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Abstract
1.	 Hierarchical N-mixture models have been suggested for abundance estimation 

from spatiotemporally replicated drone-based count surveys, since they allow 
modeling abundance of unmarked individuals while accounting for detection er-
rors. However, it is still necessary to understand how these models perform in the 
wide variety of contexts and species in which drone surveys are being used. This 
knowledge is fundamental to plan study designs with optimal allocation of scarce 
resources in ecology and conservation.

2.	 We conduct a simulation study to address N-mixture model (binomial and multi-
nomial) performance and optimal survey effort allocation in different scenarios of 
local abundance and detectability of individuals, focusing on their application for 
drone-based surveys. We also investigate the benefits of using a double-observer 
protocol (either human or algorithm) in image review to decompose the detection 
process in availability and perception. Finally, we illustrate our simulation-based 
survey design considerations by applying them to abundance estimation of marsh 
deer in the Pantanal wetland (Brazil).

3.	 Accuracy of abundance estimation with N-mixture models increases with local 
abundance in sites and especially with the availability of individuals. The opti-
mal design requires more visits at fewer sites when the availability probability 
is lower, and the optimal design is more flexible as local abundance increases. 
Two observers checking images can increase the estimator performance even at 
very high perception probabilities. We quantified how much the use of a double-
observer protocol in image review can reduce fieldwork effort while achieving 
the same accuracy.

4.	 N-mixture models can deliver accurate abundance estimates from spatiotem-
porally replicated drone surveys in a wide variety of contexts while accounting 
for imperfect detection. The improvements achieved by a consciously planned 
design, rearranging survey efforts among sites and visits, as well as using a sec-
ond observer in image review, can be crucial to detect trends when monitoring a 
population or to categorize a species as threatened or not.
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1  |  INTRODUCTION

The use of drones (a.k.a. Unmanned Aerial Vehicles or Remotely 
Piloted Aircrafts) to survey wildlife populations has spread to many 
different species in many different contexts. Drones are replacing 
conventional aircraft to survey for instance large herbivores (e.g. 
Barasona et al.,  2014; Rey et al.,  2017; Vermeulen et al.,  2013), 
waterbirds (e.g. Hodgson et al.,  2018; Hong et al.,  2019), marine 
mammals (e.g. Goebel et al., 2015; Hodgson et al., 2013, 2017) and 
crocodiles (e.g. Ezat et al., 2018). Furthermore, given the flexibility 
of this tool, drone surveys are being explored for situations where 
conventional aircraft were unsuitable before, expanding the ability 
of aerials surveys to sample smaller species (e.g. canids, Bushaw & 
Ringelman, 2019; sharks and rays, Kiszka et al., 2016) and in forested 
areas (e.g. primates, de Melo, 2021; koalas, Hamilton et al., 2020). 
Thus, drone surveys are improving the way we collect abundance 
data for ecological studies (e.g. population dynamics) or conserva-
tion/management issues (e.g. threatened or invasive species mon-
itoring). The recent developments in machine learning algorithms 
for image processing (e.g. convolutional neural networks; LeCun 
et al., 2015; Weinstein, 2017) have greatly improved the efficiency 
of drone-based surveys to generate abundance estimates.

To estimate the abundance of wildlife populations using drones, 
counts need to be carried out by searching for a species of interest 
on the images or footage obtained along with the flights. Counts, 
either if conducted manually by human observers or using an au-
tomated algorithm, are subject to errors that might bias estimation 
of abundance if not properly addressed. Some individuals may be 
hidden (e.g. below vegetation, inside a burrow, or underwater) and 
therefore are not visible on images and indetectable by any reviewing 
method, or may be similar to the background making them difficult 
to detect either by a human or an algorithm. An individual can thus 
be missed, yielding false-negative errors in counts (i.e. imperfect de-
tection), by two different processes: (i) it is unavailable for detection 
at the time of the flight or (ii) it appears on an image but can be 
missed by a human observer or an algorithm during reviewing (Brack 
et al., 2018). As in other wildlife survey methods, processes driving 
these detection errors in drone-based counts can vary in space and 
time and may depend on species characteristics (e.g. conspicuity and 
behavior), habitat features (e.g. tree coverage or water turbidity) and 
conditions when surveying (e.g. weather; Guillera-Arroita,  2017). 
Furthermore, some characteristics specific to drone surveys could 
also affect detectability, such as sensor type (e.g. thermal or visi-
ble), pixel resolution and flight height. Manual or automated review-
ing procedures may also result in different detection probabilities. 
While false negatives are expected to be the major source of error 
in drone aerial counts (Brack et al., 2018), false-positive can also af-
fect counts in drone surveys. For example, other similar species or 

a background feature could be misidentified as the target species 
(misidentification error) or the same individual could be counted 
more than once (double counts) because of either appearing in over-
lapped pictures or moving between lines during the flight.

Hierarchical N-mixture models have been suggested to model 
abundance from spatiotemporally replicated aerial counts since they 
are a valuable framework for studying unmarked populations while 
accounting for the sources of imperfect detection (Brack et al., 2018; 
Christensen et al., 2021; Martin et al., 2015; Williams et al., 2017). In 
such approach, count data obtained for each visit (i.e. repeated flight) 
in each site are modelled as a result of (at least) two hierarchically 
connected processes: local abundance at sites and observation (de-
tection) process of individuals in each visit for each site (susceptible 
to imperfect detection). Moreover, a double-observer protocol can 
be applied to image review to permit decomposing the detection pro-
cess in two components: availability of individuals to detection in the 
images and perception errors (not detecting those available individuals 
in the images). By fitting these double-observer count data on spatio-
temporally replicated surveys, it is possible to address the two com-
mon sources of false-negative errors in aerial surveys—availability and 
perception – without resorting to auxiliary data such as biotelemetry 
marked individuals (Brack et al., 2018). Such double-observer proto-
col can be composed by two human observers, a human observer 
and an algorithm or even two different algorithms. Approaches to ac-
commodate false positives in the modelling structure are still scarce 
and they are typically addressed by avoiding them in sampling design 
and reviewing process (see Brack et al., 2018 for further discussion).

