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Abstract: This work investigates the extension of a total-collapse prediction method to include local
failures in quasi-brittle materials as they undergo damage processes. The analysis is experimentally
conducted with acoustic emission data from a basalt specimen under a prescribed displacement
loading test. The proposed failure index is compared with the well-established b-value to evaluate its
usefulness; the simulation results are also used to further investigations. In particular, the simulations
show that the parameter calculation can be carried out by indirectly estimating the elastic energy
released within the system throughout the damage process, which cannot be measured directly. It
is concluded that the proposed method is valid, consistently outperforming the b-value as a failure
precursor throughout the experimental studies.

Keywords: acoustic emission; quasi-brittle materials; discrete element methods

1. Introduction

Materials labeled as quasi-brittle are those where the rupture process is governed
by the damage induced by their loading patterns. Such materials include concrete, rocks,
and ceramic composites in high demand for technological applications, as discussed in
ref. [1]. Understanding such a process is far from a solved issue, especially if its analysis
is based on finite element methods (FEM), as verified in refs. [2–4]: even with the aid of
homogenization techniques, success is limited to minimal damage ranges. For a detailed
review of such methods, see refs. [5,6].

The limitations of traditional FEM techniques applied to such quasi-brittle materials
stem from the latter’s inherently discontinuous nature, which include the effects of phenom-
ena such as localization, interactions among micro-crack clusters, and scale dependency.
Some techniques using FEM were successfully implemented to bypass the difficulties
presented by the presence of discontinuous terms, such as the cohesive interface method [7]
and the extended finite element method [8], where the discontinuities are embedded in
the element’s interpolation functions. However, these types of approaches have led to the
loss of information regarding the spasmodic growth of micro-fissures within the structure.
Deep discussions on the topic can be found in refs. [5,6]. According to refs. [9–12], such
processes define universal patterns when a given control parameter (CP) approaches a
critical value, e.g., the temperature appearing as a typical CP for states of matter or magne-
tization properties. Within such a theoretical framework, the density in the state-of-matter
could be considered as an example of an order parameter (OP) and their dependency on the
associated CP is described as a power law function. The exponents of these functions close
the eminence of the critical situation—that is, the change in state, the collapse, among other
examples, could be calculated through the renormalization group methodology proposed
by Wilson [13] and explained at an introductory level by [14].
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On the other hand, experimental evaluation of failure processes rely extensively on
the Acoustic Emission (AE) technique, which focuses on the elastic waves formed within
a structure as it undergoes damage. With suitable sensors mounted on the structure’s
surface, such waves are detected and interpreted as an indicator of a damage process,
where damage extension translates into the amplitude and number of counts of detected
wave signals. Moreover, the analysis of such signals leads to the calculation of several
exponential parameters, with the so-called b-value appearing as the most popular one
in refs. [15–23] as well as in works by other authors [24–29]. That exponent relates the
statistical distribution of AE signals (N) and their corresponding magnitudes (A) through
the power law A ∝ Nb, which strongly resembles the relations between OP and CP in the
phase transformations discussed in the previous paragraph. Such similarities also appear in
Natural Time analyses [30], which also rely on finding parameters that reach a critical value
as the structure approaches failure, as illustrated by [31–35]. There are other wave-based
methods for monitoring the damage process in structures, as illustrated in refs. [36,37].

Here, we apply the method introduced by Dȩbski et al. [38], where the temporal
derivative of the measured global elastic energy appeared as a precursor to failure time.
While that metric was applied to the study of total collapse only, and the analysis was
restricted to numeric results, we extended its use here as a precursor to local failures also,
verifying its usefulness as a critical parameter in a broader sense. To that end, a basalt-made
prismatic specimen was tested until its complete rupture. The specimen was built with
a preformed oblique main crack, inducing the damage process to develop in a complex,
mixed-mode pattern, with three critical regions with different rupture characteristics. AE
data were collected throughout the test, leading to the computation of the corresponding b-
value as a complementary measure of the evolving damage pattern, serving as a comparison
reference for tracking the results by [38]. The specimen reflects the same structure employed
in that work; however, the latter was restricted to simulation results, whereas this work
also includes experimental data. The experiments are complemented with simulation
results based on a version of the Discrete Element Method, leading to a comprehensive
understanding of the damage process under study.

