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Abstract 

Background: In this study, the prevalence of different types of mucopolysaccharidoses (MPS) was estimated based 
on data from the exome aggregation consortium (ExAC) and the genome aggregation database (gnomAD). The 
population-based allele frequencies were used to identify potential disease-causing variants on each gene related to 
MPS I to IX (except MPS II).

Methods: We evaluated the canonical transcripts and excluded homozygous, intronic, 3′, and 5′ UTR variants. 
Frameshift and in-frame insertions and deletions were evaluated using the SIFT Indel tool. Splice variants were evalu-
ated using SpliceAI and Human Splice Finder 3.0 (HSF). Loss-of-function single nucleotide variants in coding regions 
were classified as potentially pathogenic, while synonymous variants outside the exon–intron boundaries were 
deemed non-pathogenic. Missense variants were evaluated by five in silico prediction tools, and only those predicted 
to be damaging by at least three different algorithms were considered disease-causing.

Results: The combined frequencies of selected variants (ranged from 127 in GNS to 259 in IDUA) were used to 
calculate prevalence based on Hardy–Weinberg’s equilibrium. The maximum estimated prevalence ranged from 0.46 
per 100,000 for MPSIIID to 7.1 per 100,000 for MPS I. Overall, the estimated prevalence of all types of MPS was higher 
than what has been published in the literature. This difference may be due to misdiagnoses and/or underdiagnoses, 
especially of the attenuated forms of MPS. However, overestimation of the number of disease-causing variants by in 
silico predictors cannot be ruled out. Even so, the disease prevalences are similar to those reported in diagnosis-based 
prevalence studies.

Conclusion: We report on an approach to estimate the prevalence of different types of MPS based on publicly avail-
able population-based genomic data, which may help health systems to be better prepared to deal with these condi-
tions and provide support to initiatives on diagnosis and management of MPS.

Keywords: Mucopolysaccharidoses (MPS), Estimated prevalence, Exome aggregation consortium (ExAC), Genome 
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Introduction
The mucopolysaccharidoses (MPS) are a group of lys-
osomal diseases characterized by the deficiency of 
one of eleven enzymes involved in the breakdown of 

glycosaminoglycans (GAGs) which are constituents of 
the extracellular matrix. When there is a disturbance in 
their activities this leads to downstream consequences at 
the cellular level affecting multiple organs and systems. 
The MPS may be divided into different types according 
to the enzyme deficiency and the accumulated substrate 
(type I, II, IIIA, IIIB, IIIC, IIID, IVA, IVB, VI, VII, and 
IX). GAGs are constituents of the extracellular matrix, 
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where impaired activities can lead to a spate of negative 
consequences both at the cellular and the physiological 
levels. Affected individuals usually have coarse facial fea-
tures, cardiac and pulmonary problems, and, depending 
on the MPS type, bone dysplasia (dysostosis multiplex) 
and/or neurological impairment such as behavioural 
problems and developmental delay [1–3]. The severity 
of the diseases is variable, and individuals with MPS I, 
II, IVA, VI, and VII may benefit from market-approved 
enzyme replacement therapy, while there are novel thera-
pies such as fusion proteins, gene therapy, and genome 
editing under investigation for several MPS [4].

Incidence and prevalence data are important to back 
up health system decisions and are necessary to calculate 
the cost–benefit of new therapies and treatment. Despite 
extensive molecular characterization having been done 
for the genes that encode the enzymes involved in these 
diseases with over 2,109 pathogenic variants reported 
in the Human Gene Disease Database (HGMD®) [5], 
there is still lack of specific epidemiology data on MPS. 
Newborn screening programs that include lysosomal 
diseases have arisen worldwide and may bring valuable 
information. However, such programs are still largely 
restricted to very few countries and most types of MPS 
are not included in the list of screened diseases [6, 7]. 
Population-based genomic data can help narrow the 
information gap, since now it is possible to rely on carrier 
frequency instead of the incidence of a disease among 
live births. However, care must be taken when using in 
silico predictors to classify genetic variants in order to 
have the most reliable data possible.