The accuracy (bias and precision) of hierarchical models for 
estimating abundance depends on several factors, including pop-
ulation density, sample size and detectability (e.g. availability and 
perceptibility), so their efficient use depends on an adequate sam-
pling design (Field et al., 2005). Furthermore, the reliability of drone 
surveys to assess abundance in different contexts depends on as-
sessing how these abundance estimators perform in a wide variety 
of scenarios of population densities and detection probabilities of 
individuals. Since the total effort in fieldwork is commonly limited 
by a fixed budget B, the sampling design of hierarchical models 
must distribute this budget in a specific combination of number 
of sites S and visits J so that B = S × J. A survey design could be 
planned to spend the budget by visiting more sites but fewer times; 
this gives more sampling units to better estimate abundance, but 
fewer records per site and hence less information to estimate de-
tection probabilities. On the other hand, one could choose to char-
acterize the detection process more thoroughly by spending the 
budget with more repeated visits to fewer sites, but possibly for-
going the ability to capture variations in abundance. Thus, for each 
scenario of population density and detectability, there is an opti-
mal combination of survey design elements in this trade-off (i.e. 
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prioritize more sites and less visits, or more visits in fewer sites) 
that produces the most accurate estimation of abundance.

As different scenarios demand different optimal effort allo-
cations, it is important to optimize the available budget to an ef-
ficient spending of the usually scarce resources for ecological 
studies (i.e. conscious sampling design; e.g. Conn et al., 2016; Knights 
et al., 2021). Simulation experiments are a powerful approach to ad-
dress the performance of estimators in different contexts and assess 
optimal survey allocation to assist sampling design decisions (Kéry 
& Royle, 2016; Zurell et al., 2010). In short, this kind of experiment 
encompasses a computer-based stochastic simulation of the data 
collection process over a simulated population for which the true 
underlying parameters are known at both levels (biological and ob-
servational). Then, simulated data are fitted to the respective (or an 
alternative) model structure, and the capacity of the estimator to 
rescue true parameter values is evaluated (performance).

Performance of N-mixture models, particularly the binomial 
N-mixture model for single-observer counts, has been evaluated 
before but in limited scenarios of abundance, detection probability 
and number of sites and visits, or evaluating model performance in 
the presence of assumption violations (Duarte et al., 2018; Kéry & 
Royle, 2016; Veech et al., 2016; Yamaura, 2013). Here, we provide 
a wide and systematic scan of N-mixture models' performance and 
survey effort allocation (as for occupancy-detection models in Bailey 
et al., 2007; Mackenzie & Royle, 2005) in different scenarios of pop-
ulation abundance and detectability of individuals, focusing on their 
application for drone-based surveys. We also investigate the bene-
fits of using a double-observer protocol to decompose the detection 
process in availability and perception. We conducted three exper-
iments creating simulated count data from spatiotemporally repli-
cated surveys and fitting N-mixture models to the data aiming to:

1.	 Assess the performance of N-mixture models using double- 
and single-observer counts under different scenarios of local 
abundance and detection probability and address the optimal 
survey effort allocation in terms of spatial versus temporal 
prioritization for each scenario.

2.	 Investigate how the use of a double-observer protocol increases 
model performance and affects optimal survey effort allocation.

3.	 Evaluate if the use of a double-observer protocol can reduce the 
fieldwork effort required to match the performance of the single-
observer approach in the same circumstances.

Finally, we showcase our simulation-based survey design consid-
erations by applying them to estimate the abundance of marsh deer 
Blastocerus dichotomus in the Pantanal wetland (Brazil).

2  | N-­MIXTURE MODELS FOR SPATI ​OTE​
MPO​RALLY REPLICATED DRONE SURVEYS

To estimate abundance with N-mixture models, drone flights are 
conducted with repeated visits in multiple sites (i.e. spatiotemporally 

replicated) and counts are carried out in the collected imagery by 
either one or two observers (human and/or an algorithm; Figure 1). 
Assuming abundance Mi at sites i ∈ {1, … , S} is constant along vis-
its j ∈ {1, … J}, we can model this local abundance at sites under a 
Poisson distribution (or other distribution for count data) with mean 
(and variance) λ:

With a single-observer reviewing imagery, counts Yij for each 
visit j at each site i are determined by a binomial distribution in which 
each individual of the local population Mi has a probability p* of 
being detected:

In this case, it is not possible to decompose the detection probability p*, 
assumed to be the product of two processes: availability probability φ and 
perception probability p. This two-level model for single-observer counts 
is called binomial N-mixture model (Kéry et al., 2005; Royle, 2004).

When using a double-observer protocol for image review, the 
observation process can be segregated into two levels. Each individ-
ual of Mi has a probability φ of being available for detection in (the 
image correspondent to) each visit j, so de facto, of the Mi individu-
als, only Nij will be available for detection in the imagery:

When sampled sites are truly closed throughout visits (no entries 
nor departures of individuals), the availability process described by 
φ corresponds to the probability of an individual present at the site i 
to not being hidden. However, not rarely when sampling wildlife spe-
cies, individuals could move in and out of the surveyed sites. Then, 
availability would correspond to two processes: (i) the probability 
of the individual (that has its home range overlapping the sampled 
site) being present at site i in visit j and (ii) not being hidden (Brack 
et al., 2018; Chandler et al., 2011; Kéry & Royle, 2016).

Finally, each individual from the available pool Nij, has a probabil-
ity p of being detected by each observer (independently), resulting 
in four possible encounter histories (as in a capture-recapture proce-
dure): k1 = ‘11’ detected by both observers; k2 = ‘10’ only detected 
by the first observer; k3 = ‘01’ only detected by the second observer 
and k4 = ’00’ not detected by any observer. Thus, the resulting count 
data Yijk for each visit j, at each site i, and under each observable en-
counter histories k ∈ {1, 2, 3} is modeled as a function of multinomial 
conditional cell probabilities πk:

in which, the probability of each observable encounter history is de-
termined as k11 = p2; k10 = p(1 − p) and k01 = (1 − p)p. This three-level 
model for independent double-observer counts is known as multi-
nomial N-mixture model with a temporary emigration component, 

Mi
∼ Poisson(�).

Yij
∼ binomial

(

Mi , p
∗
)

, where p∗ = �. p.

Nij
∼ binomial

(

Mi ,�
)

.

Yijk
∼multinomial

(

Nij,�(p)k
)

.
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hereafter “multinomial” (Chandler et al., 2011). The double-observer 
protocol can be applied in only a proportion (i.e. subset) of the imag-
ery (flights), still being possible to segregate the two observation lev-
els by modeling the data from the mixed double- and single-observer 
protocols.

