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HYPERSURFACES WITH CONSTANT MEAN CURVATURE 
IN THE COMPLEX HYPERBOLIC SPACE 

SUZANA FORNARI, KATIA FRENSEL, AND JAIME RIPOLL 

ABSTRACT. A classical theorem of A. D. Alexandrov characterized round spheres 
is extended to the complex hyperbolic space CH2 of constant holomorphic 
sectional curvature. A detailed description of the horospheres and equidistant 
hypersurfaces in CH2 determining in particular their stability, is also given. 

1. INTRODUCTION 

A classical theorem due to A. D. Alexandrov [A] proves that the geodesic 
spheres are the only compact embedded hypersurfaces with constant mean cur- 
vature in a simply connected space of constant curvature (with the additional 
hypothesis of the hypersurface being contained in a hemisphere in the spher- 
ical case). Since in a two point homogeneous space the geodesic spheres are 
homogeneous hypersurfaces and therefore with constant mean curvature, it is 
natural to ask if Alexandrov's Theorem can be extended to these spaces. We 
answer here this question affirmatively for the complex hyperbolic space. For 
simplicity, we work in the 2-dimensional (complex) case. We prove 

Theorem 3.3. Let M be a compact, embedded hypersurface with constant mean 
curvature of the complex hyperbolic space CH2. Then M is a geodesic sphere. 

The simplest examples of complete hypersurfaces with constant mean cur- 
vature in CH2 are the geodesic spheres, horospheres and equidistant hyper- 
surfaces. J. L. Barbosa, M. P. do Carmo and J. Eschenburg proved that the 
geodesic spheres are stable (Theorem 1.4 of [BdoCE]). We determine here the 
stability of the horospheres and equidistant hypersurfaces of CH2. We recall 
that a horosphere is defined as the limit of the geodesic spheres which pass 
through a given point of the space and whose centers tend to infinity along a 
geodesic of the space. 

As it happens in the real hyperbolic space, we prove here that the horospheres 
in CH2 are all stable. We also give a detailed description of them. We prove 

Theorem 4.3. The horospheres of the complex hyperbolic space CH2 are hyper- 
surfaces with constant mean curvature equal to 4/3 and are all stable. Further- 
more, they are the orbits of the Heisenberg group (a 3-dimensional noncommu- 
tative nilpotent Lie group) which acts by isometries on CH2 without fixed points 
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(therefore, the horospheres inherit a natural Lie group structure). In particular, 
the horospheres are (extrinsically) homogeneous submanifolds of CH2 . Any two 
horospheres of CH2 are congruent. 

The equidistant hypersurfaces are defined in the following way: the hyper- 
bolic plane H2 can be isometrically embedded in a unique way (up to con- 
gruences) as a totally geodesic submanifold of CH2 (this follows from the 
characterization of the totally geodesics submanifolds of a symmetric space). 
Given c > 0, an equidistant hypersurface Pc is defined as the boundary of the 
tubular neighborhood with radius sinh-'(c) of H2. In ?5 we give a detailed 
description of such hypersurfaces. In particular, we prove 

Theorem 5.3. An equidistant hypersurface Pc in CH2 is a homogeneous hy- 
persurface with constant mean curvature (1 + 4c2)/(3cvTY`). It is stable if 
c > v/2/2 and unstable otherwise. Two equidistant hypersurfaces are congruent 
if they have the same mean curvature. 

We remark that the function (1 + 4c2)/(cx/) attains its minimum ab- 
solute value at c = v'2/2, that is, P212 is the equidistant hypersurface whose 
mean curvature is the smallest one. 

In the next section, we obtain some basic facts about the Riemannian Geom- 
etry of CH2 necessary for proving the above theorems. 

2. PRELIMINARIES 

2.1 The "Hopf fibration" of CH2 . On C3 = R6 consider the indefinite scalar 
product 

(z, w) := Re(-zOwo + zI7I + Z2jl2) 

where z = (zo, z1, Z2) and w = (wO, wI, w2) are points in the complex 
vector space C3. The set 

Q' := {z E R61(z, z) = -1} 

is a 5-dimensional submanifold of C3 and inherits a Lorentzian metric with 
constant sectional curvature -1. The group SI = (eiO) of complex numbers 
with modulus 1 acts freely on Q5 by complex multiplication so that Q5/SI 
is a differentiable manifold. The orbits a(6) = eioz for z e Q5 of SI are 
timelike since 

(a'(0),a'(0)) = (iei0z, iei0Z) = -1. 

The Complex Hyperbolic Space CH2 can be defined as the quotient Q5/S' 
endowed with the Riemannian metric that makes the projection 

7: Q5 Q5 

a semi-Riemannian submersion. 

2.2 The sectional curvatures of CH2. Let X, Y be two orthonormal vector 
fields on CH2 and X, Y be the horizontal lifts of X and Y on Q5, respec- 
tively. Denote by K(X, Y) and K(X, Y) the sectional curvatures of CH2 
and Q5, respectively. The following formula is a straightforward extension to 
semi-Riemannian submersions of a result found in O'Neill [01]. We have 

K(X, Y) =K(X, Y) + 3(AkY, AkY) 
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where A is a tensor that reverses the horizontal and vertical subspaces of the 
projection i . Since the last subspace has real dimension 1 and, for a fixed X, 
Ax is surjective, it follows that for any number a, 0 < a2 < 1, there exists Y 
with (Y, Y)1 such that 

(AkY, AkY) = -a2 > -1. 

