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Abstract. In the present analysis we study the self-consistent propagation of non-
linear electromagnetic pulses in a one-dimensional relativistic electron–ion plasma,
from the perspective of nonlinear dynamics. We show how a series of Hamiltonian
bifurcations give rise to the electric fields which are of relevance in the subject
of particle acceleration. Connections between these bifurcated solutions and the
results of earlier analysis are made.

1. Introduction
The propagation of intense electromagnetic pulses in plasmas is a subject of cur-
rent interest in a variety of areas that make use of the available modern laser
technologies, among which we include particle and photon acceleration, nonlinear
optics, laser fusion and others (Tajima and Dawson 1979; Shukla et al. 1986;
Mendonça 2001; Poornakala et al. 2002; Bingham 2003). Intense electromagnetic
pulses displace plasma electrons and create a resulting ambipolar electric field with
the associated density fields. Under appropriate conditions all fields act coherently
and the pulse keeps it shape. Studies on pulse localization have been performed
in a variety of forms to unravel the corresponding numerical and analytical prop-
erties. Kozlov et al. (1979) investigated numerically the propagation of coupled
electromagnetic and electrostatic modes in cold relativistic electron–ion plasmas
and concluded that small- and large-amplitude localized solutions can be present.
Mofiz and de Angelis (1985) applied analytical approximations to the same model
and suggested where and how localized solutions can be obtained. Ensuing, more
recent works provide an even deeper understanding as various features have been
investigated, such as the influence of ion motion in slow, ion-accelerating solitons
(Farina and Bulanov 2001), the existence of moving solitons (Poornakala et al.
2002), the existence of trails lagging isolated pulses (Kuehl and Zang 1993; Sudan
et al. 1997) and others. Some key points, however, remain not quite understood,
such as the way small-amplitude localized solutions are destroyed; when isolated
pulses are actually free of smaller-amplitude trails; and more specific properties of
the spectrum of stronger-amplitude solutions, to mention a few. Those are issues of
relevance if one wishes to establish the existence range and stability properties of
the localized modes.
In the present paper we shall turn our attention to small-amplitude solitons

propagating in underdense rarified plasmas, since this kind of soliton may be
of relevance for wakefield schemes. In doing so we shall follow an alternative
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strategy, other than the direct integration of the governing equations which has
been the standard approach so far. We intend to examine the problem using the
techniques of nonlinear dynamics (Rizzato et al. 1997). A canonical representation
shall be constructed in association with several tools from nonlinear dynamics
such as Poincaré maps and stability matrices. This strategy naturally provides
a clear way to investigate the system since we intend to establish a connection
between the pulses of radiation and fixed points of the corresponding nonlinear
dynamical system (Lichtenberg and Lieberman 1992). Several facts are known
and we state some which are of direct relevance for our analysis: small-amplitude
solitons are created as the wave system becomes modulationally unstable at an
upper limit of the carrier frequency and cease to exist beyond the lower limit of this
carrier frequency. Not much is known as to how solitons are destroyed at the lower
boundary and we examine this point to show that a series of nonlinear resonances
and bifurcations are responsible for the process. A related relevant problem is when
isolated pulses are actually free of smaller-amplitude trails and this has to do with
the existence of wakefields following the leading wave front which is of relevance
for particle acceleration, for instance. Those are basic issues if one wishes to operate
the wave system under conditions suited for particle acceleration, and our purpose
with the present paper is to contribute towards the analysis of these aspects.

2. The model
We follow previous works and model our system as consisting of two cold relativistic
fluids: one electronic, the other ionic. Electromagnetic radiation propagates along
the z axis of our coordinate system and we represent the relevant fields in the
dimensionless forms eA(z, t)/mec

2 → A(z, t) for the laser vector potential and
eφ(z, t)/mec

2 → φ(z, t) for the electric potential. −e is the electron charge, me is
its mass and c is the speed of light; mi will denote ionic mass when appropriate. In
addition, we suppose stationary modulations of a circularly polarized carrier wave
for the vector potential in the formA(z, t) = ψ(ξ̃)[x̂ sin(kz−ωt)+ŷ cos(kz−ωt)]with
ξ̃ ≡ z − V t, whereupon introducing the expression for the vector potential into the
governing Maxwell’s equation one readily obtains V = c2k/ω. V could be thus read
as a nonlinear group velocity since we shall be working in regimes where ω and k are
related by a nonlinear dispersion relation. Manipulation of the governing equations
finally takes us to the point where two coupled equations must be integrated – one
controlling the vector potential and the other the electric potential (Kozlov et al.
1979; Mofiz and de Angelis 1985):

