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Radiation of water waves by a heaving
submerged horizontal disc

By P. A. M A R T I N AND L. F A R I N A
Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

(Received 30 July 1996 and in revised form 4 November 1996)

A thin rigid plate is submerged beneath the free surface of deep water. The plate
performs small-amplitude oscillations. The problem of calculating the radiated waves
can be reduced to solving a hypersingular boundary integral equation. In the special
case of a horizontal circular plate, this equation can be reduced further to one-
dimensional Fredholm integral equations of the second kind. If the plate is heaving,
the problem becomes axisymmetric, and the resulting integral equation has a very
simple structure; it is a generalization of Love’s integral equation for the electrostatic
field of a parallel-plate capacitor. Numerical solutions of the new integral equation
are presented. It is found that the added-mass coefficient becomes negative for a
range of frequencies when the disc is sufficiently close to the free surface.

1. Introduction
Consider the radiation of small-amplitude time-harmonic surface water waves by

an oscillating thin rigid plate, in three dimensions. The problem is to calculate the
radiated waves and the hydrodynamic forces on the plate. If the plate lies in the
free surface, such problems are known as dock problems. Circular docks have been
studied by MacCamy (1961), Kim (1963), Miles & Gilbert (1968), Garrett (1971),
Miles (1971, 1987) and Maeda (1981). Dock problems are relatively simple because
they can be reduced to a Fredholm integral equation of the second kind with a weakly
singular kernel. In fact, the equation is a (direct) boundary integral equation for the
velocity potential φ on the wetted surface of the plate. Maeda (1981) has also used
this method for rectangular docks. Matched eigenfunction expansions have been used
by Tanaka, Hamamoto & Hashimoto (1981) to study the free vibrations of an elastic
disc in the free surface of water of finite depth.

Suppose now that the plate is submerged. Then, we can reduce the problem to a
hypersingular integral equation over the plate; the unknown is [φ], the discontinuity in
the potential across the plate. Similar reductions have been made for two-dimensional
problems by Parsons & Martin (1992, 1994, 1995). Previous work on submerged plates
in three dimensions is limited to the use of matched eigenfunction expansions in water
of finite depth: this method was used by Yu & Chwang (1993) for a horizontal circular
plate and by Zhang & Williams (1996) for a horizontal elliptical plate.

In this paper, we describe some of our work on the simplest situation, namely the
heave (vertical) oscillations of a horizontal circular plate submerged beneath the free
surface of deep water. This is an axisymmetric problem. We start from the governing
hypersingular integral equation for [φ]. We then explicitly invert the hypersingular
part to obtain a Fredholm integral equation of the second kind. Finally, we introduce
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a new unknown function, leading to a very simple Fredholm integral equation of
the second kind. This equation is easy to solve numerically (except when the disc
is close to the free surface). It also has an elegant structure: for example, in the
absence of waves, it reduces to Love’s integral equation for the electrostatic field of
a parallel-plate capacitor (Love 1949). The same equation (with a different forcing
function) can be used to calculate the exciting force when an incident wavetrain is
scattered by a fixed disc.

The motivation for the present work is twofold. First, we want some benchmark
results which can be used for comparison with numerical solutions of the original
hypersingular integral equation. Second, we are interested in the problem of small
submergence, when (quasi-) resonant motions of the fluid above the disc are expected,
by analogy with those found above a truncated vertical circular cylinder in water
of constant finite depth by Longuet-Higgins (1967), Miles (1986) and others. That
problem involves three dimensionless parameters whereas the problem treated here
involves only two. Moreover, we have a rigorous reduction of the problem to a
simple Fredholm integral equation of the second kind; this suggests the feasibility of
a detailed asymptotic analysis for small depths of submergence.