Then K(X, Y) = -1 + 3(AkY, AjY) satisfies -4 < K(X, Y) < -1. 

2.3 The S'-orbits in Q5 . Let a(0) = eiOz be the S'-orbit of a point z E Q5. 
Then 

a//(0) = -ei z = -a(O) , 

that is, Va'&' = 0, where V denotes the covariant derivative in Q5. It follows 
that the SI-orbits are totally geodesic 1-dimensional submanifolds of Q5. 

2.4 The mean curvature of a hypersurface of CH2 and of its lift in Q5. Let M 
be a hypersurface in CH2 and denote by M its lift in Q5, that is, 7r(M) = M. 
Clearly, M is a SI-invariant hypersurface of Q5. Let p be a point in M and 
let N be an unitary SI-invariant vector field normal to M around p. Set 
N :=r, (N) . Then N is a unitary vector field normal to M around 7r(p) . Let 
H and H be the mean curvature of M at p and of M at 7r(p) determined 
by N and N, respectively. Then we have 

Lemma 2.4. H = 4 
-3 

Proof. Consider an orthonormal frame {ei}, i = 1, 2, 3, tangent to M in a 
neighborhood of 7r(p). By definition 

H= -Z(Veiei, N) 
i=1 

where V is the Riemannian connection in CH2. Let ei be the horizontal lift 
of ei and eo the unitary tangent vector to the fiber of it. It is obvious that 

o ... , e3 is an orthonormal frame tangent to M in a neighborhood of p. 
If V denotes the semi-Riemannian connection of Q5, then Veoeo = 0 by 2.3, 
and (Veiei, N) = (Vti, N), by O'Neill's formulae for a submersion [01]. 

Then 

H =3 E i(Ve1i, e) = -H. 
i=l 

We recall that 

H = 4ZE si(Vei1, N), 

where ei = (eO, es) = +1. In our case, (o0, 0o) = -1 and (ei, ei) = 1, i = 

1, 2, 3. 

2.5 Stability of hypersurfaces with constant mean curvature. Let x: MI - 

M be an immersion between Riemannian manifolds, x with constant mean 
curvature. Let D c M be a relatively compact domain with smooth boundary 
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oD . Set D DUoD . Denote by 7D the set of all piecewise smooth functions 
f: D -- R that satisfy the conditions 

fIOD O, jfdM=O. 

The domain D is stable iff 7D/"(0)(f) > 0, for any f E bD, where 

(0) (f )= j{ Igrad(f )12 - (Ricc(N) + JIB112)f2} dM. 
9D~~ 

Here grad is the gradient of D in the induced metric, lB II is the norm 
of the second fundamental form of x and Ricc(N) is the Ricci curvature of 
M in the direction of the normal N of x. Recall that, at a point p in M, 
Ricc(N) = Z'-' K(N, ei), where el, ..., en-1, N is an orthonormal basis of 
Tp (M) with N normal to M and K denotes the sectional curvature of M at 
p- 

The immersion x is stable if any relatively compact domain D c M is 
stable. 

In our case, we will study stability of hypersurfaces of CH2. We remark that 
there exists an obvious semi-Riemannian version of Proposition 4.3 of [BdoCE], 
which reads: M is stable in CH2 iff M= i-'(M) is "S1-stable" in Q5, that 
is, iff 

j{I grad(f)12 - (Ricc(N) + 1B1l2)f2}dM > 0 

for all relatively compact and SI-invariant domains D c M and for all f in 
Yb with the following property: f(e Op) = f(p), elo E SI and p E M. 

The vector field N considered above is a unitary normal vector field of M 
in Q5 and B: Tp(M) -) Tp(M) is the linear symmetric transformation as- 
sociated to the second fundamental form a of M in Q5, that is, if {ei}l1 
is an orthonormal basis of Tp(M), ei = (ei, ei) = +1, then (B(ei), ej) = 

(a (ei, ej), N). The norm lB at p E M is defined by 

4 4 

IIBII2 = ZCi(B(ei) B(e))p = E ejj(a(ej, ej), N)2. 
i=l i,j=l 

We observe that (B Il is independent of the orthonormal basis {ei}. This 
fact is a consequence of the following general result: 

Lemma 2.5. Let V be an n-dimensional vector space with a nondegenerate sym- 
metric bilinear form (-, *) and let B: V -- V be a linear transformation. Let 
,B = {e1}il be an orthonormal basis of V and set ei := (ei, ei). Then the 
number EUn= Ie(B(e1), B(ei)) is independent of f,. 

Proof. Consider another orthonormal basis _vjj.=, with ej := (vj, vj). Let 
us define real numbers bij by the relations 

n 

ei=Zbijvj, i= 1, ...,n. 
j=l 
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Therefore, Vk = ik Z7 e1ibikei. The identities tk = (Vk, Vk) = I1 and 
(Vk, vj) = 0, k :$ j can be written as 

n n 
ek=Zeiblk and Zeibikbij = O, j $ k. 

i=l i=l 

Therefore, 
n n n 

ei (B(ei), B(ei)) = z e(_ bijbik(B(vj), B(vk))) 
i=l i=l jk=l 

n n 

=E E '6ibjjbik(B(vj), B(Vk)) 

j,k=i i=I 
n n\ 

= , , sb?-y(B(vj) , B(vj))) 
j=I i=I 
n 

= Z ej(B(vj), B(vj)) 
j=1 

as desired. 

