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Abstract. Let (M, {φt }) be a smooth (not necessarily transitive) Anosov flow without fixed
points generated by a vector field X(x) = (d/dt)|t=0φ

t (x) on a compact manifold M .
Let A : M → R be a globally Hölder function defined on M . Assume that

∫ T
0 A ◦

φt(x) dt ≥ 0 for any periodic orbit {φt(x)}t=Tt=0 of period T . Then there exists a Hölder
function V : M → R, called a sub-action, smooth in the flow direction, such that

A(x) ≥ LXV (x), for all x ∈ M
(whereLXV = (d/dt)|t=0V ◦φt(x) denotes the Lie derivative of V ). If A is Cr then LXV
is Cr on any local center-stable manifold.

1. Notations and main results
We consider a compact Riemannian manifold M and a smooth Anosov flow {φt } on M
without fixed points (C2 would be enough but then V could not be more than C2 in the
center-stable direction). By hypothesis, the tangent space TM splits continuously into
three sub-bundles:

TxM = Eux ⊕ E0
x ⊕ Esx,

where E0
x has dimension one and is generated by the direction of the flow X(x), which is

non-zero by hypothesis, and Eux and Esx are respectively the unstable and stable directions
and their dimensions are respectively u and s. There exist constants K , �s < λs < 0 <
λu < �u such that

K−1 exp(tλu)‖v‖ ≤ ‖Txφt (v)‖ ≤ K exp(t�u)‖v‖, for all v ∈ Eux ,
K−1 exp(t�s)‖v‖ ≤ ‖Txφt (v)‖ ≤ K exp(tλs)‖v‖, for all v ∈ Esx.

We also consider an observableA : M → R and define its minimal averagem(A):

m(A) = inf

{∫
Adµ

∣∣∣∣µ ∈ M1(M, φ
t )

}
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where M1(M, φ
t ) denotes the set of all {φt }-invariant probability measures. A measure µ

which attains the infimum is called a minimizing measure (or ground-state measure for A,
as in [8]). Such measures always exist by compactness of M1(M, φ

t ). In the sequel A is
assumed to be (at least) Hölder, that is, A satisfies

|A(x)− A(y)| ≤ Cd(x, y)α

for some constants C > 0 and α ∈ ]0, 1]. The main result we prove is the following.

THEOREM 1. Let A : M → R be a Hölder observable on M . Then there exists
V : M → R Hölder, smooth along the flow direction, such that for every x ∈ M and
every T > 0 ∫ T

0
A ◦ φt (x) dt ≥ V ◦ φT (x)− V (x)+m(A)T

or, equivalently,

for all x ∈ M, A(x) = m+ LXV (x)+H(x), H(x) ≥ 0 and m(H) = 0,

for some constant m and some function H smooth along the flow direction, globally
αβ-Hölder, of Hölder norm depending uniformly with respect to A,

Höldαβ(H) ≤ K Höldα(A), 0 < β < 1,

for some constantsK,β depending only on the flow and not on A. Furthermore, if A is Cr
on M , V and H are also Cr along the center-stable direction.

The function V which appears in Theorem 1 is certainly not unique; we call such
functions ‘sub-actions’. They are analogous to weak KAM (see [5]) sub-solutions or ‘dom-
inated functions’ of the Hamilton–Jacobi equation in Fathi and Siconolfi’s theory [5–7].
Notice also that, for a non-negative and continuous H , m(H) = 0 if and only if
H = 0 on the support of some invariant measure. On the support of such measures,
A is cohomologous to a constant. We notice that, by changing the direction of the
flow, our construction gives another sub-action which is, for instance, Cr in the center-
unstable direction if A is Cr on M . We do not know how to construct sub-actions using
thermodynamic formalism as we did in [4].

Our proof gives a global regularity for V smaller than that of A. In some cases, V
may have more regularity. Suppose N is a compact Riemannian manifold with negative
curvature and M = T1N is the unitary tangent bundle. Let us denote by {φt } the geodesic
flow on M and by π : M → N the canonical projection. As the referee pointed out
to us, the following proposition can be deduced from [6] using the notion of ‘dominated
function’. We will reproduce both the referee’s proof implying a C1 regularity for V and
our initial proof which just implies a Lipschitz regularity and can be seen as a simple
example to help readers understand the proof of our main Theorem 1.

PROPOSITION 2. For every closed 1-form ω ∈ �(N) (seen as a function on T1N), there
exists a C1 super-action V : N → R such that, for all (x, v) ∈ T1N ,∫ T

0
ω ◦ φt (x, v) dt ≤ T ‖ω‖s + V ◦ π ◦ φT (x, v)− V ◦ π(x, v),
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where ‖ω‖s denotes the stable norm of ω defined by

‖ω‖s = sup

{∫
ω(x, v) dµ(x, v)

∣∣∣∣µ ∈ M1(M, φ
t )

}
.

We refer the reader to [12] for definitions and properties about the stable norm. In [10,
section 2], we established the existence of sub-actions for Anosov diffeomorphisms.
The proof is simpler and it may help the reader to understand it before reading the proof of
Proposition 4.

2. Plan of the proof
We explain in this section the main steps of the proof of Theorem 1. The proof is divided
essentially into two parts. In the first part we construct a special Poincaré section of the
flow and show the existence of a sub-action for a discretized observable. In the second part
we extend the previous sub-action to the whole manifold so that it stays globally Hölder
and smooth along any local center-stable manifold.

Although the notion of a Poincaré section is simple, our construction depends on
the choice of a particular section and we spend some time giving details of the precise
definitions.

Definition 3. A Poincaré section of uniform size is a family (	, γ ) of transverse charts
where 	 is a disjoint union of open sets {	i}i∈I of R

u+s , each containing a ball B(0, ε∗),
and γi is a smooth diffeomorphism defined on a neighborhood of	i×[0, τ ∗] onto an open
set of M , for some τ ∗ > 0. We assume the following.
(i) M is covered by the union of sets Ui = γi(	i× ]0, τ ∗[).
(ii) For each x ∈ 	i , 0 ≤ s < t ≤ τ ∗, φt−s ◦ γi(x, s) = γi(x, t).
(iii) γi(	i) is tangent to Euγi(0)⊕Esγi (0) at γi(0) (in order to simplify the notations we use

γi(x) instead of γi(x, t) when t = 0).
(iv) The C2-size of γi and (γi)−1 is bounded from above by a constant K∗, the angle of

the direction of the flow and the tangent space of γi(	i) are bounded from below by
a constant (K∗)−1.

(v) The sections γi(	i) are pairwise disjoint. The return time between two successive
sections is bounded from below by a uniform constant τ∗.

If we want to be more precise, we say that (	, γ ) is of, uniform size ε∗, τ∗, τ ∗, K∗.
We will also use the term ‘weak Poincaré section’ to mean a Poincaré section satisfying
assumptions (i)–(iv) but not (v).

To any Poincaré section (	, γ ) we associate a return map ψ defined in the following
way (see Figure 1). Let 	 be the disjoint union of each γi(	i), (we intentionally use the
same letter). If x belongs to γi(	i), let τ (x) be the smallest t ≥ 0 such that φt ◦ γi(x)
belongs to γj (	j ) for some j 
= i. Such a τ exists since φτ

∗ ◦ γi(x) belongs to Uj
for some j 
= i. Moreover, τ satisfies τ (x) < τ ∗. The return map is then defined by
ψ(x) = γ−1

j ◦ φτ(x) ◦ γi(x).
The reader will have noticed that our Poincaré map is not defined on the manifold itself

but rather through the charts {γi}i∈I . In the first part of the proof, we show the existence
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FIGURE 1. A Poincaré section.

of a discretized sub-action V for the associated discretized observable

A(x) =
∫ τ (x)

0
(A−m(A)) ◦ φt ◦ γ (x) dt.

In the sequel, Wcs
loc denotes any local center-stable manifold; similarly Ws

loc denotes any
local strong-stable manifold. They are both embedded sub-manifolds of M . We will later
define similar sub-manifoldsWs

loc(ω), W
u
loc(ω); but they will be sub-manifolds of R

u+s .

PROPOSITION 4. There exists a Poincaré section (	, γ ) and a globally Hölder function
V : 	 → R satisfying

A(x) ≥ V ◦ ψ(x)− V(x) for all x ∈ 	.
There exist constants K,β depending only on the flow such that

Höldαβ(V) ≤ K Höldα(A), 0 < β < 1.

