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ABSTRACT

Graph Neural Networks (GNNs) is an approach that allows applying deep learning tech-

niques to non-Euclidean data, such as graphs and manifolds. Over the past few years,

graph convolutional networks (GCNs) and graph attention networks (GATs), among other

specific kinds of convolutional GNNs, have been applied to image classification prob-

lems. To do so, images should be represented as graphs. This process usually involves

over-segmenting images into non-regular regions called superpixels, which are mapped

to graph nodes, characterized by features representing the superpixel information, and

connected to other nodes. However, there are several different ways of transforming im-

ages into graphs. This work focuses on applying graph convolutional networks and graph

attention networks in image classification problems for images over-segmented into su-

perpixels. We systematically evaluate the impact of different approaches for representing

images as graphs in the performance achieved by the resulting GCN and GAT models,

comparing, as well, the differences between them. Namely, we analyze the impacts of the

degree of segmentation (number of nodes), the set of features chosen to represent each

superpixel as a node, and the method for building the edges between nodes. We concluded

that the performance is positively impacted when increasing the number of nodes, con-

sidering rich sets of features, and considering only connections between similar regions

in the resulting graph for GCNs and one-headed GATs, while multi-headed GAT models

can take advantage of information from neighboring regions and region adjacency infor-

mation provided by region adjacency graphs.

Keywords: Graph neural networks. image classification. superpixels. graph convolu-

tional networks.



Redes Neurais de Grafos para classificação de imagens: comparando métodos para

construção de grafos

RESUMO

Redes Neurais de Grafos (GNNs) são uma abordagem que permite aplicar técnicas de

aprendizado profundo a dados não-euclidianos, como grafos e variedades. Nos últimos

anos, Redes Convolucionais de Grafos (GCNs) e Redes de Atenção a Grafos (GATs),

entre outros tipos de GNNs convolucionais, têm sido aplicados a problemas de classi-

ficação de imagens. Para isso, as imagens devem ser representadas como grafos. Esse

processo geralmente envolve a sobre-segmentação de imagens em regiões não-regulares

chamadas superpixeis, que são mapeadas para vértices do grafo, descritas por atributos

que representam as informações do superpixel e conectadas a outros vértices em vizi-

nhanças. No entanto, existem diversas maneiras de transformar imagens em grafos. Este

trabalho trata da aplicação de GCNs e GATs a problemas de classificação de imagens

sobre-segmentadas em superpixels. Avaliamos sistematicamente o impacto de diferentes

abordagens para representar imagens como grafos no desempenho alcançado por modelos

GCN e GAT simples, comparando também as diferenças entre estes. Em particular, anali-

samos os impactos do grau de segmentação da imagem (ou, equivalentemente, do número

de vértices do grafo), do conjunto de atributos escolhidos para representar cada superpi-

xel como vértice e do método para construir as arestas entre os vértices. Concluímos que

o desempenho é positivamente impactado ao aumentar o número de vértices, considerar

conjuntos ricos de atributos e considerar apenas conexões entre regiões semelhantes no

grafo para GCNs e para GATs de um único foco de atenção, enquanto modelos GATs de

vários focos podem se beneficiar das informações de regiões vizinhas e da informação de

adjacência fornecidas pelos grafos de regiões adjacentes.

Palavras-chave: Redes neurais de grafos. Classificação de imagens. Superpixeis. Redes

convolucionais de grafos.
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1 INTRODUCTION

Since the past decade, Machine Learning algorithms have been achieving increas-

ing performances in many tasks due to the growth in computational power and data avail-

ability and also due to advances in research in the field. One of the most impacted areas

is computer vision, where state-of-the-art deep neural network models such as AlexNet

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012), ResNet (HE et al., 2016) and Effi-

cientNet (TAN; LE, 2019) have reached staggering performances. This is especially true

for the task of image classification, where, given an image as input, the algorithm must

determine to which of a predetermined number of classes it belongs.

In this context, Graph Neural Networks (GNNs) (SCARSELLI et al., 2009)) is

a relatively recent approach that generalizes neural networks, allowing them to process

non-Euclidean data such as graphs. This capability makes it possible to apply deep learn-

ing approaches to a vast set of problems whose data can be modeled as graphs. Since

they were proposed, GNNs have been applied in different areas (WU et al., 2020), such as

Bioinformatics (ZHANG et al., 2021), Particle Physics (SHLOMI; BATTAGLIA; VLI-

MANT, 2020), Neuroscience (BESSADOK; MAHJOUB; REKIK, 2022), natural lan-

guage processing (WU et al., 2023), material science and Chemistry (REISER et al.,

2022), Computer vision (CHEN et al., 2022), etc.

In the last few years, several studies have investigated how to apply GNNs for

image classification (HONG et al., 2020; CHEN et al., 2020; ZHANG et al., 2023; DU et

al., 2023; TANG et al., 2022). Most of these studies are based on a specific class of GNNs

called convolutional graph neural networks, which can be understood as a generalization

of convolutional neural networks to graph-structured data. Among them are especially

highlighted the Graph Convolutional Networks (GCNs) (KIPF; WELLING, 2017) and

the Graph Attention Networks (VELIčKOVIć et al., 2018).

However, to apply GNNs to image classification it is necessary to represent the

image information as a graph. Typically, these approaches involve over-segmenting im-

ages into non-regular regions called superpixels (DEFFERRARD; BRESSON; VAN-

DERGHEYNST, 2016; MONTI et al., 2017) that are mapped to nodes in a graph. Yet,

there are many different ways of building the resulting graph, depending on choices made

by the designer on different aspects. For example, the images can be segmented in differ-

ent degrees, resulting in different numbers of nodes in the graph and different densities of

pixels per node. Besides that, there are different approaches for defining the edges among
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the nodes that represent superpixels, such as adopting fully connected graphs (MONTI

et al., 2017), K-Nearest Neighbors, region adjacency graphs (AVELAR et al., 2020), dy-

namic approaches (LINH; YOUN, 2021), etc. Furthermore, there are different ways of

assigning features to nodes to describe each superpixel’s characteristics.

As far as we are aware, the literature does not provide any systematic comparison

of how different ways of building graphs impact the performance achieved by GNN mod-

els in image classification tasks. Such systematic evaluation would be a valuable reference

for supporting the most effective choices when designing models in this context.

In this work, we focus on using Graph Convolutional Networks and Graph At-

tention Networks for the classification of superpixel segmented images using the SLIC

(ACHANTA et al., 2012) method in its adaptive (SLICO) variant. Our objective is to

systematically evaluate the impact of the following graph-building choices on the perfor-

mance of simple GCN and GAT models: (I) the degree of segmentation (that defines the

number of nodes in the resulting graph); (II) the selection of features for characterizing

each node and representing the superpixels’ information; and (III) the method for defining

edges between node pairs in the resulting graph.

We have found that the performance achievable by the GCN and GAT models

is, in general, positively impacted by choosing rich representative feature sets, however,

some features such as pixel density can have negative impacts. The models also bene-

fit from increasing the number of superpixels per image – although the positive impact

grows smaller as the number of pixels per superpixel approaches one. Furthermore, the

biggest difference in behavior between GCNs and GATs is seen in their responses to edge-

building methods: GCNs respond better to neighborhoods that encompass solely similar

regions (that is, considering descriptive features in the calculation of the distance between

nodes and limiting the maximum degree); while GATs with multiple attention heads can

leverage information from contrasting regions and achieve top performances with region

adjacency graphs.

We also conclude that our GAT model outperforms the GCN model in every case.

However, neither model achieves the results offered by classical CNN models AlexNet

and EfficientNet. Still, the resources needed for the GNN models, time- and, especially,

memory-wise, are drastically fewer.

The remainder of this work is structured as follows. In Chapter 2 we discuss

the main concepts fundamental to this work, namely the machine-learning fundamentals

and the issues involved in representing images as graphs. Chapter 3 concerns the related
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work. In Chapter 4 we present the methodology of our experiments and discuss our

results. Finally, Chapter 5 presents the conclusions.
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2 BACKGROUND

In this Chapter, we provide an overview of the main concepts that are fundamental

to this work. Section 2.1 presents the machine learning basis upon which the work is

based, focusing on Graph Neural Networks and the mechanisms for evaluating them in

the context of image classification. Section 2.2 details the design choices involved in

transforming images into graphs: a necessary step so that they can be processed by GNNs.

2.1 Machine learning

According to Goodfellow, Bengio and Courville (2016), a machine learning algo-

rithm is an algorithm capable of learning from data. That is, it progressively improves its

performance in a certain task as it gains experience.

Learning in ML can be classified into roughly three categories: supervised learn-

ing, reinforcement learning, and unsupervised learning. This work focuses on supervised

learning, where each example in a dataset has its features and its label or target, and the

model learns a function that maps a given set of features to the suitable label. The learning

process is carried out on a training dataset by iteratively comparing the output provided

by the model for a given instance to its known ground-truth, and adjusting the model’s

parameters in order to decrease this error (GOODFELLOW; BENGIO; COURVILLE,

2016).

Specifically, we focus on the task of image classification, where the datasets are

composed of labeled images, each label specifying to which, of a fixed number of classes,

the image belongs. The task of the model is to predict, for any given image, its cor-

responding class. Image Classification (IC) aims to classify the image as a whole by

assigning a specific label to it. Usually, labels in an IC task refer to objects that appear

in the image, kinds of images (photographs, drawings, etc.), feelings (sadness, happiness,

etc.), etc (LANCHANTIN et al., 2021).

In the machine learning field, many approaches have been proposed in the con-

text of supervised learning, such as decision trees, support vector machines (BOSER;

GUYON; VAPNIK, 1992; CORTES; VAPNIK, 1995), neural networks, etc. Especially

among them, neural networks have achieved staggering performances in many tasks in

the last decade, with impressive impacts in computer vision tasks.

Neural networks (NNs) are machine learning models, typically structured in mul-
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tiple layers of processing units (e.g.: perceptrons). These units are connected to the ad-

jacent layers’ units via weighted edges. The goal of training a neural network is to build

a model that approximates a function f ∗(x) that maps data inputs into desired outputs.

This is done by adjusting the neural network’s set of parameters (the weights of each

link and biases of each unit) to minimize a loss function (GOODFELLOW; BENGIO;

COURVILLE, 2016). In general, training a neural network involves three steps: forward

propagation, backpropagation, and adjustment of its parameters.

During the forward propagation, samples in the training dataset are presented to

the neural network. Then, this input flows through the layers, which apply transformations

to the information, generating an output in the last layer.

Once an output is generated by the network for a given sample, the backpropa-

gation (RUMELHART; HINTON; WILLIAMS, 1986) algorithm is used to compute the

gradient of the loss function (that measures the dissimilarity between the generated output

and the ground truth in supervised learning) with regard to each of the trainable parame-

ters of the model (i.e., the weights of the edges that link the network’s processing units)

(GOODFELLOW; BENGIO; COURVILLE, 2016).

Finally, the gradient descent algorithm is applied to adjust the model parame-

ters. Gradient descent is an optimization method that uses the gradients computed with

backpropagation in order to find the set of weights that minimize the loss function, thus

causing the model to yield better, more precise results. This is done by adjusting the

model’s weights in the opposite direction of the gradient.

In the remainder of this section, we discuss further Graph Neural Networks and

their context in the field of ML (subsection 2.1.1) and the mechanisms for evaluating ML

models (subsection 2.1.2).

2.1.1 Graph neural networks

Graph Neural Networks (GNNs) (SCARSELLI et al., 2009)) can be viewed as

an approach that generalizes neural networks, allowing them to deal with non-Euclidean

data such as graphs. Since they were proposed, GNNs have been applied in different

areas (WU et al., 2020), such as Bioinformatics (ZHANG et al., 2021), Particle Physics

(SHLOMI; BATTAGLIA; VLIMANT, 2020), Neuroscience (BESSADOK; MAHJOUB;

REKIK, 2022), natural language processing (WU et al., 2023), material science and

Chemistry (REISER et al., 2022), Computer vision (CHEN et al., 2022; TODESCATO
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et al., 2024; TODESCATO et al., 2023), etc. The first use of GNNs for image classi-

fication tasks was seen in, to the best of our knowledge, Monti et al. (2017). The most

common ML approach for image classification as well as most computer vision tasks, that

far predate the use of GNNs, is the use of Convolutional Neural Networks.

Convolutional Neural Networks (CNNs) (LECUN et al., 1998) are a kind of neural

network where at least one of its layers performs a convolutional operation (GOODFEL-

LOW; BENGIO; COURVILLE, 2016). CNNs have achieved breakthrough performances

in the past decade, especially in computer vision tasks (e.g.: image classification), with

models such as AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), ResNet (HE

et al., 2016) and EfficientNet (TAN; LE, 2019).

A convolution is a well-known mathematical operation that can be described as

the application of a filter along an input image, emphasizing different features of interest.

Convolutions have wide use in computer vision, for blurring and sharpening images, em-

phasizing edges and particular shapes, etc (SZELISKI, 2022). In the context of CNNs,

the specialized convolutional layer learns filters (also called kernels) that detect features of

interest in the input data, resulting in feature maps. The feature maps indicate with what

intensity the feature of interest was detected by the filter in different regions of the input

image. Figure 2.1 shows a simple example of a 2D convolution, where the kernel slides

along the input matrix, multiplying, element-wise, the kernel and the patch of the input

the kernel overlaps. For every possible position of the kernel along the input, the sum of

the referred multiplications corresponds to the value in the corresponding position of the

final feature map. The trainable parameters of a convolutional layer are the weights of

the kernel (GOODFELLOW; BENGIO; COURVILLE, 2016). It is important to note that

every convolution has an equivalent operation in the frequency domain through Fourier

transforms (SZELISKI, 2022).

However, CNNs (using convolutional kernels as described above) are only capable

of processing grid-like (i.e. euclidian) data, such as traditional images, which are grids of

pixels (GOODFELLOW; BENGIO; COURVILLE, 2016). Therefore they are not directly

applicable to information that does not follow a regular topology, such as point clouds,

meshes, and panoramas, as well as traditional images over-segmented into non-regular

regions such as superpixels, all of which can be represented in the form of graphs.

Graph Neural Networks (GNNs) generalize many deep learning techniques to

non-euclidian domains (i.e., graphs). Convolutional graph neural networks, in light of

the tremendous success of CNNs, generalize the convolutional operation to non-euclidian
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Figure 2.1: Example of a 2D convolution, restricted to positions where the kernel lies
entirely within the input.