ψ′′ = −1
η
ψ +

V0

p
ψ

[
1

re(φ, ψ)
+

µ

ri(φ, ψ)

]
, (2.1)

φ′′ =
V0

p

[
(1 + φ)
re(φ, ψ)

− (1 − µφ)
ri(φ, ψ)

]
, (2.2)

where the primes denote derivatives with respect to ξ ≡ (ωe/c)ξ̃, re(φ, ψ) ≡√
(1 + φ)2 − p(1 + ψ2), ri(φ, ψ) ≡

√
(1 − µφ)2 − p(1 + µ2ψ2), η ≡ ω2

e /ω2, µ ≡
me/mi, V0 ≡ V/c and p ≡ 1−V 2

0 , with ω2
e ≡ 4πnee

2/me as the plasma frequency and
ne = ni as the equilibrium densities. We further rescale ω/ck → ω and ωe/ck → ωe
in V0, η and p, which helps to simplify the coming investigation: η preserves its form,
V0 → 1/ω and p → 1 − 1/ω2. A noticeable feature of the system (2.1) and (2.2) is
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that it can be written as a Hamiltonian system of a quasi-particle with two degrees
of freedom. Indeed, if one introduces the momenta Pψ ≡ ψ′ and Pφ ≡ −φ′/p, the
equations for ψ and φ take the form

ψ′ = ∂H/∂Pψ , P ′
ψ = −∂H/∂ψ, (2.3)

φ′ = ∂H/∂Pφ, P ′
φ = −∂H/∂φ, (2.4)

where the Hamiltonian H reads as

H =
P 2

ψ

2
− p

P 2
φ

2
+

1
2η

ψ2 +
V0

p2

[
re(φ, ψ) +

1
µ

ri(φ, ψ)
]
. (2.5)

H is constant since it does not depend on the ‘time’ variable ξ. Its constant value,
let us call it E, can be calculated as soon as the appropriate initial conditions are
specified. In our case we shall be interested in the propagation of pulses vanishing
for |ξ| → ∞, so we know that the conditions Pψ = Pφ = φ = ψ = 0 must pertain
to the relevant dynamics, from which one concludes that E = (V0/p)2 (1 + 1/µ).
Additional conditions arise from the presence of square roots in the Hamiltonian;
the dynamics lies within regions where simultaneously r2

e , r
2
i > 0. Combining these

inequalities with the boundary conditions one is led to conclude that the entire
dynamics must evolve within the physical region

φmin ≡
√

p(1 + ψ2) − 1 < φ <
1
µ

[1 −
√

p(1 + µ2ψ2)] ≡ φmax (2.6)

if p > 0. If p < 0 there is no restriction, but we shall see that only positive values
of p are of interest here. We can also evaluate the linear frequencies of laser and
wakefield small fluctuations in the form

ψ′′ = Ω2
ψ ψ, φ′′ = −Ω2

φφ, (2.7)

where

Ω2
ψ ≡ −1/η + 1/p(1 + µ) and Ω2

φ ≡ (1 + µ)/V 2
0 . (2.8)

The potential φ oscillates with a real frequency Ωφ which can be shown to convert
into ωe(1 + µ)1/2 if dimensional variables are used for space and time. As for the
vector potential, to reach high-intensity fields from noise level radiation, instability
must be present, which demands Ω2

ψ > 0 and, consequently from relation (2.8),

1 < ω2 � 1 + ω2
e (1 + µ), (2.9)

so p > 0.
The threshold Ω2

ψ = 0 can be rewritten in the form ω = ω∗ ≡
√

1 + ω2
e (1 + µ),

where ω∗ is the linear dispersion relation for electromagnetic waves. What we expect
to see are small-amplitude waves when ω is slightly smaller than ω∗, with amplitudes
increasing as we move farther from the threshold. In addition to that, another
feature worthy of notice must be commented on. If one sits very close to the
threshold, amplitude modulations of the laser field are tremendously slow, while
the oscillatory frequency of the electric potential φ remains relatively high. The
resulting frequency disparity provides the conditions for a slow adiabatic dynamics
where, given a slowly varying ψ, φ always accommodates itself close to the minimum
of

U(φ, ψ) ≡ −V0/p2[re(φ, ψ) + µ−1ri(φ, ψ)], (2.10)
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Figure 1. Oscillating (I) and wave breaking (II) regions for the electric potential
at ψ = 0. ∆U is defined in the text.