This work’s main features can be summarized as follows:

1. Research problem : to study the damage process of a prefissured basalt specimen
through both simulation and experimental tests, collecting Acoustic Emission data to
track damage development throughout the tests.

2. Objectives : (i) to investigate the usefulness of a new parameter proposed originally by
Dȩbski et al. [38] as a precursor for local and complete failure in the structure under-
going damage; (ii) to illustrate the possibilities of LDEM to aid in the interpretation of
experimental results.

3. Significance, Novelty, and Benefits : The index proposed by Dȩbski et al. [38], origi-
nally applied in numerical results only as a global failure precursor, is tested in our
paper with an experimental approach, proposing an alternative measure of the elastic
energy derivative during the test. Another novelty is related to the fact that this index
is applied here not only to determine the global collapse but also to identify local
failure regions with excellent performance. The behavior of this index as a failure
precursor is compared with the b-value, which is a typical AE parameter. Moreover,
in the present case, we observe that the benefit of proposing the index as a failure
precursor could be another way to identify critical regions during the damage process
to complement the analysis performed using AE signals.

2. The Lattice Discrete Element Method (LDEM)

This work’s numerical analysis uses the Lattice Discrete Element Method (LDEM), a
version of the Discrete Element Method where solid bodies are modeled as nodal lumped
masses interconnected by massless uniaxial elements, where such elements are only able to
carry axial loads. Each node has three degrees of freedom, corresponding to the displace-
ments in the three orthogonal coordinate directions. Nayfeh and Hefzy [39] determined the
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conditions for representing an orthotropic elastic continuum medium through this model,
leading to a cubic cell with nine nodes (Figure 1a) that was adopted by Riera [40] to solve
dynamic structural problems. For this geometric arrangement used herein, the lengths
of longitudinal and diagonal elements are Ln = L and Ld =

√
3L/2, respectively, with

equivalent stiffnesses given by

EAn = EφL2,

EAd =
An2
√

3
3

,
(1)

where Young’s modulus is E, L is the length of longitudinal elements, and φ = (9 +
8δ)/(18 + 24δ) and δ = 9ν/(4− 8ν) are coefficients that relate those parameters to their
corresponding linearly elastic solid properties, with ν representing Poisson’s coefficient.
The LDEM model used herein is completely equivalent to an isotropic elastic solid when
ν = 0.25, as shown in the extensive examination by [41]. Assuming the internal material
damping as a linear function of the nodal masses’ velocities, the solid’s spatial discretization
yields N equations of motion in the well-known form

Mü + Cu̇ + Fr − P = 0, (2)

in which u represents the vector of generalized nodal displacements, where an upper dot
denotes a temporal derivative; M is the diagonal mass matrix; C is the the damping matrix,
assumed diagonal to generate an uncoupled system; Fr comprises the internal forces acting
on the nodal masses; and P is the vector of external forces.

L

L
L

ρL3

16

ρL3

2

x y
z

(a)
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εp εε εm

Damage energy, ED

Elastic strain
energy, ES

EAiK
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εr

P

BO C

D

(b)

Figure 1. View of basic LDEM model: (a) the basic cubic module within a LDEM array; (b) classical
uniaxial constitutive law used by the LDEM elements.