Moreover, V is Cr on γ−1(Wcs
loc) ∩	 if A is Cr on M .

Notice that V is Hölder although A is not even continuous. The proof of the existence
of V is similar to the case of Anosov diffeomorphisms [10]. The exponent β is related to
the Hölder regularity of the stable foliation. In the proof of Proposition 14(iii), an explicit
formula for β is given:

β = −λs∗
�u∗ − λs∗

where λs∗ and�u∗ can be chosen as close as we want to min(τ )λs and max(τ )�u by letting
the diameter of the section go to 0. In the second part of the proof, we extend V to the
whole space M .

PROPOSITION 5. We use the notation of Proposition 4. There exists a Poincaré sub-
section (	′, γ ′), (	′ ⊂ 	 and γ ′ denotes the restriction of γ to 	′) and a non-negative
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Hölder function H ′ : M → R
+, smooth along the flow direction, null in a neighborhood

of γ ′(	′), such that for any x ∈ 	′

A′(x)− (V ◦ ψ ′(x)− V(x)) =
∫ τ ′(x)

0
H ′ ◦ φt ◦ γ (x) dt

(where τ ′, ψ ′ and A′ have the same definitions as τ , ψ and A using (	′, γ ′) instead of
(	, γ )). Moreover, H ′ is Cr on any Wcs

loc if A is Cr on M .

We are now able to give an explicit formula for the sub-action V in Theorem 1. We first
define the backward return time

T ′(x) = inf{T ≥ 0 | φ−T (x) ∈ γ ′(	′)} for all x ∈ M,
we then define V first on γ ′(	′) by V = V ◦ (γ ′)−1 and second on M by

V (x) = V ◦ φ−T ′(x)(x)+
∫ 0

−T ′(x)
(A−m(A)−H ′) ◦ φt (x) dt

(or equivalentlyA = m(A)+LXV +H ′). Although T ′ is again highly discontinuous, we
claim that the function V just defined possesses all the required properties. Let x0 ∈ M

and 	′
i be a section disjoint from x0 that meets the backward orbit {φt (x) | −τ ∗ ≤ t ≤ 0}.

Let T ′
i be a smooth backward return time to 	′

i defined locally about x0. For any x close
to x0, though the piece of orbit {φt(x) | −T ′

i (x) ≤ t ≤ 0} may encounter other sections	′
k ,

the property which characterizesH ′ implies that

V (x) = V ◦ φ−T ′
i (x)(x)+

∫ 0

−T ′
i (x)

(A−m(A)−H ′) ◦ φt (x) dt.

This explicit formula proves the claim.
Before going into the proof of Theorem 1 we show how to construct a super-action in

a simpler case that may help the reader to understand the general proof. We assume here
that M = T1N is the unitary tangent bundle of a compact Riemannian manifold N of
negative curvature and that our observable A is actually a closed 1-form ω : T1N → R

restricted to M . Our proof of Proposition 2 gives only a Lipschitz super-action whereas
the use of Fathi and Siconolfi’s dominated functions, suggested by the referee, gives a C1

super-action.

Proof of Proposition 2. Part I. We construct an explicit Lipschitz super-action V :

V (x) = sup

{∫ T

0
ω(c(t), ċ(t)) dt − T ‖ω‖s

∣∣∣∣ c : [0, T ] → N and c(T ) = x

}
,

where the supremum is taken over all piecewise C1 paths c : [0, T ] → N with constant
speed equal to 1 and finishing at x. If x, y are two points in N and γ : [0, d] → N is a
minimizing path between these two points, then d = d(x, y) and, by definition of V ,

V (x)+
∫ d

0
ω(γ (t), γ̇ (t)) dt − d‖ω‖s ≤ V (y),

|V (x)− V (y)| ≤ 2‖ω‖∞ d(x, y).
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V is then Lipschitz. Let us prove that V ◦ π is a super-action. Let (x, v) ∈ M and
γ : [0, T ] → N be a geodesic beginning at (x, v). Then φt(x, v) = (γ (t), γ̇ (t)) and,
again by definition of V ,

V (γ (0))+
∫ T

0
ω ◦ φt(x, v) dt − T ‖ω‖s ≤ V (γ (T )).

The only non-trivial fact we are left to prove is that V is actually a finite function.
Let c : [0, L] → N be a piecewise C1 path ending to x. We close this path by joining
the two extremities and obtain a new path c0 of length at most L + diam(N). The path c0

is homotopic (as a closed curve) to a path c1 of minimum length l(c1). Necessarily c1 is a
closed geodesic and (1/l(c1))

∫ l(c1)

0 δ(c1(t),ċ1(t)) dt defines an invariant measure. Then∫
c0

ω =
∫
c1

ω ≤ l(c1)‖ω‖s ≤ l(c0)‖ω‖s ,
∫ L

0
ω(c(t), ċ(t)) dt − L‖ω‖s ≤ diam(N)‖ω‖s ,

V (x) ≤ diam(N)‖ω‖s .
We have proved that V is a well-defined function.

Part II. We use Fathi and Siconolfi’s work to construct a C1 super-action. Let L(x, v) =
‖v‖x/2 be the standard Lagrangian in Riemannian geometry. Mañé’s critical value is given
by

−α(ω) = inf
∫
(L− ω) dµ

where the infimum is taken over all invariant probability measures with compact support
in TM . One can show that the support of any minimizing measure is included in the energy
level set ‖ω‖S , that α(ω) = ‖ω‖S/2 and that after renormalizingµ to a probability measure
in T 1N , µ is maximizing for ω. Let U : N → R be a dominated function associated to
L − ω and γ : [0, T ] → N be a curve of constant speed 1. We reparametrize γ so that it
has constant speed ‖ω‖S = √

2α

c(t) = γ (t
√

2α), for all t ∈ [0, T /√2α].
By definition of U ,

U ◦ c(T /√2α)− U ◦ c(0) ≤ αT/
√

2α +
∫ T/

√
2α

0
(L− ω)(c(t), ċ(t)) dt,

or equivalently

U ◦ γ (T )− U ◦ γ (0) ≤ T ‖ω‖S −
∫ T

0
ω(γ, γ̇ ) dt.

V = U ◦ π is the super-action we are looking for. �

2.1. Discretized sub-actions. We begin the construction of V by first refining the notion
of Poincaré section. The next lemma shows that we can choose diam(	i) as small as we
want independently of the length of the return time τ and the uniform size of the section.
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FIGURE 2. Lyapunov charts.

LEMMA 6. There exist constants (ε∗, τ∗, τ ∗,K∗) such that for any ε < ε∗, one can
construct a weak Poincaré section (	̃, γ̃ ) of size (ε∗, τ ∗,K∗) and a Poincaré sub-section
(	, γ ) of small base ε with the additional properties:
(i) for all i ∈ I , 	i = B(0, ε) ⊂ 	̃i and γi is the restriction of γ̃i to 	i;
(ii) the sets {γi(	i× ]0, τ ∗[)}i∈I coverM and the sections γi(	i) are pairwise disjoint;
(iii) the return time τ associated to the base (	, γ ) is at least τ∗.

From now on we choose a weak Poincaré section (	̃, γ̃ ) with a sub-section (	, γ ) of
size ε; the size ε will be determined later and will be small. Let ψ , τ be the return map and
return time associated to (	, γ ).

Definition 7. Let i, j ∈ I . We say that i → j is a simple transition if there exists x ∈ 	i
such that ψ(x) ∈ 	j . Let τ̃ij , ψ̃ij be the extended return time and return map from 	̃i

to 	̃j :

τ̃ij = inf{t ∈ ]0, τ ∗[ | φt(x) ∈ 	̃j }, ψ̃ij = γ̃−1
j ◦ φτ̃ij ◦ γ̃i ,

dom(ψ̃ij ) = dom(τ̃ij ) = {x ∈ 	̃i | ∃t ∈ ]0, τ ∗[ φt(x) ∈ 	̃j }.
If ε is small enough, 	i ⊂ dom(ψ̃ij ) and 	j ⊂ range(ψ̃ij ) for any simple transition

i → j (see Figure 2). Since τ̃ij is uniformly bounded from below for all transitions
independently of ε, by choosing ε small enough, we can construct a family of norms
{‖ · ‖i}i , called Lyapunov norms, adapted to the hyperbolicity of ψ̃ij .