For each of the presented levels, heterogeneity in the basic pa-
rameters (λ, φ, p, p*) can be modeled as a function of explanatory 
variables through linear regression and an appropriate link function 
(log for λ and logit for probabilities). Count data, with either single- 
or double-observer (or mixed) protocols, can be obtained manually 
by human observers or by an algorithm trained to detect the target 
species in the imagery.

If the spatial temporary emigration process is expected to be 
significant, the local abundance parameter should be interpreted 
with caution. A more adequate interpretation for λ would be the 
expected number of individuals of the population that uses a given 
site (i.e. intensity of use). To reduce the effects of spatial temporary 
emigration, one could plan sampling design to (i) shorten the time 
interval between repeated visits (but avoiding temporal autocorrela-
tion) and (ii) define site size as relatively large in comparison with the 
expected area used by the individuals during sampling. Christensen 
et al.  (2021) proposed a post hoc sensitivity analysis to define the 
best length to split flight lines into sites and found that the ideal 
size is similar to the home range size reported to the target species. 
Auxiliary data from telemetry or some marked individuals can pro-
vide information to segregate the two components of temporary 
emigration (spatial and temporal; Brack et al., 2018).

In these formulations of N-mixture models, count data are as-
sumed to not have false-positive errors. This might be particularly 
important when using counts from an algorithm, that can be then 
post-checked by an observer to avoid false positives. Although this 
is an area of research that needs further development, there are 
available approaches for some cases. Misidentification between 
similar species can be addressed in N-mixture models by model-
ing the uncertain detections (Chambert et al.,  2016). If a fully au-
tomated approach is used, the multiple-observer approach, with a 
human observer reviewing only a subset of the imagery, could be 
used to estimate both perception and misidentification errors of 
the algorithm (Conn et al.,  2013, 2014). Double counts commonly 
can be avoided with decisions in sampling design or review process 
(e.g. separate flight strips, count in orthomosaic; Brack et al., 2018). 
Accommodating false-positive errors resulting from the movement 
of individuals between lines could be modeled, for example, from 
telemetry data (Terletzky & Koons, 2016).

3  |  SIMULATIONS GENERAL DESIGN

To assess the performance and optimal design of N-mixture models 
for drone-based surveys, we simulated count data under single- and 
double-observer review protocols and analyzed them with the cor-
respondent N-mixture model structure (binomial or multinomial). In 
software R (R Core Team, 2020), we simulated the local abundance 
as Poisson distributed, a binomial outcome for available individuals 

F IGURE  1 Sampling design, 
count data and N-mixture models for 
spatiotemporally replicated drone-
based surveys with a single or multiple 
observers reviewing images. Single-
observer counts are fitted with binomial 
N-mixture models and multiple observer 
counts under a Multinomial N-mixture 
model with a temporary emigration 
component. Parameters: λ = expected 
local abundance; p* = overall detection 
probability; φ = availability probability 
and p = perception probability. Note that 
observers can be either a human or an 
algorithm. Figure adapted from Brack  
et al. (2021).
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(in the multinomial model) and the single-observer counts under 
overall detection (in the binomial model), and a multinomial out-
come derived from the perception probability by the observers 
for the double-observer counts. For each simulation, we defined 
the number of sites, visits and observers and the true local abun-
dance, availability and perception probabilities. We considered all 
model parameters constant (i.e. no covariates), a common prac-
tice in survey design studies that aim to find general design prin-
ciples (e.g. Guillera-Arroita et al., 2010; Mackenzie & Royle, 2005; 
Yamaura, 2013). We fitted simulated data using maximum likelihood 
estimation with the R package unmarked (Fiske & Chandler,  2011), 
using the pcount function for the single-observer data and gmultmix 
for the mixed- and double-observer protocols.

All simulation results and code to reproduce the simulations and 
results of this paper are available at https://github.com/ismae​lvbra​
ck/desig​nNmix​4dron​eSurveys. We provide R code to simulate and 
analyze data under both modeling structures (single binomial and 
double multinomial N-mixture models, including the mixed-protocol 
model) using maximum likelihood estimation, as well as BUGS code 
to conduct Bayesian analysis for the same models using JAGS soft-
ware (Plummer, 2003) from R (jagsUI package; Kellner, 2015). As sup-
plementary material, we provide an interactive “ready-to-consult” 
website (https://ismae​lvbra​ck.github.io/desig​nNmix​4dron​eSurveys) 
to assist future studies with planning drone-based surveys according 
to specific scenarios of expected local abundance and detectabil-
ity. There, it is possible to explore all results of this study on the 
performance of N-mixture models with single and double observers 
and the optimal survey effort allocation in a user-friendly interface, 
besides simulating examples of these models.

For each simulation study, we defined different scenarios con-
sidering local abundance, availability and perception probability. 
For each of these, we simulated data collection and analysis for 
different combinations of number of sites, visits and observers, 
and calculated the estimator accuracy for the expected local abun-
dance parameter based on 2000 iterations of the simulation using 
the root mean squared error relative to the true parameter value 
(rel. RMSE =

1

�

�

1

n

∑n

i=1

�

�̂i−�
�2

; in which n is the number of iterations, �̂ 
is the estimated expected local abundance and � is the true known 
expected local abundance). The lowest rel.RMSE value for each 
scenario of {λ, φ} was used to define the optimal survey design 
Jopt = B/Sopt. From the 2000 iterations of each scenario, we excluded 
those with no convergence or with infinite abundance estimates 
(upper 95% confidence intervals >200 individuals, associated with 
detection probabilities near zero). We are using here the rel.RMSE 
as a measure of accuracy in the sense that it represents bias and 
precision (Hone,  2008). For the purpose of using N-mixture mod-
els for drone-based counts, we fixed the perception probability p at 
0.8, considering what we have seen as a moderately low perception 
threshold in studies with drone surveys with both human observers 
(e.g. Brack et al., 2021; Patterson et al., 2016; Preston et al., 2021; 
Vermeulen et al.,  2013) and algorithms (e.g. Dujon et al.,  2021; 
Eikelboom et al., 2019; Kellenberger et al., 2018). However, for other 
applications of N-mixture models with availability and perception 

observation processes (e.g. auditory bird point counts, terrestrial 
strip transects of burrowing species, or boat-based counts of marine 
mammals), scenarios with lower perception probabilities should be 
explored (with just slight modifications in the code provided). We 
also note that, if the study focus is not on the local abundance level 
but on other parameters (e.g. availability or detection), defining opti-
mality with respect to these parameters is likely to lead to different 
optimal survey designs (Guillera-Arroita et al., 2010).