The fracture analysis performed here adopts the softening law for quasi-fragile materi-
als proposed by [42], which assumes the force–strain relation presented in Figure 1b for
elements subjected to tension. In such a relation, the area under the force vs. strain curve
(triangle OPB) is proportional to the energy density necessary to fracture the element’s area
of influence, which allows one to account for the irreversible effects of crack nucleation and
propagation throughout the modeled structure. Once the damage energy density reaches
fracture level, the element fails and loses its load-carrying capacity. The material is assumed
to be linearly elastic under compression, inducing failure to occur through indirect tension
in such circumstances. The constitutive parameters and symbols appearing in the figure
are defined as follows. The element’s axial force F depends on the axial strain ε, whereas
A∗i is the element’s equivalent fracture area, defined to ensure that the energy dissipated by
a fracture in the discrete arrangement matches that of the continuum medium it emulates.
For a continuous cubic sample of dimensions L× L× L, the fracture energy due to a crack
parallel to one of its faces is Γ = G f Λ = G f L2, in which Λ is the actual fractured area, i.e.,
L2. In the corresponding LDEM module with the same dimensions, fracture occurs in two
parts, consisting of the contributions from five longitudinal elements (four coincident with
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the module edges and one internal element) and four diagonal ones. Finally, the strains εp
and εr are related to another material parameter, the characteristic length deq, by means of
the following expressions:

εp =

√
G f

E deq
, (3)

εr = εpdeq

(
A∗i
Ai

)(
2
Li

)
, (4)

where the subindex i identifies the type of element referenced (diagonal or normal), whereas
deq is an upper limit for a given structure’s characteristic length: once that length becomes
larger than deq, the structure presents unstable fracture propagation. Such a length can be
determined through the so-called Carpinteri number [43]

s =

√
G f E

d
σp

, (5)

where d represents the characteristic length of the structure and σp is the failure stress. As
shown in [44], for the LDEM constitutive law, considering that σp = Eεp, and combining
Equations (3) and (5), one can write

s =

√
deq

d
. (6)

In the LDEM, G f is a random parameter given by a Weibull probability distribution

p(G f ) = 1− exp

[
−
(G f

β

)γ
]

(7)

with β and γ denoting the scale and shape parameters, respectively. Such parameters are
determined by the coefficient of variation CVG f , defined as the ratio between the standard
deviation s(G f ) and the mean value µ(G f ) of the specific fracture energy G f related to the
size L. The spatial correlation for G f is defined through the correlation lengths Lcx, Lcy, and
Lcz along with the directions x, y, and z, respectively. For a detailed explanation of these
parameters and their application in the context of LDEM, refer to [45–47].

Since this work’s intended application presents relevant compression effects, the
proposed LDEM model must be improved by inclusion of an internal-friction dissipation
mechanism. To that end, the constitutive law given in Figure 1b is modified here, following
the peridynamics considerations proposed by [48]. Such a modification relies on changing
the failure strain to also take into account the compression level of the bars connected to
the element under analysis. Then,

εr = krtεp (8)

where

krt = max

{
kr, kr

[
−β

(
1

nbc

nbc

∑
i=1

εi(εi < 0)
εp

)]}
. (9)

In Equation (9), nbc represents the number of bars linked to the analyzed element under
compression strain. The scalar parameter krt rules the increase in dissipated energy due
to internal friction, being activated when the analyzed element is solicited by traction
and the bars connected to it are compressed. An exhaustive explanation of the Lattice
Discrete Element Method (LDEM) used in the present paper and the complete deduction
of Equations (1)–(9) appear in [40,44,46,47,49].
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3. Acoustic Emission Technique

The Acoustic Emission (AE) technique relies on the generation of elastic waves due to
crack formation within a structure. When those waves propagate throughout the structure
and reach its surface, they are captured by appropriate sensors, generating signals that
can be interpreted to map the spatial and temporal distribution of damage events. This
technique is well established and has been widely debated over the last six decades,
with [21,50,51] appearing as prominent examples, whereas several direct applications can
be found in refs. [27,29,35,52–55]. The work by Richter is especially famous due to its wide
application in the area of seismology.

As already pointed out in the introduction, successful application of the AE technique
for analyzing structural damage is justified by the analogies between damage and phase
transformation processes, which are solidly established in statistical physics arguments [14]
and the renormalization group concept by [13]. However, searching for a “definitive” failure
precursor remains an open issue because all indexes proposed to date may be inconclusive
under some operational conditions. Within this context, this work investigates the proposal
by [38] of using the temporal derivative of the system’s elastic energy as such a precursor,
extending it to include the prediction of local failures and using the well-established b-value
as a comparison reference. The main aspects of each of these precursors are presented
in Section 3.1.