with the ‘minus’ sign on the right-hand side accounting for the negative effective
mass of φ as seen in (2.5); note that φmin of (2.6) refers to the smallest available
φ and not to the minimum of U . When ψ = 0, a condition to be used shortly in
our Poincaré plots, U has a minimum at φ = 0 which is thus a stable point in
the adiabatic regime. As one moves away from the threshold, faster modulations
and higher amplitudes may be expected to introduce considerable amounts of non-
integrable behavior and chaos into the system. This kind of perspective agrees well
with the result of previous works where adiabatic regions have been interpreted
to be essentially associated with small-amplitude quasi-neutral dynamics (Kozlov
et al. 1979). One of our interests here is to see precisely how the adiabatic dynamics
is broken as one moves deeper into non-integrable regimes. An additional fact must
be observed as one searches for adiabatic solutions and this has to do with how
close to the minimum of U one must sit to find these adiabatic solutions. The
corresponding discussion parallels that on wave breaking of relativistic electrostatic
waves. First of all note that if we do not set φ right at the respective minimum of U ,
the electric potential will oscillate around theminimumwhich will be itself displaced
due to the action of the slowly varying ψ. Again when ψ = 0, inequality (2.6) reveals
that φ must lie in the range φmin =

√
p − 1 < 0 to φmax = 1/µ(1 − √

p) > 0. Not all
of these values are, however, actually allowed in adiabatic dynamics. Oscillations
will occur consistently only if the orbit is free to wander to the right- and left-hand
sides of the minimum φ = 0 and this can only happen when the oscillating orbit
is entirely trapped within the attracting well of U . U < 0, and a quick calculation
shows that

U(φmin)2 − U(φmax)2 = 2
√

p(1 − µ2)(1 − √
p)V 2

0 µ−2p−7/2 > 0, (2.11)

so U(φmax) > U(φmin), which sets a limit to cyclic orbits: φ must be such that the
corresponding potential will never be above the level U(φmin). To illustrate all of
these comments, the reader is referred to Fig. 1 where the potential∆U ≡ U(φ, ψ =
0) − U(φ = 0, ψ = 0) is represented for V0 = 0.99 and µ = 0.0005, parameters char-
acterizing high-velocity pulses with U(φmax) � U(φmin) to be further investigated
in Sec. 3: orbits of region I, φmin < φ < φ̃, will oscillate back and forth, but orbits
in region II eventually reach φmin where re → 0. Since it can be shown that the



Nonlinear dynamics of electromagnetic pulses 183

electronic density depends on re in the form ne ∼ r−1
e (Kozlov et al. 1979; Mofiz and

de Angelis 1985), break down of the theory indicates wave breaking on electrons.
We point out that wave breaking occurs on electrons solely when the group

velocity of the wave is close to the speed of light, which is the case of Fig. 1. At
lower velocities V0 → 0, from (2.11) U(φmin)2 ∼ U(φmax)2. This levels the borders
of left- and right-hand side branches of the potential U , and consequently wave
breaking can also occur on ions.
Also shown in the figure is the wave breaking energy

Ewbr ≡ ∆U(φmin) =
V 2

0

p2

[
1+

1
µ

− 1
µV0

√
(1 − µφmin)2 − p

]
≈ ω3

ω3
e

if µ, p � 1, (2.12)

separating regions I and II. Our conclusion is that even with extremely slow mod-
ulations, oscillations of φ must be limited so as to satisfy the conditions discussed
above. Not only that, but the very same figure suggests how non-integrability
affects localization of our solutions: as one moves away from adiabaticity and into
chaotic regimes, trajectories initially trapped by U may be expected to chaotically
diffuse towards upper levels of this effective potential, escaping from the trapping
region, approachingEwbr and eventually hitting the boundary at φmin or, in general,
attaining re = 0 for ψ 	= 0. If this is so, we have an explanation of how small-
amplitude solitons are destroyed, one of the issues of interest in the subject area
(Poornakala et al. 2002). We now look at the problem with the help of methods of
nonlinear dynamics.