2. Boundary integral equations: submerged bodies
A Cartesian coordinate system is chosen, in which z is directed vertically downwards

into the fluid, the undisturbed free surface lying at z = 0. A body, with surface S ,
is completely submerged below the free surface of the fluid; S is a smooth closed
bounded surface. We consider small-amplitude time-harmonic motions. We use the
assumptions of an inviscid incompressible fluid, and an irrotational motion, to allow
the introduction of a velocity potential Re

{
φ(x, y, z) e−iωt

}
, where ω is the frequency.

The conditions to be satisfied by φ are Laplace’s equation,(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φ = 0, in the fluid, D, (2.1)

along with the free-surface condition

Kφ+
∂φ

∂z
= 0 on z = 0, (2.2)

where K = ω2/g and g is the acceleration due to gravity. On the surface of the body,
the normal velocity is prescribed, that is

∂φ

∂n
= V on S , (2.3)

where V is a given function. In addition, φ must satisfy a radiation condition:

r1/2

(
∂φ

∂r
− iKφ

)
→ 0 as r = (x2 + y2)1/2 →∞. (2.4)

In what follows, we use capital letters P , Q to denote points in the fluid, and
lower-case letters p, q to denote points on the submerged body.

Next, we reduce the boundary-value problem for φ to a boundary integral equation
over S . To do this, we combine an appropriate fundamental solution with an
application of Green’s theorem. We use the fundamental solution corresponding to a
three-dimensional wave source, defined by

G(P ,Q) ≡ G(x, y, z; ξ, η, ζ) = (R2 + (z − ζ)2)−1/2 + G1(R, z + ζ), (2.5)
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where R = ((x− ξ)2 + (y − η)2)1/2,

G1(R, z + ζ) = ∪
∫ ∞

0

e−k(z+ζ) J0(kR)
k +K

k −K dk (2.6)

and J0 is a Bessel function. G satisfies (2.1) and (2.2), and it has a simple singularity
at P = Q (behaving there as the inverse of the distance between P and Q); the
integration path in (2.6) is indented below the pole of the integrand at k = K so
that G also satisfies the radiation condition. Note that G1(R,Z) is non-singular
whenever Z > 0.

Applying Green’s theorem to φ(P ) and G(P ,Q), we find that

φ(P ) =
1

4π

∫
S

{
φ(q)

∂G(P , q)

∂nq
− G(P , q)

∂φ

∂nq

}
dsq, (2.7)

where P is any point in D and ∂/∂nq denotes normal differentiation at q on S in the
direction from S into D. This is the familiar integral representation for φ in the fluid
in terms of φ and ∂φ/∂n on S; the latter is known from the boundary condition (2.3),
whence (2.7) becomes

φ(P ) =
1

4π

∫
S

{
φ(q)

∂G(P , q)

∂nq
− G(P , q)V (q)

}
dsq. (2.8)

Letting P → p, a point on S , we obtain

2πφ(p)−
∫
S

φ(q)
∂G(p, q)

∂nq
dsq = −

∫
S

G(p, q)V (q) dsq,

which is a well-known boundary integral equation for φ on S . This equation is
uniquely solvable for all values of K . Once solved, φ is given everywhere in the fluid
by (2.8).

3. Boundary integral equations: plates
Let the volume of the body in the previous section shrink, so that the body

degenerates into a thin rigid plate. Thus, S degenerates into Ω, a finite bounded
smooth open surface, with boundary ∂Ω; we assume that ∂Ω (the plate’s edge) is
a smooth simple closed curve. Ω has two sides, Ω+ and Ω−. The boundary-value
problem for φ becomes: solve Laplace’s equation (2.1) in D, subject to the free-surface
condition (2.2), the radiation condition (2.4) and the boundary condition

∂φ

∂n±
= V (p±) for p± on Ω±, (3.1)

where ∂/∂n± denote normal differentiation at a point on Ω± in the direction from Ω±

into D, and p± are corresponding points on Ω±. Note that ∂/∂n+ = −∂/∂n−. In
addition, we require that φ be bounded in the neighbourhood of ∂Ω.