Herein, we used the frequency of potential disease-
causing variants present in population-based genomic 
databases such as the Exome Aggregation Consortium 
(ExAC) [8] and the Genome Aggregation Database (gno-
mAD) [9], to estimate the prevalence of the different 
types of MPS after applying Hardy–Weinberg principles 
[10].

Results
Table  1 shows the number of variants present in each 
database and after the merger, which ranged from 961 
(IDS) to 2988 (GALNS). After subsequent filtering 
steps, these numbers were reduced, ranging from 31 
(IDS) to 259 (IDUA) (Table 2). A detailed description of 
the excluded variants can be found in Additonal file 1: 
Table S1.

The number of variants excluded due to homozygosis 
ranged between 3 in GNS and GUSB to 113 in IDS (in 
homozygosis or hemizygosis); none of them were stop 
gain, stop loss, or start loss. The overall number of hete-
rozygous canonical and non-canonical splice site variants 
considering all genes was 452, with 224 being considered 

deleterious by the in silico algorithms. One splice site 
variant could not be analysed by HSF nor SpliceAI 
(Additonal file 3: Table  S3). In addition, 213 out of 218 
frameshift and 188 in-frame insertions and deletions 
were considered deleterious. Variants that could not 
be analysed by SIFT Indel were excluded from further 
analysis. All variants considered deleterious by only one 
splice program as well as frameshift and nonsense vari-
ants in the last exon or located < 50 nucleotides upstream 
of the 3’ most splice-generated exon-exon junction were 
excluded from the calculations of minimum frequency. 
The number of variants considered deleterious in each 
category is shown in Table 2.

All 3,111 missense variants were analysed by five dif-
ferent in silico tools. A consensus on pathogenicity was 
reached for 588 variants, while 548 variants were classi-
fied as pathogenic by four tools and 382 variants by three.

The allele frequencies of each variant for a given gene 
were added together and considered as the minimum 
and maximum frequency of the deleterious recessive 
allele. This number was then used to calculate mini-
mum and maximum prevalence of disease based on the 
Hardy–Weinberg equilibrium (Table  3). As the number 
of variants retained for IDS was very low (31 variants), 
the estimated frequency of MPS II must be viewed with 
caution. It is worth noticing that variants on GLB1 can be 
associated either with MPS IVB or GM1 gangliosidosis.

Only two of the 2,061 retained variants have frequen-
cies over 0.001—p.(His356Pro) in NAGLU with 0.007993 
and p.(Asp152Asn) in GUSB with 0.001153. After all five 
tier variant selections, maximum and minimum esti-
mated disease prevalence was calculated based on global 
allele frequency (Table 3).

Table 1 Number of variants in each gene present in ExAC 
and gnomAD

*Variants may be associated with GM1 Gangliosidosis or with MPS IVB

**Retained variants represent unique variants after merging both databases

MPS type Gene ExAC 
variants

gnomAD 
variants

Common Retained 
variants**

MPS I IDUA 1246 1439 680 2005

MPS II IDS 300 920 259 961

MPS IIIA SGSH 1188 1400 545 2043

MPS IIIB NAGLU 640 805 397 1048

MPS IIIC HGSNAT 598 1456 521 1533

MPS IIID GNS 429 1116 404 1141

MPS IVA GALNS 1390 2254 656 2988

MPS IVB GLB1* 871 1322 564 1629

MPS VI ARSB 407 1122 370 1159

MPS VII GUSB 593 1067 519 1141

MPS IX HYAL1 669 700 287 1082
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In addition to estimated overall disease prevalence, the 
prevalence of MPS in specific populations was calculated 
for eight ethnic groups present in the databases (Figs. 1, 2 
and Additonal file 4: Table S4).