3. THE GEODESIC SPHERES OF CH2 

In this section we first give a description of the geodesic spheres in CH2, 
determining its lifting to Q5. This is necessary for proving Theorem 3.3. It is 
also useful for carrying explicit computations. 

Let p > 0. Let Mp be the hypersurface of Q5 of all points (zo, zI, Z2) 
such that IzoI2 = cosh2p and IziI2 + 1z212 = sinh2p. MpW, is isometric to 
the product S x S3 endowed with the indefinite metric -ds2 + ds2 where 
Sj is the 1-dimensional Euclidean sphere with radius c = coshp and 53 iS 
the 3-dimensional Euclidean sphere with radius s = sinh p and dsp2, ds22 the 
standard metrics on SC and 53. 

Clearly, Mp is SI-invariant, so that 7r(Mp) is a hypersurface of CH2, and 
we have 

Proposition 3.1. 7r(Mp) is a geodesic sphere around the point 7r(( 1, 0, 0)) with 
radius p. Moreover, any geodesic sphere of CH2 is of this type, moduli an 
isometry of CH2 which carries the center of the geodesic sphere to ir((1, 0, 0)) . 

Proof. The subgroup U(1) x U(2) acts transitively on Mp, and therefore in 
7r(Mp). Then, given two any points 7r(p) and 7r(q) in 7r(Mp), there exists 

E U(1) x U(2) such that 0(7r(p)) = 7r(q). Since k(po) = eiopo, for some 0, 
where po = (1, 0, 0), we have k(ir(po)) = 7r(po) and hence 

d(7r(p), 7r(po)) = d(q(7r(p)), (ir(po))) = d(7r(q), 7r(po)) 

where d is the Riemannian distance in CH2. Therefore, 7r(Mp) is contained 
in the geodesic sphere centered in ir(po) and with radius d(7r(p), r(po)) . But 
both 7r(Mp) and the geodesic sphere are compact, connected 3-manifolds so 
they have to coincide. 
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Finally, observe that the curve y(t) = (cosh t, sinh t, 0) is a geodesic para- 
metrized by arc length in Q5 and orthonormal to the S'-orbits. Therefore 7r(y) 
is a geodesic in CH2, also parametrized by arc length. Since ir(y(O)) = l(po) 
and ir(y(p)) E ir(Mp), it follows that p = d(7r(p), lr(po)) is the radius of 
7r(Mp), which concludes the proof of the Proposition 3.1 since the last part of 
the proposition is obvious. i1 

In this next paragraph we compute the mean curvature of the geodesic spheres 
as a function of its radius. These computations will be also used in ?5. 

From the above characterization one can also see that the geodesic spheres 
in CH2 are homogeneous hypersurfaces and, therefore, with constant mean 
curvature. To compute its mean curvature, it suffices to compute it in a point, 
say ir(p), p = (cosh p, sinh p, 0) of 7r(Mp). From Lemma 2.4, we have just 
to compute the mean curvature H of M at p. 

For z and w in C3, we consider real coordinates z = (xi, ... , x6), w = 

(Yi, ... Y6) with zo = xi + ix2, z1 = X3 + ix4 and so on. The indefinite scalar 
product defined in 2.1 has the following expression in these coordinates 

6 

(Z, W) = -xIyI - X2y2 + XiYi 
i-l 

Let us take the standard orthonormal basis {Vi}6 of R6 with (vl, vl) = 
(v2, v2) = -I and (vi, v) = 1, i = 3, ...,6. Then p= CV1 + SV3, C = 
cosh p, s = sinh p and it is easy to see that {V2, V4, V5, V6} is an orthonormal 
basis of Tp(Mp) and that N = -SV1 - CV3 is a unitary normal vector field of 
Mp. 

As before, denote by V the Riemannian connection of Q5. Then we have 

(Vvivi, N) = (a(vi, vi), N), i = 2, 4, 5, 6, 

where a is the second fundamental form of the immersion Mp -k R6. There- 
fore (compare with the formula for H in 2.4): 

H = (-( a(V2, V2), N) + E(a(vi, viN)) 
4 1~~~~~~=4 

Now, since Mp -- R6 is a product immersion, we have a(v2, v2) = V 
and a(vi, Vi) =-1V3, i = 4, 5, 6. Then 

H = 4 ( - l-svi - + 3 (--V3, -SV1 -CV3 

that is 
I (sinhp +3coshp> 
4 coshp sinhpJ 

and the mean curvature H of a geodesic sphere of radius p is 

coshp 1 sinhp 
sinh p 3 coshp 

The next result is necessary for Theorem 3.3. 
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Lemma 3.2. The group generated by the reflections on totally geodesic hypersur- 
faces of Q5 containing the geodesic circle Izo = 1, z1 =Z2 = 0 together with 
the S1 subgroup act transitively on the hypersurfaces Mp . Furthermore, the nor- 
mal exponential map expl: T(T)' -- Q5 is a diffeomorphism for any totally 
geodesic hypersurface T of Q5 containing the circle Izol = 1. 
Proof. Let T be a totally geodesic hypersurface of Q5 containing the circle 
Izol = 1 . We first prove that the exponential map of Q5 gives a diffeomorphism 
between the normal bundle of T and Q5. This is equivalent to prove that any 
geodesic of Q5 orthogonal to T has infinite length. 