3.1. Global Parameters Computed from the AE Signal

This work uses two global indexes as failure precursors during a damage process:

(a) Relation between the number of events and the signal amplitude (b-value): This rela-
tion is widely used in seismological applications, with the classic law by Gutenberg
and Ritcher [50] being the primary example of its usefulness. It is mathematically
expressed as

N(≥ A) ∝ A−b, (10)

where N is the cumulative number of signals and A is the signal amplitude. The
physical meaning of b is discussed in refs. [21,56]; it is hypothetically related to the
fractal dimension D of the domain from which the cracks emanate, according to
the expression D = 2b. At the beginning of a damage process within the structure,
events originate from a micro-fissure of volumetric distribution, i.e., D = 3 and
b = 1.5, leading to small-amplitude signals. As damage progresses and localization
effects occur, events emanate preferentially from the micro-fissure cloud, resulting in
macro-crack nucleation.
The procedure for computing b is explained in detail [57] and summarized schemati-
cally in Figure 2. The amplitudes due to each event are collected and organized in a
histogram. Then, a bi-log diagram relating the cumulative number N of events with
amplitudes ≥ A is drawn. Finally, b is determined as the angular coefficient of the
fitting line.

t

a(
t)

A

log(A)

lo
g
(N

(≥
A
) )

b
1

N

log(A)

b-
va

lu
e

Figure 2. Precursors from AE tests, obtaining b-value from Equation (10).

(b) Temporal derivative of the system’s elastic energy: This criterion takes the local
maxima of the system’s elastic energy variation rate (i.e., its time derivative) as a
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precursor. Given its original proposition by [38], it is referred to here as the Dȩbski–
Pradhan–Hansen (DPH) parameter.

4. Case Study

The study focused on the prefissured specimen made from basalt and depicted in
Figure 3. The study involved applying a compressive load to the structure until it collapsed,
monitoring damage evolution through the two methods discussed in Section 3.1. The study
was carried out in two ways: 1—experimentally; 2—numerically. It is worth noticing that
this work’s main contribution lies in the extended applicability of the DPH index, proposed
in ref. [38], which is characterized by the following features proposed here:

1. The original DPH index is the time derivative of the body’s internal elastic energy,
which cannot be accessed through direct measurement. Therefore, the original index
applies only as a theoretical analysis tool based on simulation data. Here, we use the
product between the prescribed displacement and the corresponding reaction force
perceived in the test machine as a proxy for the body’s internal elastic energy. As
these two variables are readily available for measurement, this procedure also allows
the use of the DPH index with experimental data.

2. The correspondence between the actual elastic within the structure and its proposed
estimation counterpart is investigated through simulation results, confirming that the
proposed proxy leads to equivalent conclusions.

3. Instead of predicting total collapse only, the DPH index is investigated as a valid
precursor also to local failures.

The implementation details for each part of the test are described in the following
subsections.

20
m

m

45◦

70 mm

70
m

m

25 mm

Figure 3. The layout and main dimensions of the basalt specimen tested.

4.1. Experiment Description

The specimen was subjected to a partial compression load according to the arrange-
ment depicted in Figure 4a, in which the moving parts applied a prescribed displacement
at a constant velocity of 0.6 mm/min through a Shimadzu AGX-PLUS universal testing
machine. The testing machine features a proprietary data recording system to store dis-
placement and applied load data at a 100 S/s acquisition rate [58]. Damage progression
within the structure was monitored through AE measurements from two piezoelectric
crystals on opposite sides of the specimen (see Figure 4b), with a resonance frequency of
1.5 MHz. The collected signals were fed to an Omega® OM-USB data-acquisition set, with
a 455 kS/s sampling rate and 12-bit resolution, during 290 s. The data were post-processed
with a high-pass filter with a cutoff frequency of 10 kHz, resulting in 1274 AE events, which
will be analyzed in Section 4.3.