Source: Goodfellow, Bengio and Courville (2016)

data and have wide use in computer vision tasks (CHEN et al., 2022). There are two

main approaches to graph convolutions: the spectral approach and the spatial approach

(ZHANG et al., 2019).

The spectral approach to convolutions on graphs is based on spectral graph theory

and was first notably used in the work of Bruna et al. (2014). In this approach, the graph

Laplacian is used to compute the graph’s Fourier transform, upon which is defined its

convolutional operation. Many works have built upon this, including Graph Convolutional

Networks (GCNs), proposed by Kipf and Welling (2017), which are used in many graph-

based computer vision applications and will be discussed further in subsection 2.1.1.1.

In the spatial approach, the convolution is defined by directly gathering informa-

tion from each node’s local neighbors. Monti et al. (2017) proposed a general frame-

work for spatial convolutional GNNs. Graph Attention Networks (GAT), proposed by

Veličković et al. (2018), is an example of a widely used GNN with a spatial-based ap-

proach to graph convolution that adopts a self-attention mechanism. They will be dis-

cussed further in subsection 2.1.1.2.

However, as with CNNs, Convolutional GNN layers are rarely the sole component
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of a NN, in subsection 2.1.1.3 we discuss the architecture of GCN and GAT models.

2.1.1.1 Graph convolutional networks

GCNs were proposed by Kipf and Welling (2017) in the context of semi-supervised

node classification, but they have been used in a great variety of contexts and tasks, in-

cluding computer vision and image classification, often serving as the building block of

more complex network architectures.

As a spectral approach to graph convolution, the layer-wise propagation rule of a

GCN model f(X,A) (where X ∈ RN×C is the input, i.e: a C-dimensional feature vector

for each of the N nodes, and A is the input graph’s adjacency matrix) is defined as the

following:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(2.1)

Where:

• Ã = A + IN is the adjacency matrix (A) with added self-loops (with IN as the

identity matrix);

• D̃ii =
∑

j Ãij , the degree of each node;

• W (l) is a layer-specific trainable weight matrix;

• σ(·) is the activation function of the lth layer, such as ReLU;

• H(l) ∈ RN×D is the matrix of activations of the lth layer, with H(0) = X , the input.

As can be seen in Kipf’s and Welling’s work, the expression D̃−
1
2 ÃD̃−

1
2 is de-

rived from a series of simplifications of the definition of convolution on a graph as the

multiplication of a signal by a filter in the Fourier domain, using the eigendecomposition

of the graph Laplacian, as was initially used in the work of Bruna et al. (2014) and later

expanded by Defferrard, Bresson and Vandergheynst (2016). One of the most notable con-

sequences of the assumptions adopted is that the convolution is K-localized, with K = 1.

That means the convolution is applied only to a node’s immediate neighbors (including

the node itself). The authors posit that this has the effect of alleviating the problem of

overfitting and that the fixed computational budget allows for deeper networks, noting

that stacking GCN layers has the effect of extending the informational flow to a distance

equal to the number of layers stacked.
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2.1.1.2 Graph attention networks

GATs were proposed by Veličković et al. (2018). They adopt a spatial approach to

graph convolutions that is not based on the definition of graph convolution in the Fourier

domain but, rather, directly sample each node’s neighborhood (which includes the node

itself) and apply a self-attention mechanism to determine how much importance the node

should give to each neighbor’s features. The layer-wise propagation rule of a GAT model

f(h) (where h = { ~h1, ~h2, . . . ~hN}, hi ∈ RF are the feature vectors, each with F features,

of the N nodes in the input graph) is defined as the following:

~h′i = σ

(∑
j∈Ni

aijW~hj

)
(2.2)

Where:

• ~h′i ∈ RF ′ is the new set of node features produced at the output of the layer;

• σ(·) is the activation function of the layer, such as ReLU;

• Ni is the neighborhood of the node i;

• W ∈ RF ′×F is the layer-specific trainable weight matrix;

• aij is the attention mechanism that determines the attention coefficient of node i to

node j. It is a masked attention mechanism, meaning that it will only be computed

for the (in this case, immediate) neighbors of node i. In the work of Veličković et al.

(2018), the attention mechanism is itself a single-layer feedforward neural network,

whose output is normalized using the softmax function and parameterized by the

trainable weight vector ~a ∈ R2F ′:

aij =
exp
(

LeakyReLU
(
~aT [W~hi‖W~hj]

))
∑

k∈Ni
exp
(

LeakyReLU
(
~aT [W~hi‖W~hk]

)) (2.3)

That means that, for each GAT layer, at least two weight matrices will be trained:

the standard weight matrix initially applied to each node’s feature vector, W ∈ RF ′×F ,

and the attention mechanism’s weight vector ~a ∈ R2F ′ .

It is possible to consider more than one attention head per layer, each one with

its own attention mechanism executing the transformation in equation 2.2, so that each

head may learn different ways to emphasize the information of the neighboring nodes.

In that case, when using K independent attention mechanisms, and by considering ‖ as
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representing concatenation, equation 2.2 is rewritten as follows:

~h′i =

∥∥∥∥∥
K

k=1

σ

(∑
j∈Ni

akijW
k~hj

)
(2.4)

It is important to note that the storage requirement grows by a factor of K, when

we consider K independent attention heads.

2.1.1.3 GNN architecture

The output of the convolutional and attentional layers described in the previous

subsections are the node features of a graph with the same structure (i.e., the same num-

ber of nodes and the same adjacency matrix) as the input graph. In the case of graph-

classification tasks, such as image classification, graph processing layers are usually com-

bined with pooling and readout operations, which generate compact graph representations

from node information. Both operations have similar mechanisms (WU et al., 2021).

Graph pooling is used to reduce the size of the representation of the graph by

down-sampling its nodes, analog to the pooling operation in CNNs. It is usually formu-

lated as a clustering assignment problem, where the original graph’s nodes are divided

into groups based on their characteristics. Each cluster corresponds to a single node in

the resulting representation (CHEN et al., 2022).

The readout operation is used to generate a graph-level representation from node-

level representations. That is, the output of the operation is a single feature vector that

represents the whole graph, while its inputs are the features of each of the nodes. Popu-

lar readout functions include global-mean pooling, global-max pooling, and global-sum

pooling, where the outputs are, respectively, the feature-wise mean, maximum, and added

values across the nodes of a graph (WU et al., 2021). This operation is essential to graph-

classification tasks such as image classification. It is the mechanism that generates, from

the outputs of the last Convolutional GNN layer of the network, the graph representation

that is used as input for the multilayer perceptron (in most cases), that effectively classi-

fies the graph. A typical architecture for graph-classification tasks can be seen in figure

4.2.

Given a graph G, with N nodes, each described by the feature matrix xi, i ∈



21

[1..N ], the global-mean pooling operation is defined by:

r =
1

N

N∑
i=1

xi (2.5)

The global-max pooling is defined by:

r = maxN
i=1xi (2.6)

Figure 2.2: An example of Convolutional GNN architecture for graph-classification tasks,
such as image classification, adapted from (WU et al., 2021). In the example, both pool-
ing and readout operations are applied: pooling between convolutional (Gconv) layers
to generate hierarchical representations and readout after the last convolutional layers to
generate the graph-level representation.

Source: (WU et al., 2021).

2.1.2 Model evaluation

In this subsection, we discuss methods for evaluating an ML model’s performance

which are used in this work. This includes the evaluation metrics, explored in 2.1.2.1 and

the cross-validation method, in 2.1.2.2.

2.1.2.1 Performance metrics

In order to assess an ML model’s success, it is necessary to adopt a quantitative

measure of its performance. The choice of performance metric is important as it should re-

flect the desired characteristics of the model (GOODFELLOW; BENGIO; COURVILLE,

2016). In this work, we adopt two main performance metrics: F1-measure and accuracy.

Accuracy is a common performance metric. It is the proportion of predictions the

model makes correctly, as shown in equation 2.7. In the context of multi-label image
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classification, the prediction is the class to which the model attributes the maximum prob-

ability, given an input image. A prediction is correct if it matches the label annotated on

the image (GOODFELLOW; BENGIO; COURVILLE, 2016).

Accuracy =
Number of correct predictions
Total number of predictions

(2.7)

However, the accuracy measure can be inadequate when it is desirable to weigh

the importance of different kinds of mistakes. That is why precision and recall metrics

are often used. In the context of binary classification problems (where predictions are

either positive or negative), we define false positives as the positive predictions that were

incorrect and false negatives as the false predictions that were incorrect. Similarly, true

positives and true negatives are, respectively, the positive and the negative predictions

that were correct. These concepts can be visualized in a confusion matrix as shown in

figure 2.3. Thus, precision is the fraction of positive predictions that were correct (pe-

nalizing false positives), as shown in equation 2.8, while recall is the fraction of positive

examples that were correctly classified (penalizing false negatives), shown in equation 2.9

(GOODFELLOW; BENGIO; COURVILLE, 2016).

Figure 2.3: A confusion matrix, where the axes are the class predicted by the model and
the actual class. Here, the letters P and F represent, respectively, True and False, and the
letters P and N, Positive and Negative

Source: The Author

Precision =
TP

TP + FP
(2.8)

Recall =
TP

TP + FN
(2.9)

Precision and recall measures can be combined in the F1-measure that is also

adopted in this work, as shown in equation 2.10 bellow (GOODFELLOW; BENGIO;
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COURVILLE, 2016):

F1-measure =
2× Precision× Recall

Precision + Recall
(2.10)

In a multi-class classification setting, as is the case for this work, the F1-measure is

computed by somehow aggregating the F1-measure computed for each individual class.

In this work, we adopt the macro average of the F1-measure. Here, the final metric is

given by the unweighted average of the individual measures (VANI; RAO, 2019).

2.1.2.2 Cross-validation

When assessing the capacity of an ML model, it is desirable to compute the per-

formance measures (as described in the previous subsection) using data examples the

model has never seen before - a test set of data. This way we can evaluate how well the

model will perform in the real world. However, if the test set is not large enough, the

statistical uncertainty of the computed performance metrics may make it difficult to claim

that the result is truly representative of the model’s capacity (GOODFELLOW; BENGIO;

COURVILLE, 2016).

In this context, cross-validation methods aim to increase confidence in the evalua-

tion of a model by repeating the training and testing computations on different subsets of

the original dataset.

One of the most common cross-validation methods is the k-fold cross-validation.

In this approach, the dataset is divided into k non-overlapping subsets and the model is

trained and then tested across k trials. In the ith trial, the ith subset or fold of the dataset is

used as the test portion of the data, while the model is trained on the remaining i−1 folds.

The final result, then, is given by the average of the metrics computed in each of the trials.

Figure 2.4 illustrates this process. In the stratified variant of the k-fold cross-validation

process, each subset has the same class distribution as the original dataset.

2.2 Representing images as graphs

Molecules, social networks, citation networks, and physics systems are among

the many kinds of data that have an intrinsic graph structure, that is, the elements of

the problem (such as the atoms and the chemical bonds in the case of molecules) are

immediately mapped to the nodes and connections of the graph. The same is not true
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Figure 2.4: Ilustration of the k-folds cross-validation procedure, with K=5. In each itera-
tion, the model is trained with the train data and evaluated with the test data.

Source: The Author

for traditional image data, which is structured as a 2D regular grid of pixels, with no

relationships that can be readily interpreted as edges. Thus, in order to use images as

inputs for GNNs and therefore possibly take better advantage of the topological structure

and relationships in a scene, we must devise a mapping from image data to a graph that

represents its information.

This method can be generalized to three fundamental steps:

1. Node generation: partitioning the image into nodes with an image-segmentation

method;

2. Node characterization: generating the features that describe each node;

3. Edge building: connecting the graph’s nodes into neighborhoods.

Most of the works that apply GNNs for classifying traditional image data have,

as far as we are aware, followed the steps described above for transforming input images

into graphs. In the following subsections, we go into further detail about what each step

entails and describe some of the methods that are commonly used. Subsection 2.2.1 deals

with image segmentation methods for node generation; Subsection 2.2.2 discusses node

characterization; and Subsection 2.2.3 discusses edge-building methods.

2.2.1 Image segmentation

The simplest way to generate the nodes of a graph from an image is to consider

each pixel as a node. However, this generates large graphs, and thus most works in the

literature, to the best of our knowledge, initially apply an image segmentation technique
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to the input image and consider each of the resulting segments as a graph node instead.

One of the most popular techniques for this use is based on the notion of superpixel.

Superpixels group pixels that are visually similar, aiming to generate meaningful

segments (i.e., a grouping that perceptually "belongs together") while reducing the com-

putational requirements for the next steps of processing (STUTZ; HERMANS; LEIBE,

2018). They can be seen as a compromise between using each pixel individually (which

has no information loss but can be computationally prohibitive) and using the results of

object-oriented segmentation (the ideal scenario where each relevant object in a scene

is represented as one node, yielding thus the smallest graphs with little semantic infor-

mation loss, but which remains an open problem)(AVELAR et al., 2020). According to

Stutz, Hermans and Leibe (2018), the requirements expected of algorithms for generating

superpixels are:

• Partition: the superpixels define a partition of the image;

• Connection: superpixels represent a connected set of pixels (i.e., spatially adjacent);

• Boundary adherence: superpixels preserve image boundaries, with the definition of

boundary varying from application to application;

• Compactness, regularity, and smoothness: superpixels should be compact, regularly

spaced, and should have smooth boundaries when there are no structures in the

image to adhere to;

• Controllable number of superpixels;

• Efficiency.

There are many state-of-the-art algorithms for extracting superpixels from images,

such as SEEDS (BERGH et al., 2015), SNIC (ACHANTA; SüSSTRUNK, 2017), ETPS

(YAO et al., 2015), and SLIC (ACHANTA et al., 2012). The SLIC algorithm is often

recommended among those (STUTZ; HERMANS; LEIBE, 2018).

SLIC is an adaptation of k-means clustering approaches for the generation of su-

perpixels. It takes as a parameter for superpixel generation k, the approximate number of

superpixels to be generated. The number of iterations of the algorithm also has to be spec-

ified. The connectivity of the superpixels must be reinforced in post-processing: here it

is necessary to establish the minimum element size (which determines if two segments to

which the same label has been assigned will become their own separate entities or be ab-

sorbed by nearby superpixels). To further customize the behavior of SLIC, a compactness

parameter can be specified, for balancing the importance of the color distance compared
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to the spatial distance of the pixels in the computing of the adapted k-means. This param-

eter dictates whether the superpixels will be more compact (when more weight is given

to spatial distances) or more border-adherent (when the emphasis is on color distance)

(ACHANTA et al., 2012).

