceedings of the Annual Off-
shore Technology Conference. [S.l.]: Offshore Technology Conference, 2019. v. 2019-
May. ISBN 9781613996416. ISSN 01603663.

CUKUR, H. et al. Cross correlation based clustering for feature selection in hyperspectral
imagery. In: 2015 9th International Conference on Electrical and Electronics Engi-
neering (ELECO). [S.l.]: IEEE, 2015. p. 232–236. ISBN 978-6-0501-0737-1.

DARCY, H. Les fontaines publiques de la ville de Dijon: exposition et application...
[S.l.]: Victor Dalmont, 1856.

FULLER, A. et al. Digital Twin: Enabling Technologies, Challenges and Open Research.
IEEE Access, Institute of Electrical and Electronics Engineers Inc., v. 8, p. 108952–
108971, 2020. ISSN 21693536. Available from Internet: <https://ieeexplore.ieee.org/
document/9103025/>.

GAO, C.; RAJESWARAN, T.; NAKAGAWA, E. A Literature Review on Smart-Well
Technology. In: All Days. [S.l.]: SPE, 2007.

GEP. The Increasing Popularity of Digital Twins in Oil and
Gas. 2020. Available from Internet: <https://www.gep.com/blog/mind/
the-increasing-popularity-of-digital-twins-in-oil-and-gas>.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press,
2016.

https://api.semanticscholar.org/CorpusID:137250
https://api.semanticscholar.org/CorpusID:137250
https://ieeexplore.ieee.org/document/9103025/
https://ieeexplore.ieee.org/document/9103025/
https://www.gep.com/blog/mind/the-increasing-popularity-of-digital-twins-in-oil-and-gas
https://www.gep.com/blog/mind/the-increasing-popularity-of-digital-twins-in-oil-and-gas

67

GOVINDARAJAN, S. K. An overview on extension and limitations of macroscopic
Darcy’s law for a single and multi-phase fluid flow through a porous medium. Inter-
national Journal of Mining Science (IJMS) Volume, v. 5, p. 1–21, 2019.

GRANGER, C. W. J. Investigating Causal Relations by Econometric Models and Cross-
spectral Methods. Econometrica, v. 37, n. 3, p. 424, 8 1969. ISSN 00129682.

GRIEVES, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replica-
tion. 4 2015.

HOCHREITER, S.; SCHMIDHUBER, J. Long Short-Term Memory. Neural Computa-
tion, v. 9, n. 8, p. 1735–1780, 11 1997. ISSN 0899-7667.

Holmes E. E.; Scheuerell M. D.; Ward E. J. Applied Time Series Analysis for Fisheries
and Environmental Sciences. 2021. Available from Internet: <https://atsa-es.github.io/
atsa-labs/>.

Honeywell. Essential Digital Twins in Upstream Oil & Gas Production Opera-
tions. 2020. Available from Internet: <https://process.honeywell.com/content/
dam/process/en/documents/document-lists/doc-list-onshore-production/WhitePaper_
EssentialDigitalTwinsForUpstreamOilAndGas_APC.pdf>.

HUBBERT, M. K. The theory of ground-water motion. The Journal of Geology, Univer-
sity of Chicago Press, v. 48, n. 8, Part 1, p. 785–944, 1940.

HUBBERT, M. K. Darcy’s law and the field equations of the flow of underground fluids.
Transactions of the AIME, OnePetro, v. 207, n. 01, p. 222–239, 1956.

JADON, A.; PATIL, A.; JADON, S. A Comprehensive Survey of Regression Based Loss
Functions for Time Series Forecasting. arXiv preprint arXiv:2211.02989, 2022.

JIMÉNEZ, F. et al. Feature selection based multivariate time series forecasting: An appli-
cation to antibiotic resistance outbreaks prediction. Artificial Intelligence in Medicine,
v. 104, p. 101818, 4 2020. ISSN 09333657.

LAKE, L. Enhanced oil recovery. Englewood Cliffs, N.J: Prentice Hall, 1989. ISBN
978-0132816014.

LEE, T.-H. Loss functions in time series forecasting. International encyclopedia of the
social sciences, Macmillan Thomson Gale Publishers Detroit, p. 495–502, 2008.

LI, X. et al. Time-series production forecasting method based on the integration of Bidi-
rectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA).
Journal of Petroleum Science and Engineering, v. 208, 1 2022. ISSN 09204105.

LI, X. et al. A well rate prediction method based on LSTM algorithm considering manual
operations. Journal of Petroleum Science and Engineering, Elsevier, v. 210, p. 110047,
3 2022. ISSN 0920-4105.