The body’s retention structure included one flexible support (Detail A), whereas the
basaltic specimen’s surface was not finely polished (Detail B). These factors contributed
to inducing an irregular damage pattern, with local failures of different types appearing
throughout the structure during the process, as evidenced in the body’s final configuration
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(Figure 4b). The figure shows three distinct instability regions, with a major failure in
the region where the prefissure was located: the section marked by the red triangular
painting was totally crushed during the test. Such a boundary configuration is complicated
to reproduce in the simulated model. However, as the main interest in the simulations was
to compare the progression of the DPH and b-value parameters, not to pinpoint the specific
crack distribution throughout the structure, such features were not deemed indispensable
to the simulation model and were omitted.

x

y Base

Top supports

Lower separator

Bracket

SrDetail A

Detail B

v̇(t)=cte

Sl

(a)

15 mm

(b)

Figure 4. (a) The dispositive used to fix the basalt specimen during the test. Detail A: irregularities in
the specimen surface. Detail B: the excessive support flexibility. (b) The final configuration obtained
during the test.

4.2. Numerical Simulation

Simulations were performed with an LDEM model, which has been successfully
used by the authors’ research group for analyzing quasi-brittle materials, as illustrated
in refs. [24,41,44]. The boundary conditions appear in Figure 5a, whereas the model’s
relevant material properties appear in Table 1. The values for E, σp, ρ, and G f were adjusted
to fit the experimental results presented in Figure 6. The adopted values for ρ and σp were
compatible with those given in ref. [59], while the one for G f was within the range specified
in refs. [60,61], 700 N m−1 to 1500 N m−1. As for E, the adopted value was lower than the
range found in ref. [59] (E = 1.25 GPa). However, references [60,61] show that basalt’s
Young’s modulus is a greatly variable quantity.

As discussed in Section 2, the material’s characteristic length deq was determined
through the Carpinteri number s [43], assuming σp = 7.1 MPa, yielding

s =

(
GcE

d

)0.5

σp
=

(
1000× 1.25× 109

0.025

)0.5

7.1× 106 = 0.894, (11)

thus, using Equation (6), deq = s2d = (0.894)2 × 0.025 = 0.02 m.

Table 1. The LDEM parameters adopted for the basalt prismatic specimen with a prefissure.

# mod. L E ν deq

28× 28× 10 2.50 mm 1.25 GPa 0.25 0.02 m

ρ µ(G f ) Lcor CV(G f ) β

2456 kg m−3 1000 N m−1 20 mm 160% 3
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xy

SrSl

u = v = w = 0

v(t) v = 0

(a) (b)

Figure 5. (a) Geometry of the test body with the boundary conditions used. (b) Final configuration
obtained in the LDEM simulation (broken bars indicated in red, damage bars indicated in blue, and
undamaged bars indicated in gray.

0.00 0.50 1.00 1.50 2.00
0
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(a)

(b)

(c)

(d) (e)

(f)

Displacement [mm]

Lo
ad

[k
N

]

Experimental
LDEM

15 mm

(a)

15 mm

(b)

15 mm

(c)

(d) (e) (f)

Figure 6. Comparison between experimental and numerical results in terms of Global Reaction
measured vs. applied displacement at constant velocity. (a–c) evolution of damage at the indicated
points of the experimental result; (d–f) of LDEM.

The random field of material toughness is a Weibull distribution with a mean value
µ(G f ) = 1000 N/m, a 160% variation coefficient, and a spatial correlation length
Lcor = 20 mm for the three orthogonal directions. The apparently high value for CVG f is
justified by its link to the variation of each bar. Thus, for the whole 15 bars for each cubic
module, the equivalent variability reduces by 2.5 times, leading to CV(G f ) bar/2.5 = 64%.
The link between the random field variability in the level of the cubic module and in the
level of each bar is discussed in [41]. As a reliable estimate for the random field’s correlation
length still requires deeper studies regarding the rock’s material properties, following [62],
this value was assumed equal to the characteristic length deq.