4  |  SIMULATION STUDY 1:  OPTIMAL 
DESIGN OF COUNT SURVEYS FOR  
N- ­MIXTURE ABUNDANCE ESTIMATION

We assessed the performance and optimal effort allocation of  
N-mixture models for drone surveys in 73 scenarios defined from the 
combination of 11 mean local abundances in sites λ {0.1; 0.2; 0.3; 0.5; 
1; 2; 4; 8; 12; 20; 40} and eight availability probabilities φ {0.1; 0.2; 0.3; 
0.4; 0.5; 0.6; 0.7; 0.8}. For the three highest values of local abundance, 
we only simulated scenarios with availabilities of {0.1; 0.2; 0.5} to 
check general trends for higher local abundances while mitigating the 
time consumed in simulation tasks. Perception probability p was fixed 
at 0.8. We defined a fixed total effort (budget) of B = 2000 flights (i.e. 
2000 site visits); we purposely chose a high number here to repre-
sent a case where data are not a limiting factor for analysis (i.e. large 
sample dataset) and hence ensure that large-sample approximations 
from maximum likelihood estimation hold in scenarios of low local 
abundance and/or detectability. For each scenario, we tested differ-
ent combinations of this total effort B on the distribution of sites S 
and visits J so that B = S*J (e.g., 1000 sites with 2 visits, 250 sites with 
8 visits, 100 sites with 20 visits and so on). We ranged the number of 
visits from J = 2 until either J = 10 visits or until being sure that the 
rel.RMSE was rising up (i.e. the estimator accuracy was decreasing).

We then assessed the accuracy of the estimator of local abun-
dance (based on the rel.RMSE from the 2000 iterations) for each 
number of visits in each scenario of {λ, φ}. We found the optimal 
survey design for each scenario based on the lowest rel.RMSE value. 
Because of the difference in rel.RMSE between numbers of visits 
was very low for many scenarios, we also obtained the range of de-
signs (S*J) for which the rel.RMSE was lower than 0.5% of the rel.
RMSE under the optimal design and considered the accuracy inside 
this range as equivalent. This means that a range of designs results 
in very similar performance and thus other criteria (e.g. travel times 
between sites) could be used to choose among those possibilities 
when designing a study.

We repeated this procedure on the 73 scenarios considering the 
single-observer counts (binomial N-mixture model) and the (full) 
double-observer protocol (multinomial N-mixture model). Finally, 
we checked whether the pattern we found for optimal designs 
across scenarios was consistent for a different total survey effort 
using B = 4000 flights, that is, if the pattern for Jopt is independent of 
the total effort, as it is observed for the related occupancy-detection 
models (Mackenzie & Royle,  2005). For this last analysis, we only 
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considered six scenarios using expected local abundances {0.2; 1} 
and availability probabilities {0.2; 0.4; 0.6}.

4.1  |  Results

Both model structures—single-observer binomial and double-
observer multinomial N-mixture models—presented unbiased esti-
mations of local abundance for all evaluated scenarios (Figure S6). 
The rel.RMSE of N-mixture models under the optimal number of 
visits in each scenario of expected local abundance λ and availabil-
ity φ ranged from 0.024 to 0.426 for the single-observer model and 
from 0.017 to 0.378 for the double-observer model. That is, under 
optimal survey effort allocation, the mean error of the estimator 
relative to the true expected abundance ranged between ~2% and 
~40%, depending on population density (local abundance in sites) 
and availability of individuals. Estimators reached much larger rel.
RMSE values (near one) for designs with a small number of visits in 
scenarios of low expected local abundance ≤0.5 (Figures S1 and S2). 
Only in one scenario (λ = 0.1; φ = 0.1), the rel.RMSE was higher than 
30% (for both modeling approaches).

The loss of performance from the single- to double-observer ap-
proaches (i.e. difference in rel.RMSE) was 0.05 lower for the {λ = 0.1; 
φ = 0.1} scenario, and this difference reduced with the increase in 
local abundance and/or availability (Figures S1 and S2). The accuracy 
of both model structures increased with local abundance λ and espe-
cially with the availability of individuals φ.

The optimal number of visits varied from J =  28 to J =  2 for 
the single-observer model and from J = 22 to J = 2 for the double-
observer model depending on the scenario of local abundance 
and availability (Table 1). Generally, Jopt decreased with increasing 
availability φ. Jopt was lower for the double-observer model than 
for the single-observer one. The range of possible optimal num-
ber of visits Jopt (i.e. considered equivalent with a difference in rel.
RMSE < 0.5%) increased with expected local abundance λ (Table 1).

In the six scenarios for which we evaluated a different total ef-
fort B = 4000 (λ = {0.2; 1}; φ = {0.2; 0.4; 0.6}), we found a very similar 
Jopt (except for a few stochastic differences because of the num-
ber of iterations). We interpret this as supporting the idea that the 
optimal number of visits is independent of the total effort in large 
sample sizes for both binomial and multinomial N-mixture models 
(Figures S3-S5).

5  |  SIMULATION STUDY 2:  EXPLORING 
THE BENEFIT OF THE DOUBLE- ­OBSERVER 
PROTOCOL

To assess the improvement in accuracy with the use of a double-
observer protocol, we defined six scenarios by combining expected 
local abundances λ {0.2; 1} and availability probabilities φ {0.2; 0.4; 
0.6}, with fixed p = 0.8. For each scenario, we tested different com-
binations of number of sites S and visits J using a fixed total effort of 

B = 2000, for different proportions of the flights checked by two ob-
servers (double-observer protocol): {0%; 20%; 40%; 60%; 80%; 100%}. 
The 0% corresponds to the single-observer binomial model, the 100% 
corresponds to the full double-observer multinomial model (both con-
sidered in simulation experiment 1), and the rest are mixed protocols 
with only a percentage of flights reviewed by a second observer.

The simulation procedure was as in simulation study 1 (rel.RMSE 
from 2000 iterations under each number of visits; total survey bud-
get B  =  2000 flights) for each proportion of the double-observer 
protocol. For each double-observer proportion, we found the 
optimal design Jopt for each scenario of {λ, φ} with the lowest rel.
RMSE. Because of the stochasticity from the 2000 iterations, we 
estimated a linear trend of the rel.RMSE in relation to the proportion 
of double-observer review and calculated the linear decrease in rel.
RMSE relative to the single-observer model (0%).