LIM, B. et al. Temporal Fusion Transformers for Interpretable Multi-horizon Time Se-
ries Forecasting. International Journal of Forecasting, Elsevier B.V., v. 37, n. 4, p.
1748–1764, 12 2019. ISSN 01692070. Available from Internet: <https://arxiv.org/abs/
1912.09363v3>.

https://atsa-es.github.io/atsa-labs/
https://atsa-es.github.io/atsa-labs/
https://process.honeywell.com/content/dam/process/en/documents/document-lists/doc-list-onshore-production/WhitePaper_EssentialDigitalTwinsForUpstreamOilAndGas_APC.pdf
https://process.honeywell.com/content/dam/process/en/documents/document-lists/doc-list-onshore-production/WhitePaper_EssentialDigitalTwinsForUpstreamOilAndGas_APC.pdf
https://process.honeywell.com/content/dam/process/en/documents/document-lists/doc-list-onshore-production/WhitePaper_EssentialDigitalTwinsForUpstreamOilAndGas_APC.pdf
https://arxiv.org/abs/1912.09363v3
https://arxiv.org/abs/1912.09363v3

68

LIU, Y. et al. Non-stationary Transformers: Exploring the Stationarity in Time Se-
ries Forecasting. 2023.

LOH, K. K. L.; OMRANI, P. S.; LINDEN, R. V. D. Deep Learning and Data Assimilation
for Real-Time Production Prediction in Natural Gas Wells. ArXiv, abs/1802.05141, 2018.

MARCELLINO, M.; STOCK, J. H.; WATSON, M. W. A comparison of direct and it-
erated multistep AR methods for forecasting macroeconomic time series. Journal of
Econometrics, v. 135, n. 1-2, p. 499–526, 11 2006. ISSN 03044076.

MATTAX, C. C.; DALTON, R. L. Reservoir Simulation. Journal of Petroleum Technol-
ogy, v. 42, n. 06, 6 1990. ISSN 0149-2136.

MLflow Project. Multistep Workflow Example. 2023. Available from Internet: <https:
//github.com/mlflow/mlflow/tree/7b80e443774ba80246cb8c45774992b0b62b241b/
examples/multistep_workflow#multistep-workflow-example>.

MOCZYDLOWER, B.; FIGUEIREDO, F. P.; PIZARRO, J. O. S. A. Libra extended well
test - An innovative approach to de-risk a complex field development. In: Proceedings of
the Annual Offshore Technology Conference. [S.l.]: Offshore Technology Conference,
2019. v. 2019-May. ISBN 9781613996416. ISSN 01603663.

MUSKAT, M. The flow of homogeneous fluids through porous media. International se-
ries in physics, York The Mapple Press Company, 1946.

NETER, J.; WASSERMAN, W.; KUTNER, M. H. Applied linear regression models.
[S.l.]: Richard D. Irwin, 1983.

NGUYEN, T.; GOSINE, R. G.; WARRIAN, P. A Systematic Review of Big Data An-
alytics for Oil and Gas Industry 4.0. IEEE Access, v. 8, p. 61183–61201, 2020. ISSN
2169-3536.

NING, Y.; KAZEMI, H.; TAHMASEBI, P. A comparative machine learning study for
time series oil production forecasting: ARIMA, LSTM, and Prophet. Computers & Geo-
sciences, Pergamon, v. 164, p. 105126, 7 2022. ISSN 0098-3004.

NNANNA, E. J.; AJIENKA, J. A. Critical Success Factors for Well Stimulation. In: All
Days. [S.l.]: SPE, 2005.

OMRANI, S. P. et al. Deep Learning and Hybrid Approaches Applied to Production Fore-
casting. In: Abu Dhabi International Petroleum Exhibition & Conference. [S.l.: s.n.],
2019.

PAL, M. On application of machine learning method for history matching and forecasting
of times series data from hydrocarbon recovery process using water flooding. Petroleum
Science and Technology, 7 2021. ISSN 1091-6466.

PELEKIS, S. et al. DeepTSF: Codeless machine learning operations for time series fore-
casting. 7 2023. Available from Internet: <https://arxiv.org/abs/2308.00709v1>.

PIVETTA, M. V. L. et al. A Systematic Evaluation of Machine Learning Approaches for
Petroleum Production Forecasting. In: 2023 IEEE 35th International Conference on
Tools with Artificial Intelligence (ICTAI). [S.l.]: IEEE, 2023. ISBN 979-8-3503-9744-
4.

https://github.com/mlflow/mlflow/tree/7b80e443774ba80246cb8c45774992b0b62b241b/examples/multistep_workflow#multistep-workflow-example
https://github.com/mlflow/mlflow/tree/7b80e443774ba80246cb8c45774992b0b62b241b/examples/multistep_workflow#multistep-workflow-example
https://github.com/mlflow/mlflow/tree/7b80e443774ba80246cb8c45774992b0b62b241b/examples/multistep_workflow#multistep-workflow-example
https://arxiv.org/abs/2308.00709v1

69

RASHEED, A.; SAN, O.; KVAMSDAL, T. Digital twin: Values, challenges and enablers
from a modeling perspective. IEEE Access, Institute of Electrical and Electronics Engi-
neers Inc., v. 8, p. 21980–22012, 2020. ISSN 21693536.