We observe, as it is not difficult to prove, that the totally geodesic hypersur- 
faces of Q5 are the intersections of hyperplanes of R6 parallel at least to one 
of the axis xl or x2 with Q5 itself. From this, we can prove that any totally 
geodesic hypersurface of Q5 is a homogeneous submanifold of Q5 and that, if 
T1 and T2 are two totally geodesic hypersurfaces containing both axis xl and 
x2 then they are congruent. 

Therefore, we obtain a proof for the first part of the lemma on,e we prove 
it for some particular totally geodesic hypersurface containing the circle men- 
tioned above, and for some particular geodesic orthogonal to this hypersurface. 
But this is very easy. Choose for instance the totally geodesic hypersurface 
T = {(xl, ... , x6)jx3 = O} and as an orthogonal geodesic of Q5 to T the 
geodesic y given by y(t) = (cosht, 0, sinht, ...0, 0). Clearly, y has infinite 
length, as required. 

To conclude the proof of the lemma, we observe that the reflections on totally 
geodesic hypersurfaces of Q5 are the restriction of the reflections to hyperplanes 
of R6. Therefore, since the group generated by the reflections of R6 on hy- 
perplanes containing the two axis xl and x2 contain as a subgroup the group 
U(2) combining this group with the S1 action we obtain the group U( 1) x U(2) 
which acts transitively on Mp, proving the lemma. 0 

Theorem 3.3. Let M be a compact, embedded hypersurface with constant mean 
curvature of CH2 . Then M is a geodesic sphere. 

Proof. According to what we have already seen, M - 7r-(M) is a compact, 
embedded, Sl-invariant hypersurface of Q5 with constant mean curvature. 

We claim that given any totally geodesic hypersurface T of Q5 which con- 
tains the axis xl and x2, there exists a totally geodesic hypersurface T' of 
Q5 which is parallel to T (that is, there exists a geodesic of Q5 orthogonal to 
both T and T') such that the reflection on T' leaves MW invariant. Therefore, 
since Ml is compact, all such totally geodesic hypersurfaces whose associated 
reflections leave M invariant must have a common point. Up to congruence, 
we may assume that this point lies on the circle C: jzO12 = 1, zl = Z2 = 0. 
It follows that Al is invariant by the reflection on any totally geodesic hyper- 
surface of Q5 containing the axis xl and x2. Since M is Sl-invariant, we 
conclude from the previous lemma that Al coincides with some Mp. 

We prove our claim for a totally geodesic T as defined in the lemma above, 
the proof for another one being similar. Consider the family of totally geodesic 
hypersurfaces Tt of Q5 given by 

Tt := {(xl, ..., x6) E Q5Ix3 = t} 
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Clearly, this family foliates Q5. Since M is compact, it follows from the 
previous lemma that there exists t large enough such that M n Tt = 0 . There- 
fore we can apply the same method introduced by Alexandrov to conclude that 
M is invariant by some Tt7 . Since this holds for any foliation which contains 
a totally geodesic hypersurface containing the circle C, it follows by compacity 
that all those hypersurfaces whose reflexion leaves M invariant have a common 
point which has to belong to C, and this proves the theorem. o 

4. THE HOROSPHERES OF CH2 

Let y be a geodesic parametrized by arc length in CH2. Given t E R, 
denote by St the geodesic sphere of CH2 with center at y(t) and with radius 
t. 

4.1 Definition. The hypersurface L of CH2 given by the limit of the geodesic 
spheres St when t goes to infinity is called a horosphere of CH2. 

In the next result we prove, in particular, that the horospheres are actually 
differentiable hypersurfaces of CH2; a useful characterization of them in terms 
of their lift in Q5 is also given. We observe that, up to congruences, there exists 
only one horosphere. This follows by observing that since CH2 is a two point 
homogeneous space, given two points Pi, P2 of CH2 and given two geodesics 
Yl, Y2 through these points, there exists an isometry taking Pi into P2 and yi 
into Y2. 

Proposition 4.2. Up to a congruence, a horosphere L of CH2 is the projection, 
via 7r, of the hypersurface L of Q5 consisting of all points (zo, Z1, z2) E Q5 
satisfying the equation Izo + z1 j = 1 . 
Proof. Let {StJ be a family of geodesic spheres converging to L as in the 
previous definition. Up to a congruence, we may assume that St is centered 
at 7r(y(t)) where y(t) = (cosht, 0, sinht, 0, 0, 0). Therefore St = 7- (St) 
where St is given by 

St = {(cosh(-t)wO + sinh(-t)wl, sinh(-t)wo + cosh(-t)wl, w2)1 
(Wo, w1, W2) E Q5, jwO12 = cosh2 t, Iw 12 + jw212 = sinh2 t} . 

To see this, observe that the set Rt of points (wo, w1, w2) of Q5 satisfying 
the equation 

1wO12 = cosh2 t, Iwij2 + jw212 = sinh2 t 

is the lift of a geodesic sphere of CH2 with radius t centered at the point 
7r(y(O)). Observe also that St = qt(Rt), where qt is the isometry 

( cosh(-t) sinh(-t) 0' 
qt sinh(-t) cosh(-t) 0 

0 0 1/ 

Since qt carries the point y(t) over y(O), we have St = 72 (St) . 
By setting 

zo = cosh(-t)wo + sinh(-t)wl 
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and 
z, = sinh(-t)wo + cosh(-t)wl 

we obtain 
wo = zo cosh(-t) - z1 sinh(-t). 