Figure 2.5: Images segmented by the SLIC algorithm into superpixels of approximately
64, 256, and 1024 pixels.

Source: (ACHANTA et al., 2012).

Several optimizations and variants of the original SLIC are available. We highlight

SLICO1, or zero-parameter SLIC, specified in the original SLIC paper (ACHANTA et al.,

2012). In this approach, the compactness factor is dynamically calculated, adapting to

different textures and color profiles of the images and, thus, often producing more stable

segmentation results with respect to the effective number of pixels compared to k and to

the shape of the segments. Notice that it has the advantage of eliminating the necessity

of tuning the compactness parameter. Figure 2.6 presents an image segmented with both

methods for comparison.

It is important to note that many implementations of the SLIC method and its

variants, including the one adopted in this work, only admit superpixels composed of

a minimum of 2 pixels, limiting thus the number of nodes that can be generated. The

connectivity enforcement post-processing step can also influence the final number of su-

perpixels. Consequently, it is important to observe that it is not guaranteed that the SLICO

method will produce exactly the desired number of superpixels.

1We adopted the OpenCV implementation of SLICO2
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Figure 2.6: Comparison of an image segmented with SLIC versus SLICO algorithms.

Adapted from (OpenCV. . . , ).

2.2.2 Node characterization

In order to be used as input for a GNN, each node generated from the results

of the segmentation process must have at least one descriptive feature. These features

should, ideally, summarize the meaningful information about the segments they represent

and, in most cases that is achieved by statistics about the color and position of the pixels

that compose the segment. Color information can be, for example, average color, stan-

dard deviation of color, and correlation matrices. Positional or spatial information can

include the segment’s geometric centroid (i.e., average position), standard deviation from

the centroid, quantity of pixels, and other shape descriptors.

2.2.3 Edge building

Graphs are composed of two elements: nodes and the edges that connect these

nodes. As is the case with the nodes, images have no intrinsic relationships that can be

readily interpreted as edges, such as, e.g., the bonds in molecular data. Hence, an edge-

building method must be devised when using image data with GNNs. Furthermore, this

step has a significant impact on the behavior of the model, as the information each node

considers in each convolutional step are the feature vectors of the nodes in its immediate

neighborhood in GCNs (KIPF; WELLING, 2017) as well as in GATs (VELIčKOVIć et

al., 2018), as discussed in section 2.1.1.

Most common in the literature, to the best of our knowledge, are edge-building
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methods based on K-Nearest Neighbors. In these approaches, each node will be con-

nected to the K nodes (not including itself) that have the least distance to itself. The

distance metric varies between works and segmentation methods. When using superpix-

els, in Monti et al. (2017) and many other studies that followed, consider solely the spatial

distance when computing the distance metric. However, it is also possible to use a com-

bination of spatial and color distances, to consider the entire feature space of the nodes,

or to consider any combination of features.

Another approach adopted in works such as that of Avelar et al. (2020) is region

adjacency graph (RAGs), where two nodes are connected when the corresponding seg-

ments are directly adjacent in the original image, that is, if they share a frontier. RAGs en-

code in their connections adjacency information that is not necessarily obtainable through

KNN-based methods.
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3 RELATED WORKS

In this Chapter, we discuss related works concerned with GNNs for superpixel

image classification. Section 3.1 gives an overview of works that use GNNs for superpixel

image classification, noting the design choices for the graphs. In section 3.2 we list works

that perform similar analysis to ours.

3.1 Image classification with GNNs

As far as we are aware, Monti et al. (2017) were the first to apply GNNs to image

classification tasks and their approach to constructing image-graphs inspired many works

that followed. They introduced the MoNet framework for generalizing CNN architectures

to graphs and manifolds. They also proposed a model that was applied to, among other

tasks, image classification, using both uniform grids and SLIC superpixels as segmenta-

tion methods applied to the MNIST dataset. In the superpixel approach the graphs were

fully connected, while in the grid approach, each node was connected to its immediate and

diagonal neighbors, with grids yielding better results. No references are made regarding

the method used for building node features.

More recently, Avelar et al. (2020) used Graph Attention Network (GAT) for su-

perpixel image classification. Their method consists of segmenting the input image into

superpixels using the SLIC method, extracting features (namely average color and cen-

troid, although other options are also suggested) from them, and building region adjacency

graphs. The resulting graph is then fed into the GAT. They concluded that GAT networks

are not able to achieve the same performance achieved by more sophisticated models.

They also point out the shortcomings of converting images to graphs due to its inherent

information loss and suggest that richer node features may result in better performance,

both aspects investigated in this work.

Long, Yan and Chen (2021) proposed the Hierarchical GNN (HGNN) with mul-

tiple GAT layers, aggregating each layer’s output. The method was applied to superpixel

image classification. The graph was built with SLIC superpixels as nodes, with average

color and centroid as features. The edges were built with a K-Nearest Neighbors ap-

proach, using as distance metric the average distance of each color channel and spatial

dimension. They experiment with different numbers of superpixels and posit that, gener-

ally, the more superpixels the better the performance of the models, but note that when
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the superpixels get too small the resulting graph contains more redundant information.

Linh and Youn (2021) proposed the Dynamic Superpixel Cloud GCN (DISCO-

GCN) model, using GCN layers with edges generated dynamically before each layer.

They use SLIC superpixel segmentation and build node features from the segments using

only color information, adopting a separate encoding procedure to incorporate the po-

sitional information. They suggest that the main venue for progress is diminishing the

information loss caused by the segmentation process via building richer feature vectors,

our work reveals that that is not always the case.

Very recently, Cosma et al. (2023) tackled the same task using Felzenszwalb su-

perpixels. They seek to compensate for the information loss of the segmentation by in-

corporating superpixel orientation and rotation, to favorable results. They also conclude

that adding color variance information is beneficial, while the addition of the number of

pixels is of little help: results confirmed in this work. They suggest that the dynamic

edges proposed by Linh and Youn (2021) have a negative impact on their model, finding

that it is beneficial to keep the static region adjancency graph.

3.2 Comparative studies of GNNs

Errica et al. (ERRICA et al., 2022) have compared different GNN architectures’

(including GCNs) performance in the task of graph classification, drawing attention to

the reproducibility problems present in the literature. They propose a rigorous method

for model evaluation and comparison – highlighting the importance of using the same

features and number of nodes – and a standardized and reproducible experimental setting.

They are also able to establish, using a structure-agnostic baseline model, that not always

are GNNs able to take advantage of the structural information in graphs.

Shchur et al. (SHCHUR et al., 2019) also point out limitations in the empirical

evaluation process of GNN models, focusing on node classification tasks. They discuss

the effects of train/test/validation dataset splits on performance, finding that with the same

hyperparameter selection and training procedures simple GCNs may be able to outper-

form more sophisticated models.

Xu et al. (XU et al., 2019) provide a theoretical analysis of the representative

power of different GNN models – in addition to proposing their own model, the Graph

Isomorphism Network (GIN) – and experimentally compare them using different graph

classification datasets, showing that, in most cases, more representative power implies
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greater accuracy.

As far as we know, the literature does not provide any systematic comparison

of how different ways of building graphs impact the performance achieved by GCNs or

GATs in image classification tasks.
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4 EXPERIMENTS

In this Chapter, we discuss the experiments performed in this work. Our objective

is to systematically analyze the impacts of different choices in the process of building

graphs from images on the performance of GCN and GAT models. We have conducted

three categories of experiments, one for each design dimension of the graph-building pro-

cess: (i) node generation, (ii) feature building, and (iii) edge building. Each was repeated

for multiple datasets and for both GCN and GAT architectures, which were trained with

the same training procedure.

In section 4.1, we list the datasets used in the experiments. Section 4.2 details the

architecture of both the GCN and GAT models, while section 4.4 describes the training

method to which they were submitted. In section 4.4, we describe the methodology of

each of the three experiments and present their results in section 4.5.

The source code developed for building graphs from images can be found in (BDI-

UFRGS, 2023) In the project is also included the source code for the models and the

scripts for the experiments described in this Chapter.

4.1 Datasets

Each experiment described in section 4.4 was carried out considering the follow-

ing datasets: MNIST (LECUN et al., 1998), FashionMNIST (XIAO; RASUL; VOLL-

GRAF, 2017), CIFAR-10 and CIFAR-100 (KRIZHEVSKY, 2009), and the labeled sub-

set of STL-10 (COATES; LEE; NG, 2011). These datasets were selected because they

have different properties (regarding the colors, number of classes, number of samples,

and image size) and they are common choices for benchmarking image classification ap-

proaches in the literature. All datasets are balanced (i.e., have the same number of images

in each class) and, in each dataset, all images have homogeneous sizes. Other character-

istics of the selected datasets are described in table 4.1 and a sample of images and their

corresponding classes that can be found in each dataset is shown in figure 4.1
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Figure 4.1: Samples of images and their classes of each dataset.

Source: The Author
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Table 4.1: Dataset characteristics
Dataset Images Classes Color Area (px)
MNIST 70000 10 Greyscale 28x28

FashionMNIST 70000 10 Greyscale 28x28
CIFAR10 60000 10 Color 32x32

CIFAR100 60000 100 Color 32x32
STL10 13000 10 Color 96x96

Source: The Author

4.2 GNN architectures

In this section, we describe the two GNN architectures used in the experiments

described in the following section. Subsection 4.2.1 concerns the GCN model and the

experimental process adopted to determine the model’s architecture, likewise, subsection

4.2.2 concerns the GAT model.

4.2.1 GCN model

The GCN model used in this work consists of a group of sequential GCN layers,

each followed by a ReLU activation layer. This sequence of layers is followed by a global-

mean-pooling and a global-max-pooling operation, both resulting in vectors r ∈ R|F |,

where |F | is the number of features that describe each node. The two vectors resulting

from these operations are concatenated and passed through a fully connected layer with

linear activation, and the output is given by the softmax module that follows. The model

is illustrated in figure 4.2.

The graph-generation module implements the three steps for translating images

into graphs described in section 2.2.

Figure 4.2: The GCN model.

Source: The Author

To determine the number of layers in the model, we evaluated the impact that dif-
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ferent quantities have on the model’s performance with a fixed graph-generation method.

For each dataset, we considered models with 1, 2, 3, 4, and 5 GCN layers. We used region

adjacency graphs (where nodes are connected considering all the adjacent neighbors of

each superpixel in the original image) with approximately 75 nodes and average color,

standard deviation of color, geometric centroid, and standard deviation from centroid as

features.

Figure 4.3: Test, validation, and train F1-measure with macro average per number of
GCN layers.

Source: The Author

As can be seen in figure 4.3, except for MNIST – the simplest dataset in the selec-

tion – raising the number of layers to four has, at best, no effect on the performance when

compared with the three-layered model and, at worst, it decreases the performance (as

is the case of CIFAR-10). We attribute this behavior to the well-known over-smoothing

problem that is observed when stacking multiple GCN layers (LI; HAN; WU, 2018), with

the node features becoming indistinguishable from each other. The decrease in perfor-

mance could also be explained by over-fitting. However, this hypothesis can be discarded

by observing the similarity of the train and test curves in figure 4.3 – as the over-fitting of

a model is characterized by the decrease in performance on the test set while the training

results continue to improve. However, in most datasets, raising the number of layers from

two to three results in performance gains. Based on these results, we used three sequential

GCN layers in the following experiments.
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4.2.2 GAT model

Similarly to the GCN model described in the previous subsection, our GAT model

is composed of a number of stacked multi-headed GAT layers, each followed by a ReLU

activation layer. The convolutional layers are followed by global-max- and -mean-pooling

operations and the two resulting vectors are concatenated and used as input by a fully-

connected layer with linear activation followed by a softmax module that yields the final

output. The model is pictured in figure 4.4.

Figure 4.4: The GAT model.

Source: The Author

As in the previous section, we experimentally determined the best number of

stacked GAT layers for a fixed graph generation method (which yielded region adjacency

graphs of approximately 75 nodes, each characterized by the average and standard devi-

ation of color, geometric centroid, and standard deviation from the centroid of the super-

pixel). We considered possible quantities of 1, 2, 3, 4, and 5 stacked layers. As GATs also

have a multi-headed attention mechanism, to determine the number of layers we initially

fixed the number of attention heads to 2, following the work of Avelar et al. (2020).

Considering the results shown in the graph in figure 4.5, and abiding by the same

criteria as for determining the number of stacked GCN layers, we adopted two GAT layers

in the following experiments, as raising the number of layers from one to two results in

better performances across all datasets, while increasing the number of layers up to three

either does not significantly improve performance or decreases it.

To determine the number of attention heads for the two convolutional layers, we

used the same graph generation method and trained models with the following number of

heads (the same for each of the layers): 1, 2, 4, 8, and 16. The exponential growth of the

values was inspired by the great range of architectures found in the literature.

The results shown in the graph in figure 4.6 show an increase in performance

across all datasets when increasing the number of attention heads up to four. When raising
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Figure 4.5: Test, validation, and train F1-measure with macro average per number of GAT
layers.

Source: The Author

Figure 4.6: Test, validation, and train F1-measure with macro average per number of
attention heads in each GAT layer.

Source: The Author
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Figure 4.7: From left to right, the size in MB of the model’s parameters and the average
time per training epoch with regards to the number of attention heads.

Source: The Author

the quantity to eight, for most datasets, there is still a slight improvement, however, the

decrease in performance in MNIST is so significant that we selected four as the number

of attention heads in the remainder of the experiments in this work.

Supporting this decision, as shown in figure 4.7, training time and memory re-

quirements grow exponentially as a function of the number of attention heads in the

model. Thus, the slight gains obtained by doubling the number of heads from four to

eight (in figure 4.6), result in a much greater increase in the consumption of computational

resources. We note that all datasets with 10 classes (MINIST, FashionMNIST, CIFAR-

10, and STL-10) have a similar amount of parameters and thus are superposed under the

STL-10 line in the graph that shows the memory requirements, while CIFAR-100, with

100 unique labels, requires a bigger output layer.

4.3 Training and evaluation methods

For the training procedure of the models presented in the previous section, we

used the Adam optimizer (KINGMA; BA, 2014), with a learning rate of 0.001, no weight

decay, and parameters β1 and β2 set to, respectively, 0.9 and 0.999, with cross-entropy loss

as the loss function. Each model was trained for a fixed 100 training epochs, saving and

reporting the model with the highest validation F1-measure during the training process.