LEMMA 8. There exist constants �s∗ < λs∗ < 0 < λu∗ < �u∗ such that for any δ > 0, one
can construct a family of norms {‖ · ‖i}i∈I and a family of splittings R

u+s = Eui ⊕Esi such
that:
(i) for every v ∈ Eui , w ∈ Esi , ‖v +w‖i = max(‖v‖i , ‖w‖i );
(ii) if Bi denotes the unit ball of the norm ‖ · ‖i , for any transition i → j , 	i ⊂ Bi ⊂

dom(ψ̃ij ) and Bj ⊂ range(ψ̃ij );

(iii) if Dψ̃ij (x) =
[
Aij Bij
Cij Dij

]
, x ∈ Bi , with respect to the splitting Eui ⊕ Esi then

‖Aij · v‖j ≥ exp(λu∗)‖v‖i , ‖Bij ·w‖j ≤ δ‖w‖i ,
‖Dij · w‖j ≤ exp(λs∗)‖w‖i , ‖Cij · v‖j ≤ δ‖v‖i ;



612 A. O. Lopes and Ph. Thieullen

FIGURE 3. Bowen’s shadowing lemma.

(iv) for any x ∈ Bi and any chain of simple transitions i0 → · · · → in such that
ψ̃n = ψ̃in−1in ◦ · · · ◦ ψ̃i0i1 exists locally about x, for any v ∈ R

u+s ,

(K∗)−1 exp(n�s∗)‖v‖i0 ≤ ‖Dψ̃n(x) · v‖in ≤ K∗ exp(n�u∗)‖v‖i0 .
We actually show that �u∗ = τ ∗�u, �s∗ = τ ∗�s and that λu∗ and λs∗ can be any real

numbers satisfying τ∗λs < λs∗ < 0 < λu∗ < τ∗λu. The existence of Lyapunov charts
enables us to use Bowen’s shadowing lemma along pseudo-orbits. A pseudo-orbit is a
doubly sided sequence of simple transitions. Let � be the set

� = {(. . . , ω−1|ω0, ω1, . . . ) | ωi → ωi+1 is a simple transition ∀ i ∈ Z}.
We notice that � is a sub-shift of finite type and we denote by σ : � → � the associated
left shift. For each ω ∈ �, define

ψ̃ω = ψ̃ω0ω1 : Bω0 → 	̃ω1 , ψ̃−1
ω = (ψ̃ω−1ω0)

−1, τ̃ω = τ̃ω0ω1 ,

and, more generally, ψ̃nω = ψ̃σn−1(ω) ◦ · · · ◦ ψ̃ω . The following proposition is standard;
it uses the theory of graph transform and will not be proved (see Figure 3).

PROPOSITION 9. (Bowen’s shadowing lemma) For each ω ∈ �, define

Ws
loc(ω) = {x ∈ Bω0 | ∀n ≥ 0, ψ̃nω(x) ∈ Bωn},

Wu
loc(ω) = {x ∈ Bω0 | ∀n ≥ 0, ψ̃−n

ω (x) ∈ Bω−n}.
Then the local stable Ws

loc(ω) and unstableWu
loc(ω) manifolds satisfy:

(i) Ws
loc(ω) and Wu

loc(ω) are C2 graphs above Esω0
and Euω0

;
(ii) Ws

loc(ω) depends only on (ω0, ω1, . . . ) and Wu
loc(ω) on (. . . , ω−1, ω0);

(iii) for any ω, ζ ∈ �, Ws
loc(ω) intersects Wu

loc(ζ ) at a unique point [ω, ζ ].
We call B = ∪i∈IBi the disjoint union of all balls Bi and we introduce the more

condensed notation:

ψ̃ =
{
�× B → �× 	̃,

(ω, x) �→ (σ (ω), ψ̃ω(x)).
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We also extend our previous discretized A to the space �× B by:

Ã(ω, x) =
∫ τ̃ (ω,x)

0

(
A−m(A)

) ◦ φtγ (x) dt.
For each ω ∈ � we define π(ω), the unique point at the intersection of the local stable

and unstable manifolds,

π(ω) = [ω,ω] = Ws
loc(ω) ∩Wu

loc(ω).

For each i let Ri be the projection π{ω ∈ � | ω0 = i} of the ith cylinder of � and R the
disjoint union of all these {Ri}i∈I . The space � × R is again not invariant under ψ̃ but
possesses an additional property called the Markov property. Bowen also uses a notion of
Markov rectangles in [1–3], but our approach is different.

LEMMA 10. Let ω ∈ �.
(i) The local stable manifold restricted to the rectangle R can be written as

Ws
loc(ω) ∩ Rω = {[ω, ζ ] | ζ ∈ �, ζ0 = ω0}

= {π(ζ ) | η ∈ �, ζn = ωn, ∀n ≥ 0}.
(ii) ψ̃ω stabilizes the local stable manifold

ψ̃ω(W
s
loc(ω) ∩ Rω) ⊂ Ws

loc(σ (ω)) ∩ Rσ(ω).
(iii) ψ̃−1

ω stabilizes the local unstable manifold

ψ̃−1
ω (Wu

loc(ω) ∩ Rω) ⊂ Wu
loc(σ

−1(ω)) ∩ Rσ−1(ω).

We can see (� × R, ψ̃) as an extension of (	,ψ) in the following way: each x ∈ 	

admits a canonical pseudo-orbit θ(x) ∈ � by taking the successive sections which ψn(x)
crosses

θ(x) = (. . . , θ−1|θ0, θ1, . . . ) where ψn(x) ∈ 	θn, for all n ∈ Z.

The pseudo-orbit θ(x) satisfies π ◦ θ(x) = x for all x ∈ 	 and defines a discontinuous
injection θ̃ into �̃ = graph(π). We then obtain a topological dynamical system (�̃, ψ̃),
in the usual sense, which commutes with (	,ψ):

θ̃

{
	 → �̃,

x �→ (θ(x), x),

	
ψ ��

θ̃
��

	

θ̃
��

�̃
ψ̃ ��

�̃

Moreover, Ã can be seen as an extension of A: A = Ã ◦ θ̃ .
Our main goal is, first, to find a sub-action Ṽ : �̃ → R satisfying Ã ≥ Ṽ ◦ ψ̃ − Ṽ on �̃,

second to show that Ṽ can be of the form Ṽ = V ◦ π for some V : R → R and third to
show that V is Hölder on 	. We first define two cocycles along the stable leaves.

Definition 11. For any (ω, x) ∈ �× B such that x ∈ Ws
loc(ω) we define

bs(ω, x) =
∑
n≥0

τ̃ ◦ ψ̃n(ω, x)− τ̃ ◦ ψ̃n(ω, π(ω)),

�s(ω, x) =
∑
n≥0

Ã ◦ ψ̃n(ω, x)− Ã ◦ ψ̃n(ω, π(ω)),

ws(ω, x) = φb
s(ω,x) ◦ γ (x).
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FIGURE 4. Strong-stable manifold.

The two series converge because both x and π(ω) are on the same stable manifold.

PROPOSITION 12. For any ω ∈ �:
(i) the map x ∈ Ws

loc(ω) �→ ws(ω, x) is a parametrization of the local strong stable
manifold of the flow passing through γ ◦ π(ω) (see Figure 4);

(ii) γ
(
Ws

loc(ω)
)

is equal to the intersection of γ (Bω) and the local center-stable manifold
Wcs

loc

(
γ ◦ π(ω)) passing through γ ◦ π(ω);

(iii) the stable cocycle �s admits the equivalent form;

�s(ω, x) =
∫ ∞

0
(A ◦ φt ◦ ws(ω, x)− A ◦ φt ◦ γ (π(ω))) dt

+
∫ bs (ω,x)

0
(A−m(A)) ◦ φt ◦ γ (x) dt.

The proposition says in particular that, if π(ω) = π(ω′) and x ∈ Ws
loc(ω), then

Ws
loc(ω) = Ws

loc(ω
′), bs(ω, x) = bs(ω′, x),

�s(ω, x) = �s(ω′, x), ws(ω, x) = ws(ω′, x).