Replacing this expression for wo in the equation jwOj2 = cosh2 t we get 

cosh2(t)Izo12 + sinh2(t)Iz 12 + sinh(t)cosh(t)(zo1 + zZfo) = cosh2(t). 

Dividing by cosh2(t), taking the limit as t - oc and observing that 

sinh t 
t-+oo cosh t 

we obtain the desired equation. 0 

Theorem 4.3. The horospheres of the complex hyperbolic space CH2 are hyper- 
surfaces with constant mean curvature equal to 4/3 and are all stable. Further- 
more, they are the orbits of the Heisenberg group (a 3-dimensional noncommu- 
tative nilpotent Lie group) which acts by isometries on CH2 without fixed points 
(therefore, the horospheres inherit a natural Lie group structure). In particular, 
the horospheres are (extrinsically) homogeneous submanifolds of CH2. Any two 
horospheres are congruent. 
Proof. We have already observed above that two horospheres are congruent. Let 
us prove that the mean curvature of a horosphere is 4/3. The computations that 
follow will also be important for determining the stability of the horospheres. 
We remark that the mean curvature of a geodesic sphere of radius t in CH2 is 
sinh t/(3 cosh t) + cosh t/ sinh t which converges to 4/3 as t goes to infinity. 

According to Lemmas 4.2 and 2.4, we have just to prove that the mean 
curvature of the hypersurface L of Q5 given by Izo + z1 j = 1 is 1. We 
introduce a function f: Q5 -- R by setting f(zo, z1, Z2) = Izo + Z112. 

Since L = f- 1 (1) , the mean curvature H of L is given by (see [02, p. 124]), 

4H =-divQ5 (grad(f ))Q5) 
I~ grad(f )I Q5 , 

Here, divQ5 and gradQ5 are the divergence and the gradient in Q5. 
f can be considered as a function defined in R6. In the real coordinates 

xl, ...,~ x6, it is given by 

f(Xl, ...,x6) = (Xl + X3)2 + (X2 + X4)2. 

Therefore 

(grad(f ))R6 = (-2(xl + X3), -2(x2 + X4), 2(x1 + X3), 2(x2 + x4), 0, 0) 

since df(v) = (grad(f), v) implies (grad(f))R6 = Ei6j eidf(ei)ei if {eJ}i6= 
is an orthonormal basis of R6. 

At a point z in Q5 consider the orthonormal basis {e1, ..., e4, iz} of 
Tz(Q5). Then {e1, ..., e4, iz, z} is an orthonormal basis of R6, and we 
have 

4 

(grad(f ))R6 = df(ei)ei - df(iz)iz - df(z)z 
i=l 
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that is 
(grad(f))R6 = (grad(f ))Q5 - df(z) z. 

Therefore, 

(grad(f ))Q5 = 2(-1 + fxl, -h + 2f, 1 + fx3, h + fx4, fx5, fx6) 

where, for simplicity, we denote l(xI, X3) = X1 + X3, h(x2, X4) = x2 + x4, and 
f(x1, x2, X3, X4) = (X1 + X3)2 + (X2 + X4)2 = 12(X1 X3)+ h2(x2, X4). 

We have that ((grad(f))Q5, (grad(f ))Q5) = 4f2 and in the points of M we 
have j(grad(f ))Q5 12 = 4. 

For a vector field 

X _ (grad(f))Q5 - (grad(f))Q5 - I(grad(f ))Q51 2f 

we recall that 
4 

divQ5(X) = (VeX , ei) - (VizX, iz) 
i=l 
4 

- Z(VezX, ei) - (VizX, iz) 
i= 1 

where V and V are the semi-Riemannian connection of Q5 and R6 respec- 
tively. X can be extended, in a natural way, to a vector field on R6, also 
denoted by X, and 

divR6(X) = divQ5(X) - (VZX, z) 

or 

(a) divQ5 (X) = divR6 (X) + (d(X)(z), z) . 

On the other hand, considering grad(f)Q5 as a map from R6 to R6, its 
derivative d(grad(f )Q5) is given by the matrix 

21xl - I +f 2hxl 21x1 - I 2hxl 0 0 
21x2 2hx2-I+f 21x2 2hX2 - 1 0 0 

2 1 +21x3 2hx3 1 +21x3+ f 2hx3 0 0 
21x4 I + 2hx4 f21x4 1 + 2hx4 + f 0 0 
21x5 2hx5 21x5 2hx5 f O 
21X6 2hx6 21x6 2hX6 ? f 

so that 

(b) (d(grad(f))Q5(z), z) = -4f and (dX(z), z)lM = -4/2 = -2. 

Moreover, 

divR6(X) = (-1 + 21xl + f - 1 + 2hx2 + f + 1 

+21x3+f+ 1 +2hx4+f +3f) 

(c) + (-21 + 2fxl)(-1/f2) + (-2h + 2fX2)(-hlf2) 

+ (21 + 2fX3)(-1/f2) + (2h + 2fx4)(-h/f2) 
=6. 



HYPERSURFACES 695 

From (a), (b) and (c) it follows that H = 1 as required. 
We will prove now that RiccQ5(N) + jIBjj2 = 0 for the hypersurface L of 

Q5. From ?2.5, it will follow that the horospheres are stable. 
Observe that in this case N is the restriction of the following vector field of 

R6, also denoted by N, 

N(xl, x6) =(xl -1, x2-h,X3 + 1, x4+ h, fx5, fx6). 