5.1  |  Results

The accuracy of the abundance estimator increased (decreasing rel.
RMSE) with the proportion of images checked by two observers 
(Figure 2). The difference in accuracy reached almost 15% for the 
full double-observer model in the {λ = 1; φ = 0.6} scenario (compared 
with the baseline performance of a single observer). The optimal al-
location of effort showed a tendency to decrease the number of re-
peat visits (lower J), thus allowing visiting more sites (higher S), as the 
proportion of double-observer protocol increases (Figure S4).

6  |  SIMULATION STUDY 3:  REDUCING 
FIELDWORK EFFORT BY EMPLOYING A 
DOUBLE- ­OBSERVER PROTOCOL

We have seen how the double-observer protocol leads to increased 
accuracy in the estimation of local abundance. Alternatively, double 
observers could be used to reduce the amount of fieldwork effort 
needed to match the same accuracy that is obtained from an op-
timal design of the single-observer model. We explored this strat-
egy using the same six scenarios of simulation study 2 (λ = {0.2; 1}; 
φ = {0.2; 0.4; 0.6}; p = 0.8) by calculating the proportional reduction 
of total fieldwork effort (B = 2000 flights) that can be achieved with 
a double-observer protocol while still matching the accuracy (lowest 
rel.RMSE) of the single-observer model under optimal design Jopt.

To do this, we started with the full budget B  =  2000 for the 
double-observer model and reduced B (under its optimal number of 
visits, thus reducing the number of sites) until we reached an ac-
curacy (rel.RMSE) similar to the target single-observer rel.RMSE. 
Because of the long computational time, we conducted this search 
in only six incremental steps. In the first step, we reduced the total 
effort to 50% (B = 1000 flights). Then for each subsequent search 
step, the difference in B was reduced by 50% (“half-way” distance) 
between the last step and either the full reference effort (B = 2000) 
or the effort in the previous step, depending on if the rel.RMSE was 

 2041210x, 2023, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14054 by U
frgs - U

niversidade Federal D
o R

io G
rande D

o Sul, W
iley O

nline L
ibrary on [26/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



904  |   Methods in Ecology and Evolu
on BRACK et al.

TA
B

LE
 1

 
O

pt
im

al
 n

um
be

r o
f v

is
its

 (J
op

t) 
in

 s
pa

tio
te

m
po

ra
lly

 re
pl

ic
at

ed
 d

ro
ne

-b
as

ed
 s

ur
ve

ys
 fo

r a
bu

nd
an

ce
 m

od
el

in
g 

w
ith

 N
-m

ix
tu

re
 m

od
el

s,
 u

nd
er

 d
iff

er
en

t s
ce

na
rio

s 
of

 e
xp

ec
te

d 
lo

ca
l 

ab
un

da
nc

e 
(λ

) a
nd

 a
va

ila
bi

lit
y 

pr
ob

ab
ili

ty
 (φ

). 
(a

) B
in

om
ia

l N
-m

ix
tu

re
 m

od
el

 fo
r s

in
gl

e-
ob

se
rv

er
 c

ou
nt

s.
 (b

) M
ul

tin
om

ia
l N

-m
ix

tu
re

 m
od

el
 fo

r d
ou

bl
e-

ob
se

rv
er

 c
ou

nt
s.

 T
he

 o
pt

im
al

 J 
is

 o
bt

ai
ne

d 
fr

om
 th

e 
lo

w
es

t r
el

at
iv

e 
ro

ot
 m

ea
n 

sq
ua

re
 e

rr
or

 (r
el

.R
M

SE
) c

al
cu

la
te

d 
fr

om
 2

00
0 

ite
ra

tio
ns

 fo
r e

ac
h 

co
m

bi
na

tio
n 

of
 th

e 
nu

m
be

r o
f s

ite
s 

S 
an

d 
vi

si
ts

 J.
 In

 b
ra

ck
et

s,
 th

e 
ra

ng
e 

of
 v

is
its

 J 
fo

r w
hi

ch
 

th
e 

pe
rf

or
m

an
ce

 c
an

 b
e 

co
ns

id
er

ed
 e

qu
iv

al
en

t (
i.e

. r
el

.R
M

SE
 <

 0
.5

%
). 

Sh
ad

in
g 

of
 th

e 
ta

bl
e 

ce
lls

 (f
ro

m
 li

gh
t g

ra
y 

to
 b

la
ck

) i
nd

ic
at

es
 a

n 
in

cr
ea

si
ng

 J op
t

λ 0.
1

0.
2

0.
3

0.
5

1
2

4
8

12
20

40

(a
) S

in
gl

e-
ob

se
rv

er
 (B

in
om

ia
l) 

N
-m

ix
tu

re
 m

od
el

φ
0.

1
28

 (2
8-

28
)

20
 (2

0-
20

)
23

 (1
9-

26
)

21
 (2

1-
25

)
27

 (2
1-

28
)

19
 (1

9-
19

)
20

 (1
1-

24
)

15
 (1

5-
15

)
11

 (1
1-

17
)

17
 (1

2-
19

)
21

 (1
1-

23
)

0.
2

10
 (9

-1
4)

13
 (8

-1
3)

14
 (8

-1
4)

12
 (1

0-
13

)
12

 (9
-1

8)
14

 (9
-1

9)
10

 (9
-1

9)
9 

(7
-1

2)
10

 (7
-1

5)
13

 (7
-1

5)
11

 (7
-1

3)

0.
3

8 
(6

-8
)

7 
(5

-8
)

7 
(6

-8
)

5 
(5

-9
)

7 
(5

-1
0)

13
 (6

-1
5)

10
 (7

-1
6)

8 
(7

-1
2)

-
-

-

0.
4

5 
(5

-5
)

4 
(4

-6
)

5 
(4

-6
)

4 
(4

-8
)

5 
(4

-8
)

6 
(5

-1
0)

9 
(5

-1
0)

9 
(4

-1
0)

-
-

-

0.
5

4 
(3

-4
)

4 
(3

-5
)

4 
(3

-4
)

4 
(3

-5
)

4 
(3

-7
)

6 
(4

-8
)

6 
(4

-1
0)

8 
(4

-1
0)

5 
(3

-1
5)