This best-performing model is used for evaluation on the test set. Accuracy and macro

f1-measure where chosen as performance metrics.

We adopted a stratified 5-fold cross-validation procedure. In each iteration, one of
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the folds was used as test data while, of the union of the remaining folds, 10% was used as

validation data and 90% as training data (that is, 20% test, 72% train, and 8% validation),

maintaining class proportions in each fold. Every result reported henceforth is the mean

result of the 5 folds.

4.4 Methodology

In this section, we detail the methodology of the experiments to assess the behav-

ior of GCNs and GATs with regard to the three design dimensions of transforming images

into graphs: (I) degree of segmentation, or the number of nodes in the graph, in subsection

4.4.1; (II) the choice of node features 4.4.2; (III) the edge-building method, in subsection

4.4.3.

4.4.1 Evaluating the number of nodes

Commonly, when transforming images into graphs, the first step is to determine

the mapping of the image’s pixels to the graph’s nodes by over-segmenting the image

with an algorithm such as superpixels, so that every segment becomes a node. Thus,

determining the number of nodes in the graph corresponds to determining the degree of

segmentation of the image, that is, in superpixel-based approaches (adopted in this work),

the number of nodes corresponds to the number of generated superpixels. In this particular

work, this is done by choosing a value for the parameter N : the approximate number of

generated superpixels in the SLICO algorithm.

In order to understand how the performance of our GCN and GAT models varies

according to the number of superpixels, we trained and tested the models with the graphs

generated for each of the following values for N : 10, 20, 50, 100, 200, and 400. This

process was repeated for each considered dataset. Figure 4.8 shows examples of graphs

generated using each of the N values. We highlight that the results for the MNIST dataset

when N = 100, 200, and 400 are identical, as each superpixel has a minimum number of

pixels, as further discussed in 2.2.1.

In this experiment, each node is described with the following features: average

color (RGB or greyscale), standard deviation of color, geometric centroid, and standard

deviation from centroid. These features were chosen because they are readily available



40

from the superpixels and are commonly used and suggested in the literature, eg.: in the

works of Avelar et al. (2020) and Cosma et al. (2023). Furthermore, the graph is a region

adjacency graph.

Figure 4.8: Examples of input image and corresponding generated RAG for, from top to
bottom, MNIST and STL-10 datasets. The graphs were built using SLICO with N set to,
from left to right, 10, 20, 50, 100, 200, and 400.

Source: The Author

4.4.2 Evaluating node features

In this experiment, we evaluated how node characterization impacts the perfor-

mances of GCN and GAT models. To do that, we considered the following possible

features, all extracted from spatial and color (RGB or greyscale, depending on the par-

ticular dataset’s characteristics) information of the pixels that compose each superpixel

extracted from the original image by the SLICO method:

• Geometric centroid: average 2D pixel position in the original image;

• Standard deviation of pixel positions from the centroid;

• Number of pixels: total number of pixels, or pixel density, in the superpixel;

• Average RGB color: average R, G, and B values in colorful datasets or average

greyscale value in greyscale datasets;

• Standard deviation from average color: standard deviation of R, G, and B mean

values in color datasets or of greyscale mean value in greyscale datasets;

• Average HSV color: only used in color datasets (i.e. CIFAR-10, CIFAR-100, and

STL-10), average values in HSV color space;

• Standard deviation from average HSV color: only used in colorful datasets, the

standard deviation of values in HSV color space.
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Our method consisted of selecting an initial baseline feature vector containing

only one feature and then progressively expanding the baseline by adding new features,

analyzing how each increment impacted the model’s performance. We selected as the

baseline feature the average color (RGB in colorful datasets, greyscale otherwise), which

is the feature most commonly used in the literature, to the best of our knowledge. That is

a one-dimensional feature vector in greyscale datasets and a three-dimensional vector in

colorful datasets. The order in which the remaining features were added was, from first

to last: geometric centroid, standard deviation of color, standard deviation of centroid,

and number of pixels. For colorful datasets were also added, in that order: average HSV

color, and standard deviation of HSV color. We adopted this approach in order to avoid

the combinational explosion of experiments that would happen had we taken into consid-

eration every possible feature combination. The order in which the features were added

was determined by the frequency with which the feature appeared in our review of the

literature.

In this experiment, we used the SLICO algorithm for segmentation, with parame-

ter n, the desired number of superpixels, fixed at 75. For defining the edges of the resulting

graph, we adopted region adjacency graphs.

4.4.3 Evaluating edge-building methods

In this experiment, we analyze different approaches for building the graph’s edges

and their impact on the model’s performance. The three different methods – the most

common in the literature, to the best of our knowledge – chosen for this experiment were,

as further explained in subsection 2.2.3:

• Region adjacency graphs (RAG);

• K-Nearest Neighbors with spatial distance (KNN-Spatial);

• K-Nearest Neighbors with combined spatial and color distances (KNN-Combined).

We did not perform experiments with KNN graphs that use solely the color dis-

tance. This is because this method was not encountered in the literature and, as will be

further exposed in the following sections, the spatial information is vital to the classifica-

tion task.

In region adjacency graphs, there is an edge between two nodes if the superpixels

they represent are directly adjacent. That is, there is at least one pair of pixels i and j,
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with coordinates (xi, yi) and (xj, yj), each one belonging to one of the superpixels, that

satisfy the following condition:

|xi − xj|+ |yi − yj| = 1 (4.1)

Both KNN-Spatial and KNN-Combined methods assign edges between each node

and its k nearest neighbors, not including the node itself. The difference between the two

lies in the distance function: KNN-Spatial uses the spatial distance, i.e. the distance be-

tween two superpixels’ geometric centroids, while KNN-Combined combines the spatial

distance and the distance between average color values.

For two superpixels si and sj , with geometric centroids (xi, yi) and (xj, yj), and

average color values (ri, gi, bi) and (rj, gj, bj) for RGB color datasets and li and lj for

greyscale datasets, the spatial distance between si and sj is given by:

dspatial(si, sj) =
√

(xi − xj)2 + (yi − yj)2 (4.2)

The combined color and spatial distance is defined as, for color datasets:

dcombined(si, sj) =
√
d′spatial(si, sj) + d′color(si, sj) (4.3)

Where d′spatial(si, sj) and d′color(si, sj) are:

d′spatial(si, sj) =
(xi − xj)2 + (yi − yj)2

2
(4.4)

d′color(si, sj) =
(ri − rj)2 + (gi − gj)2 + (bi − bj)2

3
(4.5)

As for greyscale datasets, the combined color and spatial distance is given by:

dcombined(si, sj) =
√
d′spatial(si, sj) + d′grey(si, sj) (4.6)

With d′grey(si, sj) defined as:

d′grey = (li − lj)2 (4.7)

In this experiment, we adopted the following values for the parameter k – that

determines the node degree – in the KNN-Spatial and KNN-Combined methods: 1, 2, 4,

8, and 16. It is important to note that self-loops are always added in the training process
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and that the node itself is not considered when computing its distances from the nodes in

the graph. Figure 4.9 shows examples of graphs produced with the different methods and

parameter valuations, omitting said self-loops.

We used as node features average color, centroid, standard deviation of color, and

standard deviation of centroid. The segmentation method used was SLICO with a fixed

desired number of nodes of 75.

Figure 4.9: Examples of selected graphs produced in the experiment from the same origi-
nal images shown in figure 4.8 for MNIST and STL-10 datasets, each with approximately
75 nodes.

Source: The Author

4.5 Results

In this section, we present the results obtained from the experiments described in

section 4.4. In subsection 4.5.1 we discuss the impacts of the variation of the number of

nodes in the graphs, for both GCN and GAT models. Likewise, subsection 4.5.2 delves

into the evaluation of the choices of node features and subsection 4.5.3 of the choice of

edge-building method. We aggregate the best choice for each of the experiments, train

GCN and GAT models on graphs built with these characteristics, and present the results

in subsection 4.5.4. Finally, in subsection 4.5.5 we compare GCN and GAT models and

the CNN-based AlexNet.

4.5.1 Number of nodes

In this experiment, we analyze the effects of the variation of the number of nodes

in the graph or, equivalently, of the degree of segmentation of the original image on the
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model’s performance. The results are shown in the graphs in figures 4.10 for the GCN

model and 4.11 for the GAT model. The charts show how the final train, test, and valida-

tion F1-measure change as the number of nodes increases. They show both the average

number of nodes for the graphs in the datasets and the value of the N parameter of the

SLIC algorithm (that is associated with the approximate number of superpixels) with

which the graphs were generated.

We highlight that the actual number of superpixels generated by the SLIC algo-

rithm may differ from the algorithm’s initial parameter. This happens significantly with

the STL-10 dataset: whenN is set to 400 the algorithm produces an average of 563 super-

pixels per graph. We believe that this is due to the connectivity-enforcement step of the

post-processing of the SLIC algorithm. SLIC does not guarantee that the pixels with the

same superpixel label will be connected (i.e., neighbors). In the connectivity-enforcement

step, groups of pixels that are assigned to the same superpixel but are not connected are

either absorbed by neighboring superpixels or become two separate segments depending

on the clusters’ sizes. In the second case, the number of superpixels in the image can

become greater than the initially specified parameter.

Figure 4.10: The GCN model’s test, validation, and train F1-measure with macro average
for each dataset w.r.t., from left to right, the average number of nodes and the value of the
approximate number of superpixels SLIC parameter (N ).

Source: The Author

We observe that the performance does increase for our GCN and GAT models as

the number of nodes increases. This can be explained by the fact that the information

loss intrinsic to the segmentation is lessened when the segments are small and are thus

capable of representing finer detail of the original image. However, the increase in perfor-

mance tends to follow a logarithmic curve: increasing less as the number of superpixels

approaches the total number of pixels in the image.
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Figure 4.11: The GAT model’s test, validation, and train F1-measure with macro average
for each dataset w.r.t., from left to right, the average number of nodes and the value of the
approximate number of superpixels SLIC parameter (N ).

Source: The Author

This can be explained by the same premise that justifies superpixels: that small

groups of nearby pixels tend to be redundant and thus little information is lost by repre-

senting them as a single segment. Which segments can be used in the following processing

steps (i.e., training the model) with small performance loss and reduced requirements of

computational power.

Meanwhile, the number of edges and size of the feature vectors generated for each

graph grow linearly with respect to the total number of nodes: affecting thus the memory

requirements for the dataset and the training time of the model. This behavior emphasizes

a trade-off that must be observed between achievable performance (the predictive capacity

of the model) and computational requirements.

4.5.2 Node features

In this experiment, we analyze the impact of different choices of features that

describe the nodes of the image graph. Figures 4.12 and 4.13 show the evolution of the

macro F1-measure of the test set over the 100 training epochs for, respectively, the GCN

and the GAT model. The figures also list in full the sets of features used in each iteration.

Figures 4.14 and 4.15 contain the bar plots showing the final F1-measure achieved with

each feature added to the cumulative baseline for, respectively, the GCN and the GAT

model.

Our results show that, for both models, the most significant performance gain is
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Figure 4.12: GCN model’s test F1-measure along the 100 training epochs for each dataset
and feature-set.

Source: The Author

Figure 4.13: GAT model’s test F1-measure along the 100 training epochs for each dataset
and feature-set.

Source: The Author
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Figure 4.14: Final test F1-measure achieved by our GCN model with each cumulative set
of features and dataset.

Source: The Author

Figure 4.15: Final test F1-measure achieved by our GAT model with each cumulative set
of features and dataset.

Source: The Author
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obtained when adding the spatial information from the centroid to the baseline RGB/greyscale

color information, with the notable exception of the GAT model trained with the STL-10

dataset. STL-10 is the dataset that has the least amount of data and the biggest images in

our selection (see table 4.1), and we can see in figure 4.13 that it had the most unstable

results during training.

Moreover, a consistent improvement is seen when adding the standard deviation

of the RGB/greyscale color, especially with RGB datasets. The inclusion of the stan-

dard deviation from the centroid has also resulted in performance improvements for most

datasets.

For the GCN model we conclude that, in general, considering the features analysed

in this work, a richer choice of features relating to spatial and color information yields

better results. The use of the number of pixels in the superpixel and of features in different

color spaces is beneficial in most cases.

In contrast, for the GAT model, the use of the number of pixel information has

made performance worse in every case (we note that this means that the feature is there-

fore not included in the following feature sets, e.g.: the next feature set is composed of

average and standard deviation of color and position and of the average color in the HSV

space, as can be seen in figure 4.13). The use of average color and standard deviation of

color in the HSV space had varying effects: with the CIFAR-10 and CIFAR-100 datasets,

the F1-measure decreased in comparison to the previous baseline (which included the

standard deviation from the centroid but not the number of pixels), meanwhile, the F1-

measure obtained with the STL-10 dataset increased. Therefore we cannot conclude that,

as for the GCN, richer feature sets are always better – except for the average and standard

deviation of RGB/greyscale color and centroid. Instead, we observe that features affect

differently each dataset and must be chosen carefully to achieve optimal results.

4.5.3 Edge-building methods

In this Section, we analyse the effect of different edge-building methods on the

GCN and GAT models’ performances. Figures 4.16 and 4.17 present the test F1-measure

achieved for each method and each value of k (the number of neighbors) for, respectively,

the GCN and GAT models.

RAG can have a variable number of neighbors. Therefore, to aid in the compar-

ison between the different graph types, table 4.2 presents the average node degree with
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Figure 4.16: GCN model’s final test F1-measure with each edge-building method, with a
varying k.

Source: The Author

standard deviation for the RAGs generated for each dataset. In general, the average degree

is close to 5 in all datasets.

Table 4.2: The average node degree and standard deviation of node degree of RAGs for
each dataset.

Dataset Avg. node degree Std. dev.
MNIST 5.0 ±0.079

Fashion-MNIST 5.0 ±0.087
CIFAR-10 5.3 ±0.016

CIFAR-100 5.3 ±0.02
STL-10 5.1 ±0.062

In the GCN model, the best performance is achieved with KNNCombined graphs,

with small neighborhoods (i.e., values of K), with the performance decreasing steadily

as K increases. And exception to this pattern is MNIST – the simplest dataset in our

selection – where RAGs, followed by KNNSpatial graphs, resulted in the best perfor-

mances. This suggests that the GCN layers are most helpful when the information flows

only through uniform regions (as can be seen in figure 4.9, small neighborhoods with

combined distance result in graphs where only close, similar regions are connected).