RAZAK, S. M. et al. Transfer Learning with Recurrent Neural Networks for Long-term
Production Forecasting in Unconventional Reservoirs. In: Proceedings of the 9th Un-
conventional Resources Technology Conference. Tulsa, OK, USA: American Associa-
tion of Petroleum Geologists, 2021. ISBN 978-0-9912144-9-5.

ROVINA, P. S. et al. Extend well test EWT libra project overview and technological
highlights. In: Proceedings of the Annual Offshore Technology Conference. [S.l.]:
Offshore Technology Conference, 2019. v. 2019-May. ISBN 9781613996416. ISSN
01603663.

RWECHUNGURA, R.; DADASHPOUR, M.; KLEPPE, J. Advanced history matching
techniques reviewed. SPE Middle East Oil and Gas Show and Conference, MEOS,
Proceedings, Society of Petroleum Engineers (SPE), v. 3, p. 1729–1747, 2011.

SAGHEER, A.; KOTB, M. Time series forecasting of petroleum production using deep
LSTM recurrent networks. Neurocomputing, v. 323, 1 2019. ISSN 09252312.

SAIKHU, A.; ARIFIN, A.; FATICHAH, C. Correlation and Symmetrical Uncertainty-
Based Feature Selection for Multivariate Time Series Classification. International Jour-
nal of Intelligent Engineering and Systems, v. 12, n. 3, p. 129–137, 6 2019. ISSN
21853118.

SEMERARO, C. et al. Digital twin paradigm: A systematic literature review. Computers
in Industry, v. 130, p. 103469, 9 2021. ISSN 01663615.

SILVA, F. P. et al. Libra digital: An integrated view. In: Offshore Technology Confer-
ence Brasil 2019, OTCB 2019. [S.l.]: Offshore Technology Conference, 2020. ISBN
9781613996713.

SILVA, L. M. D.; AVANSI, G. D.; SCHIOZER, D. J. Development of proxy models
for petroleum reservoir simulation: a systematic literature review and state-of-the-art.
International Journal of Advanced Engineering Research and Science, v. 7, n. 10,
2020. ISSN 23496495.

SIRCAR, A. et al. Digital twin in hydrocarbon industry. Petroleum Research, v. 8, n. 2,
p. 270–278, 6 2023. ISSN 20962495.

STEFANI, J. D. Towards multivariate multi-step-ahead time series forecasting : A
machine learning perspective. Thesis (PhD), 2 2022.

SUN, Y. et al. Using causal discovery for feature selection in multivariate numerical time
series. Machine Learning, v. 101, n. 1-3, p. 377–395, 10 2015. ISSN 0885-6125.

TAO, F.; ZHANG, M. Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards
Smart Manufacturing. IEEE Access, v. 5, p. 20418–20427, 2017. ISSN 2169-3536.

TARIQ, Z. et al. A systematic review of data science and machine learning applications
to the oil and gas industry. Journal of Petroleum Exploration and Production Tech-
nology, v. 11, n. 12, p. 4339–4374, 12 2021. ISSN 2190-0558.

70

TASHMAN, L. J. Out-of-sample tests of forecasting accuracy: an analysis and review.
International Journal of Forecasting, v. 16, n. 4, p. 437–450, 10 2000. ISSN 01692070.

THAVARAJAH, R. et al. A Deep Learning Framework for Multi-Horizon Probabilistic
Production Forecasting in Unconventional Reservoirs. OnePetro, 6 2022. Available from
Internet: </URTECONF/proceedings-abstract/22URTC/3-22URTC/489224>.

WANASINGHE, T. R. et al. Digital Twin for the Oil and Gas Industry: Overview,
Research Trends, Opportunities, and Challenges. Institute of Electrical and Electronics
Engineers Inc., 2020. 104175–104197 p. Available from Internet: <https://ieeexplore.
ieee.org/document/9104682/>.

WANG, F. et al. Field Application of Deep Learning for Flow Rate Prediction with Down-
hole Temperature and Pressure. In: International Petroleum Technology Conference.
[S.l.]: IPTC, 2021.

WANG, Q.-G.; LI, X.; QIN, Q. Feature Selection for Time Series Modeling. Journal of
Intelligent Learning Systems and Applications, v. 05, n. 03, p. 152–164, 2013. ISSN
2150-8402.