11
 (4

-1
5)

10
 (4

-1
5)

0.
6

3 
(3

-3
)

3 
(3

-3
)

3 
(3

-3
)

4 
(3

-5
)

3 
(3

-5
)

4 
(3

-7
)

4 
(3

-1
0)

6 
(3

-1
0)

-
-

-

0.
7

2 
(2

-3
)

3 
(2

-3
)

2 
(2

-3
)

3 
(2

-4
)

3 
(2

-4
)

3 
(2

-6
)

4 
(3

-9
)

5 
(3

-1
0)

-
-

-

0.
8

2 
(2

-2
)

2 
(2

-2
)

2 
(2

-2
)

2 
(2

-3
)

2 
(2

-3
)

3 
(2

-5
)

3 
(2

-7
)

4 
(2

-9
)

-
-

-

λ 0.
1

0.
2

0.
3

0.
5

1
2

4
8

12
20

40

(b
) D
ou
bl
e-
­ob
se
rv
er
 (M
ul
tin
om
ia
l) 
N
-­m
ix
tu
re
 m
od
el

φ
0.

1
21

 (2
0-

20
)

22
 (1

5-
22

)
19

 (1
6-

19
)

18
 (1

8-
23

)
18

 (1
6-

27
)

18
 (1

6-
26

)
15

 (9
-2

2)
16

 (1
4-

17
)

15
 (1

1-
18

)
11

 (1
1-

11
)

13
 (1

1-
19

)

0.
2

9 
(9

-1
1)

7 
(7

-1
0)

9 
(7

-1
1)

8 
(7

-1
1)

10
 (7

-1
4)

8 
(7

-1
7)

12
 (7

-1
8)

8 
(7

-1
3)

11
 (6

-1
3)

12
 (7

-1
3)

11
 (5

-1
5)

0.
3

7 
(5

-7
)

5 
(4

-6
)

6 
(4

-7
)

6 
(5

-6
)

6 
(5

-9
)

10
 (5

-1
2)

9 
(6

-1
6)

8 
(5

-2
0)

-
-

-

0.
4

3 
(3

-5
)

4 
(3

-5
)

4 
(3

-5
)

4 
(3

-5
)

4 
(3

-7
)

6 
(4

-1
0)

6 
(4

-1
0)

7 
(5

-1
0)

-
-

-

0.
5

3 
(3

-3
)

3 
(3

-4
)

3 
(3

-4
)

3 
(3

-4
)

3 
(3

-5
)

4 
(3

-7
)

4 
(3

-1
0)

7 
(3

-1
0)

9 
(3

-1
5)

9 
(3

-1
5)

14
 (3

-1
5)

0.
6

2 
(2

-3
)

2 
(2

-3
)

2 
(2

-3
)

3 
(2

-3
)

3 
(2

-4
)

3 
(2

-4
)

3 
(2

-7
)

5 
(3

-1
0)

-
-

-

0.
7

2 
(2

-2
)

2 
(2

-2
)

2 
(2

-2
)

2 
(2

-3
)

2 
(2

-3
)

3 
(2

-4
)

3 
(2

-6
)

4 
(2

-9
)

-
-

-

0.
8

2 
(2

-2
)

2 
(2

-2
)

2 
(2

-2
)

2 
(2

-2
)

2 
(2

-3
)

2 
(2

-3
)

2 
(2

-4
)

3 
(2

-7
)

-
-

-

 2041210x, 2023, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14054 by U
frgs - U

niversidade Federal D
o R

io G
rande D

o Sul, W
iley O

nline L
ibrary on [26/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    | 905Methods in Ecology and Evolu
onBRACK et al.

over or under the target rel.RMSE, respectively. Because of small 
differences in rel.RMSE values and stochasticity from 2000 itera-
tions, we provide an interval of survey effort B that is close to the 
target single-observer rel.RMSE.

6.1  |  Results

If a full double-observer protocol is used in image reviewing, the 
total fieldwork budget may be reduced from 9% to 37% (depending 
on the scenario of {λ, φ}), while still matching the best accuracy ob-
tained with a single-observer protocol (Table 2, Figure S5).

7  | CASE EXAMPLE: MARSH DEER DRONE-­
BASED SURVEYS IN PANTANAL WETLAND

The marsh deer Blastocerus dichotomus, the largest cervid in South 
America (up to 150kg), is a habitat-specific species associated with 

wetlands (Piovezan et al.,  2010) and threatened with extinction 
(IUCN; Duarte et al.,  2016). Because of the inaccessibility of its 
habitat, marsh deer population estimates are usually obtained from 
aerial surveys (e.g. Andriolo et al., 2005; Mourão et al., 2000; Ríos-
Uzeda & Mourão, 2012). In 2017, Brack et al. (2021) conducted spa-
tiotemporally replicated drone-based count surveys to estimate the 
abundance of marsh deer in the Pantanal wetland (Sesc Pantanal 
Private Natural Reserve; 108,000 ha) and explored the use of this 
method to monitor that species. Six flight paths (32–42 km) were 
flown from two to six times each using a fixed-wing drone equipped 
with an RGB camera. The six flight paths were split into 203 1-km 
sites, and two observers carried out deer counts in a manual re-
view of the collected imagery. The first observer reviewed the en-
tire image set (~25,000 images) and the second observer reviewed 
only 20% of the flights. Count data were fitted using the three-level 
multinomial N-mixture model for the mixed single- and double-
observer protocol. The estimated marsh deer mean local abun-
dance λ was 0.33 (95% CI  =  0.23–0.48), availability probability φ 
was 0.14 (0.10–0.19) and perception probability by observers p was 
0.93 (0.82–0.97).

Aiming at improving accuracy in marsh deer abundance estima-
tion and optimally plan survey design for upcoming assessments, we 
conducted a simulation study based on the 2017 population survey. 
We considered the point estimates of the 2017's population assess-
ment (λ  =  0.33; φ  =  0.14 and p  =  0.93), a total effort of B  =  813 
(from S = 203 and J = 4), and different proportions of the images 
checked by two observers (double-observer protocol): {0%; 20%; 
50%; 100%}. We explored the number of visits between J = 4 and 
J = 26 and, for each number of visits and each proportion of double 
observers, we ran 2000 iterations from which we calculated the rel-
ative RMSE.