Discussion
In this study, we used public data from WES and WGS 
to estimate the prevalence of different types of MPS. 
As MPS symptoms usually show up in the first decade 
of life, it is unlikely that severely affected individuals 

would be part of such databases. However, the possibil-
ity of undiagnosed individuals with milder phenotypes 
being included in those cannot be ruled out. Impor-
tantly, individuals homozygous for rare variants pre-
sent in any MPS gene (Additonal file 2: Table S2), which 
could represent individuals with attenuated forms of 
the disease were filtered out in the second-tier variant 
selection.

The estimated global frequency for all types of MPS 
except for type VI found in this study was either above 
or at the upper limit in comparison to frequencies of 
MPS in different countries based on the number of 
diagnosed cases in reference centres [20] (Table  4). 
Worthy of note is the fact that the maximum prevalence 
as reported by Khan et  al., 2017 is for a limited num-
ber of countries, whereas our data was calculated col-
lectively for the different ethnic backgrounds present in 
the databases. This means that we may have overesti-
mated the prevalence of diseases in the general popula-
tion. A recent study estimated the prevalence of MPS in 
Brazil based on 600 affected individuals with all types 
of MPS included in a national network database [21]. 
The researchers found discrepancy when comparing the 
estimated prevalence based on diagnosis (0.24/100,000) 
to the estimated prevalence based on genetic screen-
ing for the most common pathogenic variant in IDUA 
among healthy volunteers (0.95/100,000), for exam-
ple. Furthermore, the estimated prevalence of MPS 
VI in Brazil was the second highest in the world, with 
prevalence similar to that found in the present study 
(1.02/100,000 compared with 1.12/100,000).

Table 2 Number of variants considered deleterious per category for each gene

*Variants may be associated with GM1 Gangliosidosis or to MPS IVB

**Numbers represent minimum and maximum frequencies. In the case of frameshift, stop gain or stop loss minimum frequency excludes variants in the last exon or 
located < 50 nucleotides upstream of the 3’ most splice-generated exon-exon junction. For splice site and missense variants, minimum frequency considers only 
variants deemed pathogenic by a consensus of all software packages

Frameshift** In-frame 
insertion/
deletion

Splice site** Start loss Stop gain** Stop loss** Missense** Total**

IDUA 17–18 12 16–37 1 10–15 0–1 86–175 142–259

IDS 0 1 1–2 0 0 0 4–28 6–31

SGSH 8–14 7 5–7 0 4–14 0 73–194 97–236

NAGLU 11–20 2 6–10 1 8–16 0 87–176 115–225

HGSNAT 11 4 22–37 0 8–9 0 18–98 63–159

GNS 5 3 14–23 0 4 0–1 29–91 55–127

GALNS 11 7 14–26 1 10–11 0–1 57–187 100–244

GLB1* 12–13 3 18–34 1 11–13 0 67–161 112–225

ARSB 9–12 5 10–18 0 8–12 0 48–141 80–188

GUSB 11–13 6 17–27 2 13–14 0–2 62–160 111–224

HYAL1 12–13 8 1–3 1 8–9 0 57–107 87–141

All genes 107–130 58 124–224 7 84–117 0–5 588–1515 968—2059

Table 3 Estimated disease prevalence based on  allele 
frequencies of  potentially disease-causing variants 
for each gene

*Variants may be associated to GM1 gangliosidosis or to MPS IVB. 
CI = Confidence interval

Gene Disease-
causing 
variants

CI in 100,000 (max) CI in 100,000 (min)

IDUA 259 7.103–7.096 2.479–2.476

IDS 29 0.0108–0.0107 0.00014–0.00013

SGSH 236 2.365–2.363 0.4116–0.4112

NAGLU 225 1.532–1.530 0.366–0.365

HGSNAT 159 1.566–1.565 0.107–0.106

GNS 127 0.459–0.458 0.0549–0.0548

GALNS 224 2.363–2.361 0.25–0.25

GLB1* 225 1.677–1.676 0.456–0.455

ARSB 188 1.119–1.117 0.1761–0.1758

GUSB 224 1.144–1.141 0.2081–0.2078

HYAL1 141 0.4393–0.4388 0.1081–0.1079
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Fig. 1 Schematic example showing all steps of maximum (a) and minimum (b) variant selection for the IDUA gene (MPS I)
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Several measures were taken to reduce the chance of 
prevalence overestimation. For example, variants were 
filtered in sequential steps, in order to obtain the most 
specific data possible. Also, both homozygotes and vari-
ants with frequency higher than 0.001 were excluded. 