We note that GCN layers – which can be described as a special form of Laplacian

smoothing – are well known to face over-smoothing of the input features (LI; HAN; WU,

2018). Keeping neighborhoods restricted to similar regions avoids the issue of having

different areas of the image-graph converge to indistinguishable representations. How-
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ever, with this graph configuration, the GCN layers cannot leverage adjacency informa-

tion (present in RAGs) or the context in which the region is inserted.

Figure 4.17: GAT model’s final test F1-measure with each edge-building method, with a
varying k.

Source: The Author

The GAT model presents a different behavior. The best performance is achieved

with RAGs with all datasets except for FashionMNIST, where the model performed bet-

ter with KNNSpatial graphs with four neighbors, by a small margin. The KNNCombined

method, which was the best choice for the GCN model, has yielded the poorest perfor-

mance for the GAT model. This can be explained by the fact that the attention mechanism

in GAT layers allows the model to attribute varying importance to a node’s neighbors

(e.g.: only pay attention to nodes with similar color and ignore contrasting regions or

vice-versa). In this manner, it is more suited to leverage adjacency and context informa-

tion that is most present in RAGs and is diminished in graphs built with the KNNCom-

bined method.

To support this claim, we have repeated the experiment for a GAT model defined

exactly as described in subsection 4.2.2 but with only one attention head. Henceforth,

we call this model the GAT-1 model. The results obtained – expressed in the graph in

figure 4.18 – show a behavior that is more aligned with the GCN model’s. The model

trained with RAGs achieved the best performance only with the MNIST dataset, and the

performances obtained with KNNSpatial and KNNCombined graphs are similar in most

cases.
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Figure 4.18: GAT-1 model’s final test F1-measure with each edge-building method, with
a varying k.

Source: The Author

Figure 4.19: GCN, GAT-4 and GAT-1 model’s final test F1-measure with each edge-
building method, with a varying k.

Source: The Author
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In figure 4.19 we show simultaneously the results achieved with the GCN model,

the original four-headed GAT model (referred to as GAT-4), and the GAT-1 model. We

note that the four-headed GAT model achieves generally better performances, while the

GCN and one-headed GAT models tend to be similar.

4.5.4 Combinating best choices

In this section, we select the best-performing choices for building graphs in each of

the experiments described in section 4.4 and train GCN and GAT models on graphs built

with these characteristics. We consider the best choice for each of the design dimensions

the one that yielded the maximum validation F1-measure. These choices are detailed for

each model and each dataset in table 4.3. Here, we use the following abbreviations for

selected feature sets:

• F1 = {avg. color, std. dev. of color, centroid, std. dev. from centroid}

• F2 = F1 ∪ {avg. HSV color}

• F3 = F2 ∪ {std. dev. of HSV color}

Table 4.3: The best-performing choice of number of nodes, feature-set, and graph type
for each model and dataset.

M Dataset n Features Graph type

G
C

N

MNIST 50 F1 RAG
Fashion-MNIST 200 F1 1NNCombined

CIFAR-10 400 F3 1NNCombined
CIFAR-100 200 F3 1NNCombined

STL-10 400 F3 2NNCombined

G
A

T

MNIST 50 F1 RAG
Fashion-MNIST 50 F1 RAG

CIFAR-10 400 F1 RAG
CIFAR-100 200 F1 RAG

STL-10 400 F2 RAG

Figure 4.20 shows the final test F1-measure for the best choice in each experiment

discussed above and for the model trained with the graphs built with the best configuration

for each dimension. In every case, this combination of best choices has resulted in models

that either outperform the rest (e.g.: STL10 with the GCN model) or produce results

within the variation range of the best-performing configuration.
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Figure 4.20: Test F1-measure for the best-performing choice for building graphs in each
experiment and for the combination of these choices for the GCN and the GAT model.

Source: The Author
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4.5.5 Architecture comparisons

GNNs are a relatively new approach to computer vision tasks – the first use for

image classification, as far as we are aware, was in the work of Monti et al. (2017). In this

section, we seek to compare the GCN and GAT models’ performances and explore how

they stand against two established convolutional neural network models for image classi-

fication: AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) and EfficientNet-B0

(TAN; LE, 2019). AlexNet was chosen for its historical relevance and for the fact that

it is not as sophisticated as more recent models, offering a fairer comparison with the

simple GNN models presented. EfficientNet-B0 is more recent and uses relatively few

parameters, while also able to achieve similar or even superior performances as larger

models.

To do so, we trained both models from scratch on each of the datasets listed in

section 4.1. We used the same training method described in section 4.3, except with early

stopping, halting the training process after five epochs without a minimum improvement

of 0.001 in the validation F1-measure. This procedure was adopted because the training

time per epoch is substantially greater for the CNN models than for the GNN models, as

can be inferred from figure 4.22, which presents the average training time per epoch for

each model. AlexNet was trained with a 1e − 5 learning rate and EfficientNet-B0 with a

1e− 3 learning rate. As a pre-processing step, the images were resized to 224x224 pixels

and each color channel was normalized with the average and the standard deviation of

color of the training images. For each dataset, we compare the resulting models with the

GCN and GAT models trained with the graphs built with the best choice for each design

dimension, as described in subsection 4.5.4 above.

Figure 4.21 contains the final test F1-measure obtained by each model. The CNN

models perform better in every case, although the GAT model has reached nearly the

same performance as AlexNet on the CIFAR-100 dataset. However – as can be seen in

figures 4.22 and 4.23 that show, respectively, the average training time of the five folds and

the total size occupied by the parameters for each model – the computational resources

required by AlexNet and EfficientNet are far greater than those necessary for training the

GNN models, especially memory-wise. The training per epoch of the AlexNet model is,

on average, 6.64 times slower than that of the GCN model and 4.84 times slower than that

of the GAT model. EfficientNet is, respectively, 18.81 and 13.76 times slower than the

GCN and the GAT model. Meanwhile, AlexNet requires an average of 5431 times more
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Figure 4.21: Test F1-measure for the best-choices GCN and GAT models and for the
AlexNet and EfficientNet models.

Source: The Author

Figure 4.22: Average training time per epoch in seconds for the best-choices GCN and
GAT models and for the AlexNet and EfficientNet models.

Source: The Author
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Figure 4.23: Size in MB occupied by the parameters of the best-choices GCN and GAT
models and by the AlexNet and EfficientNet models.

Source: The Author

memory in trainable parameters than the GCN model and 765 times more than the GAT

model while EfficientNet requires, respectively, 474 and 67 times more.

In every case, the GAT architecture has outperformed the GCN in F1-measure by

a margin of approximately 2-6%, with comparatively little increase in memory and time

resources when considering the requirements for the CNN models.
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5 CONCLUSION

In this work, we have systematically analyzed the performance of simple GCN and

GAT architectures for image classification as impacted by the method for building graphs

from superpixel images. We evaluated three design dimensions of the graph-building

process: the number of nodes (or the degree of segmentation of the original image), node

feature selection, and the approaches for building edges.

We have found that, for the selected datasets, using finer-grained segmentation –

that is, using more nodes to represent an image –, has a positive impact on the model’s

performance. This is expected, since, as the number of nodes increases, more details of the

original image are represented. However, the gain in performance follows a logarithmic

curve: it decreases as the number of nodes approaches the total number of pixels in the

image and the graph begins to include more redundant information. Thus, it is important

to consider this trade-off when using such approaches, since the memory requirements

for storing graph information grow linearly with the number of nodes.

The inclusion of more descriptive features along with the standard average color

information tends to have a positive effect on the performances of the models, compen-

sating for the loss of information in the segmentation process. This is especially true for

spatial information (i.e., each superpixel’s geometric centroid) and standard deviations of

color and position. However, some features can be detrimental to the performance. This

is the case of the inclusion of the pixel density when training the GAT models. The addi-

tion of color information in different color spaces (such as HSV) can also be marginally

beneficial (as is the case with the GCN models), but not always (as with the GAT models).

By comparing approaches for building edges we have found the most significant

difference in behavior between GCNs and GATs. For the architecture based on GCNs, the

best results were achieved when neighborhoods were restricted to similar regions. That

is: small neighborhoods and connections that consider color distance along with spatial

distance. The performance degrades as the node degrees increase, possibly because wide

neighborhoods aggravate the over-smoothing issue that is present in GCN architectures.

GAT architectures, when using more than one attention head, benefit from the ex-

tra information provided by region adjacency graphs and perform better with those in ev-

ery case. They can leverage information from contrasting regions, differently from GCN

architectures. However, we note that when using only one attention head the performance

decreases and the behavior becomes closer to the GCN models’.
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In general, we have observed that our GAT model performs better than the GCN

in every case, with a small increase in necessary time and memory resources, which are

still expressively lower than those consumed by the CNN models. However, the perfor-

mance achieved with the GNNs in no moment surpassed that which was achieved with

the CNN models selected (namely AlexNet and EfficientNet-B0). Still, it is important to

notice that in CIFAR-100 dataset the GAT and the AlexNet models achieved very similar

performances. Furthermore, we note that the training time and, especially, the memory

requirements are drastically reduced with the GNN models and that these are extremely

simple in comparison to the CNN models. In this way, the results described do not indi-

cate in any way that GNNs are intrinsically inferior to CNNs, especially considering that

the use of graph-based networks for vision tasks is a relatively recent approach and the

research in this field is active and rapidly evolving.

This work can be a reference for indicating more promising approaches for the

representation of images as graphs in different tasks. It also can be the base for inspiring

the development of mechanisms that explore the results we have reported for enhancing

the capabilities of GNN architectures for image classification.

Grounds for future work include analyzing the effects of different node features

such as shape descriptors, exploring the impact of the level of irregularity of the image

segments (as parameterized by the smoothness factor in the base SLIC algorithm), and

considering other methods of superpixel generation and image over-segmentation. Fur-

ther examination of the correlation of the different design dimensions for graph-building

(i.e., number of nodes in the graph, node features, and edge-building method) is also an

interesting pursuit.
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VELIčKOVIć, P. et al. Graph attention networks. In: International Conference
on Learning Representations. [s.n.], 2018. Available from Internet: <https:
//openreview.net/forum?id=rJXMpikCZ>.

WU, L. et al. Graph neural networks for natural language processing: A survey.
Foundations and Trends® in Machine Learning, Now Publishers, Inc., v. 16, n. 2, p.
119–328, 2023.

WU, Z. et al. A comprehensive survey on graph neural networks. IEEE transactions on
neural networks and learning systems, IEEE, v. 32, n. 1, p. 4–24, 2020.

WU, Z. et al. A comprehensive survey on graph neural networks. IEEE Transactions on
Neural Networks and Learning Systems, v. 32, n. 1, p. 4–24, 2021.

XIAO, H.; RASUL, K.; VOLLGRAF, R. Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. arXiv, 2017. Available from Internet:
<http://arxiv.org/abs/1708.07747>.

XU, K. et al. How Powerful are Graph Neural Networks? arXiv, 2019.
ArXiv:1810.00826 [cs, stat]. Available from Internet: <http://arxiv.org/abs/1810.00826>.

YAO, J. et al. Real-time coarse-to-fine topologically preserving segmentation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). [S.l.: s.n.], 2015.

ZHANG, S. et al. Graph convolutional networks: a comprehensive review.
Computational Social Networks, SpringerOpen, v. 6, n. 1, p. 1–23, 2019.

ZHANG, W. et al. Component segmentation of engineering drawings using graph
convolutional networks. Computers in Industry, Elsevier, v. 147, p. 103885, 2023.

ZHANG, X.-M. et al. Graph neural networks and their current applications in
bioinformatics. Frontiers in genetics, Frontiers Media SA, v. 12, p. 690049, 2021.

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1810.00826


63

APPENDIX A — EXPANDED RESULTS

This appendix contains the final test F1-measure, accuracy, and loss results with

standard deviation for each of the experiments described in Chapter 4.

A.1 Number of nodes

Tables A.1 through A.15 show the final test F1-measure, accuracy, and loss re-

sults for the GCN and GAT models described in 4.2 for the number of nodes experiment

described in 4.4.1.

A.2 Node features

Tables A.16 through A.30 show the final test F1-measure, accuracy, and loss re-

sults for the GCN and GAT models described in 4.2 for the node features experiment

described in 4.4.2.

A.3 Edge-building method

Tables A.31 through A.45 show the final test F1-measure, accuracy, and loss re-

sults for the GCN and GAT models described in 4.2 for the edge-building methods exper-

iment described in 4.4.3.