F IGURE  2 Accuracy (relative RMSE) and increase in accuracy (difference in rel.RMSE) in abundance estimation with N-mixture models 
in relation to the proportion of double-observer protocol in image reviewing, and under different scenarios of expected local abundance in 
sites (λ) and individual availability probability (φ). 0% = single-observer binomial N-mixture model; 100% = full double-observer multinomial 
N-mixture model; the others are mixed protocols of multinomial N-mixture models.

TA B L E  2  Proportion of the total effort (budget) of the double-
observer model (multinomial N-mixture) needed to obtain similar 
performance to the single-observer model (binomial N-mixture) for 
different scenarios of expected local abundance λ and availability of 
individuals φ

λ

0.2 1

φ 0.2 81%–88% 75%–83%

0.4 75%–81% 75%–86%

0.6 88%–91% 63%–72%
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7.1  |  Results

The optimal number of visits Jopt for the defined budget (B = 813) 
varied from J = 14 to J = 24 depending on the proportion of flights 
reviewed by double observers. In comparison with the survey design 
used in the 2017's marsh deer survey (J = 4), the rel.RMSE reduced 
around two-thirds (62%–64%) under the Jopt. Under the optimal de-
sign, there was a reduction in rel.RMSE of about 11% between the 
single-observer model and the full double observer, even with the 
high perception probability used (p =  0.93). For the proportion of 
20% of double-observer protocol, as used in the 2017's assessment, 
the increase in accuracy of local abundance estimation (in compari-
son with the single-observer model) is generally very small.

8  | DISCUSSION

We presented here a comprehensive assessment of N-mixture mod-
els' performance and optimal effort allocation to assist sampling de-
signs for estimating abundance with drone-based surveys. We found 
that spatiotemporally replicated drone-based counts analyzed with 
N-mixture models can be applied in a wide variety of contexts of 
population densities and availability of individuals. Interestingly, 
these results suggest that drone-based wildlife surveys can be suit-
able to estimate abundance even when the availability of individu-
als is low (e.g. forested areas, burrowing species and marine animals 
that rarely remain at the water surface) and for low-density species 
(which are often threatened). Nonetheless, as already shown in pre-
vious simulation studies with binomial N-mixture models (Joseph 
et al., 2009; Yamaura, 2013), extra care should be taken in scenarios 
of very low local abundance and availability (here λ = 0.1; φ = 0.1, 
where abundance estimation performance was unstable). The re-
sults of this study are directly applicable for large sample sizes; for 
small sample sizes, the performance of N-mixture models is expected 
to be poorer (including biased abundance estimation), particularly in 
scenarios of low detection probability (Kéry, 2018; Yamaura, 2013).

We found that consciously planning drone-based surveys by 
optimally allocating survey efforts can have a great impact on the 
performance of N-mixture models for abundance estimation. Our 
results indicate that survey effort should prioritize repeating more 
visits in the same sites when availability probability is expected to 
be low, while more sites with fewer visits should be selected to op-
timally allocate effort in higher availabilities. For example, in the 
marsh deer study case shown, we found that an optimal sampling 
design can increase the accuracy in abundance estimation by up to 
two-thirds compared with a non-optimal design. To optimize sam-
pling designs, pilot studies or previous knowledge on the species are 
fundamental to provide guesses about the parameters for the sim-
ulations. From the comparison between the two N-mixture model 
structures (single- and double-observer counts), the single-observer 
model generally demands allocating effort in more temporal rep-
licates than the double-observer model, for the same scenario. 
Lastly, as abundance estimation accuracy notably increases with the 

availability of individuals, logistic adjustments in surveys to sample 
in moments that individuals are more available (e.g. time of the day, 
season) have a great potential to improve abundance estimation 
performance.

The optimal design becomes less sensitive to the choice of num-
ber of visits and sites when local abundance is higher (rel.RMSE 
curves become “flatter”). Therefore, there is a wider range of effi-
cient designs with similar accuracy in the estimation of local abun-
dance (i.e. close performance to the optimal design). This flexibility 
allows for other design considerations when planning surveys, for 
example, choosing to sample more sites if there is interest in the 
spatial variation of abundance (relationships with covariates) or 
more visits if travel cost to new sites is expensive. It is important 
to note that, in “real-case” studies such as the marsh deer example, 
when modeling the spatial variation in local abundance using covari-
ates (e.g. Brack et al., 2021), the optimal number of visits would be 
pushed towards lower numbers of visits, to cover more sites.

There is a fundamental difference between fieldwork sampling 
design (number of visits and sites), which must be planned before 
data collection, and the reviewing procedure protocol (to use one 
or two observers to check images). The decision to use a double-
observer protocol can be made after fieldwork and might improve 
the estimation accuracy. Notably, the accuracy in abundance esti-
mation can be considerably improved even at very high perception 
probabilities by the observers, as illustrated in the marsh deer case 
study (11% increase at p = 0.93). Moreover, the improvement in the 
estimator performance can be achieved with the second observer 
only reviewing a proportion of the images. For the perception proba-
bility considered in the simulations (p = 0.8, representative of human 
observer counts from drone imagery), this benefit is more evident 
when the second observer reviews more than 20% of the image set. 
This result is particularly interesting when an automated process is 
used in image review: if the computer algorithm counts are consid-
ered the first observer and a human the second observer, reviewing 
only a subset of the drone imagery already provides gains in accu-
racy. In this case, the perception probability of both the algorithm 
and the human observer should be estimated separately.

We showed here that it is possible to reduce considerably the ef-
fort in fieldwork by doubling the effort in image reviewing in lab (i.e. 
double instead of single-observer counts) while achieving a similar 
accuracy in abundance estimation. This consideration is particularly 
interesting when budget or conditions (e.g. weather, visibility or loss 
of equipment) are limited for fieldwork. However, depending on the 
time needed to manually review images, a double-observer proto-
col can be prohibitive. Here, we have limited the budget for optimal 
allocation only considering fieldwork effort, under the assumption 
that lab effort is more flexible and commonly less costly. If image 
review is also costly and can be budgeted in comparison with field-
work expenses, the simulations of this study could be expanded to 
consider this extra aspect of survey design (e.g. proportion of images 
with a double-observer protocol). This would require including costs 
for the different units of effort (fieldwork and image review) explic-
itly in the evaluations of optimal effort allocation. Nonetheless, with 
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the increasing development of machine learning algorithms (Christin 
et al., 2019; Dujon & Schofield, 2019), trained specifically for each 
context and potentially replacing manual reviewing, the costs of 
image reviewing are expected to drastically reduce in the future.