4.3. Results

Experimental and numerical results appear together in Figure 6, which also includes
photos from the actual test as well as the simulated damage configuration for instants
of particular interest during the test (labeled as (a) to (e)). Loading declivities are similar
for the first testing phases until the global displacement reaches approximately 1 mm. At
that point, corresponding to the normalized instant t = 0.52 in Figure 7, the main fissure
closes and the “triangle” on the specimen’s top contacts its “main body” underneath,
leading to significant hardening effects in the experimental response. From that moment
onward, simulation results cease to mimic the experiment in a reliable sense, as evidenced



Appl. Sci. 2023, 13, 10947 9 of 16

by the differences in the actual and simulated specimens’ final configurations (Figure 6c,f).
Therefore, the behavior of both indexes as failure predictors are not expected to agree
with those from the experiments and are included here only for the sake of completeness.
Instead, the main usefulness in discussing the simulations lies in evaluating the proposed
alternative method for calculating the DPH index, since the simulated response provides
access to the system’s internal energy to compare with the simulated work applied by the
testing machine.

Figure 8 depicts the temporal evolution of the AE parameters calculated from the data
collected during the experiment. The time scale is normalized with respect to the rupture
time (216.49 s). The graph on top illustrates the load evolution (red) accompanied by the AE
measurements from sensor Sl . Since the measurements from both sensors were very similar,
only one data set was used in the remainder of the work. The second graph concerns
the b-value parameter computed from the mentioned sensor’s signals using windows of
35 samples with three-sample overlaps. Finally, the bottom graph presents the evolution
of the DPH parameter, inferred by taking the time derivative of the product between the
applied displacement and the measured reaction forces on the specimen’s supports. The
gray line indicates the computed values for each instant, whereas the red one corresponds
to its filtered counterpart.

The three plots presented in Figure 8a (top, middle, and bottom) are divided into four
different intervals by lightly colored shadows, identified as (I) red, (II) green, (III) blue, and
(IV) gray, corresponding to each characteristic behavior identified visually during the test
and registered as a video. Figures 7 and 8b aid in the interpretation of the intervals, which
are characterized as follows:

I A localized vertical fissure develops in the superior right corner. Notice that no
prefissure is discernible in that region until the normalized time approaches 0.3
(Figure 7a) but its appearance is anticipated by significant AE activity since t ∼= 0.25.

II The prefissure begins to close with visible damage in its supporting region, while
the damage in the superior right corner continues to develop. At this interval’s end
(normalized time = 0.52, displacement = 1 mm), there is significant hardening in
the load vs. global displacement response. The partial closing of the prefissure is
confirmed by Figure 7b.

III The diagonal prefissure is entirely closed while the damage continues to increase in
the superior right corner (Figure 7c).

IV A new fissure propagates from the head of the diagonal prefissure (Figures 6c and 8b).

Figure 8a also features slashed lines marking the highest instability points within each
region, i.e., when a sudden loading reduction signals the appearance of a significant crack.
Completing the information provided in the figure, the most relevant points identified
through the two parameters of interest appear as (a), (b), (c), and (d), where the “diamond”
((·)�) marker indicates a b-value local minimum and the “asterisk” ((·)∗) refers to a sharp
variation in the DPH index.

15 mm

2×
(a)

15 mm

2×
(b)

15 mm

2×
(c)

Figure 7. Evolution of damage in the experimental trial in three regions localized in Figure 8 in
normalized time t. (a) Region (I), t: 0.290. (b) Region (II), t: 0.529. (c) Region (III), t: 0.818.
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Figure 8. (a) AE experimental results: top—the results of the temporal evolution of Load, Signal AE;
middle—b-value evolution; bottom—DPH parameter evolution during the test. (·)� and (·)∗ instants
of particular interest for the predictors b-value and DPH, respectively. (b) Visual representation of
the damage process throughout the test.