We are now able to define a discretized sub-action Ṽ. Let SnÃ = ∑n−1
k=0 Ã ◦ ψ̃k be

the Birkhoff sum of Ã. The cocycle �s is similar to what Bowen uses to prove that any
Hölder function on the two sided shift is cohomologous to one which depends only on
positive coordinates.

Definition 13. For any ω ∈ � let

Ṽ(ω) = inf{SnÃ ◦ ψ̃−n(ζ, [ω, ζ ])+�s(ω, [ω, ζ ]) | n ≥ 0, ζ ∈ �, ζ0 = ω0}
where the infimum is taken over all n ≥ 0 and all ζ ∈ � satisfying ζ0 = ω0.

We are using for the first time the particular choice of the normalizing constantm(A) to
guarantee that the infimum is finite. Proposition 4 is then a consequence of the following.



Sub-actions for Anosov flows 615

PROPOSITION 14. The sub-action Ṽ defined previously satisfies:
(i) when Ṽ is restricted to �̃ = graph(π) we have Ã ≥ Ṽ ◦ ψ̃ − Ṽ on �̃;
(ii) there exists V : R → R such that Ṽ(ω) = V ◦ π(ω) for all ω ∈ �;
(iii) V is globally Hölder on 	 and has the same regularity as A on any Ws

loc ∩	.

The proof of Proposition 4 follows easily: we know that Ã ≥ Ṽ◦ψ̃−Ṽ; since A = Ã◦θ̃ ,
V = Ṽ ◦ θ̃ and ψ̃ ◦ θ̃ = θ̃ ◦ ψ , we then obtain A ≥ V ◦ ψ − V on 	.

2.2. Extension of discretized sub-actions. We constructed in the first part a weak
Poincaré section (	̃, γ̃ ) of uniform size (ε∗, τ∗,K∗) and a Poincaré sub-section (	, γ ),
where each 	i ⊂ 	̃i has a diameter at most ε and ε can be as small as we want compared
with the size of (	̃, γ̃ ) and the minimal return time τ∗ on 	. We also constructed a sub-
action V : 	 → R satisfying∫ τ (x)

0
(A−m(A)) ◦ φt ◦ γ (x) dt ≥ V ◦ ψ(x)− V(x)

where (τ, ψ) is the return time and the return map to the section 	. We now choose a
Poincaré sub-section (	′, γ ′) of (	, γ ) as given in the following lemma.

LEMMA 15. There exists for each i an open subset 	′
i such that, denoting by γ ′

i the
restriction of γi to 	′

i:

(i) 	
′
i ⊂ 	i;

(ii) the sets U ′
i = γ ′

i (	
′
i× ]0, τ ∗[) coverM (as do Ui = γi(	i× ]0, τ ∗[));

(iii) for any i, j , Ui intersects γj (	j ) if and only if U ′
i intersects γ ′

j (	
′
j ).

We now introduce the return time and return map (τ ′, ψ ′) associated to the Poincaré
sub-section (	′, γ ′), and for any x ∈ 	′ we define

H′(x) =
∫ τ ′(x)

0
(A−m(A)) ◦ φt ◦ γ ′(x) dt − (V ◦ ψ ′(x)− V(x)) ≥ 0.

Our final goal is to find H ′ : M → R
+ smooth in the flow direction, globally Hölder,

Cr along anyWcs
loc if A is Cr and such that for any x ∈ 	′,

H′(x) =
∫ τ ′(x)

0
H ′ ◦ φt ◦ γ ′(x) dt.

This construction uses a refinement of the notion of transitions (see Figure 5).

Definitions 16.
(i) Let i, j be given, we say that i ⇒ j is a multiple transition if there exist x ∈ 	i and

n ≥ 1 such that ψn(x) ∈ 	j and τn(x) = ∑n−1
k=0 τ ◦ ψk(x) < τ ∗.

(ii) We say that i0 → i1 → · · · → in is a chain of simple transitions of length n if each
ik → ik+1 is a simple transition.

(iii) We define the rank of a multiple transition i ⇒ j as the largest n ≥ 1 such that there
exists a chain of simple transitions of length n starting at i and ending at j .



616 A. O. Lopes and Ph. Thieullen

FIGURE 5. Rank of a multiple transition.

We notice that the notion of multiple transitions has been defined with respect to 	.
Thanks to Lemma 15, we could have obtained the same notion using 	′ instead of 	.
The following lemma shows that the notion of rank is meaningful.

LEMMA 17. The rank of any multiple transition is bounded by 2τ ∗/τ∗.

This enables us to define a maximal rank N :

N = max{rank(i, j) | i ⇒ j is a multiple transition}.
We choose now for the rest of the proof, for each i, a sequence of open sets {	ki }Nk=0

satisfying 	
k+1
i ⊂ 	ki , 	0

i = 	i and 	Ni = 	′
i .

Definitions 18. Let i ⇒ j be a multiple transition of rank n and N ≥ k ≥ n.
(i) We define τij and ψij to be the return time and return map from 	i to 	j and define

	kij to be the domain of ψij considered as a map from 	ki to 	kj

	kij = {x ∈ 	ki | ψij (x) ∈ 	kj }.
(ii) We define the flow box of rank n and size k associated to the transition i ⇒ j the

subset in M as

Bkij = γi({(x, t) | x ∈ 	kij and 0 ≤ t ≤ τij (x)}).
(iii) We define a partial flow box of Bkij as any set B of the form

B = γi({(x, t) | x ∈ C and 0 ≤ t ≤ τij (x)}),
where C is any open set in 	kij .

(iv) For each x ∈ 	0
ij , τij (x) is a sum of return times τ ◦ψk . We extend H by

Hij (x) =
∫ τij (x)

0
(A−m(A)) ◦ φt ◦ γ (x) dt − (V ◦ ψij (x)− V(x)).

We thus obtain a family of flow boxes which will enable us to construct by induction on
the rank of the function H ′. Each Hij (x) is equal to a sum of H ◦ ψk(x) and is therefore
non-negative. Moreover, for any x ∈ 	′, each H′(x) = Hij (x) for some simple transition
i → j . Their main properties are given by the following lemma.
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LEMMA 19.
(i) For any 1 ≤ n ≤ N , the union of flow boxes of any rank and fixed size n is equal to

M .
(ii) If Bnij is a flow box of rank n+ 1 and size n and γk(	nk ) intersects the interior of Bnij ,

the partial flow box (of rank n+ 1) defined by

{x ∈ Bnij | ∃t ∈ ] − τ ∗, τ ∗[ such that φt(x) ∈ γk(	k)}
is equal to the union of two partial flow boxes of size n and rank ≤ n, Bnik ∩ Bnij and
Bnkj ∩ Bnij .

(iii) If B and B ′ are two flow boxes of rank n + 1 and size n + 1, such that int(B) ∩
int(B ′) 
= ∅, then B ∩ B ′ is a partial flow box of rank ≤ n (and size n+ 1).

The first step of the construction of H ′ is to find functions H 0
ij on each flow box B0

ij ,
where i ⇒ j is a multiple transition, independently of each other. The following lemma
explains the construction.

LEMMA 20. Let i ⇒ j be a multiple transition of any rank.
(i) There exists a smooth non-negative function h : M → R

+, null in a neighborhood
of γ (	) such that ∫ τ (x)

0
h ◦ φt ◦ γ (x) dt ≥ 1 for all x ∈ M.

(ii) Let H 0
ij be defined on the flow box B0

ij by

H 0
ij ◦ φt ◦ γ (x) = Hij (x)

h ◦ φt ◦ γ (x)∫ τij (x)
0 h ◦ φt ◦ γ (x) dt

for all x ∈ 	0
ij .

Then H 0
ij is globally Hölder, has the same regularity as A on Wcs

loc ∩ B0
ij , is null in a

neighborhood of γ (	) and satisfies

Hij (x) =
∫ τij (x)

0
H 0
ij ◦ φt ◦ γ (x) dt for all x ∈ 	0

ij .

We now explain in the following lemma the global strategy. Let Un be the union of all
flow boxes of rank ≤ n and size n:

Un =
⋃

{Bnij | i ⇒ j is a transition of rank ≤ n}.
By the previous lemma, we notice that UN = M . In the sequel ‘regular’ means globally
Hölder, smooth along the flow and as regular as A on any local center-stable manifold.