The velocity potential is discontinuous across Ω: define

[φ(p)] = φ(p+)− φ(p−).

Also, as the plate is rigid, we have V (p+) = −V (p−). Hence, the integral representa-
tion (2.8) reduces to

φ(P ) =
1

4π

∫
Ω

[φ(q)]
∂G(P , q)

∂n+
q

dsq. (3.2)
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This equation states that φ(P ) can be represented as a double-layer potential, that is
as a distribution of normal dipoles over Ω. Note that V does not appear explicitly
in (3.2).

To use the integral representation (3.2), we have to find [φ]. If we adopt the
standard approach, that is we let P go to p+ and p− in turn, and subtract the
result, we obtain the nugatory result [φ] = [φ]. Instead, we impose the boundary
condition (3.1) on Ω+, giving

1

4π

∂

∂n+
p

∫
Ω

[φ(q)]
∂G(p+, q)

∂n+
q

dsq = V (p+), p+ ∈ Ω+. (3.3)

A similar equation is obtained if we apply the boundary condition on Ω−. Equa-
tion (3.3) is an integro-differential equation for [φ(q)], q ∈ Ω. It is to be solved subject
to the edge condition

[φ] = 0 around the edge ∂Ω; (3.4)

physically, because the plate is completely submerged, we require that the discontinuity
in pressure across the plate tends to zero as we approach its edge.

It is tempting simply to take the normal derivative at p+ in (3.3) under the integral
sign, but this leads to a non-integrable integrand. The conventional way of dealing
with this difficulty is to regularize (3.3); various possibilities are described by Martin
& Rizzo (1989). Instead, we adopt a more direct approach. Thus, it can be proved
that interchanging the order of integration and normal differentiation at p+ in (3.3)
is legitimate, provided that the integral is then interpreted as a finite-part integral. By
adopting this procedure, we find

1

4π
×
∫
Ω

[φ(q)]
∂2

∂n+
p ∂n

+
q

G(p+, q) dsq = V (p+), p+ ∈ Ω+, (3.5)

which is to be solved for [φ], subject to (3.4). The cross on the integral sign indicates
that it is to be interpreted as a two-dimensional finite-part integral; see Appendix A
for further details.

The hydrodynamic force on the plate can be computed by integrating the pressure
over both sides of Ω (Newman 1977). It is given by Re{F e−iωt}, where

F = −iωρ

∫
Ω

[φ(q)] n+(q) dsq, (3.6)

ρ is the fluid’s density and n+ is the unit normal to Ω+ pointing into the fluid. Thus,
the force is given by an integral of [φ] over the plate.

4. Submerged horizontal disc
So far, we have not exploited the fact that Ω is a flat circular disc; indeed, the

hypersingular integral equation (3.5) is valid when Ω is any smooth open bounded
surface. We could solve the integral equation, numerically, using a boundary element
method. Alternatively, if Ω is flat, we could use an appropriate expansion-collocation
method (such methods are very effective for one-dimensional hypersingular integral
equations). Indeed, one motivation for the present work is to validate such numerical
methods.

We start by assuming that Ω is a circular disc of radius a. We can non-
dimensionalize using a; thus, without loss of generality, we take a = 1. Next,
assume that the disc is horizontal, with its centre at (x, y, z) = (0, 0, b/2). We take Ω+
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to be the lower side of the disc, so that ∂/∂n+ = ∂/∂z evaluated on z = b/2. Then
(2.5) and (2.6) give

∂2G

∂n+
p ∂n

+
q

=
1

R3
+M,

where

M = ∪
∫ ∞

0

e−kb J0(kR)
k2(k +K)

k −K dk,

whence (3.5) becomes

1

4π
×
∫
Ω

[φ(q)]
dΩ

R3
+

1

4π

∫
Ω

[φ(q)]M(p, q) dΩ = V (p+), p+ ∈ Ω+, (4.1)

where dΩ is an element of area. This is a two-dimensional hypersingular integral
equation. It is valid when Ω is any flat horizontal plate (not necessarily circular).
Next, we shall reduce (4.1) to a set of uncoupled one-dimensional equations.