The matrix of dN in the standard basis {ei}6 of R6 with (el, el) = 

(e2, e2) = -1 is given by 

O O -1 0 0 0 
O O O -1 0 0 

d N = 1 0 20 0 0 

O O O 0 1 0 
<0 0 0 0 0 1J 

Set B = dN. Then B = BIj:. We have 

6 

IIBIIR6 = -(B(el), B(el)) - (B(e2), B(e2)) + (B(ei), B(e1)) = 6. 
i=l 

Since the norm of B independs on the given orthonormal basis, we can 
choose an orthonormal basis of Tz (L), for z E L and add to this basis the 
vectors z and N to obtain an orthonormal basis of R6 . Therefore, we obtain 

RlB lR6 = JIB (d N(z), dN(z)) + (dN(N), dN(N)) = - 1 + 3 

so that IB1A12.= 6 + 1 - 3 = 4. 
But RiccQ5 (N) = -4 thus RiccQ5 (N) + IIB Ij2 - 0, as desired. 
Let us describe now the (full) subgroup of isometries of CH2 which leaves 

invariant a horosphere of CH2. As before, we work just in Q5, by taking the 
lift L of a horosphere of CH2. Up to a congruence, we may assume that L is 
given by 

(*) Izo + zi=1. 

We will determine the Killing fields X of Q5 belonging to u(1, 2) such that 
X(z) E Tz(L), for any z E L. These Killing fields will constitute a Lie sub- 
algebra of the Lie algebra u( 1, 2) of the group U( 1, 2) whose associated Lie 
group is the largest Lie subgroup of U(1, 2) acting in L. 

We recall that u(l , 2) is given by 

ria u vX 
u( 1, 2) = 4l ift w ,af,l8,yE R , u, v, wE C 

tu \v iy/ 

Furthermore, if X E u(1 , 2), then X determines a Killing vector field of 
Q5 by setting X(z) = X. zt where * denotes the usual product of matrices. 
Any Killing field of Q5 which is SI-invariant is projected, via 7r, in a Killing 
field on CH2 and all Killing fields of CH2 are obtained in this way. 
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Observe that a vector field X = (Xo, X1, X2) of Q5 is a vector field of L 
iff it satisfies 

(Xo + X1)(-O + 51) + (zo + zi)(Xo + X1) = 0 

for any (zo, zl, Z2) E L; this equation is obtained simply by derivating the 
equation (*) along a curve on L. 

Therefore, if 
/ia u v\ 

X= -a ifi w 

then X is a Killing field on L iff 

(u + ul)(jzo2 + jzi 12) + z051 (2u + i(a - fi)) + Yoz, (2u + i(fl - a)) 
+ (Z2Z0 + Z251)(W + V) + (Z52 + 52Z)(W + V) = 0. 

Taking the point z0 = 1, zl = Z2= 0, which is a point of L in (**), we 
obtain u + u = 0, that is u =ix for some x E R. 

Now, any point of the type (zo, z1, 0) of L satisfies the equation z0zz = 
-(zo-1 + 2jzl 12) . Replacing z0z1 given by this equality in (**), we obtain 

(2x + fi - a)(jzl 12 + Zo-5) = 0. 

Since we can take (zo, z1, 0) in L with Iz112 + zc-51 #A 0, we have 2x + 
- a = 0. Then u = (1/2)i(a - fi). Finally, taking the points zo = -3/2, 

Z, = 1/2, Z2 = i and z0 = -3/2, z1 = 1/2, Z2 = 1, which are points of L, 
in (**), we obtain v + w = 0. 

Summarizing all these facts, we obtain that the set R of vectors of u(1, 2) 
whose associated Killing fields are vector fields of L is given by 

ia i 2 r+is 
gf=lt-i 2j ifl -r - is ),a, l,y,r,s E RJ 

r - iS r - iS iy 

By construction, R is a Lie subalgebra of u(l , 2) which, as it is immediate 
to see, has dimension 5. The Lie subalgebra of the isotropy subgroup of the 
Lie group R associated to R, corresponding to the point (1, 0, 0) of M, is 
constituted by the vectors X in R such that X * ( 1, 0, 0) = 0. This subalgebra 
is generated, as it is easy to see, by the matrix of R having a = fi = r = s = 0 
and y = 1 . Therefore, the orbit of the point (1, 0, 0) under R has dimension 
4. Since both this orbit and L are complete and connected, L with dimension 
4, they must coincide. 

Observe that the subspace ' of R given by y = 0 is a Lie subalgebra of 
R and the associated Lie group, say G, acts transitively on L without fixed 
points. This induces on L a natural structure of a Lie group. 