LEMMA 21. There exist, for each 1 ≤ n ≤ N , regular non-negative functions, Hn :
Un → R

+ null in a neighborhood of γ (	) satisfying the two properties:
(i) for any multiple transition i ⇒ j of rank n and any x ∈ 	nij ,

Hij (x) =
∫ τij (x)

0
Hn ◦ φt ◦ γ (x) dt;
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FIGURE 6. Poincaré section with small base.

(ii) for any transition i ⇒ j of rank n and any x ∈ Bn+1
ij ,

Hn+1(x) = Hn(x).

The function H ′ we are looking for is given by the last one: H ′ = HN . For any
1 ≤ n ≤ N and any transition i ⇒ j of rank n, H ′ coincides with Hn on BNij .

3. Technical proofs
The proof of our main result is essentially divided into two parts: in the first part we
construct a discretized sub-action V and in the second part we extendV toM . In both parts,
one of the main steps is to construct a Poincaré section (	, γ ) with small base compared to
the minimum of τ (see Figure 6). It is needed in the first part in order to define Lyapunov
charts and in the second part to be able to define a notion of rank. The precise statement is
given in Lemma 6 but before proving it we need the following simple covering lemma.

LEMMA 22. For any dimension D (D = u + s in the sequel), there exists a covering
number C(D) depending only on D such that for any ε > 0, one can cover any open set
	 ⊂ R

D by balls {Bjk(ε)}j∈J,1≤k≤C(D) of size ε such that, for each 1 ≤ k ≤ C(D), the
balls {Bjk}j∈J are pairwise disjoint.

Proof. Let 	 be an open set of R
D . We first cover 	 by a maximal net {xj }j∈J of

size 2ε: that is, d(xj , xj ′) ≥ 2ε and
⋃
j∈J B(xj , 2ε) covers 	. The balls {B(xj , ε)}j∈J

are pairwise disjoint. We then translate simultaneously each center xj by a vector

�vk = ε√
D

�k, �k = (k1, k2, . . . , kD),

where each ki is an integer and satisfies |ki | < 2
√
D. We obtain (2

√
D + 1)D = C(D)

vectors. Each point in B(xj , 2ε) belongs to one of the balls B(xj + �vk, ε) and, for each k,
the balls {B(xj + �vk, ε)}j∈J are pairwise disjoint. �
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Proof of Lemma 6. We first choose a fixed Poincaré section (	̃, γ̃ ). By definition the

sets {γ̃i(	i× ]0, τ ∗[)}i∈I cover M and the sets {γ̃i(	̃i )}i∈I are disjoint. We call τ∗
the minimum of τ̃ on 	̃i and choose ε∗ small enough so that 2ε∗ < τ∗ and the sets
{γ̃i(	̃′

i× ]0, τ ∗ − 2ε∗[)}i∈I still coverM , where

	̃′
i = {x ∈ 	̃i | d(x,Ru+s \ 	̃i ) > 2ε∗}.

Let C(D) be the covering number given by Lemma 22. We can cover each 	̃′
i by balls

{Bijk}j∈J,1≤k≤C(D) of size ε < ε∗ and center xijk so that, for i, k fixed, the balls {Bijk}j∈J
are pairwise disjoint. Our choice of ε∗ implies that B(xijk , ε∗) ⊂ 	̃i . We then stack C(D)
copies of 	̃i one above the over along the flow, or formally, we just define new charts:

γ̃ijk :
{
(	̃i − xijk)× ]0, τ ∗ − ε∗[ → M,

(x, t) �→ γ̃i(x + xijk, t + (k/C(D))ε∗).

Let 	̃ijk = 	̃i − xijk and	ijk = B(0, ε). We notice that the maximum height of the stack
is ε∗ < τ∗/2 and the minimum return time between two 	ijk is at least ε∗/C(D). The sets
{γ̃ijk(	ijk)}ijk are therefore disjoint and the sets {γ̃ijk(	ijk× ]0, τ ∗ − ε∗[)}ijk cover M
since τ̃ < τ ∗ − 2ε∗. �

We give two consequences of the existence of a Poincaré section of small base. We first
show how to define on each 	i a new norm ‖ · ‖i so that the new unit ball Bi for this norm
is still small, contains 	i and is such that the very first iterate ψ̃ij is uniformly hyperbolic
for all transitions i → j .

Proof of Lemma 8. By definition of a Poincaré section, γi(	i) is tangent to Euγi(0)⊕Esγi(0)
at the point γi(0) and R

u+s therefore admits a decomposition R
u+s = Eui ⊕ Esi such that

D0γi ·Eui = Euγi(0), D0γi ·Esi = Esγi(0).

Let K∗ denote the C2-norm of γi and (γi)−1,

1

K∗ ‖v‖ ≤ ‖Dxγi · v‖ ≤ K∗‖v‖ for all v ∈ R
u+s , for all x ∈ 	i

(whereDxγi denotes the tangent map of γi at x). We now define a (Finsler) norm on each
E
u,s
i in the following way. We first fix η∗ > 0 small, ρ∗ > 0, T ∗ large, to be determined

later, and we also choose once and for all some constants µs , µs∗, µu, µu∗ satisfying:

λs < µs < µs∗ < 0 < µu∗ < µu < λu,

(where λu and λs are constants given by the flow). We then define for any vs ∈ Esi and
vu ∈ Eui :

‖vs‖i = ρ∗
∫ T ∗

0
‖D0(φ

t ◦ γi) · vs‖ exp(−tµs) dt,

‖vu‖i = ρ∗
∫ T ∗

0
‖D0(φ

−t ◦ γi) · vu‖ exp(tµu) dt.
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The two norms ‖ · ‖ and ‖ · ‖i are related as follows

‖vs‖i ≥ ‖vs‖ ρ∗

KK∗

∫ T ∗

0
exp(t (�s − µs)) dt

≥ ‖vs‖ ρ∗

KK∗(µs −�s)
(1 − exp(−T ∗(µs −�s)))

≥ 1

2ε∗ ‖vs‖,
where T ∗ is chosen so that exp(T ∗(�s − µs)) < 1/2 and ρ∗ is large compared to 1/ε∗.
In particular, we obtain that the unit ball of ‖ · ‖i is included in 	̃i .

Let i → j be a simple transition and vs ∈ Esi . We want to compare now the two
norms ‖D0ψ̃ij · vs‖j and ‖vs‖i . For any w ∈ R

u+s , we denote by w = [w]u + [w]s its
decomposition in Eui ⊕ Esi . Then

‖[D0ψ̃ij · vs ]s‖j = ρ∗
∫ T ∗

0
‖D0(φ

t ◦ γj )[D0ψ̃ij · vs ]s‖ exp(−tµs) dt,

‖[D0ψ̃ij · vs ]u‖j = ρ∗
∫ T ∗

0
‖D0(φ

−t ◦ γj )[D0ψ̃ij · vs ]u‖ exp(tµu) dt.

If ε is small enough, since ψ̃ij (	i) intersects	j , ψ̃ij (0) is close to 0 andD0ψ̃ij is close to
D0φ

τ̃ij (0). To simplify the notation let τ = τ̃ij (0). We fix η∗ small and T ∗ large that will
be determined later. Then, for ε small enough,

‖D0(φ
t ◦ γj )[D0ψ̃ij · vs ]s‖ ≤ (1 + η∗)‖D0(φ

t+τ ◦ γi) · vs‖,
‖[D0ψ̃ij · vs ]u‖ ≤ η∗‖vs‖.

On the one hand,

‖[D0ψ̃ij · vs ]s‖j
≤ (1 + η∗) exp(τµs)ρ∗

∫ T ∗+τ

τ

‖D0(φ
t ◦ γi) · vs‖ exp(−tµs) dt

≤ (1 + η∗) exp(τµs∗)
[
‖vs‖i + ρ∗

∫ +∞

T ∗
‖D0(φ

t ◦ γi) · vs‖ exp(−tµs) dt
]
.

The integral
∫ +∞
T ∗ can be bounded from above using that ‖vs‖ ≤ 2ε∗‖vs‖i , that the flow

contracts the stable manifold and that T ∗ is chosen large enough compared to ln(1/η∗) to
get

2ε∗KK∗ρ∗

µs − λs
exp(T ∗(λs − µs))‖vs‖i ≤ η∗ exp(τµs)‖vs‖i .