5. One-dimensional equations
Introduce plane polar coordinates r and θ for the point p = (x, y) on the disc; thus

x = r cos θ and y = r sin θ, so that Ω = {(r, θ) : 0 6 r < 1, −π 6 θ < π}. Similarly,
for q = (ξ, η), let ξ = ρ cosϕ and η = ρ sinϕ whence dΩ = ρ dρ dϕ. We now expand
all quantities as Fourier series in the angular variables. Thus, suppose that

V (r, θ) =
∑

Vn(r) cos nθ, (5.1)

where, in this section, all summations are from n = 0 to n = ∞. Using

J0(kR) =
∑

εnJn(kr) Jn(kρ) cos n(θ − ϕ),

where ε0 = 1 and εn = 2 for n > 1, we obtain

M(r, θ; ρ, ϕ) =
∑

εnMn(r, ρ) cos n(θ − ϕ),

where

Mn(r, ρ) = ∪
∫ ∞

0

e−kb Jn(kr) Jn(kρ)
k2(k +K)

k −K dk. (5.2)

Then, it follows from (4.1) that [φ] has a similar expansion,

[φ(r, θ)] =
∑

wn(r) cos nθ, (5.3)

where wn satisfies a one-dimensional integral equation. To see this, we write (4.1) as

1

4π
×
∫
Ω

[φ]
dΩ

R3
= f(p), p ∈ Ω, (5.4)

where

f(r, θ) = V (r, θ)− 1

4π

∫
Ω

[φ(q)]M(p, q) dΩ.

Substituting the various Fourier series, we obtain f(r, θ) =
∑
fn(r) cos nθ, where

fn(r) = Vn(r)−
1

2

∫ 1

0

wn(ρ)Mn(r, ρ) ρ dρ. (5.5)
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Now, (5.4) arises in classical potential theory. For example, the problem of the flow
of an ideal fluid past a thin rigid circular disc can be reduced to (5.4), wherein f is
known in terms of the ambient flow. Such problems can be solved exactly, usually by
integral-transform techniques and dual integral equations (Sneddon 1966). Thus, wn
and fn are related by the explicit formula

wn(r) = − 4

π
rn
∫ 1

r

1

t2n(t2 − r2)1/2

∫ t

0

sn+1fn(s)

(t2 − s2)1/2
ds dt, n = 0, 1, 2, . . . ; (5.6)

Guidera & Lardner (1975) give a clear derivation of this result.
Substituting for fn from (5.5) into (5.6), we find that

wn(r) = w∞n (r) +

∫ 1

0

wn(ρ)Ln(r, ρ) dρ, 0 6 r < 1, (5.7)

where

w∞n (r) = − 4

π
rn
∫ 1

r

1

t2n(t2 − r2)1/2

∫ t

0

sn+1Vn(s)

(t2 − s2)1/2
ds dt (5.8)

and

Ln(r, ρ) =
2

π
ρrn
∫ 1

r

1

t2n(t2 − r2)1/2

∫ t

0

sn+1

(t2 − s2)1/2
Mn(s, ρ) ds dt. (5.9)

Equation (5.7) is a Fredholm integral equation of the second kind for wn; w
∞
n

is known: it gives the solution for wn if the forcing V was applied to the disc in
an unbounded ideal fluid, so that all the free-surface effects are included in the
continuous kernel Ln. However, the integral equation is complicated; a much simpler
equation is obtained next.