3. Analysis with nonlinear dynamics
We introduce our Hamiltonian phase space in the form of a Ponicaré surface of
section mapping where the pair of variables (φ, Pφ) is recorded each time the plane
ψ = 0 is punctured with Pψ < 0. Once we have defined the map in this way, we can
also investigate the existence and stability of periodic solutions of our coupled set
of equations with the aid of a Newton–Raphson algorithm. The Newton–Raphson
method locates periodic orbits and evaluates the corresponding stability index α
which satisfies |α| < (>)1 for stable (unstable) trajectories (Pakter and Rizzato
2001). Parameters are represented in a form already used in earlier investigations
on the subject: we first set a numerical value for V0 and then obtain ω = 1/V0,
which must be larger than unity as demanded by condition (2.9). However, we shall
keep V0 close to unity, and thus ω slightly larger than unity, so as to represent wave
modes propagating at nearly the speed of light. This is the convenient setting if one
is interested in fast electron acceleration by wakefields. After V0 is established, the
electron plasma frequency is calculated as ω2

e = ηω2, with η satisfying condition
(2.9) again. We note that η = ω2

e /ω2 = V 2
0 ω2

e = V 2
0 ω2

e, non-scaled/c2k2; so holding
V0 constant while increasing η, is entirely equivalent to the more usual practice of
holding V0 and the original ωe constant, while decreasing k and the original ω. In
all cases analyzed here we take µ = 0.0005 as in Kozlov et al. (1979). In addition
to that, we shall take V0 = 0.99 to represent the high-speed conditions of wakefield
schemes. Now a crucial step is this: since isolated pulses cannot be seen in periodic
plots we alter the energy E slightly to E = V0/p2(1 + 1/µ)(1 + ε), ε � 1 so the
vanishing tail Pψ = Pφ = ψ = φ = 0 is avoided. With this maneuver we convert
isolated pulses into trains of quasi-isolated pulses, a situation amenable to the use
of nonlinear dynamics and the associated periodic plots; periodicity is, in fact,
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physically meaningful if pulses result from periodic self-modulations of initially
uniform modes (Joshi and Katsouleas 2003). In all cases we make sure that as ε → 0
the trains go into individual packets and convergence is attained. The instability
threshold for the vector potential is obtained in the form η∗ = p/(1 + µ) = 0.0198
so ωe�ω, as it must be in the underdense plasmas. To investigate the adiabatic
regime of the relevant nonlinear dynamics we examine phase portraits for η slightly
larger than η∗. In Fig. 2(a) we set η = 1.000 01η∗. With such a relatively small
departure from marginal stability, modulations are slow with |Ωφ | � |Ωψ |, adiabatic
approximations are thus fully operative and what we see in phase space is just a
set of concentric Kolomogrov–Arnold–Moser (KAM) surfaces, rendering the system
nearly integrable. The central fixed point corresponds to an isolated periodic orbit
since it represent a phase-locked solution that returns periodically to ψ = 0,
φ → 0, and the surrounding curves depict regimes of quasi-periodic, non-vanishing
fluctuations of φ. Resonant islands are already present but still do not affect the
central region of the phase plot where the solitary solution resides. In general, we
have observed that increasingly large resonance islands are present away from the
central region.When η grows the behavior of the central fixed point can be observed
in terms of its stability index represented in Fig. 2(b). The index oscillates within
the stable range initially, which marks the existence of a central elliptic point near
the origin. The stability index however finally reaches α = +1 as indicated in
the figure, beyond which point no central orbit is found. This indicates a tangent
bifurcation with a neighboring orbit which terminates the existence of the central
point (Rizzato and Pakter 2002). Immediately after tangency, the phase plot at
ψ = 0 is still constricted to small values of φ as can be seen in Fig. 2(c) where
η = 1.0001η∗. Larger values of η cause diffusion towards upper levels of U(φ) and
we can see that in Fig. 3, where we investigate the behavior of the energy

Eφ ≡ pP 2
φ /2 + ∆U (3.1)

corresponding to the electrostatic field φ. Instead of working directly with the form
(3.1) we represent diffusion in terms of compact variables

eφ ≡ χeEφ

χe + Eφ
, (3.2)

Φ ≡ χφφ

χφ + |φ| , (3.3)

where χe and χφ represent the scale above which the corresponding variables are
compacted. This kind of choice allows us to represent in the same plot the very ex-
tensive variations of energy and electric potential, without deforming these quant-
ities when they are small, near their initial conditions. We found it convenient to use
χe = χφ = 0.0001 to discuss diffusion. In Fig. 3(a) we take η = 1.000 01η∗ so we are
in the regular regime; as expected, no diffusion is observed and the quasi-particle
stays near its initial condition Pφ = 0, φ = 10−8. For η = 1.000 21η∗ as in panel (b),
the central fixed point no longer exist. In addition to that, KAM surfaces no longer
isolate the central region of the phase plot and diffusion is observed. The quasi-
particle moves toward Ewbr and eventually arrives at this critical energy producing
wave breaking on electrons. At this point the simulation stops with the electron
density diverging to infinity. Diffusion is initially slow and becomes faster as energy
increases. One sees voids in the diffusion plots which correspond to resonant islands
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Figure 2. (a) Phase plot near the modulational instability threshold, with η = 1.000 01η∗;
(b) stability index versus η/η∗; (c) phase plot after the inverse tangency seen in (b), with
η = 1.0001η∗. ε = 10−11.
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Figure 3. Dynamics as represented in the eφ versus Φ space: (a) η = 1.000 01η∗;
(b) η = 1.000 21η∗. ewbr ≡ χeEwbr/(χe + Ewbr).