WANG, W. et al. A review of analytical and semi-analytical fluid flow models for ultra-
tight hydrocarbon reservoirs. Fuel, v. 256, 11 2019. ISSN 00162361.

WATANABE, S. Tree-Structured Parzen Estimator: Understanding Its Algorithm
Components and Their Roles for Better Empirical Performance. 2023.

WERNECK, R. d. O. et al. Data-driven deep-learning forecasting for oil production and
pressure. Journal of Petroleum Science and Engineering, Elsevier, v. 210, p. 109937, 3
2022. ISSN 0920-4105.

YAN, M. et al. Machine Learning and the Internet of Things Enable Steam Flood Opti-
mization for Improved Oil Production. arXiv preprint arXiv:1908.11319, 2019.

YETEN, B. et al. Decision analysis under uncertainty for smart well deployment. Jour-
nal of Petroleum Science and Engineering, v. 44, n. 1-2, p. 175–191, 10 2004. ISSN
09204105.

/URTECONF/proceedings-abstract/22URTC/3-22URTC/489224
https://ieeexplore.ieee.org/document/9104682/
https://ieeexplore.ieee.org/document/9104682/

71

APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS

A.1 Introdução

A adoção da mentalidade da Indústria 4.0 na indústria de Petróleo e Gás (O&G)

e os avanços em tecnologia de aquisição, transferência e armazenamento de dados têm

levado a um aumento na instrumentação de poços e instalações de produção (NGUYEN;

GOSINE; WARRIAN, 2020), resultando em uma maior disponibilidade de medições em

tempo real das condições de reservatório e poço, como pressão e temperatura em difer-

entes segmentos de poço, operações de válvulas e taxas de fluidos. Estimar o desempenho

futuro de produção de poços de petróleo, uma tarefa crucial no gerenciamento de cam-

pos de petróleo (TARIQ et al., 2021), pode ser alcançado tirando proveito de todos esses

dados, já que seu valor é importante para tomada de decisões, como mudanças nas con-

figurações de ativos para maximizar a produção e minimizar os riscos.

Os Gêmeos Digitais (GDs), uma tecnologia de ponta da indústria 4.0, têm uma

ampla gama de aplicações no domínio de O&G, incluindo o gerenciamento de desem-

penho de ativos (WANASINGHE et al., 2020). Os GDs oferecem uma maneira concisa

de lidar com o problema da comunicação de dados de sensores entre ativos, manutenção

de histórico e execução de cenários hipotéticos em grandes instalações de produção de

petróleo. Eles proporcionam às empresas um ambiente digital onde diversos cenários e

estratégias de resolução de problemas podem ser explorados sem interromper as oper-

ações de reservatório, poço ou plataforma. Os GDs têm como objetivo criar uma réplica

virtual de um ativo real usando múltiplos dispositivos de aquisição de dados e modelos

computacionais que geram dados e ajudam a orientar as decisões sobre o ativo físico. Um

sistema de previsão orientado por dados atuaria como um componente dessa camada de

GD, alimentando-se de uma camada de dados e produzindo previsões a partir de cenários

reais ou hipotéticos, com base nas configurações atuais e futuras planejadas da instalação.

A estimativa da produção futura de petróleo em poços é principalmente funda-

mentada na modelagem mecanicista do escoamento do fluido através da rocha do reser-

vatório e das tubulações do poço. Tradicionalmente, diferentes tipos de métodos basea-

dos em modelo e "simuladores de reservatório", são comumente empregados para simular

dinâmicas de longo prazo de um reservatório completo e estimar a produção nos poços.

Estes incluem métodos numéricos, analíticos e de curva de declínio de produção, sendo

72

os modelos numéricos os mais comuns (LI et al., 2022a). Além da simulação de todo

o reservatório, podemos estimar o volume de produção considerando as especificações

dos equipamentos da instalação e as medidas relacionadas ao poço. Os chamados "sim-

uladores de linhas de fluxo" são projetados para entender a dinâmica do fluxo dentro do

poço e da infraestrutura de superfície. Eles consideram temperaturas, pressões, medidas

de abertura de válvulas e dados de conclusão próximos a ou no poço e inferem taxas de

produção usando modelos mecanicistas do fluxo de fluido do reservatório, a dinâmica

termo-hidráulica do fluido dentro das linhas de fluxo da instalação, as propriedades do

fluido e as operações de válvulas restritivas de fluxo (BIKMUKHAMETOV; JÄSCHKE,

2020).