6. Simpler one-dimensional equations
Examination of (5.6), (5.8) and (5.9) suggests that a simpler integral equation can

be obtained by introducing a new unknown function, ψn, related to wn by

wn(r) = Dnr
n

∫ 1

r

ψn(t) dt

tn(t2 − r2)1/2
, (6.1)

where Dn is a normalizing factor at our disposal. Comparison with (5.6) gives

ψn(t) = ψ∞n (t) +
2

π
t−n
∫ t

0

sn+1 Fn(s)

(t2 − s2)1/2
ds, (6.2)

where

ψ∞n (t) = − 4

πDn
t−n
∫ t

0

sn+1 Vn(s)

(t2 − s2)1/2
ds, (6.3)

Fn(s) =
1

Dn

∫ 1

0

wn(ρ)Mn(s, ρ) ρ dρ

=

∫ 1

0

ρn+1 Mn(s, ρ)

∫ 1

ρ

ψn(t) dt

tn(t2 − ρ2)1/2
dρ

=

∫ 1

0

ψn(t)

tn

∫ t

0

ρn+1

(t2 − ρ2)1/2
Mn(s, ρ) dρ dt. (6.4)
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Now, given the formula for Mn, (5.2), we can evaluate the integral over ρ in (6.4) and
the integral over s in (6.2) using

1

yn

∫ y

0

ρn+1 Jn(kρ)

(y2 − ρ2)1/2
dρ = y jn(ky), (6.5)

where jn(z) = ( 1
2
π/z)1/2 Jn+1/2(z) is a spherical Bessel function. The result is that (6.2)

reduces to

ψn(x)−
∫ 1

0

ψn(y)Nn(x, y) dy = ψ∞n (x), 0 6 x 6 1, (6.6)

where

Nn(x, y) =
2

π
xy ∪
∫ ∞

0

e−kb jn(kx) jn(ky)
k2(k +K)

k −K dk (6.7)

is a symmetric continuous kernel.
The idea of replacing wn by ψn has been used previously by Martin & Wickham

(1983) for another problem involving a circular disc, namely the diffraction of elastic
waves by a penny-shaped crack.

7. The heaving disc
Let us now make the simplest choice for the forcing V , namely

V (r, θ) = 1.

This corresponds to heave (vertical) oscillations of the plate. It follows that the
solution is axisymmetric: [φ] = w0. We choose

D0 = −4/π whence ψ∞0 (x) = x.

Thus (writing ψ ≡ ψ0), we have

w0(r) = − 4

π

∫ 1

r

ψ(t) dt

(t2 − r2)1/2
(7.1)

where ψ solves

ψ(x)−
∫ 1

0

ψ(y)N0(x, y) dy = x, 0 6 x 6 1. (7.2)

This integral equation can be solved numerically by a straightforward method: the
kernel is symmetric and continuous. Difficulties are expected only when b is small,
that is when the disc is close to the free surface.

Further simplifications are possible. Thus, as j0(z) = z−1 sin z, the kernel simplifies
to

N0(x, y) =
2

π
∪
∫ ∞

0

e−kb sin kx sin ky
k +K

k −K dk

= L(x− y)− L(x+ y)

where

L(X) =
1

π
∪
∫ ∞

0

e−kb cos kX
k +K

k −K dk (7.3)

is an even function of X. Note that N0(x, y) is an odd function of x: N0(−x, y) =
− N0(x, y). As the right-hand side of (7.2) is odd, the integral equation implies that
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ψ(x) can be extended as an odd function of x. These properties allow us to write the
integral equation as an equation over the interval −1 6 x 6 1; the result is

ψ(x)−
∫ 1

−1

ψ(y)L(x− y) dy = x, −1 6 x 6 1. (7.4)

This is a Fredholm integral equation of the second kind with a smooth difference
kernel L; ψ is the continuous odd solution of this equation.