Additional filtering based on functional predictions was 
also performed in order to include only variants more 
likely to affect protein function. After that, all variants 
remaining for analysis had allele frequencies below 0.001 
and most of them have not been previously reported as 

Fig. 2 Estimated maximum (a) and minimum (b) prevalence of the MPS types per 100,000 individuals in different ethnic groups. Data for MPS II not 
included (see discussion)
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disease-causing. This was expected since variants clas-
sified as of uncertain significance (VUS) based on the 
standards and guidelines of the American College of 
Medical Genetics/Association of Molecular Pathology 
(ACMG/AMP) [10] are known to account for a substan-
tial part of disease-causing variants for MPS and have a 
significant impact on incidence estimates. For example, 
Clark et al. [22] showed that 25% of VUS analysed in MPS 
IIIB were potentially disease-causing and cause  reduced 
enzyme activity.

It is worthy of note that sequential filtering steps and 
use of consensus scores do not guarantee that only path-
ogenic variants are selected or that only non-pathogenic 
variants are discarded. However, the estimation error 
is not directly measurable. Furthermore, the high fre-
quency filter is necessary to exclude variants with fre-
quencies incompatible with MPS disease. Although this 
may lead the possibility of underascertainment, frequen-
cies like 0.007993 and 0.001153 for variant c.1067A > C; 
p.(His356Pro) in NAGLU and  the c.454G > A; 
p.(Asp152Asn) in GUSB are not found in clinical prac-
tice. These were the only two variants excluded because 
of high frequency. We considered using curated variants 
reported either on ClinVar or Human Genome Muta-
tion Database (HGMD), however, this would significantly 
reduce the number of retained variants (for instance, 
from 259 to 47 for IDUA, data not shown). Different in 
silico tools were used to estimate the likelihood of a vari-
ant being disease-causing. However, as no data on the 
sensitivity and specificity of such softwares are available 
for MPS genes, it is impossible to estimate the number 
of false-positive results. For instance, several well char-
acterized pathogenic variants reported in HGMD had 

low deleteriousness scores as evaluated by the Combined 
Annotation-Dependent Depletion (CADD) [23] that 
has an overall higher performance than other predictors 
(data not shown).

The existence of compound heterozygotes cannot be 
ruled out. In fact, most individuals with MPS who are 
not a result of from consanguineous marriage are indeed 
compound heterozygotes. However, due to the structure 
of both databases used in this study, it is impossible to 
set up conditions where the occurrence of variants in cis 
cannot be ruled out, which would contribute to the over-
estimation of disease prevalence.

Despite these limitations, a similar approach has been 
used by Appadurai et al., 2015 to estimate the prevalence 
of cerebrotendinous xanthomatosis (CTX). As in the pre-
sent study, the authors suggested an apparent underdiag-
nosis of CTX based on the allele frequency of potentially 
disease-causing variants present in ExAC. Interestingly, 
the discrepancy between genomic data and the diagno-
sis-based incidence is more pronounced for the rarest 
MPS diseases, such as MPS IIIC, IIID, IVB, VII, and IX. 
For some forms of MPS I, II, VI, and IX, it is possible that 
variants leading to deficient enzyme activity are not clini-
cally recognized due to attenuated phenotypes [24–26]. 
On the other hand, severe cases of MPS VII may lead to 
premature death before the diagnosis is reached or even 
sought [27].