As we have seen before, L := LI/s is a horosphere of CH2, and, by the 
previous construction, R acts on L since it contains S1 as a subgroup. Clearly, 
this action is transitive. Since S1 is in the center of R, and since the action 
of S1 on L is trivial, R/S1 is a Lie group which still acts transitively on 
L. The Lie algebra of R/S1 is naturally identified with the Lie subalgebra 
of R such that a + fi + y = 0. As an intersection of two Lie algebras, the 
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subspace W of 3 given by y = 0 and a + fi = 0 is a Lie subalgebra of 
3 and, via the above identification, is a Lie subalgebra of the Lie algebra of 
R/S1 . The associated Lie group G of W is a 3-dimensional Lie group acting 
transitively on L and without fixed points, inducing therefore a structure of 
Lie group on the horosphere L. We claim that G is the Heisenberg's group. In 
fact, straightforward computations show that W is noncommutative and that 
its derivative Lie subalgebra [,W, W] coincides with the center of W, that is, 
,W is a nilpotent 3-dimensional noncommutative Lie algebra, that is, it is the 
Lie algebra of the Heisenberg group. 0 

5. EQUIDISTANT HYPERSURFACES 

As it is well known, the complex hyperbolic space CH2 is a complex manifold 
and the image of any complex line of the tangent space of CH2 at any point 
under the exponential map is a totally geodesic submanifold. We observe that 
two totally geodesic complex hypersurfaces T1 and T2 of CH2 coincide up to 
an isometry of CH2. In fact: since CH2 is a homogeneous manifold, we can 
assume that they have a point of intersection, say p . Moreover, it is known that 
the isotropy group of the isometry group of CH2 at any point is the group U(2) 
which acts transitively on the complex lines through the origin of the tangent 
space at the point. Hence, up to an isometry we may assume that T1 and T2 
have the same tangent plane at p. Since they are totally geodesic, they have to 
coincide. 

By definition, an equidistant hypersurface of CH2 is the boundary of a tubular 
neighborhood around a totally geodesic complex hypersurface of CH2. 

We want to describe now the lift to Q5 of a equidistant hypersurface of 
CH2 . We need one lemma. We will say that a hypersurface P of a Riemannian 
manifold N is an equidistant hypersurface of a submanifold M of N if P is 
contained in the boundary of a tubular neighborhood of M in N. 

Lemma 5.1. Let N be a complete Riemannian manifold and let G be a Lie 
subgroup of the isometry group of N acting on N with cohomogeneity one. 
Assume that the orbits of G are properly embedded in N. Then, any principal 
orbit of G is an equidistant hypersurface of any orbit of G. 
Proof. Let P be a principal orbit of G and 0 any orbit of G. Choose p in 
P . Since 0 is properly embedded, there exists q E 0 such that s := d (p, 0) = 
d(p, q) > 0, where d denotes the Riemannian distance in N. Therefore, there 
exists v E Tq(0)1, IIvII = s such that expq v = p, where expq: Tq(N) , N is 
the usual exponential map of Riemannian geometry. Hence, given g E G, since 
g is an isometry, we have g(expq v) = expg(q) g* (v) with g* (v) E Tg(p) (0)', 
IIg*(v) jj = s . This proves that P = G(p) is contained in a tubular neighborhood 
of radius s of 0, proving the lemma. 

We can prove now the following proposition. 

Proposition 5.2. Given c > 0, let Pc be the hypersurface of Q5 defined as the set 
of all points (zo, zI, Z2) in Q5 such that IZ212 = C2 (therefore, -Izoj2 +IZI 12 = 

-(1 + C2)). Then T := 7r(Po) is a totally geodesic surface of CH2 isometric to 
the 2-dimensional hyperbolic space, and any Pc := 7r(Pc) is the boundary of a 
tubular neighborhood of radius sinh- 1 (c) of T. 
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Proof. Straightforward computations show that T is a totally geodesic surface 
in CH2 isometric to the 2-dimensional hyperbolic space. 

We observe that the hypersurfaces Pc, c > 0, are principal orbits and T a 
singular orbit of the action on CH2 (via 7r) of the subgroup U(1, 1) x U(1) 
of U(1, 2) consisting of the matrices of the form 

{B O 
(O ei?) 

where B E U(1, 1) and 0 E [0, 27X], so that we can apply the previous lemma 
to conclude that the hypersurfaces PC are equidistant hypersurfaces around T. 

Finally, observe that the geodesic Xr o y: R -- CH2 where y(t) = (cosh(t), 0, 
0, 0, sinh(t), 0) is orthogonal to T at t = 0, is parametrized by arc length, 
and satisfies y(t) E PSinh2(t), concluding the proof of the proposition. 0 

Theorem 5.3. An equidistant hypersurface Pc in CH2 is a homogeneous hy- 
persurface with constant mean curvature (1 + 4c2)/3cvfl c2. It is stable if 
c > v/;I/2 and unstable otherwise. Two equidistant hypersurfaces are congruent 
iff they have the same mean curvature. 
Proof. It follows from the above that the equidistant hypersurfaces are homo- 
geneous hypersurfaces of CH2. Let us compute now their mean curvature. It 
is sufficient to compute the mean curvature of the lift PC at a particular point 
p. We choose p = (Vl + c2, 0, 0, 0, c, 0) . We have 

p = +c2V 1 + CV5 

where {vj}j? is the standard orthonormal basis of R6 with (vl, v1) = (v2, v2) 
-1 and (vi, vi) = 1, i = 3, 4, 5, 6. The set {V2, V3, V4, V6} is an or- 

thonormal basis of Tp(Pc), and it is not difficult to prove that N := -cv1 - 

vTFl v5 is unitary and normal to PC in Q5. 
As in the case of the geodesic spheres (see ?3), we have 

Hp= 4 ((ej(&(vj, vi), N)) + ((WV6, V6), N)) 

where & is the second fundamental form of PC in R6 . From the definition of 
1P, it follows that 

&(Vi, vi)= (Vi, Vvi), i =2, 3, 4, 

and 

&(V6, V6) = v5 

so that 

Hp= 
- 4 C ( 1 +4~C2) 

hence, the mean curvature of Pc is 

as required. 
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We study now the stability of the PC . To do that, we first compute the value 
of Ricc N + IIjBI2 of the hypersurface PC of Q5. 