We can separate the kernel into two parts, using

k +K

k −K = 1 +
2K

k −K . (7.5)

This gives

L(X) = L0(X) + L1(X),

where

L0(X) = (b/π)(b2 +X2)−1, L1(X) = (2K/π)Φ0(X, b)

and

Φ0(X,Y ) = ∪
∫ ∞

0

e−kY cos kX
dk

k −K
is a two-dimensional wave-source potential. Φ0 can be computed conveniently using
an expansion derived by Yu & Ursell (1961):

Φ0(X,Y ) = − e−KY {(logKS − iπ + γ) cosKX + β sinKX}

+

∞∑
m=1

(−KS)m

m!

(
1

1
+

1

2
+ · · ·+ 1

m

)
cosmβ,

where S and β are defined by X = S sin β and Y = S cos β, and γ = 0.5772 . . . is
Euler’s constant.

We note that L0 is wave-free: it corresponds to replacing the free surface by a rigid
lid (K = 0); see §8.2 below. All wave effects are included in L1.

Written explicitly, (7.4) becomes

ψ(x)− b

π

∫ 1

−1

ψ(y)

b2 + (x− y)2
dy− 2K

π

∫ 1

−1

ψ(y)Φ0(x− y, b) dy = x, −1 6 x 6 1. (7.6)

This is the final form of our equation for ψ. The solution depends on the wavenum-
ber K and the submergence b (recall that the plate has radius 1 and is submerged
at a distance b/2 below the mean free surface); we write ψ(x) = ψ(x;K, b) when we
wish to emphasize this dependence.

7.1. Hydrodynamic force

The hydrodynamic force on the heaving disc is given by (3.6). Suppose that the
disc’s centre is at z = 1

2
b − (U/ω) cosωt, where U is a constant. Then, the vertical

hydrodynamic force on the disc, F , can be expressed as

F = ρa3Uω {A cosωt+B sinωt} ,

where a is the radius of the disc, and A and B are the dimensionless added-mass
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and damping coefficients, respectively. We find that

A(K, b) + iB(K, b) = −
∫

unit disc

[φ] ds = − 2π

∫ 1

0

w0(r) r dr

= 8

∫ 1

0

ψ(x) x dx, (7.7)

where we have used (7.1). Thus, the added mass and damping are easily computed in
terms of the solution to (7.6).

Comparing the right-hand sides of (7.6) and (7.7) suggests multiplying (7.6) by the
complex conjugate of ψ, and integrating over x. Taking the imaginary part of the
result gives

B(K, b) = 8K e−Kb
∣∣∣∣∫ 1

−1

ψ(x) sinKx dx

∣∣∣∣2 ,
which shows that the damping cannot be negative.

8. Special cases
Let us consider some special cases of the integral equation (7.6).

8.1. Deep submergence: b→∞
When b→∞, the kernel L→ 0, whence ψ(x;K,∞) = x. From (7.7), we find that

A = 8
3

and B = 0 (b→∞). (8.1)

Physically, this corresponds to a single disc oscillating in an unbounded fluid. The
result (8.1) is well known and can be found in Lamb’s book (1932, §102).

8.2. K = 0: Love’s equation

When K = 0, the second integral term (L1) is absent. Thus, if we write f(x) =
ψ(x; 0, b), we find that

f(x)− b

π

∫ 1

−1

f(y)

b2 + (x− y)2
dy = x, −1 6 x 6 1. (8.2)

This is a well-studied equation, known as Love’s equation (Love 1949). (Actually,
Love’s original equation has 1 rather than x on the right-hand side.) It arises in
the electrostatic problem of a circular plate condenser. This Dirichlet problem (φ
prescribed on each disc) is discussed at length by Sneddon (1966, §8.1). In our case, we
can see that setting K = 0 in the free-surface condition (2.2) is equivalent to having
a pair of identical coaxial discs in an unbounded perfect fluid, with ∂φ/∂z = +1 on
one disc and ∂φ/∂z = −1 on the other; b is the separation between the discs. We are
not aware of a direct derivation of (8.2) for this potential problem, although it can be
obtained from a paper by Collins (1961) on acoustic scattering by two coaxial rigid
discs.