The evolution of the b-value appears in Figure 8a’s middle graph. This parameter
acts as a failure precursor when a local minimum follows a “plateau” where its value is
relatively stable. Notice that one such “plateau” occurs before each of the four main regions
in the specimen behavior and that each of those “plateaus” is followed by one of the local
minima marked as (a�), (b�), (c�), and (d�). However, none of those minima occur near
the major instability points. Thus, the b-value appears as a reliable indicator of changes in
the specimen’s overall behavior regions but it is not as effective for predicting the actual
instability points.

The bottom graph in Figure 8a illustrates the evolution of the DPH index. This
parameter was introduced in ref. [38], where its maximum overall value indicated a
structure’s total collapse. Here, we investigate its usefulness to identify not only the final
collapse but also the intermediate critical points as the damage process evolves. Notice
that the DPH index presents a local maximum ((a∗), (b∗), (c∗), (d∗), and (e∗)) near each main
instability point, including even the relatively minor one associated with point (d∗). Also,
the final collapse is predicted by the overall maximum (e∗), which confirms the results
presented in ref. [38]. To the best of the authors’ knowledge, this is the first instance
of applying the DPH index as a local-failure predictor and the first time it is applied to
experimental data. Notice that, close to the final collapse, the DPH index shows a maximum
value; however, in this situation, there is no high activity in the AE signals, perhaps due
to the shielding effect produced by the damage advance in the specimen region making it
difficult for the AE signals activity to arrive to the sensor. This is a very good example where
the DPH index could be a useful complement to the AE analysis. A different tendency
between the two precursors could indicate the presence of a local effect that prevents the
AE wave from arriving at the sensors used in the analysis. Notice also that in the same
process in other local instabilities, the maxima of the DPH index and the b-value decreasing
during the process both indicate the eminence of local critical regions.

The information in Figure 8a’s bottom graph is complemented by Table 2, relating the
moments of critical instabilities (ti) with the times when the DPH index presented a local
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maximum (tn), including the ratio between those two values. Notice that this ratio presents
small variability [0.96–0.99] and is close to 1.0, reinforcing the DPH index’s consistency as a
failure predictor. This ratio’s stability is discussed in further detail in [38].

Table 2. Collapse prediction time ((·)∗) relationship with DPH characteristic values—experimental
test (see Figure 8).

(a∗) (b∗) (c∗) (d∗) (e∗)

tn 0.340 0.418 0.707 0.955 0.987
ti 0.348 0.434 0.718 0.970 1.000

tn/ti [%] 97.626 96.356 98.360 98.466 98.674

Simulation results are presented in Figures 9 and 10 and summarized in Table 3.
Although the damage process begins at normalized time = 0.25, its effect is negligible until
t = 0.77. Figure 9 depicts the system’s energy balance with respect to normalized time.
In that same figure, the peaks in the kinetic energy evolution coincide with the region of
significant AE activity (see Figure 10), and the elastic energy maximum occurred at the
same normalized time as the maximum load was reached.
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Figure 9. Time evolution of energy of the LDEM model. The dissipated energy is zero up to the
normalized time = 0.25; then, it begins to increase in sensible form after time = 0.77.

Figure 10 illustrates the simulated applied load as a function of normalized time, with
the corresponding AE signal from the virtual sensors. The b-value and DPH parameters
are calculated analogously to the experimental data presented in Figure 8. However, two
different metrics of elastic energy are used to extract the DPH parameter: the first is the
elastic energy computed within the specimen (i.e., the “actual” energy involved in the
process); the second relies on the product between the reaction support and the prescribed
displacement, i.e., the same method used for estimating the elastic energy behavior for
the analysis presented in Figure 8. The results indicate significantly fewer AE events
throughout the simulated process in comparison with the experiment.