Os métodos descritos acima têm desvantagens, como dependência da experiência

profissional, disponibilidade de dados, custos de aquisição de dados e custos computa-

cionais. Além disso, eles são baseados em suposições sobre a física dos fluidos ou simpli-

ficações excessivas (BALAJI et al., 2018). Essas desvantagens limitam sua aplicabilidade

em certos contextos. Por exemplo, na geração rápida de cenários hipotéticos de produção

a curto prazo. É improvável que se encontre a resposta em um curto espaço de tempo

usando modelos numéricos mais complexos. Além disso, as restrições de aquisição de

dados podem ser tais que nenhum modelo numérico confiável exista para aquele campo

específico.

Muitos algoritmos foram propostos para simplificar a estimativa da produção de

petróleo sem depender de métodos complexos. Métodos de soft computing, particular-

mente aqueles que se baseiam em algoritmos de Aprendizado de Máquina (AM), podem

usar dados do sistema de produção para inferir comportamentos complexos do sistema.

Esses métodos aproveitam dados de séries temporais de sensores de poços, planos de

produção futuros e outros dados estáticos complementares relacionados à geologia do

reservatório para treinar um modelo matemático que estima a produção atual e prevê a

produção futura de petróleo. Essa abordagem orientada por dados, em vez da orientada

por modelo, remove ou reduz a necessidade de experiência profissional, aquisição custosa

de dados geológicos, custos computacionais e paradas de poços necessárias para calibrar

Medidores de Fluxo Multifásicos (MFMs).

Tendo em mente a disponibilidade crescente de dados históricos de sensores, a

necessidade de serviços que permitam treinamento, execução de modelos e visualização

analítica no conceito de GD, e as vantagens de modelos de AM para previsão de produção,

formulamos os seguintes objetivos para este trabalho:

73

1. revisar e discutir estudos que propõem métodos de previsão de produção que de-

pendem de características temporais dos dados.

2. propor e disponibilizar uma arquitetura Prova de Conceito (POC) implantável que

atue como um componente de GD para previsão da produção de petróleo, e que

supra os requisitos das partes interessadas.

3. propor uma metodologia de seleção de modelos concebida a partir de lacunas da

literatura, e evalia-la em dados reais de produção de petróleo com modelos off-the-

shelf.

4. usando a metodologia de seleção, comparar performance dos diferentes modelos

e levantar conhecimento acerca do impacto do uso de variáveis futuras, diferentes

combinações de janelas e frequências de amostragem.

A.2 Metodologia

A.2.1 Abordagem de Avaliação para Modelos de Previsão

Usando dados reais de produção de um campo petrolífero, aplicamos uma abor-

dagem de seleção de modelo para avaliar e comparar o erro de previsão de quatro técnicas

de aprendizado de máquina de séries temporais considerando ou não variáveis futuras e

com várias combinações de tamanhos de janela e frequências de amostragem. Os modelos

são: Regressão Linear (RL), eXtreme Gradient Boosting (XGBoost), Long Short-Term

Memory network (LSTM) e Temporal Fusion Transformers (TFT).

Input: Dataset de séries temporais multivariadas D com n pontos no tempo
Require: nested_cross_val, uma função que descreve um procedimento de day-

chaining nested Cross-Validation
1: for method in [baseline, lr, xgb, lstm, tft] do
2: for freq in [1day, 1h, 10min] do
3: for l, k in window_sizes do
4: if l ≥k then
5: avg_pred_error ← nested_cross_val(method, freq, l, k)

74

A.2.2 Arquitetura de Previsão de Petróleo baseada em Microsserviços para um Gêmeo

Digital

A arquitetura proposta baseada em microsserviços marca nossa proposta para um

componente que pode ser integrado em um GD. Ela consiste em um componente back-

end para treinamento e inferência de modelos, assim como um componente front-end para

visualização de resultados e exploração da série temporal de produção. A arquitetura foi

estabelecida após reuniões com a parte interessada, e basicamente supre os requisitos:

1. Permitir o treinamento de diferentes tipos de modelos de previsão de séries tempo-

rais e possibilitar a implantação dos melhores.

2. Criar previsões de produção, cenários hipotéticos e retroanálises com base em dados

históricos e dados planejados futuros da produção de petróleo e gás.

3. Considerar vários horizontes temporais (períodos futuros) para previsão e desen-

volvimento de cenários hipotéticos.

4. Levar em conta diferentes frequências de amostragem (dias, horas, minutos, etc.)

para previsão de produção.

5. Possibilitar tanto a previsão quanto a criação de cenários hipotéticos de forma efi-

ciente (utilizando menos recursos computacionais) e rápida (fornecendo respostas

quase em tempo real). Vale ressaltar que a eficiência e o tempo de resposta, nesse

contexto, são avaliados em relação a outras soluções existentes na Libra, como a

simulação numérica. Enquanto esta última oferece uma precisão satisfatória nas

previsões, exige uma quantidade considerável de recursos computacionais e tempo

significativo para fornecer respostas.