Table A.1: Final F1-measure obtained with the number of nodes experiments for the GCN
and GAT models for the MNIST dataset

N Navg

GCN GAT
F1-measure F1-measure

Test Val. Train Test Val. Train
10 9±0 66.8±0.9 67.0±1.5 68.0±1.2 83.9±0.3 83.7±0.8 88.3±0.2
20 23±0 81.9±0.5 82.1±0.9 82.6±0.6 92.5±0.4 92.3±0.4 95.6±0.6
50 81±1 90.8±0.4 90.6±0.5 91.3±0.5 96.9±0.3 96.9±0.2 98.5±0.2

100 147±7 89.9±0.7 90.0±0.1 90.5±0.4 96.1±0.1 96.1±0.2 97.9±0.1
200 147±7 - - - - - -
400 147±7 - - - - - -
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Table A.2: Final F1-measure obtained with the number of nodes experiments for the GCN
and GAT models for the FashionMNIST dataset

N Navg

GCN GAT
F1-measure F1-measure

Test Val. Train Test Val. Train
10 9±0 69.2±0.6 69.4±0.3 70.3±0.4 77.5±0.2 77.4±0.3 81.1±0.5
20 23±1 77.0±0.4 76.9±0.8 78.1±0.4 83.2±0.4 82.8±0.2 87.0±0.9
50 78±2 81.9±0.3 81.4±0.3 82.6±0.2 86.0±0.3 86.1±0.5 89.8±0.9

100 137±8 82.9±0.4 82.9±0.7 84.0±0.3 86.1±0.2 86.0±0.6 89.5±0.5
200 137±8 - - - - - -
400 137±8 - - - - - -

Table A.3: Final F1-measure obtained with the number of nodes experiments for the GCN
and GAT models for the CIFAR-10 dataset

N Navg

GCN GAT
F1-measure F1-measure

Test Val. Train Test Val. Train
10 9±0 38.4±0.6 38.6±0.6 39.9±0.4 48.6±0.6 48.2±0.3 55.6±1.4
20 23±0 45.4±0.6 45.2±0.4 46.8±0.5 54.5±0.7 54.7±1.4 62.4±1.9
50 60±0 51.6±0.7 50.8±0.7 53.3±0.6 59.1±0.7 59.6±1.0 67.0±1.3

100 116±1 55.2±1.0 54.9±1.0 57.4±0.6 62.3±0.8 62.5±1.5 70.1±2.0
200 235±5 57.2±0.5 56.6±0.8 59.7±0.5 63.7±0.7 63.9±1.2 72.2±1.0
400 235±5 - - - - - -

Table A.4: Final F1-measure obtained with the number of nodes experiments for the GCN
and GAT models for the CIFAR-100 dataset

N Navg

GCN GAT
F1-measure F1-measure

Test Val. Train Test Val. Train
10 9±0 12.6±0.5 12.8±0.5 14.2±0.8 20.1±1.0 19.9±0.4 26.3±1.8
20 23±0 14.9±7.4 15.0±7.5 16.9±8.4 25.4±0.3 25.1±0.4 34.5±0.9
50 60±0 23.8±0.6 23.5±0.9 26.6±0.8 29.5±0.9 29.6±1.0 39.7±1.7

100 116±1 26.2±1.1 26.2±1.0 29.5±1.6 32.8±1.4 32.8±0.5 43.3±1.9
200 235±7 29.2±0.8 28.9±0.8 32.7±1.0 33.4±0.2 33.3±0.8 44.0±1.8
400 235±7 - - - - - -

Table A.5: Final F1-measure obtained with the number of nodes experiments for the GCN
and GAT models for the STL-10 dataset

N Navg

GCN GAT
F1-measure F1-measure

Test Val. Train Test Val. Train
10 9±0 35.5±0.7 35.7±0.8 37.3±0.4 41.6±0.8 41.3±1.6 49.2±1.0
20 23±1 39.6±1.1 39.5±0.9 41.2±0.7 44.4±0.7 44.4±1.1 52.5±2.7
50 49±0 42.8±1.7 43.1±1.9 45.4±1.1 47.4±1.0 48.1±0.6 59.2±2.2

100 116±1 45.1±1.1 44.6±1.8 48.2±0.5 51.0±1.2 51.6±0.7 62.3±3.0
200 248±1 46.9±1.5 46.1±1.8 50.4±0.8 51.7±1.6 51.5±2.0 61.8±2.4
400 563±2 48.7±1.7 48.7±1.0 52.7±0.4 53.7±1.3 53.5±1.0 65.6±1.1
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Table A.6: Final Accuracy obtained with the number of nodes experiments for the GCN
and GAT models for the MNIST dataset

N Navg

GCN GAT
Accuracy Accuracy

Test Val. Train Test Val. Train
10 9±0 67.3±0.8 67.7±1.5 68.5±1.2 84.1±0.3 84.0±0.8 88.5±0.2
20 23±0 82.3±0.5 82.4±0.9 82.9±0.6 92.6±0.4 92.4±0.4 95.6±0.6
50 81±1 90.9±0.4 90.7±0.5 91.4±0.5 96.9±0.3 96.9±0.2 98.5±0.2

100 147±7 90.0±0.6 90.1±0.1 90.6±0.4 96.1±0.1 96.2±0.2 97.9±0.1
200 147±7 - - -
400 147±7 - - -

Table A.7: Final Accuracy obtained with the number of nodes experiments for the GCN
and GAT models for the FashionMNIST dataset

N Navg

GCN GAT
Accuracy Accuracy

Test Val. Train Test Val. Train
10 9±0 69.5±0.5 69.7±0.1 70.7±0.2 77.8±0.2 77.7±0.3 81.4±0.5
20 23±1 77.3±0.4 77.2±0.9 78.3±0.4 83.3±0.4 82.9±0.2 87.1±0.9
50 78±2 82.0±0.3 81.6±0.3 82.7±0.2 86.1±0.2 86.2±0.5 89.9±0.8

100 137±8 83.0±0.4 83.0±0.6 84.1±0.3 86.2±0.2 86.2±0.5 89.6±0.5
200 137±8 - - -
400 137±8 - - -

Table A.8: Final Accuracy obtained with the number of nodes experiments for the GCN
and GAT models for the CIFAR10 dataset

N Navg

GCN GAT
Accuracy Accuracy

Test Val. Train Test Val. Train
10 9±0 39.2±0.8 39.4±0.3 40.6±0.4 48.9±0.7 48.5±0.4 55.9±1.4
20 23±0 45.9±0.5 45.7±0.4 47.3±0.3 54.8±0.7 55.0±1.3 62.6±1.8
50 60±0 52.1±0.7 51.4±0.8 53.8±0.6 59.3±0.7 59.7±0.9 67.1±1.3

100 116±1 55.4±0.9 55.1±1.0 57.7±0.5 62.5±0.8 62.7±1.4 70.3±1.9
200 235±5 57.5±0.5 57.0±0.8 60.0±0.5 63.9±0.7 64.2±1.1 72.4±1.0
400 235±5 - - -

Table A.9: Final Accuracy obtained with the number of nodes experiments for the GCN
and GAT models for the CIFAR100 dataset

N Navg

GCN GAT
Accuracy Accuracy

Test Val. Train Test Val. Train
10 9±0 14.6±0.6 14.9±0.6 16.3±0.8 21.4±0.8 21.3±0.3 27.6±1.7
20 23±0 16.4±7.7 16.5±7.8 18.4±8.7 26.3±0.2 26.1±0.5 35.3±0.9
50 60±0 25.4±0.8 25.2±1.1 28.1±1.0 30.3±1.0 30.4±0.9 40.4±1.7

100 116±1 27.6±1.3 27.6±1.2 30.8±1.8 33.4±1.3 33.6±0.3 43.8±1.9
200 235±7 30.3±0.7 30.3±0.8 33.9±0.9 34.3±0.3 34.3±0.7 44.8±1.6
400 235±7 - - -
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Table A.10: Final Accuracy obtained with the number of nodes experiments for the GCN
and GAT models for the STL10 dataset

N Navg

GCN GAT
Accuracy Accuracy

Test Val. Train Test Val. Train
10 9±0 36.6±0.6 36.6±1.1 38.2±0.2 42.1±0.6 41.9±1.5 49.6±0.8
20 23±1 40.5±0.6 40.4±0.7 42.1±0.5 45.0±0.6 45.2±1.0 53.0±2.7
50 49±0 43.5±1.2 43.9±1.3 46.1±0.8 47.5±1.0 48.1±1.0 59.3±2.3

100 116±1 46.1±1.1 45.6±1.9 49.1±0.4 51.0±1.1 51.7±0.6 62.4±2.8
200 248±1 47.9±1.6 47.1±2.0 51.3±0.7 51.9±1.4 51.8±2.0 61.9±2.3
400 563±2 49.0±1.7 49.1±0.8 53.1±0.4 54.1±1.3 53.9±0.8 65.8±1.0

Table A.11: Final Loss obtained with the number of nodes experiments for the GCN and
GAT models for the MNIST dataset

N Navg

GCN GAT
Loss Loss

Test Val. Train Test Val. Train
10 9±0 1.00±0.02 1.00±0.05 0.96±0.03 0.51±0.01 0.51±0.02 0.35±0.01
20 23±0 0.55±0.01 0.54±0.03 0.53±0.02 0.24±0.01 0.24±0.01 0.13±0.02
50 81±1 0.29±0.02 0.29±0.02 0.27±0.02 0.10±0.01 0.11±0.01 0.05±0.01

100 147±7 0.32±0.01 0.32±0.00 0.29±0.01 0.13±0.01 0.13±0.01 0.06±0.00
200 147±7 - - -
400 147±7 - - -

Table A.12: Final Loss obtained with the number of nodes experiments for the GCN and
GAT models for the FashionMNIST dataset

N Navg

GCN GAT
Loss Loss

Test Val. Train Test Val. Train
10 9±0 0.82±0.01 0.82±0.01 0.79±0.01 0.59±0.01 0.59±0.00 0.49±0.01
20 23±1 0.60±0.01 0.61±0.01 0.57±0.01 0.46±0.01 0.46±0.01 0.35±0.03
50 78±2 0.49±0.01 0.49±0.01 0.46±0.01 0.38±0.01 0.38±0.01 0.27±0.02

100 137±8 0.46±0.01 0.45±0.01 0.43±0.01 0.38±0.00 0.38±0.01 0.28±0.01
200 137±8 - - -
400 137±8 - - -

Table A.13: Final Loss obtained with the number of nodes experiments for the GCN and
GAT models for the CIFAR10 dataset

N Navg

GCN GAT
Loss Loss

Test Val. Train Test Val. Train
10 9±0 1.68±0.01 1.68±0.01 1.65±0.01 1.47±0.01 1.47±0.01 1.25±0.04
20 23±0 1.53±0.01 1.53±0.01 1.48±0.01 1.29±0.01 1.29±0.02 1.06±0.05
50 60±0 1.35±0.02 1.36±0.02 1.29±0.01 1.16±0.01 1.16±0.02 0.94±0.04

100 116±1 1.26±0.02 1.27±0.01 1.19±0.01 1.08±0.01 1.08±0.03 0.85±0.06
200 235±5 1.20±0.01 1.20±0.01 1.12±0.01 1.04±0.02 1.04±0.02 0.79±0.03
400 235±5 - - -
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Table A.14: Final Loss obtained with the number of nodes experiments for the GCN and
GAT models for the CIFAR100 dataset

N Navg

GCN GAT
Loss Loss

Test Val. Train Test Val. Train
10 9±0 3.68±0.03 3.67±0.02 3.52±0.05 3.36±0.02 3.34±0.01 2.93±0.09
20 23±0 3.60±0.50 3.60±0.50 3.47±0.57 3.13±0.02 3.12±0.02 2.56±0.04
50 60±0 3.07±0.04 3.07±0.05 2.91±0.05 2.90±0.05 2.89±0.06 2.32±0.08

100 116±1 2.95±0.07 2.94±0.06 2.78±0.09 2.74±0.05 2.74±0.03 2.16±0.08
200 235±7 2.82±0.03 2.81±0.03 2.62±0.04 2.71±0.02 2.68±0.03 2.11±0.07
400 235±7 - - -

Table A.15: Final Loss obtained with the number of nodes experiments for the GCN and
GAT models for the STL10 dataset

N Navg

GCN GAT
Loss Loss

Test Val. Train Test Val. Train
10 9±0 1.66±0.01 1.64±0.02 1.62±0.00 1.57±0.02 1.56±0.02 1.35±0.03
20 23±1 1.59±0.03 1.57±0.02 1.54±0.01 1.49±0.02 1.47±0.02 1.28±0.06
50 49±0 1.53±0.04 1.52±0.02 1.46±0.02 1.44±0.02 1.41±0.02 1.12±0.06

100 116±1 1.48±0.03 1.47±0.03 1.40±0.01 1.36±0.04 1.33±0.02 1.04±0.08
200 248±1 1.44±0.03 1.43±0.03 1.35±0.01 1.32±0.03 1.30±0.04 1.06±0.06
400 563±2 1.39±0.03 1.39±0.02 1.29±0.01 1.29±0.02 1.25±0.03 0.95±0.03

Table A.16: Final F1-measure obtained with the node features experiments for the GCN
and GAT models for the MNIST dataset

Feature
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

Avg. color 59.5±1.5 59.4±1.3 59.8±1.6 71.0±1.5 70.8±1.1 71.8±1.3
Centroid 89.1±0.4 89.2±0.5 89.6±0.6 96.6±0.2 96.5±0.3 98.1±0.1
Std. dev. color 90.2±0.3 90.1±0.5 90.6±0.5 96.5±0.4 96.6±0.3 98.1±0.5
Std. dev. centroid 91.2±0.3 91.3±0.4 91.7±0.3 96.8±0.3 96.8±0.1 98.4±0.2
Num. of pixels 90.9±0.6 91.0±0.3 91.6±0.3 96.7±0.1 96.7±0.2 98.3±0.2

Table A.17: Final F1-measure obtained with the node features experiments for the GCN
and GAT models for the FashionMNIST dataset

Feature
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

Avg. color 61.2±1.4 61.6±1.3 61.6±1.0 71.3±0.6 70.9±0.6 72.2±0.6
Centroid 78.6±0.6 78.5±0.6 79.4±0.4 84.9±0.3 84.6±0.2 88.0±0.5
Std. dev. color 80.6±0.3 80.3±0.5 81.4±0.4 85.9±0.2 85.8±0.3 89.4±0.8
Std. dev. centroid 81.4±0.4 81.4±0.4 82.3±0.4 86.3±0.2 86.0±0.4 89.6±0.4
Num. of pixels 81.8±0.4 81.6±0.4 82.7±0.2 85.8±0.2 85.6±0.3 89.3±0.7



68

Table A.18: Final F1-measure obtained with the node features experiments for the GCN
and GAT models for the CIFAR10 dataset

Feature
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

Avg. color 40.7±0.8 40.2±0.6 42.1±0.5 51.5±0.4 51.6±0.4 56.8±0.2
Centroid 49.5±0.5 48.9±0.5 51.1±0.6 59.1±0.6 59.3±0.3 66.7±1.0
Std. dev. color 54.5±0.3 54.3±0.6 56.6±0.3 62.1±0.6 62.5±0.8 70.0±0.8
Std. dev. centroid 54.6±0.6 54.0±0.7 57.0±0.5 62.4±0.5 62.6±1.1 70.4±0.8
Num. of pixels 55.2±0.4 55.0±0.8 57.4±0.4 62.2±0.4 62.0±1.0 70.4±1.7
Avg. HSV 55.0±0.6 54.9±0.6 57.8±0.6 62.1±0.8 61.8±0.7 70.7±1.4
Std. dev. HSV 54.9±0.5 55.1±0.4 57.5±0.6 62.0±0.3 61.7±0.7 69.6±1.3

Table A.19: Final F1-measure obtained with the node features experiments for the GCN
and GAT models for the CIFAR100 dataset