We obtain finally, provided that η∗ satisfies (1 + η∗)2 ≤ exp(τ∗(µs∗ − µs)):

‖[D0ψ̃ij · vs ]s‖j ≤ (1 + η∗)2 exp(τµs)‖vs‖i ≤ exp(τ∗µs∗)‖vs‖i .
On the other hand, for η∗ small enough:

‖[D0ψ̃ij · vs ]u‖j ≤ 2ρ∗KK∗ε∗η∗

µu − λu
‖vs‖i ≤ δ‖vs‖i .

The other estimates for vu ∈ Eui are obtained similarly. �
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We give now a second application of the existence of a Poincaré section.

Proof of Lemma 17. Let i ⇒ j be a multiple transition and i = i0 → · · · → in = j a
chain of simple transitions joining i and j . We want to prove that n is uniformly bounded.
We first extend some notations we have already introduced. Let τ̃ij , ψ̃ij be the first return
time and return map from 	̃i to 	̃j (the flow may cross other 	̃k in between). Let 	̃ij
be the domain of definition of τ̃ij or ψ̃ij and Ũij the open set γ̃i(	̃ij× ]0, τ ∗[) ⊂ M .
Each γk(	k) that intersects Ũij can be seen as a graph in 	̃ij× ]0, τ ∗[ of a function σk
defined on a domain�k ⊂ 	̃ij :

γ̃i({(x, σk(x)) | x ∈ �k}) = γk(	k) ∩ Ũij .
Let η∗ small enough be defined later. If ε is sufficiently small, each�k has a diameter less
than η∗ and the oscillation of σk is less than τ∗/2 where τ∗ is the minimum value of all
return times to 	:

|σk(x)− σk(y)| < 1
2τ∗ for all x, y ∈ �k.

Moreover, since ψ̃ij (0) is close to 0 within ε, we can assume that 	̃ij contains the ball
B(0, ε∗/2).

We want to prove that actually each γik (	ik ) is entirely contained in Ũij . Suppose that
this is true for k = 1, 2, . . . ,m, m ≤ n, then each �ik intersects �ik−1 at some point
xik ∈ 	̃ij . By definition of τ∗, σik (xik ) − σik−1(xik ) ≥ τ∗ and thanks to the distortion
estimate of σik−1 , σik−1(xik ) − σik−1(xik−1) ≥ τ∗/2. We obtain in particular that m is
uniformly bounded:

τ ∗ ≥ σik (xik ) ≥ m

2
τ∗ ⇒ m ≤ 2

τ ∗

τ∗
= N∗.

Furthermore, if we choose η∗ so that (N∗ + 1)η∗ < ε∗/2, since the distance of�im from 0
is bounded bymη∗ ≤ N∗η∗, we have just proved that γim+1(	im+1) is again totally included
in 	̃ij . �

Existence of Lyapunov charts enables us to use the theory of graph transform to
construct local stable and unstable manifolds. We do not prove this fact (Lemma 8),
which can be viewed as an improvement of the standard Bowen’s shadowing lemma: points
for instance in the local stable manifold Ws

loc(ω) positively shadow a given pseudo-orbit
(ω0, ω1, . . . ). We prove, nonetheless, the Markov property these manifolds possess.

Proof of Lemma 10. Let ζ, ω ∈ � with ζ0 = ω0. Then [ω, ζ ] denotes the unique
intersection point of Ws

loc(ω) andWu
loc(ω). This point can also be obtained as:

[ω, ζ ] = π(. . . , ζ−2, ζ−1|ω0, ω1, . . . ).

If z belongs to Ws
loc(ω) ∩ Rω, z = π(ζ ) for some ζ ∈ �, ζ0 = ω0. Let z′ = [ω, ζ ].

Then z and z′ belong to the same unstable manifold Wu
loc(ζ ) and simultaneously to the

same stable manifoldWs
loc(ω): they have to coincide by transversality of these manifolds,

z = z′. We have just proved assertion (i). Assertions (ii) and (iii) come from the following
remark:

ψω ◦ π(. . . , ζ−2, ζ−1|ω0, ω1, . . . ) = π(. . . , ζ−2, η−1, ω0|ω1, ω2, . . . ),

ψ−1
ω ◦ π(. . . , ω−2, ω−1|ζ0, ζ1, . . . ) = π(. . . , ω−3, ω−2|ω−1, ζ0, ζ1, . . . ),
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and the other form of the unstable manifold restricted to R:

Wu
loc(ω) ∩ R = {[ζ, ω] | ζ ∈ � and ζ0 = ω0}. �

The local stable manifold apparently depends on the choice of the pseudo-orbit ω
projecting to the same true orbit π(ω) = x. The content of Proposition 12 says that
γ (Ws

loc(ω)) is a geometric object in the manifold M depending only on γ (	) and not on
the way we code the orbits.

Proof of Proposition 12. Let x ∈ Ws
loc(ω). We want to show that the distance between

φt+bs(ω,x) ◦ γ (x) and φt ◦ γ (π(ω)) converges exponentially to 0 when t → +∞.
It is enough to prove this convergence along a sub-sequence of times {τn} satisfying
τ∗ ≤ τn+1 − τn ≤ τ ∗. Let

τn = τn(ω, π(ω)) =
n−1∑
k=0

τ ◦ ψ̃(ω, π(ω)).

On the one hand, the cocycle bs(ω, x) satisfies the cocycle equation

bs(ω, x)+ τn = bs ◦ ψ̃n(ω, x)+ τn(ω, x),

which implies

φτn+bs (ω,x) ◦ γ (x) = φb
s◦ψ̃n(ω,x) ◦ γ ◦ ψ̃nω(x).

On the other hand,
φτn ◦ γ (π(ω)) = γ ◦ ψ̃nω(π(ω)).

Since ψ̃nω(x) converges exponentially to ψ̃nω(π(ω)), and bs equals 0 restricted to the graph
of π , we obtain the exponential convergence of φτn+bs (ω,x) ◦ γ (x) to φτn ◦ γ (π(ω)):

φb
s(ω,x) ◦ γ (x) ∈ Wss

loc ◦ γ (π(ω)).
This proves (i) and (ii). To prove (iii) we compute

(∗) =
n−1∑
k=0

Ã ◦ ψ̃nω(x)−
n−1∑
k=0

Ã ◦ ψ̃nω(π(ω))

=
∫ τn(ω,x)

0
(A−m(A)) ◦ φt ◦ γ (x) dt

−
∫ τn(ω,π(ω))

0
(A−m(A)) ◦ φt ◦ γ (π(ω)) dt.

We split the first integral into two parts
∫ bs(ω,x)

0 + ∫ τn(ω,x)
bs(ω,x) , we use the cocycle equation

τn(ω, x)− bs(ω, x) = τn − bn where bn = bs ◦ ψ̃n(ω, x), and we obtain

(∗) =
∫ bs(ω,x)

0

(
A−m(A)

) ◦ φt ◦ γ (x) dt

+
∫ τn

0
{A ◦ φt ◦ ws(ω, x)− A ◦ φt ◦ γ (π(ω))} dt

−
∫ τn

τn−bn
(A−m(A)) ◦ φt ◦ ws(ω, x) dt.

We use again the fact that bn → 0 to eliminate the last integral and we finally obtain (iii). �
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The existence of a Markov section R and of a stable cocycle �s are the main tools
we use to construct a sub-action as we did in [10] and [4]. We divide the proof
of Proposition 14 into three parts: in the first part we show that our definition of Ṽ
immediately implies the sub-cocycle equation Ã ≥ Ṽ ◦ ψ̃ − Ṽ on �̃ = graph(π); in
the second part we show that Ṽ depends actually on π(ω) and not on ω; we finally show in
the last part that V is Hölder on 	.

Proof of Proposition 14, parts (i) and (ii). For any ω, ζ ∈ �, ω0 = ζ0, let ξ =
(. . . , ζ−2, ζ−1|ω0, ω1, . . . ). Then π(ξ) = [ω, ζ ] and Ã(ξ, π(ξ)) = Ã(ω, π(ξ)).
The definition of Ṽ implies

SnÃ ◦ ψ̃−n(ζ, [ω, ζ ])+�s(ω, [ω, ζ ])+ Ã(ω, π(ω))
= SnÃ ◦ ψ̃−n(ξ, π(ξ))+ Ã(ξ, π(ξ))+�s(σ(ω), π ◦ σ(ξ))
= Sn+1Ã ◦ ψ−(n+1)(σ (ξ), π ◦ σ(ξ))+�s(σ(ω), π ◦ σ(ξ)).