6. Lidar com o fluxo constante de dados, considerando que o estado do GD é con-

tinuamente atualizado com base em dados de sensores que monitoram várias pro-

priedades na planta de produção.

A.3 Resultados e conclusão

A arquitetura proposta baseada em microsserviços consegue suprir as necessi-

dades da parte interessada. Isto é, uma ferramenta de treinamento, monitoramento de

75

modelos, inferência com base em cenários hipotéticos e visualização das previsões. Ao

passo que utiliza dados do sistema de produção, e de alguma forma retorna uma saída

que age no processo de tomada de decisão do ativo, mostra-se também um componente

adequado para GDs do setor upstream. Quanto aos resultados da metodologia de com-

paração entre modelos ML, a comparação das métricas de erro revelou que o XGBoost,

apesar da ausência de mecanismos dedicados para lidar com sequências de séries tempo-

rais como TFT e LSTM, demonstrou desempenho geral superior na previsão da produção

de petróleo. O tamanho limitado e a variabilidade dos dados podem ter contribuído para

os desafios enfrentados pelos modelos de aprendizado profundo, enquanto o LR teve um

bom desempenho devido à sua simplicidade. A seleção cuidadosa dos tamanhos de janela

emergiu como crucial para previsões precisas, com dados históricos informando as esti-

mativas futuras de produção. A integração de dados operacionais planejados mostrou-se

essencial para a previsão, destacando o impacto das variáveis operacionais nos fenômenos

transitórios nos poços e reservatórios. A seleção de características para previsão de séries

temporais apresentou desafios únicos devido à temporalidade dos dados, dificultando os

métodos tradicionais de seleção de características. No geral, uma abordagem meticulosa

para a avaliação de modelos, considerando retrocesso, tamanho do horizonte e integração

de dados operacionais, é fundamental para uma previsão eficaz da produção na indústria

de petróleo e gás.

76

APPENDIX B — ADDITIONAL DATA

Figure B presents the statistical description of each variable that was selected from the original dataset for supporting the training of the models
produced in this work.

Table B.1 – Statistical description of each selected variable

non_null_count count mean std min 25% 50% 75% max variance skew kurt

Choke Position 873960.00 63.61 46.02 0.00 9.59 99.83 99.90 100.06 2117.87 -0.50 -1.73
Choke Position 1 587675 873960.00 30.10 44.32 0.00 0.00 0.00 99.89 100.06 1964.07 0.92 -1.12
Choke Position 2 36650 873960.00 30.18 44.32 0.00 0.00 0.00 100.00 100.00 1964.01 0.93 -1.11
Choke Position 3 546156 873960.00 33.49 46.62 0.00 0.00 0.00 99.82 100.05 2173.63 0.71 -1.48
Well Oil Rate 873960.00 199.06 190.69 0.00 109.66 278.83 286.76 53135.63 36361.49 146.68 37350.39
Well Oil Rate 1 661830 873960.00 51.44 73.37 0.00 0.00 0.00 138.30 26696.72 5382.56 55.29 19905.48
Well Oil Rate 2 1023207 873960.00 132.75 190.29 0.00 0.00 142.40 279.96 53135.63 36211.83 145.35 37431.67
Well Oil Rate 3 237026 873960.00 7.08 19.09 0.00 0.00 0.00 0.00 197.07 364.58 2.39 3.92
Well Oil Rate 4 245518 873960.00 7.79 20.39 0.00 0.00 0.00 0.00 187.31 415.67 2.32 3.77
Well Oil Rate 5 23376 873960.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Well Gas Rate 873960.00 83308.73 50316.97 0.00 45419.76 117785.25 121197.15 288815.78 2531797124.48 -0.76 -1.17
Well Gas Rate 1 707356 873960.00 38742.27 50472.91 0.00 0.00 0.00 107804.35 142688.75 2547515097.79 0.64 -1.49
Well Gas Rate 2 565238 873960.00 32747.27 49811.99 0.00 0.00 0.00 104037.58 147364.85 2481233978.42 0.88 -1.22
Well Gas Rate 5 1253611 873960.00 7097.34 4813.71 0.00 0.00 9835.32 10776.14 18178.08 23171843.87 -0.66 -1.40
Well Gas Rate 4 1590852 873960.00 1321.50 4286.29 0.00 112.02 201.26 333.00 196777.45 18372294.83 9.69 201.79
Well Gas Rate 3 1408688 873960.00 3568.91 11152.77 0.00 88.49 240.12 382.95 205028.75 124384362.17 3.58 14.13
Top Annular Pres-
sure

1702992 873960.00 607.51 42.98 0.00 586.77 595.79 638.43 2263.35 1847.53 -8.26 136.10