The two last graphs in Figure 10 concern the DPH parameter’s evolution, which
was computed by two methods: with the “actual” elastic energy computed during the
simulation (U) and with its estimated counterpart Ũ, given by the product between the
excitation displacement and the corresponding load applied by the mobile support to
induce it. These results are summarized in Table 3. Since the simulated results did not
indicate clear local failures before the total collapse, the usefulness of the DPH index as
their predictor could not be confirmed through simulations. However, the indication of
total collapse was confirmed with the indexes computed from both U and Ũ (points a† and



Appl. Sci. 2023, 13, 10947 12 of 16

a∗ in Figure 10), which suggests the validity of the proposed estimation method for the
elastic energy in an experimental setup.
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Figure 10. Results in terms of Acoustic Emission signal vs, time, load vs. time, and the time evolution
of b-value and DPH index vs. the normalize time. Two measures of the DPH parameter are indicated:
∂U/∂t indicate the derivative of the elastic energy computed internally in the simulation; ∂Ũ/∂t
indicate the derivative of the measure of the elastic energy computed as the product between the
reaction support and the prescribed displacement. (a†) and (a∗) instants of particular interest for the
DPH computed using ∂U/∂t and ∂Ũ/∂t.

Table 3. Collapse prediction times using LDEM. tn: precursor time determined from DPH computed
using ∂U/∂t (a†) and using ∂U/∂t (a∗). ti: time in which the collapse happens.

(a†) (a∗)

tn 0.937 0.983
ti 1.000 1.000

tn/ti [%] 93.782 98.315

Concluding this section, the experimental and simulated data observations can be
summed up in three main points. First, the predictions from the DPH index were consistent
with the developing damage pattern and the indication carried out for the b-value evolution
during the experimental test. Since the b-value is a widely employed failure precursor
with several successful application examples, this result alone cannot mean that the DPH
is a consolidated precursor of local and global failures. On the other hand, since its
supporting data are entirely independent from those used for calculating the b-value, the
DPH can be treated as a complementary metric, leading to a more complete analysis of the
damage process. Second, although the simulated results were not conclusive with respect
to predicting the damage pattern from either the DPH or the b-value, they did confirm that
the behavior of the actual elastic energy within the system (which is necessary to calculate
the DPH index in its original form) can be successfully approximated through the product
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between the applied displacement and the reaction from the structure. Since the direct
measurement of such energy within the structure is unattainable, the alternative method
is of significant practical importance. Finally, the experimental results also confirmed the
invariance of the ratio between the precursors and failure times indicated by the DPH
index, a theoretical property introduced by the metric’s original proponents. To the best
of the authors’ knowledge, this is the first experimental confirmation of such a property,
which means it will require further confirmation in future works. If confirmed, however,
such a result would imply that the DPH index is a powerful predictor of structural failure.

5. Conclusions

In the present work, we propose an extension of the DPH index to predict failure
during damage processes in quasi-brittle materials. To the best of the authors’ knowledge,
this is the first application example of that index with experimental data. The experiment-
based analysis was also backed up by simulation results. The main conclusions from such
an endeavor are as follows:

• While the original version of the DPH index was used only as a predictor of total
structural failure, our proposed alternative could also identify intermediate local
failure events. Its performance as a failure predictor was consistent in comparison
with the widely used b-value during the experimental test. However, this could be a
peculiar characteristic of the test carried out in the paper, and before generalizing its
advantages, the persistence of this tendency must be verified by new tests to verify
the index performance in other representative specimens of different materials and
dimensions.

• Although the simulated results could not confirm the usefulness of the proposed DPH
index conclusively, they showed that the behavior of the actual elastic energy within
the system (which is necessary to calculate the original index) could be successfully
approximated through the product between the applied displacement and the reaction
from the structure. Since the direct measurement of such energy within the structure
is unattainable, such an alternative method is of significant practical importance
because it enables using a hitherto strictly theoretical tool in the experimental study of
damage processes.

As a final remark, as the first application instance of the DPH index to an experimental
setup as far as the authors are aware, this work’s findings still require further confirmation
before its conclusiveness can be ascertained. Future work will concentrate on widening the
proposed index’s application spectrum to other types of structures and damage processes
to seek such confirmation.
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