As a cautionary note on the use of N-mixture models, there have 
been concerns on the sensitivity of these models to assumption viola-
tions and the claim that repeated counts have little information about 
the detection process for parameter identifiability (Barker et al., 2018). 
Evaluations of assumption violations in binomial N-mixture models 
have shown that unmodeled heterogeneity in detection probabil-
ity (especially directional/non-random) can bias the estimation of 
abundance (Duarte et al., 2018; Knape et al., 2018; Link et al., 2018). 
However, despite these raised concerns, studies comparing N-mixture 
models with more traditional and well-established approaches (i.e. 
capture-recapture models or distance sampling) have generally shown 
similar results (Christensen et al., 2021; Ficetola et al., 2018; Keever 
et al., 2017; Kéry, 2018). In the context of drone-based surveys, the 
impact of these findings would be expected to be more concerning for 
the availability process (non-modelled heterogeneity in unavailability). 
Heterogeneity in perception can be addressed by including individual 
covariates for each record and model this observation process using a 
data augmentation approach (Royle et al., 2007). To improve robust-
ness against unaccounted heterogeneity, additional information of 
some marked individuals may be collected (see Dunstan et al., 2020 
for an example of drone surveys of marked individuals). In the context 
of drone-based surveys, Corcoran et al. (2020) found that N-mixture 
models can overestimate abundance in comparison with an adapted 
Horvitz-Thompson estimator. However, we argue their comparison 
between methods is inadequate because it ignored basic recommen-
dations for study design and analysis of N-mixture models: (i) very few 
sites sampled; (ii) large time interval between visits, which can prevent 
interpretations about temporary emigration processes and thus local 
abundance (Chandler et al., 2011; Williams et al., 2017); (iii) use of a 
negative binomial distribution for local abundance, prone to provide 
unrealistic high abundance estimates (Joseph et al., 2009; Kéry, 2018; 
Kéry et al., 2005; Knape et al., 2018); (iv) did not provide any uncer-
tainty for the N-mixture model estimates, precluding a proper com-
parison and (v) did not account for false-positive errors, which were 
known to occur in their system.

The sampling design considerations provided by our study are 
directly applicable to other contexts in which N-mixture models can 
be used with a double-observer protocol to segregate the availability 
process from the ability to detect individuals by the observers, such 
as birds' auditory point transect surveys (e.g. Amundson et al., 2014) 
or terrestrial strip transects of elusive species (e.g. burrowing ani-
mals, Zylstra et al., 2009). Differences in performance between the 
two modeling approaches used in this study are expected to be more 
pronounced the lower the perception probability, while differences 
tend to zero as perception gets close to one. Furthermore, the basic 
structure of the presented N-mixture models (closed population, 
single-season and single-species) could be expanded to accommo-
date other sources of variation (e.g. overdispersion in detection 
probability, Knape et al., 2018; group detection, Martin et al., 2011; 

spatial autocorrelation, Guélat et al.,  2018), include multiple spe-
cies (multi-species random effects, Dorazio et al.,  2015; Sollmann 
et al., 2016), or incorporate dynamics in abundance (trend models, 
Kéry et al., 2009; models with explicit dynamics, Bellier et al., 2016; 
Dail & Madsen, 2011; Zipkin et al., 2014).

The use of drones to survey wildlife is quickly spreading to many 
species in different habitats. Nevertheless, few studies go further 
than simple tests of detecting species in drone-based images and 
apply drone surveys to model the abundance of wildlife populations 
(Brack et al.,  2018; Linchant et al.,  2015). It is imperative to plan 
sampling designs considering sources of detection errors and, for 
this, spatiotemporally replicated flights and N-mixture models have 
proven to be a useful straightforward approach. Survey design effi-
ciency to make the best use of available resources is a key consider-
ation in wildlife monitoring and conservation, particularly given that 
these resources are usually limited. The improvements achieved by 
an optimal design, rearranging survey efforts among sites and visits 
to obtain the most accurate abundance estimation can be crucial, 
for example, to detect trends when monitoring a population or to 
categorize a species as threatened or not.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. N-mixture model performance (relative RMSE curves) and 
optimal number of visits for single and double observer counts under 
different scenarios of local abundance and availability probability. 
Lower panels show the optimal number of visits (i.e. lowest rel.
RMSE) and the bars correspond to the range of visits for which the 
performance can be considered equivalent (i.e. rel.RMSE < 0.5%).

Figure S2. N-mixture model performance (relative RMSE curves) 
and optimal number of visits for single and double observer counts 
under different scenarios of local abundance and availability 
probability. Lower panels show the optimal number of visits (i.e. 
lowest rel.RMSE) and the bars correspond to the range of visits 
for which the performance can be considered equivalent (i.e. rel.
RMSE < 0.5%).
Figure S3. N-mixture model performance (relative RMSE curves) 
and optimal number of visits for two different total budgets (2k = 
2000 flights, 4k = 4000 flights) in six scenarios of local abundance 
{0.2; 1} and availability probabilities {0.2; 0.4; 0.6}. Lower panels 
show the optimal number of visits (i.e. lowest rel.RMSE) and the bars 
correspond to the range of visits for which the performance can be 
considered equivalent (i.e. rel.RMSE < 0.5%).
Figure S4. N-mixture model performance (relative RMSE curves) 
and optimal number of visits using different proportions of double-
observer protocol for six scenarios, from the combination of local 
abundances {0.2; 1} and availability probabilities {0.2; 0.4; 0.6}. Lower 
panels show the optimal number of visits (i.e. lowest rel.RMSE) and 
the bars correspond to the range of visits for which the performance 
can be considered equivalent (i.e. rel.RMSE < 0.5%).
Figure S5. Performance (relative RMSE) of the double observer 
(multinomial) N-mixture model for different total efforts (sites x 
visits) in comparison with the performance of a baseline single 
observer (binomial) N-mixture model with total effort = 2000.
Figure S6. Relative errror in estimated local abundance for N-mixture 
models (difference between the mean point estimate and the real 
value divided by the real value) under different scenarios of local 
abundance and availability probability. Boxplots are composed of 
2000 iterations. Boxes contain the 50% central values, the bold line 
indicates the median and the whiskers correspond to an extention 
of the box (upper and below) using 1.5 times the interquartile range. 
Points are outliers.
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