Despite its apparent simplicity, no closed-form solution of Love’s equation is known.
Such a solution was claimed by Atkinson, Young & Brezovich (1983), but the claim
was subsequently shown to be false by Hughes (1984) and by Love (1990) himself.
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8.3. K = ∞
When K →∞, the split (7.5) is inappropriate; from (7.3), the limiting kernel is found
to be

L(X) = − b(b2 +X2)−1.

Thus, writing g(x) = ψ(x;∞, b), we find that g satisfies

g(x) +
b

π

∫ 1

−1

g(y)

b2 + (x− y)2
dy = x, −1 6 x 6 1.

This equation differs from (8.2) by the sign of the integral term.

9. Numerical results
To solve the integral equation (7.6) numerically, for general values of K and b, we

use a Nyström method with the Gauss–Legendre quadrature rule. (Recall that the
kernel is continuous.) Thus, we solve a linear system

N∑
j=1

Aij(K, b)ψj = xi, i = 1, 2, . . . , N,

where xi is a quadrature node, ψi = ψ(xi),

Aij = δij −
wj

π

{
b

b2 + (xi − xj)2
+ 2K Φ0(xi − xj, b)

}
and wj is a quadrature weight. We checked for convergence using various values
of N; for small b, we found that N = 60 gave good results, with smaller N required
for larger b. Equation (7.7) can be used to compute the added-mass and damping
coefficients; thus

A+ iB ≈ 4

N∑
j=1

wjxjψj.

Figure 1 shows the added-mass coefficient A as a function of Ka, for three depths
of submergence b/2. We note the occurrence of negative added mass for sufficiently
small b. Moreover, we notice increasingly sharp maxima and minima as b→ 0.

In figure 2 we see that these features are accompanied by a large peak in the
damping coefficient B. This confirms a result of McIver & Evans (1984) deduced
from the Kramers–Kronig relations. We can also observe that the height of the
peak in the damping coefficient is almost exactly the same as the total height of the
corresponding spikes in the added-mass coefficient. Furthermore, the peak of the
damping is very close to a zero of the added mass. These properties were observed
previously by Linton & Evans (1992, 1993) in their studies of radiation by submerged
bottom-mounted vertical circular cylinders in channels.

The formation of additional minor spikes in the added-mass coefficient should be
noted also. These spikes are more evident for smaller values of b; see figure 3.

The spikes in the graphs of the hydrodynamic coefficients occur at frequencies called
resonant frequencies. They correspond to singularities of the system matrix A(K, b)
(with entries Aij) as a function of complex K , for fixed b. These values of K
are called scattering frequencies; for more information, see Hazard & Lenoir (1993),
Alves & Ha Duong (1995) and Poisson (1995). Scattering frequencies are poles in
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Figure 1. Added-mass coefficient A as a function of Ka for three values of d, where d = b/2 is
the submergence of the disc.
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Figure 2. Added-mass and damping coefficients as a function of Ka for b = 0.2.

the complex K-plane; they lie in Im(K) < 0. Numerically, they can be located by
searching for zeros of detA (Farina 1996).

For small b, it is natural to compare the hydrodynamic coefficients A and B
with those for the dock problem (b = 0), Ad and Bd , respectively. In figure 4, we
compare the damping coefficients, B and Bd , for b = 0.02. We see that, apart from
the spikes, the underlying trend of B is very close to Bd , especially for larger values
of Ka. However, the same cannot be said of the added-mass coefficients; these are
shown in figure 5, again for b = 0.02. In fact, we find numerically that, apart from
the spikes, it is |A − Ad + π/(Ka)| which is small, especially for larger Ka. This
can be explained as follows. For small b/a, the potential beneath the submerged
disc and the dock are the same. However, the potential in the thin layer above the
submerged disc is significant; there, the fluid is in a simple state of uniform vertical