in the phase space, so as diffusion proceeds the quasi-particle escalates along the
contours of the resonances that become progressively larger as already mentioned –
this is why the process is initially slow, becoming faster in the final stages. For larger
values of η no resonance is present and the quasi-particle moves quickly toward
Ewbr. In case of panel (b) one can still see various pulses before wave breaking, but
when η is so large that resonances are no longer present, wave breaking can be
instantaneous. We finally note the following relevant fact. For V0 → 1, it is known
that the amplitude of the electromagnetic pulses are small (Poornakala et al. 2002).
But as one goes beyond the adiabatic regime, our discussion on diffusion allows us to
conclude that even small initial pulses eventually reach very high-amplitude values
for the plasma waves, which provides the condition for formation of strong electric
fields with the corresponding implications on particle acceleration. We illustrate the
feature with a final figure, Fig. 4, where, in a diffusive regime with η = 1.0004η∗, the
electric field −φ′ = pPφ is shown to evolve from small values near initial conditions
to the limiting wave breaking value which agrees with the calculated value – from
(2.12) and Fig. 1 – |φ′| ∼

√
2ω/ωe ∼ 3.5.

We read all of these features as follows. For small enough η there are locked
solutions representing isolated pulses coexisting with surrounding quasi-periodic
solutions where φ does not quite vanish when ψ does. As η increases past the men-
tioned tangent bifurcation but prior to full destruction of isolating KAM surfaces,
one reaches a regime of periodical returns to ψ = 0, although in the presence of



Nonlinear dynamics of electromagnetic pulses 187

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

0 50 100 150 200 250 300

|d
φ
/d

ξ
|

ξ

Wave Breaking

Figure 4. ‘Time’ series for the electric field |dφ/dξ| for η = 1.0004η∗.

a slightly chaotic φ motion. Those cases where ψ = 0 but φ 	= 0, correspond to
quasi-neutral ψ pulses accompanied by trails of φ activity as described in Kuehl
and Zang (1993) and Sudan et al. (1997). We see that trails can be regular or
chaotic. Finally, for large enough η, KAM surfaces no longer arrest diffusion and
wave breaking does occur as re → 0, as we have checked. At this point adiabatic
motion is lost and this is likely to correspond to the point where small-amplitude
solitary solutions are entirely destroyed as commented in Poornakala et al. (2002)
and Farina and Bulanov (2001).

4. Final conclusions
To summarize, we have used the tools of nonlinear dynamics to examine the problem
of wave propagation in relativistic cold plasmas, discussing underdense regimes
appropriate to wakefield schemes. Nonlinear dynamics provides a unified view of
the problem, thus allowing one to address several relevant questions simultaneously.
In this paper we have kept our interest focused on weakly nonlinear modes where a
transition from adiabatic to non-integrable dynamics was observed. Starting with
very low-amplitude regimes near the onset of modulational instability, one has
either isolated pulses or pulses coexisting with regular φ trails. As one increases η,
thus moving away from the onset, pulses with slightly larger amplitude exist but are
never fully isolated since tangent bifurcations annihilate the central fixed point and
create ubiquitous chaotic electrostatic trails. However, electrostatic activity is still
surrounded by KAM surfaces and therefore confined to small amplitudes. Now as
one pushes amplitudes a little higher, isolating KAM surfaces are destroyed, pulses
are no longer possible at all and wave breaking does occur. There are therefore
three clearly identified regimes in the problem: (i) regular or adiabatic regimes
where the dynamics is approximately integrable; (ii) a weakly chaotic regimes where
chaos is present but chaotic diffusion is still absent due to the presence of lingering
isolating KAM surfaces; and finally (iii) diffusive chaotic regimes where isolating
KAM surfaces are absent. Apart from weakly nonlinear pulses, one also has the
possibility of strongly nonlinear solutions (Kozlov et al. 1979; Farina and Bulanov
2001; Poornakala et al. 2002) which shall be scrutinized in future publications with
the help of tools from nonlinear dynamics.
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