Top Tubing Pres-
sure

1702963 873960.00 601.52 43.80 0.00 584.73 588.43 634.69 2454.39 1918.85 -7.65 110.84

Downstream tem-
perature of choke

1604506 873960.00 29.64 6.40 -20.00 25.69 29.83 35.54 119.04 41.02 -1.36 8.76

Upstream Produc-
tion Temperature

717691 873960.00 60.43 28.38 0.00 73.05 75.38 75.62 80.65 805.66 -1.44 0.12

77

APPENDIX C — IMPLEMENTATION OF THE ARCHITECTURE

The architecture is implemented into two parts: (I) the backend, responsible for

the inference and model training endpoint, and (II) the frontend, which allows the user to

input parameters for inference and visualize predicted values. Each rectangle in Figure

C.1 represents a container running on a Kubernetes orchestration platform. Containers re-

quiring data persistence (backend and artifact storage) have attached a Persistent Volume

Claim (PVC).

Figure C.1 – Architectural diagram of the solution consisting of a frontend and a backend
component

C.1 Training Backend

The training backend is based on a multi-step workflow (MLflow Project, 2023) in

which each step of the training pipeline (from loading the dataset to inference) is treated

as its own encapsulated execution. It’s divided up into Forecasting Client and Tracking

Server.

78

C.1.1 Forecasting Client

This container performs model training and inference, with the main dependencies

being the Python libraries Darts and MLFlow. The Darts library was chosen because it

provides a ready-made framework for time series forecasting tasks, including construct-

ing input datasets and pre-built forecasting models using PyTorch and scikit-learn. We

adopted the Projects of MLFlow. This code packaging format allows for the creation of

pipelines, execution by the command line, and better control of dependencies for each

task. Two Projects are currently implemented: training and inference.

1. Model Training

We use a command-line interface (CLI), similar to (PELEKIS et al., 2023), where

model training parameters are concatenated into a mlflow run command to be

executed in the container.

Model training involves:

(a) Loading training data

The container fetches training data (time series) from another service, called

Data Retriever, which stores the latest time series data in the PI data manage-

ment system.

(b) Applying variable standardization method (scaling)

Optionally, it deals with normalizing or standardizing the variables in the

training dataset. Any scaler from the sklearn.preprocessing library can be

used.

(c) Preprocessing training data

Optionally, it handles the removal of outliers, filling empty spaces, and resam-

pling to other frequencies of the input series.

(d) Training and evaluating the model using Cross-Validation

Model training is done via the command line within the Darts Client container.

The command follows the template below:

$ mlflow run -e train . -P darts_model={

↪ NaiveMovingAverage | TFT} -P num_splits=int -P

↪ optuna_trials=int -P freq={10min | 1h | 1d} -P

↪ input_chunk_length=int -P output_chunk_length=int

79

↪ -P hyperparams_entrypoint=str -P device={gpu | cpu

↪ } -P targets=list -P future_cov=list -P past_cov=

↪ list -P fill={linear_interpol | ffill} -P

↪ outlier_removal={std_dev_12h | std_dev_global} -P

↪ scaler={MinMaxScaler} --env-manager=local --

↪ experiment-name=str

(e) Recording metrics and artifacts in the tracking service

MLFlow, during the training execution, stores metrics, training parameters,

and artifacts in the relational database or the artifact store. These records are

later loaded during inference.

2. Prediction

The container serves a RESTful API with FastAPI that receives requests with pa-

rameters:
origin_timestamp: datetime ISO 8601

forecast_length: integer (1, 168)

frequency: [10min | 1h | 1d]

choke: integer (0,100)

After receiving the request, the MLFlow Forecasting Project is executed, and an

array in JSON format with the predicted values is returned to the frontend. It is also

possible to make inferences via the command line using the following template:

$ mlflow run -e backcast . -P pyfunc_model_folder=str -P

↪ forecast_horizon=int -P forecast_date=datetime -P freq

↪ ={10min | 1h | 1d} -P choke=str --env-manager=local --

↪ experiment-name=str

C.1.2 Tracking Server

The MLflow Tracking Server is a proxy server to load and save model metrics and

other artifacts. MLFlow uses a database and an artifact store to handle persistent files.

The MySQL database stores execution information, metrics, parameters, and tags of the

models. The artifact storage, an S3-compatible storage, stores artifacts, including model

files, configurations, and images. The administrator can configure the access policy for

each storage type. Figure C.2 diagrammatically shows the communication between the

forecasting client, tracking server, and databases.

80

Figure C.2 – Communication between MLFlow client, database, and artifact store

Source: (MLflow Project, 2023)

The tracking server also serves a web interface where each model training execu-

tion, called runs, can be viewed. In addition to maintaining the record of each execution,

the interface allows us to view metrics and build comparative charts. Figure C.3 shows

the runs made for each model training. The hierarchical model of runs follows this format:

• Final Model

– Best model from split 1

* Hyperparameter trial 1

* Hyperparameter trial 2

* Hyperparameter trial 3

* ...