We have that the Ricci curvature of Q5 (with respect to any direction) is 
constant with value -4 (see [02, p. 88]). Since Pc is a homogeneous subman- 
ifold of Q5, IIBII is constant so that it is enough to compute its value at the 
point p fixed above. 

Using the computations above and the ones of ?2.5, we obtain 

+C2 c2 

and 
I - 2c 2 

RiccQ5(Nf) + IIII2 C2( +C2) 

Thus, c2 > 2 implies that RiccQs(N) + jIBI12 < 0 and from 2.5 it follows 
that Pc is stable in this case. 

Let us assume C 2< 2 . To prove that Pc is unstable it suffices to exhibit a 
piecewise smooth function f defined in a relatively compact domain D of PC 
satisfying the following conditions: 

f is S1-invariant, that is, f(eioz) =f(z), 

flOD-O, jfdPc=O 

and 

9"(0)(f ) = jf [ gradf 12 - (RiccQs(N) + IIBI2)f2]dPc < 0. 

To compute this integral, we use the following local coordinates of PC: 

T: ((x, /3, y, t) --- (e iaA cosh(t/A) , e'fA sinh(t/A), e'yc) 

where A = vfiT0, a, /? and y vary in the interval (0, 27Q), and t E R. In 
these coordinates, the volume element of PC is 

dPc = c(l + c2) cosh(t/A)I sinh(t/A)Idt A da A dfl A dy. 

For a fixed real number a, set Da .- {z(a, ,B, y, t)lt E (-a, a)}. Clearly, 
Da is a relatively compact domain in PC 

Now, for a fixed b E (0, a), consider the piecewise smooth real function f 
defined in [-a, a] by 

-t - a b if -a < t < -b, 
a a-b-- 

f(t)= t if -b<t<b, 

tr + b if b<t<a, 

f determines a piecewise smooth function f on Da by setting 

f(T(a, /., y, t)) := f(t). 
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It follows that fjIODa = 0 since f(a) = f(-a) and that 

I fdP = [c2(l + c2) dJadfldy] jaf(t)cosh(t/A)I sinh(t/A) Idt 

=O ~ ~ ~ Y= 
=0 

the last integral being zero since f is an odd function. 
Now, we will calculate "((0) (f). In these coordinates, it is easy to prove 

that I grad f12 = f'(t)2. 
For simplicity, set 

27r 
G := c2(1 + C2) dad tidy = 8c2(1 + C2)>3 

,,= 

and 

I := RiccQ5 (N) + 11-?t2 
1 - 2c2 

We observe that I > 0 since by hypothesis c2 < I . Then 

"(O)(f)= | (I grad(f )12 - If2) dPc 
Da 

= G (j f'(t)2 cosh(t/A)I sin h(t/A) I d t 
-a 

_I f(t)2 cosh(t/A) I sin h (t/A) I dt) 

Since f' and f2 are even functions, we have 

a rb 
j fi(t)2 cosh(t/A) I sinh(t/A) I dt = 2 cosh(t/A) sinh(t/A) dt 

(1) a 2b2 b 
+ (a - b)2 I cosh(t/A) sinh(t/A) dt 

and 

I [ f(t)2 cosh(t/A)I sinh(t/A) dt = 2I ft2 cosh (t) sinh (s) dt 
(2) ~-a 

A A 
(2) ~ 2b2 ~b 

+ (a - b)2 (a - t)2 cosh(t/A) sinh(t/A) dt. 

We will prove that it is possible to choose a and b such that (2)-(1)> 0, 
that is, 8"'(0)(f ) < 0 . 
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We have 
b 

(2)-(1) = 2 j(It2 _ 1) cosh(t/A) sinh(t/A) dt 

2b2 b 
+ (a - b)2 ]a(I(a -t)2 _ 1) cosh(t/A) sinh(t/A) dt 

rb 

= 2 (It2 - 1) cosh(t/A) sinh(t/A) dt 

2b 2 a- I IJVI 
+ (a - b)2 (I(a 

- 

t)2 _1) cosh(t/A) sinh(t/A) dt 

+ -b2 a (I(a - t)2 _ 1) cosh(t/A) sinh(t/A) dt. 

We observe that It2 _ 1 > 0 if t > 1/VIZ so that it is possible to choose b 
with b < a such that 

b 

J(1t2 - 1) cosh(t/A) sinh(t/A) dt > 0. 

On the other hand, a-- I/ 'I is a root of the polynomial p(t) I(a - t)2 -1, 
and p(t) > 0 for 0 < t < 1/vIZ. Then, the second term of the last equality 
above is positive for all b such that 0 < b < a - 1/vIZ. Since -1 < p(t) < 0 
for a - I/VI < t < a we have 

b 

-(I(a t)2 _ 1) cosh(t/A) sinh(t/A) dt 

a 
> J - cosh(t/A) sinh(t/A) dt 

- (sinh2(a/A) - sinh2((I/A))(a - (1/ VI))). 

This last term is negative but tends to zero when a increases. This means 
that fixing b with b < a such that 

b 

(It2- 1) cosh(t/A) sinh(t/A) dt > 0 

it is possible to choose a satisfying b < a - 1/VIZ with 

a 
j - cosh(t/A) sinh(t/A) dt 

small enough in such a way that (2)-(1) is positive. O 
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