Feature
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

Avg. color 15.1±0.5 15.2±0.5 17.4±0.4 24.7±0.4 25.0±0.1 32.7±0.6
Centroid 20.6±0.6 20.8±0.8 22.5±1.1 27.1±0.1 27.3±0.6 35.6±1.1
Std. dev. color 26.3±0.8 26.3±0.2 29.5±0.9 32.6±0.3 32.3±1.0 43.2±1.6
Std. dev. centroid 26.4±1.3 25.8±0.8 29.4±1.5 32.8±0.6 33.1±0.6 42.9±0.5
Num. of pixels 26.4±1.3 25.7±1.0 29.3±1.7 31.9±0.6 31.6±1.1 41.5±1.7
Avg. HSV 26.8±1.0 26.7±1.2 30.7±1.6 31.7±0.8 31.8±0.5 42.4±1.4
Std. dev. HSV 27.2±1.1 27.1±1.0 30.9±1.6 32.4±0.4 32.5±0.7 43.9±1.5

Table A.20: Final F1-measure obtained with the node features experiments for the GCN
and GAT models for the STL10 dataset

Feature
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

Avg. color 34.6±0.5 34.9±1.3 36.5±0.6 45.0±0.9 45.6±1.4 51.0±0.5
Centroid 37.4±0.3 37.8±1.8 39.1±1.0 43.8±1.2 44.0±1.2 52.1±2.6
Std. dev. color 42.9±1.6 42.7±1.8 45.1±0.7 48.3±0.8 49.0±2.3 59.1±1.9
Std. dev. centroid 43.5±0.8 43.2±0.9 46.1±0.7 48.9±1.3 49.0±0.6 59.3±2.9
Num. of pixels 44.0±1.0 43.6±1.4 47.4±0.5 45.9±0.6 45.5±1.8 54.9±1.3
Avg. HSV 46.5±0.3 47.1±0.8 50.1±0.9 49.7±0.8 51.3±1.6 60.7±3.8
Std. dev. HSV 46.4±0.8 46.2±1.5 50.4±1.3 49.7±1.8 50.4±1.5 60.2±4.6

Table A.21: Final Accuracy obtained with the node features experiments for the GCN and
GAT models for the MNIST dataset

Feature
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

Avg. color 60.8±1.4 60.8±1.2 61.1±1.4 71.7±1.4 71.5±1.0 72.5±1.2
Centroid 89.2±0.4 89.3±0.5 89.7±0.6 96.6±0.2 96.5±0.3 98.1±0.1
Std. dev. color 90.3±0.3 90.2±0.5 90.7±0.5 96.5±0.4 96.6±0.3 98.1±0.5
Std. dev. centroid 91.2±0.3 91.4±0.4 91.8±0.2 96.8±0.3 96.8±0.1 98.4±0.2
Num. of pixels 91.0±0.6 91.1±0.3 91.6±0.3 96.8±0.1 96.7±0.2 98.3±0.2
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Table A.22: Final Accuracy obtained with the node features experiments for the GCN and
GAT models for the FashionMNIST dataset

Feature
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

Avg. color 61.4±1.0 61.8±1.1 61.8±0.7 71.6±0.7 71.2±0.6 72.5±0.7
Centroid 78.9±0.5 78.8±0.6 79.7±0.4 85.0±0.3 84.8±0.2 88.0±0.4
Std. dev. color 80.9±0.3 80.7±0.4 81.7±0.3 86.0±0.1 85.9±0.3 89.5±0.7
Std. dev. centroid 81.7±0.4 81.8±0.4 82.7±0.3 86.4±0.2 86.1±0.4 89.7±0.4
Num. of pixels 81.9±0.4 81.7±0.4 82.9±0.3 86.0±0.2 85.7±0.2 89.3±0.7

Table A.23: Final Accuracy obtained with the node features experiments for the GCN and
GAT models for the CIFAR10 dataset

Feature
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

Avg. color 41.2±0.9 40.8±0.8 42.6±0.5 51.6±0.4 51.7±0.5 57.0±0.2
Centroid 50.0±0.6 49.4±0.4 51.6±0.6 59.2±0.6 59.6±0.2 66.8±0.9
Std. dev. color 54.9±0.2 54.7±0.6 57.0±0.3 62.2±0.7 62.6±1.0 70.0±0.8
Std. dev. centroid 55.0±0.6 54.5±0.6 57.4±0.5 62.5±0.4 62.7±1.1 70.6±0.8
Num. of pixels 55.6±0.3 55.5±0.6 57.8±0.3 62.4±0.4 62.2±1.0 70.5±1.6
Avg. HSV 55.4±0.4 55.2±0.4 58.2±0.6 62.3±0.7 62.0±0.8 70.8±1.3
Std. dev. HSV 55.4±0.5 55.6±0.2 58.0±0.5 62.1±0.3 62.0±0.7 69.8±1.2

Table A.24: Final Accuracy obtained with the node features experiments for the GCN and
GAT models for the CIFAR100 dataset

Feature
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

Avg. color 16.9±0.4 17.0±0.5 19.1±0.3 26.0±0.5 26.3±0.2 34.0±0.7
Centroid 22.1±0.5 22.5±1.0 24.1±1.0 28.3±0.2 28.5±0.6 36.7±1.1
Std. dev. color 27.7±0.6 27.6±0.4 30.9±0.8 33.4±0.6 33.1±1.2 43.9±1.5
Std. dev. centroid 27.7±1.1 27.1±0.5 30.7±1.4 33.7±0.7 34.1±0.5 43.7±0.6
Num. of pixels 27.7±1.1 27.3±0.8 30.7±1.6 32.8±0.3 32.6±1.0 42.3±1.6
Avg. HSV 28.1±0.9 28.0±1.1 31.9±1.4 32.7±0.8 32.9±0.4 43.3±1.3
Std. dev. HSV 28.2±1.2 28.4±1.0 32.0±1.6 33.2±0.5 33.3±0.7 44.5±1.5

Table A.25: Final Accuracy obtained with the node features experiments for the GCN and
GAT models for the STL10 dataset

Feature
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

Avg. color 35.6±0.3 36.0±1.2 37.6±0.8 45.2±0.8 45.9±1.3 51.1±0.5
Centroid 38.6±0.5 38.9±1.7 40.2±0.8 44.7±1.4 44.7±1.0 52.8±2.8
Std. dev. color 43.5±2.0 43.3±1.7 45.7±0.7 48.9±0.6 49.7±2.2 59.6±1.9
Std. dev. centroid 44.4±0.6 44.4±0.9 46.9±0.5 49.3±1.2 49.4±0.7 59.6±2.8
Num. of pixels 44.7±1.0 44.3±1.5 47.9±0.7 46.7±0.6 46.4±1.7 55.6±1.3
Avg. HSV 46.8±0.5 47.4±0.7 50.4±0.6 50.3±0.7 51.8±1.8 61.0±3.6
Std. dev. HSV 47.1±0.7 46.9±1.4 51.1±0.9 50.4±1.6 50.9±1.4 60.7±4.3
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Table A.26: Final Loss obtained with the node features experiments for the GCN and
GAT models for the MNIST dataset

Feature
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
Avg. color 1.19±0.03 1.20±0.03 1.18±0.03 0.87±0.04 0.88±0.03 0.85±0.04
Centroid 0.34±0.01 0.34±0.01 0.33±0.02 0.11±0.00 0.11±0.01 0.06±0.01
Std. dev. color 0.31±0.01 0.32±0.02 0.29±0.01 0.12±0.01 0.11±0.01 0.06±0.01
Std. dev. centroid 0.28±0.01 0.28±0.01 0.26±0.01 0.11±0.01 0.11±0.00 0.05±0.01
Num. of pixels 0.29±0.02 0.28±0.01 0.26±0.01 0.11±0.01 0.11±0.01 0.05±0.01

Table A.27: Final Loss obtained with the node features experiments for the GCN and
GAT models for the FashionMNIST dataset

Feature
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
Avg. color 1.01±0.02 1.00±0.03 1.00±0.02 0.80±0.02 0.80±0.02 0.77±0.02
Centroid 0.56±0.01 0.56±0.01 0.54±0.01 0.41±0.00 0.42±0.01 0.32±0.01
Std. dev. color 0.51±0.01 0.51±0.01 0.48±0.01 0.39±0.01 0.39±0.01 0.29±0.02
Std. dev. centroid 0.49±0.01 0.49±0.01 0.46±0.01 0.38±0.01 0.38±0.01 0.28±0.01
Num. of pixels 0.49±0.01 0.49±0.01 0.46±0.01 0.39±0.01 0.39±0.01 0.29±0.02

Table A.28: Final Loss obtained with the node features experiments for the GCN and
GAT models for the CIFAR10 dataset

Feature
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
Avg. color 1.67±0.02 1.67±0.02 1.63±0.01 1.38±0.01 1.38±0.01 1.23±0.01
Centroid 1.41±0.01 1.42±0.01 1.36±0.02 1.17±0.01 1.18±0.01 0.94±0.03
Std. dev. color 1.28±0.01 1.29±0.01 1.21±0.01 1.08±0.01 1.08±0.02 0.85±0.03
Std. dev. centroid 1.27±0.02 1.27±0.01 1.20±0.01 1.08±0.01 1.09±0.03 0.84±0.02
Num. of pixels 1.26±0.01 1.26±0.01 1.19±0.01 1.09±0.00 1.09±0.01 0.84±0.05
Avg. HSV 1.25±0.01 1.27±0.01 1.18±0.01 1.09±0.02 1.10±0.01 0.83±0.04
Std. dev. HSV 1.25±0.01 1.26±0.01 1.18±0.01 1.10±0.01 1.10±0.02 0.86±0.03

Table A.29: Final Loss obtained with the node features experiments for the GCN and
GAT models for the CIFAR100 dataset

Feature
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
Avg. color 3.53±0.01 3.52±0.01 3.37±0.02 3.09±0.02 3.08±0.03 2.63±0.03
Centroid 3.23±0.03 3.23±0.02 3.11±0.04 2.99±0.04 2.98±0.03 2.48±0.05
Std. dev. color 2.96±0.02 2.94±0.02 2.77±0.04 2.76±0.03 2.74±0.04 2.16±0.08
Std. dev. centroid 2.95±0.05 2.95±0.03 2.78±0.07 2.72±0.02 2.72±0.02 2.17±0.03
Num. of pixels 2.95±0.06 2.94±0.05 2.77±0.08 2.77±0.02 2.76±0.03 2.23±0.07
Avg. HSV 2.92±0.03 2.90±0.04 2.71±0.06 2.77±0.03 2.75±0.02 2.18±0.06
Std. dev. HSV 2.91±0.04 2.90±0.05 2.70±0.08 2.74±0.01 2.72±0.02 2.13±0.07
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Table A.30: Final Loss obtained with the node features experiments for the GCN and
GAT models for the STL10 dataset

Feature
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
Avg. color 1.77±0.02 1.75±0.02 1.72±0.02 1.48±0.02 1.45±0.03 1.34±0.02
Centroid 1.68±0.01 1.66±0.04 1.64±0.02 1.50±0.03 1.48±0.02 1.28±0.07
Std. dev. color 1.54±0.03 1.53±0.03 1.49±0.02 1.39±0.02 1.38±0.03 1.12±0.05
Std. dev. centroid 1.51±0.01 1.49±0.02 1.43±0.01 1.39±0.03 1.37±0.02 1.11±0.07
Num. of pixels 1.51±0.03 1.50±0.03 1.42±0.02 1.46±0.03 1.45±0.03 1.20±0.03
Avg. HSV 1.46±0.01 1.43±0.03 1.35±0.02 1.38±0.04 1.33±0.03 1.07±0.09
Std. dev. HSV 1.44±0.02 1.42±0.03 1.33±0.02 1.36±0.03 1.34±0.03 1.09±0.11

Table A.31: Final F1-measure obtained with the edge-building methods experiments for
the GCN and GAT models for the MNIST dataset

Method
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

RAG 90.6±0.6 90.8±0.5 91.3±0.5 92.8±0.6 92.8±0.6 93.3±0.5
1NNSpatial 88.0±0.7 87.6±0.9 89.0±0.8 91.6±1.3 91.7±1.2 92.3±1.1
2NNSpatial 87.2±0.9 87.2±1.1 88.3±1.1 92.2±0.8 92.2±0.9 92.9±0.9
4NNSpatial 89.8±0.3 90.0±0.6 90.5±0.3 92.3±0.6 92.4±0.4 93.0±0.7
8NNSpatial 88.8±0.7 88.7±1.1 89.3±0.9 91.6±1.0 91.7±0.9 92.3±0.8
16NNSpatial 81.5±0.8 81.3±1.1 81.9±0.9 87.5±6.5 87.4±6.3 88.0±6.3
1NNCombined 88.1±0.7 88.1±0.8 89.0±1.0 87.1±1.2 87.0±1.1 87.6±1.0
2NNCombined 88.0±1.0 87.8±0.9 88.8±0.9 86.8±0.9 87.0±0.8 87.2±0.6
4NNCombined 86.7±0.6 86.6±0.8 87.3±0.6 84.1±0.5 84.4±0.8 84.8±0.5
8NNCombined 84.7±0.5 84.4±1.0 85.1±0.8 82.1±1.5 82.1±1.4 82.5±1.4
16NNCombined 79.2±0.7 79.1±1.0 79.6±0.6 80.2±2.5 80.3±2.4 80.6±2.2

Table A.32: Final F1-measure obtained with the edge-building methods experiments for
the GCN and GAT models for the FashionMNIST dataset

Method
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

RAG 81.5±0.5 81.4±0.5 82.5±0.2 82.2±0.4 82.2±0.7 83.2±0.3
1NNSpatial 81.7±0.2 81.4±0.2 83.3±0.3 82.0±0.4 81.8±0.4 83.1±0.4
2NNSpatial 81.4±0.3 81.3±0.2 82.7±0.3 82.2±0.2 81.8±0.7 83.2±0.5
4NNSpatial 81.5±0.4 81.5±0.4 82.5±0.1 82.4±0.7 82.4±0.6 83.3±0.6
8NNSpatial 79.5±0.5 79.4±0.7 80.2±0.3 81.7±0.7 81.7±0.7 82.6±0.8
16NNSpatial 75.7±0.6 76.0±0.6 76.3±0.4 79.5±1.0 79.5±0.6 80.2±0.9
1NNCombined 83.7±0.5 83.5±0.7 85.1±0.3 82.8±0.3 82.3±0.2 83.5±0.3
2NNCombined 83.4±0.3 83.4±0.2 84.6±0.2 82.5±0.3 82.2±0.6 83.4±0.4
4NNCombined 82.8±0.1 82.7±0.5 83.8±0.2 81.7±0.4 81.4±0.6 82.5±0.3
8NNCombined 81.4±0.3 81.2±0.5 82.3±0.2 80.9±0.3 80.8±0.5 81.7±0.2
16NNCombined 78.7±0.4 78.5±0.9 79.5±0.4 79.2±0.8 79.3±1.0 79.9±1.0
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Table A.33: Final F1-measure obtained with the edge-building methods experiments for
the GCN and GAT models for the CIFAR10 dataset