The Markov property implies that π ◦ σ(ξ) ∈ Ws
loc(σ (ω)) and we obtain:

Ã(ω, π(ω)) + Ṽ(ω) ≥ Ṽ ◦ σ(ω).
Now to prove the second part. For any ω,ω′, ζ ∈ �, ω0 = ω′

0 = ζ0 and π(ω) = π(ω′),

x = [ω, ζ ] = [ω′, ζ ],
since both points [ω, ζ ] and [ω′, ζ ] belong to Wu

loc(ζ ) and Ws
loc(ω) = Ws

loc(ω
′). Moreover

bs(ω, x) = bs(ω′, x), ws(ω, x) = ws(ω′, x) and (iii) of Proposition 12 implies that
�s(ω, x) = �s(ω′, x). We just have proved that Ṽ(ω) = Ṽ(ω′). �

Before proving part (iii) of Proposition 14 we need two lemmas.

LEMMA 23. There exists a constant η > 0 depending on 	 such that for any i ∈ I , for
any x, y ∈ 	i , if d(x, y) < η then there exists a simple transition i → j and m,n ≥ 1
such that

ψm(x) ∈ 	j , ψn(y) ∈ 	j , τm(x) ≤ τ ∗, τn(y) ≤ τ ∗.
(Or in other words, ψm (respectively ψn) coincides with ψ̃ij about x (respectively y)).

Proof. Let Ui = γi(	i× ]0, τ ∗[). For any simple transition i → j , γj (	j ) ∩ Ui can be
seen as a graph in	i× ]0, τ ∗[ over an open domain�ij ∈ 	i . As the sets {�ij }j cover	i ,
we can find a Lebesgue number η > 0, that is, a positive real number small enough that
any ball of radius η is included in one of the sets �ij . �

In the following lemma, �u∗ is a Lyapunov exponent given by Lemma 8.

LEMMA 24. For any k ≥ 1, any i ∈ I , any x, y ∈ 	i , if d(x, y) is less than
(η/K∗) exp(−k�u∗) then there exist ω, ζ ∈ � such that π(ω) = x, π(ζ ) = y and their
symbols coincide during k times, ω0 = ζ0, . . . , ωk = ζk.

Proof. Let x0 = x, y0 = y on the same section 	i . By the previous lemma there exist
m1, n1 and i1 ∈ I such that

x1 = ψm1(x0) ∈ 	i1 , y1 = ψn1 (y0) ∈ 	i1 ,
τm1(x0) ≤ τ ∗, τn1(y1) ≤ τ ∗.
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Since d(x1, y1) < η, we repeat again the construction and find two sequences
(m1, . . . ,mk) and (n1, . . . , nk) such that if

xl = ψm1+···+ml (x0), yl = ψn1+···+nl (y0),

xl and yl belong to the same section 	il and d(xl, yl) < η. Let ω and ξ be the canonical
orbits associated to x0 and y0, m = m1 + · · · + mk and n = n1 + · · · + nk . We define a
new pseudo-orbit:

ζ = (. . . , ξ−2, ξ−1|ω0, ω1, . . . , ωm, ξn+1, ξn+2, . . . ).

By construction, for all 1 ≤ l ≤ k, ψ̃m1+···+ml
ζ (y) = ψn1+···+nl (y) ∈ 	; since

σm(ζ ) coincide with σn(ξ), for all k ≥ 0, we have ψ̃m+k
ζ (y) = ψn+k(y) ∈ 	 and

ψ̃−k
ζ (y) = ψ−k(y) ∈ 	.
Since ml is bounded by τ ∗ and ε (or η) can be as small as we want independently

from τ ∗, we obtain that ψ̃kζ (y) ∈ Bζk for all k ∈ Z and therefore y = π(ζ ). �

Proof of Proposition 14, part (iii). We first prove that V is globally Hölder on 	. Let x, x ′
be two points of 	; we assume that d(x, x ′) is smaller than η/K∗, where η is given by
Lemma 23. Let N = N(x, x ′) be the unique integer satisfying

η

K∗ exp(−(N + 1)(�u∗ − λs∗)) ≤ d(x, x ′) ≤ η

K∗ exp(−N(�u∗ − λs∗)).

By Lemma 24, one can find ω,ω′ such that

π(ω) = x, π(ω′) = x ′ and ω0 = ω′
0, . . . , ωN = ω′

N .

Let n ≥ 0, ζ ∈ �, ζ0 = ω0, y = [ω, ζ ] and y ′ = [ω′, ζ ]. We may assume that ξk = ωk for
all 0 ≤ k ≤ N . We want to find an upper bound of the expression

(∗∗) = {SnÃ ◦ ψ̃−n(ζ, y)+�s(ω, y)} − {SnÃ ◦ ψ̃−n(ζ, y ′)+�s(ω′, y ′)}
in terms of d(x, x ′). In the sequel we use the notations

xn = ψ̃nω(x), x ′
n = ψ̃nω′ (x ′), yn = ψ̃nω(y), y ′

n = ψ̃nω′(y ′).

We first estimate exp(Nλs∗) in terms of d(x, x ′). The definition of N gives

N + 1 ≥ 1

�u∗ − λs∗
ln

(
K∗

ηd(x, x ′)

)
, exp(Nλs∗) ≤ K0(η)d(x, x

′)β,

for some constants K0(η) = exp(−λs∗)(K∗/η)β and β = −λs∗/(�u∗ − λs∗).
Since y and y ′ belong to the same unstable manifold, since x and y, on the one hand,

x ′ and y ′, on the other hand, belong to the same stable manifolds we have

d(y, y ′) ≤ exp(−Nλu∗)d(yN, y ′
N),

d(yN, y
′
N) ≤ d(yN, xN)+ d(xN, x

′
N)+ d(x ′

N, y
′
N),

d(yN, xN) ≤ exp(Nλs),

d(x ′
N, y

′
N) ≤ exp(Nλs),

d(xN, x
′
N) ≤ K∗ exp(N�u∗)d(x, x ′) ≤ η exp(Nλs∗).
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We first obtain that the stable holonomy is β0-Hölder:

d(y, y ′) ≤ 3 exp(−N(λu − λs)) ≤ K1(η)d(x, x
′)β0

for some exponent β0 = (λu∗ − λs∗)/(�u∗ − λs∗). We also obtain

d(xN , x
′
N), d(yN , y

′
N), d(xN , yN), d(x

′
N, y

′
N) ≤ K0(η)d(x, x

′)β.

We now split the expression (∗∗) into five parts:

(∗∗)1 = SnÃ−n(ζ, y)− SnÃ−n(ζ, y ′),

(∗∗)2 =
N−1∑
k=0

{Ã ◦ ψ̃k(ω, y)− Ã ◦ ψ̃k(ω′, y ′)},

(∗∗)3 =
N−1∑
k=0

{Ã ◦ ψ̃k(ω′, x ′)− Ã ◦ ψ̃k(ω, x)},

(∗∗)4 =
∑
k≥N

{Ã ◦ ψ̃k(ω, y)− Ã ◦ ψ̃k(ω, x)},

(∗∗)5 =
∑
k≥N

{Ã ◦ ψ̃k(ω′, y ′)− Ã ◦ ψ̃k(ω′, x ′)}.

The first two terms are estimated as follows, using the fact that the orbits of ω and ω′
coincide during the first n steps.

|(∗∗)1 + (∗∗)2| = |Sn+N Ã ◦ ψ̃−n−N(σN(ζ ), yN)− Sn+N Ã ◦ ψ̃−n−N(σN(ζ ), y ′
N)|

≤ Höldα(Ã)
n+N∑
k=1

exp(−kαλu∗)d(yN, y ′
N)
α

≤ K2(η)Höldα(Ã)d(x, x ′)αβ.