– Best model from split 2

* ...

* ...

– Best model from split 3

* ...

– ...

Figure C.4 illustrates the creation in the MLFlow interface of a scatter plot that

shows the change in model accuracy with the increase in the lookback window (out-

81

Figure C.3 – MLFlow Interface Showing Runs from a Specific Training

put_chunk_length).

Figure C.4 – Creation of a Scatter Plot: Error vs. Lookback Size

C.2 Prediction Front-end

The prediction frontend provides the end user with a prediction interface for mod-

els loaded in the backend. The user can (I) select a sampling frequency (10 minutes, 1

hour, or 1 day), (II) choose the starting time on the graph for the prediction, (III) select

82

the horizon size to be predicted, and (IV) choose the planned choke value for the future

period. Currently, the prediction task in the interface also works as a “backcaster”, allow-

ing the user to click on a point in the past on the timeline and either use the data from that

historical period as input to the model or consider the future choke value determined by

the user.

Figure C.5 – Front-end Interface

83

APPENDIX D — TRAINING AND VISUALIZATION USE CASE

In this section, we describe an example of using the application, from model train-

ing to visualization of predictions by the end user.

1. Actor 1 accesses the backend machine running the prediction client and executes

the following command:

$ mlflow run -e train . -P darts_model=XGB -P num_splits=3 -P

↪ optuna_trials=10 -P freq=1d -P input_chunk_length=12 -P

↪ output_chunk_length=24 -P hyperparams_entrypoint=xgb_hourly

↪ -P device=gpu -P targets=RATE_OIL_PROD -P future_cov=CHOKE

↪ -P past_cov=DOWNSTREAM_TEMP_CHOKE, TOP_ANNULAR_PRESSURE,

↪ TOP_TUBING_PRESSURE, UPSTREAM_PRODUCTION_TEMPERATURE -P

↪ fill=linear_interpol -P outlier_removal=std_dev_12h -P

↪ scaler=MinMaxScaler --env-manager=local --experiment-name=

↪ xgb_test

2. Actor 1 checks the training metrics for each run, the average of all splits, and gen-

erates comparative graphs.

3. Actor 1 clicks on the best model.

84

4. Actor 1, within the best model, clicks the "Register Model" button, names the model

as xgb_1d, and registers it for later inference.

85

5. Actor 1 selects this newly registered model in the "Models" tab and puts it into

production.

86

6. Actor 1 inserts the model descriptor into the registered_models.yml file.

7. Actor 2 uses the model for inference by selecting, in the interface, the sampling

frequency "1d" and the horizon size of 12.

Figure D.1 – Front-end Interface

	ACKNOWLEDGEMENTS
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Contents
	1 Introduction
	2 Theoretical Foundation
	2.1 Digital Twins
	2.2 Oil Production Systems and Libra block
	2.3 Estimating petroleum production
	2.4 Time Series Forecasting
	2.4.1 Loss and error functions
	2.4.2 Multivariate time series
	2.4.3 Cross-correlation
	2.4.4 Stationarity
	2.4.5 Granger Causality
	2.4.6 Prediction methods
	2.4.7 Machine Learning Methods
	2.4.7.1 Linear Regression
	2.4.7.2 XGBoost
	2.4.7.3 Long Short-Term Network
	2.4.7.4 Temporal Fusion Transformers

	3 Related Works
	4 An approach for building a petroleum forecasting module for a Digital Twin
	4.1 Evaluating Machine Learning Approaches for Petroleum Production Forecasting
	4.1.1 Methodology
	4.1.1.1 Dataset
	4.1.1.2 Feature Selection
	4.1.1.3 Pre-processing
	4.1.1.4 Model Training and Evaluation Strategy
	4.1.1.5 Hyperparameter Tuning

	4.1.2 Results
	4.1.3 Discussion

	4.2 A digital twin module for production forecasting

	5 Conclusion
	5.1 Limitations
	5.2 Future work

	References
	Appendix A — Resumo expandido em português
	A.1 Introdução
	A.2 Metodologia
	A.2.1 Abordagem de Avaliação para Modelos de Previsão
	A.2.2 Arquitetura de Previsão de Petróleo baseada em Microsserviços para um Gêmeo Digital

	A.3 Resultados e conclusão

	Appendix B — Additional data
	Appendix C — Implementation of the architecture
	C.1 Training Backend
	C.1.1 Forecasting Client
	C.1.2 Tracking Server

	C.2 Prediction Front-end

	Appendix D — Training and Visualization Use Case