376 P. A. Martin and L. Farina

100

50

0

–50

0 0.2 0.4 0.6 0.8 1.0

A
dd

ed
 m

as
s

Ka

–100

–150

150

Figure 3. Added-mass coefficient A as a function of Ka for b = 0.04. A is of order 103 at its
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Figure 4. The damping coefficient for the submerged disc at b = 0.02 (dashed curve) compared
with the damping coefficient for the dock (b = 0; solid curve).

oscillation in phase with the disc, with potential z − 1/K (see Newman, Sortland &
Vinje 1984). Thus, [φ] ' φd + 1/K , where φd is the potential on the dock. Hence,
A+ iB ' Ad + iBd − π/(Ka), in agreement with the numerical results.

10. Discussion
The numerical results are especially interesting when the plate is close to the free

surface. This is also when the numerical treatment becomes more difficult – the kernel
is continuous for all b > 0, but it is strongly singular if b = 0. These facts lead us to
consider the possibility of constructing an asymptotic approximation for small values
of b. Some idea of the difficulties involved can be obtained by examining Hutson’s
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curves is approximately π/(Ka).

rigorous asymptotic analysis of Love’s equation (K = 0, so that all wave effects
are absent) as b → 0 (Hutson 1963). This work is ongoing, and will be described
elsewhere.

The diffraction problem, where an incident regular wavetrain is scattered by a fixed
disc, can be treated in a similar manner. In particular, the exciting force on the disc
can be found by solving the simple integral equation (7.6), except that the function x
on the right-hand side must be replaced by sinKx; see Appendix B.
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Appendix A. Two-dimensional finite-part integrals
The hypersingular integral in (3.5) can be defined in several equivalent ways.

Assume, for simplicity, that Ω is a flat bounded region in the (x, y)-plane. Then, for
a sufficiently smooth function w (in fact, we require that w has tangential derivatives
which are themselves Hölder continuous), one natural definition in the context of
boundary-value problems is

×
∫
Ω

w(ξ, η)
dΩ

R3
= lim

z→0

∂

∂z

∫
Ω

w(ξ, η)

{
lim
ζ→0

∂

∂ζ

(
1

[R2 + (z − ζ)2]1/2

)}
dΩ,
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where dΩ = dξ dη. Another definition is

×
∫
Ω

w(ξ, η)
dΩ

R3
= lim

ε→0

{∫
Ω\Ωε

w(ξ, η)
dΩ

R3
− 2πw(x, y)

ε

}
,

where Ωε is a small disc of radius ε centred at the singular point (x, y). Both of
these definitions have analogues for one-dimensional finite-part integrals. For more
information on hypersingular integrals over surfaces, see Martin & Rizzo (1989,
1996), Krishnasamy et al. (1990) and Krishnasamy, Rizzo & Rudolphi (1992).

Appendix B. The diffraction problem
A wave with surface elevation A cos (Kx− ωt) is scattered by a fixed horizontal

submerged disc. Thus, the incident potential is

φinc = −i(g/ω)A e−KzeiKx.

The boundary condition is (3.1), wherein V = −∂φinc/∂n. Expanding V as (5.1) gives

Vn(r) = − 1
4
πKDn Jn(Kr) with Dn = (4/π)(g/ω)A e−Kb/2εni

n+1.

Hence, using (6.5), (6.3) gives ψ∞n (x) = Kx jn(Kx).
The exciting force on the disc is given by (3.6), wherein [φ] is the discontinuity in the

scattered potential φ across the disc. (Note that [φinc] = 0, so that the Froude–Krylov
force vanishes.) [φ] can be expanded using (5.3) and (6.1), where ψn solves (6.6).
However, the (vertical) exciting force is given completely in terms of ψ0; it is

8ρga2A e−Kb/2 Re

{
e−iωt

∫ 1

0

ψ0(x) x dx

}
.

Moreover, ψ0 solves the simple integral equation (7.6), except that the forcing function
on the right-hand side is now Kx j0(Kx) = sinKx (rather than x).
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