Notably, data emerging from large datasets of WES and 
WGS are disclosing novel phenotypes for well-known 
diseases, especially intermediate phenotypes [28–30]. 
This may also be the case for MPS and could help explain 
the higher prevalence predicted by our work, with 
patients not being recognized clinically due to an unusual 
presentation.

In the case of MPS IVB, there is an additional com-
plexity since  the same gene is involved in another lyso-
somal disorder with different accumulated substrate and 
clinical features, called GM1 gangliosidosis [31]. In this 
study, variants of GLB1 were considered disease-causing 
regardless of the associated phenotype. Therefore, the 
overall frequency of alleles was used to estimate the prev-
alence of MPS IVB, whereas in fact only about 13.3% of 
curated disease-causing variants in this gene are associ-
ated with MPS IVB, the rest leading to the three types of 
GM1 gangliosidosis [32].

After the filtering steps, IDS had a limited number 
of retained disease-causing variants (29 variants), and 
therefore the estimated prevalence for MPS II was lower 
than what has been previously reported [20]. The higher 
prevalence observed in studies based on reference cen-
tres and diagnostic laboratories may be related to the 
proportion of patients having de novo variants. Pol-
lard et  al. [33] show that this happens in 22.5% of MPS 

Table 4 Estimated prevalence in  the  present study 
compared to  the  incidence (in 100,000) as  reported 
by Khan et al., 2017 for each MPS type

*Combined frequency of GM1 Gangliosidosis and MPS IVB

MPS type Gene This study (max.–min.) Khan et al. 
2017 (max.–
min.)

MPS I IDUA 7.10–2.48 3.62–0.11

MPS II IDS 0.0108–0.00013 2.16–0.1

MPS IIIA SGSH 2.36–0.41 1.62–0.08

MPS IIIB NAGLU 1.53–0.37 0.72–0.02

MPS IIIC HGSNAT 1.57–0.11 0.42–0.03

MPS IIID GNS 0.46–0.05 0.10–0.09

MPS IVA GALNS 2.36–0.25 1.30–0.15

MPS IVB GLB1 1.68–0.46* 0.14–0.01

MPS VI ARSB 1.12–0.18 7.85–0.02

MPS VII GUSB 1.14–0.21 0.29–0.02

MPS IX HYAL1 0.44–0.11 NA
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II cases. In addition, recombination events between IDS 
and its pseudogene IDS2 are a common cause of the dis-
ease, with structural variants such as gross rearrange-
ments and complete or partial deletions seen in between 
10 and 28% of affected individuals [34–40]. Those types 
of variants could not be taken into account in our esti-
mates because of the structure of the populational data-
bases used. As a result, the estimated prevalence of MPS 
II is not as reliable as it is for the other types of MPS. It is 
worth mentioning that the other study that uses a simi-
lar method for two X-linked diseases (Menkes disease 
and ATP7A-related disorders) [41] also found a very low 
number of variants, which could suggest that this strat-
egy is not the best approach for X-linked disorders.

Conclusions
In summary, we report on  an approach to estimate the 
prevalence of the different types of MPS based on pub-
licly available population-based genomic data that may 
help to better tailor screening and diagnostic programs 
for these diseases, to prepare the health systems to 
deal with a more precise estimated number of patients, 
and may serve as a starting point for other rare-disease 
initiatives.

Methods
Database
Genetic variants (GRCh37/hg19) from ExAC V0.3.1 and 
gnomAD v2.0.2 [8, 9] were used to estimate the prevalence 
of different types of MPS. These public data aggregated 
information from 125,748 WES and 15,708 WGS col-
lected from unrelated individuals and 1,756 parent–off-
spring trios with no known rare disease. The genetic data 
were collected from case–control studies of adult-onset 
common diseases, spanning six global and eight sub-con-
tinental ancestries, determined by ancestry-informative 
markers [9]. Although related individuals can have an 
influence upon the frequency of variants, the size of the 
database which has a total of 141,456 individuals makes 
the influence of 1,756 trios irrelevant.