To estimate the third term, we again use ωk = ω′
k for 0 ≤ k ≤ N ,

d(xk, x
′
k) ≤ K∗ exp(k�u∗)d(x, x ′) ≤ η exp(−(N − k)�u∗) exp(Nλs∗)

≤ ηK0(η) exp(−(N − k)�u∗)d(x, x ′)β,

|(∗∗)3| ≤ (ηK0(η))
α
N∑
1

exp(kα�u∗)Höldα(Ã)d(x, x ′)αβ

≤ K3(η)Höldα(Ã)d(x, x ′)αβ.

To estimate the last two terms we use that x and y, on the one hand, x ′ and y ′, on the other
hand, are on the same stable manifold:

|(∗∗)4|, |(∗∗)5| ≤ K(η)α
+∞∑

0

exp(kαλs∗)Höldα(Ã)d(x, x ′)αβ

≤ K4(η)Höldα(Ã)d(x, x ′)αβ .
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We finally prove that V is as smooth as Ã on anyWs
loc ∩	. Indeed, if ω ∈ � and x, x ′ are

two points on Ws
loc(ω) ∩	, there exist ξ, ξ ′ ∈ � such that

π(ξ) = x, π(ξ ′) = x ′, ξn = ξ ′
n = ωn for all n ≥ 0.

For any ζ ∈ �, the following brackets are equal and correspond to a unique point:

y = [ξ, ζ ] = [ξ ′, ζ ] = [ω, ζ ].
To compute V(x)− V(x ′) we estimate as follows:

(∗ ∗ ∗) = {SnÃ ◦ ψ̃−n(ζ, [ξ, ζ ])+�s(ξ, [ξ, ζ ])}
− {SnÃ ◦ ψ̃−n(ζ, [ξ ′, ζ ])+�s(ξ ′, [ξ ′, ζ ])}

= �s(ξ, y)−�s(ξ ′, y)
=

∑
n≥0

{Ã ◦ ψn(ω, x ′)− Ã ◦ ψn(ω, x)}

= V(x)− V(x ′).

We have obtained the last equality because the last but one term is independent of ζ .
Since x and x ′ belong to the same stable manifold d(ψ̃nω(x), ψ̃

n
ω(x

′)) → 0 exponentially
fast and V possesses the required regularity. �

We now extend V to the whole manifold. Since we are going to use a partition of unity,
we actually extend the restriction V ′ of V to a Poincaré sub-section (	′, γ ′). We also want
to preserve the notion of multiple transitions; namely, we want to keep

Ui ∩ γj (	j ) 
= ∅ ⇔ U ′
i ∩ γ ′

i (	
′
i ) 
= ∅

(where Ui denotes the open set γi(	i× ]0, τ ∗[) and similarly for U ′
i ).

Proof of Lemma 15. Since {Ui}i∈I is a covering of M , for any sufficiently small ε > 0
(depending on a Lebesgue number of this covering and on the C1-size of {γi}), the sets
{U ′

i } associated to 	′
i = {x ∈ 	i | d(x,Ru+s \ 	i) > ε} again cover M . Moreover, for

each i, j such that Ui ∩ γj (	j ) 
= ∅ we choose a point xij ∈ Ui ∩ γj (	j ) and, for ε small,
xij remains in U ′

i ∩ γ ′
j (	

′
j ). �

The notion of rank we have introduced enables us to cover M by sets, called ‘flow
boxes’, having the property that whenever two such flow boxes of same rank meet, their
intersection is included into a flow box of rank strictly inferior.

Proof of Lemma 19. Part (i). Since (	n, γ n) is a Poincaré section, the setsUni = γi{(x, t) |
x ∈ 	ni , 0 < t < τ ∗} coverM and any orbit {φt(x)}t=τ∗

t=0 , x ∈ 	i , has to intersect another
γj (	j ) (the point φτ

∗
(x) has to belong to a distinct set Unj ).

Part (ii). If γk(	nk ) meets some Bnij , where i ⇒ j is a transition of rank n + 1, then
i ⇒ k and k ⇒ j are multiple transitions,

rank(i, j) ≥ rank(i, k)+ rank(k, j),

and each sub-transition has therefore a rank strictly smaller.
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Part (iii). Let Bnij and Bn
i′j ′ be two flow boxes of rank n and size n and suppose that their

interiors meet at a common point x. We order the indices i, j, i ′, j ′ in the following way:
let k, l be two indices among i, j, i ′, j ′, we say that k < l if there exist s < t , in ]−τ ∗, τ ∗[
such that φs(x) ∈ γk(	k) and φt (x) ∈ γl(	l). The orders

i < i ′ < j ′ < j and i ′ < i < j < j ′

are impossible by the sub-additivity of the rank function. We are thus left with two cases:

i < i ′ < j < j ′ or i ′ < i < j ′ < j.

The rank of i ′ ⇒ j or i ⇒ j ′ is strictly smaller than n and Bnij ∩Bn
i′j ′ is thus a partial flow

box included either in Bn
i′j or in Bn

ij ′ . �

Proof of Lemma 21. By induction, we are going to construct a family {Hn
ij } of regular

non-negative functions, defined on each Bnij for all multiple transitions i ⇒ j of rank ≤ n,
which coincide on the intersection of two such flow boxes.

If i ⇒ j has rank 1, we define H 1 = H 0
ij as in Lemma 20 on B1

ij . Since two such

flow boxes can only meet on γ (	) and since H 0
ij is null on a neighborhood of γ (	), this

construction defines a global functionH 1 on U1 which satisfies

Hij (x) =
∫ τij (x)

0
H 1 ◦ φt ◦ γi(x) dt for all x ∈ 	1

ij and rank(i, j) = 1.

Suppose by induction that we have defined a function Hn : Un → R
+ which satisfies

the following ‘integrability condition’ on any flow box of rank at most n, that is, for any
multiple transition i ⇒ j of rank ≤ n and for any x ∈ 	nij ,

Hij (x) =
∫ τij (x)

0
Hn ◦ φt ◦ γi(x) dt.

Let i ⇒ j be a multiple transition of rank n + 1. We want to construct a function Hn+1

on Bn+1
ij . For any k such that γk(	nk ) meets Bnij , γk(	nk ) ∩ Bnij can be seen as a graph in

	nij× ]0, τ ∗[ over a domain we denote by	nijk . Lemma 19 implies that the partial flow box

Unijk = γi{(x, t) | x ∈ 	nijk, 0 ≤ t ≤ τij (x)}
is equal to the union of the two partial flow boxes

γi{(x, t) | x ∈ 	nijk, 0 ≤ t ≤ τik(x)},
γi{(x, t) | x ∈ 	nijk , τik(x) ≤ t ≤ τij (x)}

and they are both of rank ≤ n. Since Hn is already defined on
⋃
k U

n
ijk , H

n, restricted to
this set, can be viewed as a function Hn

ij (x, t) on{
(x, t)

∣∣∣∣ x ∈
⋃
k

	nijk, 0 ≤ t ≤ τij (x)

}

satisfying the integrability condition on
⋃
k 	

n
ijk ,

Hij (x) =
∫ τij (x)

0
Hn
ij (x, t) dt for all x ∈

⋃
k

	nijk .
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On the other hand H 0
ij , defined in Lemma 20, can also be seen as a function H 0

ij (x, t)

satisfying the same integrability condition but on a larger set 	0
ij . We now choose two

smooth functions p, q : 	nij → [0, 1] such that p + q = 1 on 	n+1
ij , supp(p) ⊂ ⋃

k 	
n
ijk

and supp(q) ⊂ 	nij \ ⋃
k 	

n+1
ijk . Then the function

Hn+1
ij (x, t) = p(x)Hn

ij (x, t)+ q(x)H 0
ij (x, t)

satisfies again the integrability condition on a smaller set 	n+1
ij and extends Hn

ij (x, t) on⋃
k 	

n+1
ijk .

We summarize the previous construction: we constructed for any transition i ⇒ j of
rank n + 1 a regular non-negative function Hn+1

ij defined on Bn+1
ij which extends Hn on

Ũn ∩ Bn+1
ij , where Ũn represents the union of all flow boxes of rank ≤ n but of size a little

bit smaller, namely of size n+ 1. Since the intersection of two such boxes Bn+1
ij and Bn+1

i′j ′
is included into Ũn, the two definition Hn+1

ij and Hn+1
i′j ′ coincide on Bn+1

ij ∩ Bn+1
i′j ′ and the

collection of {Hn+1
ij }i⇒j defines a global functionHn+1 on Un+1. �
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