HYPERSURFACES WITH POSITIVE PRINCIPAL CURVATURES IN SYMMETRIC SPACES

JAIME RIPOLL

(Communicated by Christopher Croke)

A classical result in differential geometry, known as Hadamard's theorem, establishes that a compact connected surface in Euclidean space whose principal curvatures are everywhere positive is the boundary of a convex body. In particular, the surface is diffeomorphic to a sphere ([H]). We present here, using a simple observation as proof, a partial extension of this theorem to immersions of arbitrary codimension and to other spaces than the Euclidean one, as symmetric spaces of noncompact type.

Let M^n and N^{n+k} be Riemannian manifolds of dimensions n and n+k, $n \ge 2$, $k \ge 1$, M compact, connected, and let $\phi: M \to N$ be an isometric immersion. Denote by N(M) the unit normal bundle of ϕ , namely

$$N(M) = \{(p, \eta) | p \in M, \eta \in T_{\phi(p)}N, \eta \perp \phi_*(T_pM), \|\eta\| = 1\}.$$

We denote by $N^*(M)$ the subbundle of N(M) consisting of the pairs (p, η) such that the 2nd fundamental form A of ϕ with respect to η at p, that is, $A_{\eta}(v) = (\nabla_{\phi_* v} \eta)^{\mathrm{T}}$, $v \in T_p M$, has positive eigenvalues, ∇ being the Riemannian connection of N and $()^{\mathrm{T}}$ the orthogonal projection to $\phi_*(T_p M)$. We prove:

Proposition. According to the above notation, assume the existence of n+1 Killing fields X_1, \ldots, X_{n+1} in N which are linearly independent on $\phi(M)$ and a global section $\eta: M \to N^*(M)$ such that $\eta(p) \in span\{X_1, \ldots, X_{n+1}\}$ for all $p \in M$. Then M is diffeomorphic to an n-dimensional sphere.

We have the following immediate consequences:

Corollary 1. Let N be a homogeneous manifold with an invariant metric. Then there is an open dense subset U of N such that any immersed compact, connected hypersurface of U whose principal curvatures are positive is diffeomorphic to a sphere.

Corollary 2. Let G be a Lie group with a left invariant metric. Then, any compact connected immersed hypersurface of G whose principal curvatures are positive is diffeomorphic to a sphere.

We remark that Corollary 2 applies, for example, to a symmetric space G/K of noncompact type since, by the Iwasawa decomposition G = KAN, G/K is isometric to the solvable Lie group S = AN with a certain left invariant metric.

Received by the editors May 9, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C42; Secondary 53C30.

Key words and phrases. Immersions, positive principal curvatures, symmetric spaces.

This research was partially supported by CNPq (Brazil).

Proof of the proposition. Given $p \in M$, set

$$E_p = \{a_1 X_1(\phi(p)) + \dots + a_{n+1} X_{n+1}(\phi(p)) \mid a_1^2 + \dots + a_{n+1}^2 = 1\}.$$

From the hypothesis, there is a unit normal vector field η to ϕ such that the 2nd fundamental form of M with respect to η is positive definite and $\eta(p) \in span\{X_1(\phi(p)),\ldots,X_{n+1}(\phi(p))\}$, for all $p \in M$. There exists a differentiable map $f: M \to \mathbb{R}^+$ such that $f(p)\eta(p) \in E_p$, for all $p \in M$. We define a map $\gamma: M \to S^n$, where S^n is the unit sphere centered at the origin in \mathbb{R}^{n+1} , by setting

(1)
$$\gamma(p) = (a_1(p), \dots, a_{n+1}(p))$$

if

(2)
$$f(p)\eta(p) = a_1(p)X_1(\phi(p)) + \dots + a_{n+1}(p)X_{n+1}(\phi(p)), \quad p \in M$$

We claim that γ is a diffeomorphism. Clearly γ is a differentiable map. Choose $p \in M$ and let $v \in T_pM$ such that $d\gamma_p(v) = 0$. From (1), we have $d(a_j)_p(v) = 0$, $j = 1, \ldots, n+1$.

Taking the covariant derivative of (2) with respect to v we therefore obtain

$$df_p(v)\eta(p) + f(p)\nabla_v\eta(p) = a_1(p)\nabla_vX_1 + \dots + a_{n+1}(p)\nabla_vX_{n+1}.$$

Taking the inner product of both sides with v, since the X_j are Killing fields, we obtain $f(p)\langle \nabla_v \eta, v \rangle = 0$, which implies v = 0, since $\eta \in N^*(M)$. It follows that γ is a local diffeomorphism so that, since it goes into the sphere and M is compact, γ is a global diffeomorphism.

Acknowledgement

I would like to thank J. Eschenburg and the referee for worthy mathematical comments concerning the results of this note.

References

[H] M. Hadamard, Sur certaines proprietés des trajectoires en Dynamique, Journal de Math. (5^{a.} série), Tome III, Fasc. IV, 1987.

Universidade Federal do R. G. do Sul, Instituto de Matemática, Av. Bento Gonçalves 9500, 91540-000 Porto Alegre - RS, Brazil

 $E ext{-}mail\ address: ripoll@athena.mat.ufrgs.br}$