The data was retrieved separately for each gene, and 
then merged to create one single unified database. When 
variants were common to both databases, the allele fre-
quencies from gnomAD were used for further analysis, as 
it includes ExAC data.

First-tier variant selection
Variants of the gene located in 5′ and 3′ UTR, upstream 
and downstream, as well as intronic and non-coding 
transcript exons, were excluded assuming that no dis-
ease-causing variant has been described in such positions 
for any MPS. In addition, synonymous variants outside 

the exon–intron boundaries were also excluded, as well 
as variants in non-canonical transcripts.

Second-tier variant selection
In second-tier analysis, missense, nonsense, stop gain 
and stop-loss, frameshift, and splice site variants present 
in homozygosis (and hemizygosis for IDS) were excluded 
based on the assumption that neither ExAC and gno-
mAD include MPS-affected individuals as they exclude 
samples from patients with severe pediatric diseases and 
their relatives [8]. Therefore, any homozygous variant 
should not be pathogenic. Heterozygous loss-of-function 
variants such as stop gain, stop loss, and start loss were 
considered as potentially disease-causing, considering 
the impact on protein function and strong evidence of 
pathogenicity as per the ACMG/AMP guidelines [10].

Third-tier variant selection
Heterozygous alterations in canonical or non-canonical 
splice site were analysed using Human Splice Finder [11] 
and SpliceAI [12]. In-frame insertions, deletions and 
frameshift variants outside the last exon were analysed 
using SIFT Indel [13]. Variants were classified based on 
the default algorithms parameters for deleteriousness.

Fourth-tier variant selection
The analysis of missense variants was made using five 
in silico algorithms: MutPred [14], PolyPhen2 [15], 
PROVEAN [16], SIFT [17], and REVEL [18]. Since Poly-
phen2 provides more than two categories, results were 
transformed into binary data considering "possibly path-
ogenic" and “probably pathogenic” as deleterious. For 
REVEL, an ensemble algorithm, a rank score over 0.75 
was considered deleterious. To calculate the maximum 
prevalence of the disease, a variant was considered del-
eterious when at least three software packages agreed on 
pathogenicity. For the minimum prevalence, we included 
missense variants for which all in silico tools agreed on 
pathogenicity.

Fifth-tier variant selection
The remaining variants were analysed to make sure that 
only rare alleles were retained. Therefore any variant with 
a frequency greater than 0.001 was excluded, as no vari-
ants associated with low enzymatic activity (≤ 15% wild 
type) were found with higher allele frequencies [19].

Calculation of disease prevalence using Hardy–Weinberg 
principles
The frequency of a given variant retained as being dis-
ease-causing was calculated by dividing the number of 
chromosomes bearing the genetic change by the total 
number of chromosomes subjected to analysis in this 
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position. Then the sum of all variant frequencies for each 
gene was used as the frequency of the recessive allele 
(q). The prevalence was then calculated as  q2, from the 
Hardy–Weinberg formula  p2 + 2pq + q2. The incidence 
for each specific population was calculated using the 
population-specific frequencies.

Calculation of confidence Interval
A script in R was used to estimate the confidence inter-
val. The variances in the frequency of variants and in the 
prevalence estimate were calculated equally as exhibit 
eqautions 5 and 13 from Clark et al. [22]. The confidence 
intervals were adapted to consider the sum of allele fre-
quencies instead of probability, as suggested by Clark 
et al. [22].

Supplementary information
is available for this paper at https ://doi.org/10.1186/s1302 3-020-01608 -0.

Additonal file 1.The number of variants excluded at each category for 
each MPS gene at the calculated maximums frequency. Bold numbers 
identify retained variants.

Additional file 2. The total number of variants excluded for homozy-
gosis for each MPS gene and the number of homozygosis variants with 
frequency less than 0.001.

Additional file 3. The number of variants excluded from the analysis for 
each MPS gene.

Additional file 4. The number of variants excluded from the analysis for 
each MPS gene.
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