Method
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

RAG 54.7±0.5 54.2±0.5 57.1±0.5 54.9±0.5 54.6±0.8 56.5±0.6
1NNSpatial 56.4±0.8 56.3±0.8 59.4±1.0 54.9±0.4 54.6±0.4 56.7±0.7
2NNSpatial 56.9±0.5 56.8±0.4 59.5±0.6 54.6±0.4 54.6±1.0 56.5±0.6
4NNSpatial 54.7±0.8 54.5±0.8 56.7±0.9 54.1±0.6 54.0±0.9 55.7±0.7
8NNSpatial 52.9±0.6 52.5±0.5 54.7±0.6 53.3±0.7 53.3±1.1 54.9±0.9
16NNSpatial 48.5±0.5 48.2±0.8 49.7±0.5 52.1±0.9 51.9±0.5 53.6±0.6
1NNCombined 57.2±0.8 57.3±0.5 60.3±0.7 54.9±0.5 55.0±0.8 56.8±0.5
2NNCombined 56.9±0.4 56.8±0.7 59.9±0.3 54.6±0.6 54.8±0.5 56.4±0.8
4NNCombined 56.4±0.4 56.2±0.8 58.9±0.4 54.4±0.8 54.7±0.7 56.2±0.6
8NNCombined 54.6±0.9 54.0±0.7 56.6±0.7 53.7±0.7 53.7±0.7 55.3±0.7
16NNCombined 51.4±0.5 51.4±0.7 53.2±0.5 52.3±0.5 52.2±0.6 53.7±0.4

Table A.34: Final F1-measure obtained with the edge-building methods experiments for
the GCN and GAT models for the CIFAR100 dataset

Method
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

RAG 26.7±0.8 26.4±0.6 29.7±1.1 28.4±0.6 28.4±0.4 32.0±0.5
1NNSpatial 28.6±0.8 28.2±1.1 32.2±1.4 29.1±0.5 28.9±0.4 33.1±0.5
2NNSpatial 27.7±1.2 27.6±0.8 31.0±1.3 29.2±0.4 28.9±0.8 32.8±0.7
4NNSpatial 26.7±1.1 26.6±0.7 29.8±1.5 28.4±0.7 27.8±0.6 31.8±0.8
8NNSpatial 24.6±0.9 24.4±0.7 27.0±1.2 27.3±1.1 27.1±1.0 31.0±0.9
16NNSpatial 17.2±8.6 16.7±8.3 18.8±9.4 25.5±1.0 25.3±1.1 28.8±1.1
1NNCombined 29.1±1.4 29.1±0.8 33.4±1.5 28.7±0.5 28.4±0.7 32.8±0.7
2NNCombined 29.0±1.0 28.8±1.2 33.0±1.6 29.1±0.4 29.0±0.7 33.1±0.5
4NNCombined 28.1±1.1 28.0±0.9 31.8±1.4 28.8±0.2 28.8±0.9 32.7±0.5
8NNCombined 26.7±1.0 26.3±1.0 30.2±1.4 27.9±0.4 27.7±0.4 31.7±0.2
16NNCombined 23.6±1.0 23.4±0.9 26.4±1.4 26.1±0.6 25.9±0.5 29.4±0.7

Table A.35: Final F1-measure obtained with the edge-building methods experiments for
the GCN and GAT models for the STL10 dataset

Method
GCN GAT

F1-measure F1-measure
Test Val. Train Test Val. Train

RAG 44.4±1.5 44.2±1.2 47.4±0.6 44.2±1.1 44.4±1.6 46.9±1.3
1NNSpatial 45.1±1.4 45.5±1.2 49.4±1.2 43.8±1.9 44.2±1.1 46.9±1.5
2NNSpatial 44.9±1.4 45.1±1.2 48.7±1.2 44.4±0.2 44.5±1.0 47.3±0.5
4NNSpatial 43.2±1.7 43.3±1.7 46.0±1.2 44.5±0.4 44.5±0.7 47.3±1.0
8NNSpatial 41.2±1.6 41.1±1.5 43.3±1.2 42.4±0.9 43.8±1.1 45.2±0.9
16NNSpatial 36.7±2.1 37.2±2.2 38.5±1.6 40.1±1.1 40.5±1.7 42.2±1.5
1NNCombined 46.2±1.5 46.5±1.4 51.6±1.1 43.8±1.0 44.8±1.6 47.7±0.7
2NNCombined 46.8±1.5 47.0±1.4 52.4±1.2 43.4±0.6 44.5±1.6 47.0±0.8
4NNCombined 45.7±1.7 46.1±1.4 50.1±1.0 43.3±0.5 43.5±2.0 46.7±1.0
8NNCombined 44.2±1.7 44.3±1.2 48.0±0.8 42.6±0.4 42.6±0.6 45.6±1.0
16NNCombined 40.0±2.7 39.6±1.8 42.4±1.6 40.1±0.8 40.4±1.2 42.4±1.5
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Table A.36: Final Accuracy obtained with the edge-building methods experiments for the
GCN and GAT models for the MNIST dataset

Method
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

RAG 90.7±0.6 90.9±0.5 91.4±0.5 92.8±0.6 92.8±0.6 93.3±0.5
1NNSpatial 88.1±0.7 87.8±0.9 89.2±0.8 91.7±1.2 91.7±1.1 92.4±1.1
2NNSpatial 87.4±0.9 87.4±1.1 88.5±1.1 92.3±0.8 92.3±0.9 93.0±0.9
4NNSpatial 89.9±0.3 90.1±0.5 90.7±0.3 92.4±0.6 92.5±0.4 93.1±0.6
8NNSpatial 89.0±0.6 88.8±1.1 89.5±0.8 91.7±1.0 91.8±0.9 92.3±0.8
16NNSpatial 81.8±0.8 81.6±1.1 82.2±0.9 87.6±6.3 87.5±6.1 88.2±6.2
1NNCombined 88.2±0.7 88.3±0.8 89.1±1.0 87.2±1.1 87.1±1.0 87.8±1.0
2NNCombined 88.2±1.0 87.9±0.9 88.9±0.9 87.0±0.9 87.1±0.8 87.4±0.5
4NNCombined 86.9±0.6 86.7±0.9 87.5±0.6 84.4±0.5 84.6±0.8 85.0±0.5
8NNCombined 84.9±0.5 84.7±1.0 85.3±0.8 82.4±1.5 82.4±1.4 82.8±1.4
16NNCombined 79.6±0.8 79.5±1.0 79.9±0.7 80.6±2.4 80.6±2.3 81.0±2.2

Table A.37: Final Accuracy obtained with the edge-building methods experiments for the
GCN and GAT models for the FashionMNIST dataset

Method
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

RAG 81.8±0.4 81.7±0.5 82.7±0.2 82.4±0.5 82.4±0.7 83.4±0.2
1NNSpatial 81.9±0.2 81.6±0.3 83.4±0.3 82.3±0.3 82.1±0.4 83.4±0.4
2NNSpatial 81.6±0.2 81.6±0.2 82.9±0.2 82.2±0.2 81.8±0.7 83.2±0.4
4NNSpatial 81.7±0.4 81.7±0.4 82.6±0.1 82.6±0.6 82.5±0.5 83.5±0.5
8NNSpatial 79.7±0.4 79.7±0.6 80.4±0.2 81.9±0.7 82.0±0.6 82.8±0.7
16NNSpatial 76.0±0.5 76.3±0.5 76.6±0.4 79.9±0.9 79.9±0.5 80.5±0.8
1NNCombined 83.8±0.6 83.6±0.8 85.1±0.4 83.1±0.3 82.7±0.2 83.8±0.3
2NNCombined 83.5±0.4 83.5±0.4 84.7±0.2 82.7±0.3 82.4±0.6 83.5±0.4
4NNCombined 83.0±0.3 82.9±0.6 84.0±0.3 81.9±0.4 81.6±0.7 82.7±0.3
8NNCombined 81.6±0.3 81.4±0.5 82.4±0.2 81.0±0.3 81.0±0.5 81.9±0.2
16NNCombined 78.9±0.4 78.7±0.9 79.7±0.4 79.3±0.9 79.4±1.0 80.0±1.0

Table A.38: Final Accuracy obtained with the edge-building methods experiments for the
GCN and GAT models for the CIFAR10 dataset

Method
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

RAG 55.0±0.5 54.5±0.5 57.4±0.5 55.0±0.5 54.8±0.7 56.6±0.5
1NNSpatial 56.7±0.7 56.7±0.8 59.7±0.9 55.2±0.3 54.9±0.4 57.0±0.6
2NNSpatial 57.0±0.5 57.0±0.5 59.6±0.6 54.9±0.4 54.8±1.0 56.8±0.5
4NNSpatial 55.2±0.7 55.0±0.7 57.1±0.9 54.4±0.6 54.3±0.8 56.0±0.6
8NNSpatial 53.1±0.5 52.7±0.5 55.0±0.5 53.6±0.6 53.6±1.1 55.3±0.8
16NNSpatial 48.9±0.4 48.6±0.8 50.2±0.5 52.3±0.8 52.1±0.4 53.8±0.5
1NNCombined 57.6±0.8 57.7±0.5 60.7±0.7 55.2±0.6 55.3±0.8 57.1±0.6
2NNCombined 57.3±0.3 57.3±0.5 60.2±0.1 54.9±0.5 55.2±0.2 56.7±0.6
4NNCombined 56.7±0.3 56.6±0.9 59.2±0.4 54.6±0.8 54.9±0.7 56.3±0.5
8NNCombined 55.0±0.8 54.4±0.7 57.0±0.6 53.9±0.5 53.9±0.6 55.5±0.6
16NNCombined 51.9±0.6 52.0±0.5 53.8±0.5 52.6±0.5 52.5±0.4 54.1±0.3
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Table A.39: Final Accuracy obtained with the edge-building methods experiments for the
GCN and GAT models for the CIFAR100 dataset

Method
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

RAG 27.9±0.8 27.8±0.5 30.9±1.0 29.8±0.6 29.8±0.3 33.3±0.5
1NNSpatial 30.1±0.7 29.6±1.0 33.6±1.4 30.5±0.6 30.3±0.4 34.4±0.5
2NNSpatial 29.1±1.0 29.2±0.8 32.4±1.3 30.6±0.5 30.4±0.6 34.1±0.6
4NNSpatial 28.2±1.0 28.1±0.6 31.2±1.3 29.8±0.5 29.3±0.3 33.1±0.6
8NNSpatial 26.1±1.0 25.9±1.0 28.5±1.3 28.7±0.8 28.6±0.8 32.4±0.8
16NNSpatial 18.6±8.8 18.2±8.6 20.2±9.6 26.7±0.9 26.7±1.1 30.0±1.0
1NNCombined 30.5±1.4 30.4±0.9 34.7±1.6 30.1±0.5 29.8±0.7 34.1±0.6
2NNCombined 30.3±0.9 30.2±1.0 34.3±1.5 30.6±0.3 30.6±0.6 34.4±0.3
4NNCombined 29.2±1.2 29.2±1.0 33.0±1.4 30.2±0.3 30.2±0.7 34.0±0.2
8NNCombined 28.0±0.9 27.6±1.0 31.5±1.3 29.3±0.4 29.1±0.4 33.0±0.2
16NNCombined 25.2±0.9 25.2±0.7 28.0±1.3 27.5±0.6 27.3±0.5 30.8±0.5

Table A.40: Final Accuracy obtained with the edge-building methods experiments for the
GCN and GAT models for the STL10 dataset

Method
GCN GAT

Accuracy Accuracy
Test Val. Train Test Val. Train

RAG 45.3±1.5 44.9±1.1 48.1±0.5 45.0±1.2 45.0±1.3 47.6±1.1
1NNSpatial 45.8±1.2 46.2±1.1 50.0±1.0 44.8±1.5 45.2±0.7 47.8±1.2
2NNSpatial 45.9±1.0 46.0±1.2 49.5±0.9 45.1±0.3 45.1±1.0 47.8±0.4
4NNSpatial 44.5±1.5 44.6±1.4 47.2±1.0 45.1±0.5 45.0±0.6 47.8±0.9
8NNSpatial 42.4±1.2 42.3±1.3 44.4±0.9 43.3±0.8 44.5±1.1 46.0±0.8
16NNSpatial 37.9±1.2 38.4±2.0 39.7±0.9 41.5±0.8 41.7±1.4 43.4±1.0
1NNCombined 46.8±1.5 47.0±1.2 52.1±1.1 44.6±1.1 45.5±1.5 48.2±0.7
2NNCombined 47.3±1.6 47.4±1.8 52.7±1.1 44.4±0.8 45.4±1.1 47.9±0.4
4NNCombined 46.3±1.8 46.6±1.5 50.7±1.1 44.1±0.3 44.0±1.9 47.3±0.8
8NNCombined 45.1±1.4 45.1±0.9 48.7±0.6 43.5±0.4 43.4±0.5 46.5±0.7
16NNCombined 41.2±2.2 40.9±1.7 43.5±1.3 41.2±0.8 41.3±1.3 43.5±1.4

Table A.41: Final Loss obtained with the edge-building methods experiments for the GCN
and GAT models for the MNIST dataset

Method
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
RAG 0.29±0.02 0.29±0.02 0.27±0.01 0.23±0.02 0.23±0.02 0.21±0.02
1NNSpatial 0.37±0.02 0.38±0.02 0.34±0.02 0.27±0.04 0.27±0.04 0.24±0.03
2NNSpatial 0.39±0.02 0.39±0.03 0.36±0.03 0.25±0.02 0.25±0.03 0.22±0.03
4NNSpatial 0.32±0.01 0.31±0.01 0.29±0.01 0.24±0.02 0.24±0.02 0.22±0.02
8NNSpatial 0.35±0.02 0.36±0.03 0.33±0.02 0.27±0.03 0.26±0.03 0.24±0.03
16NNSpatial 0.57±0.03 0.57±0.03 0.56±0.03 0.40±0.19 0.40±0.19 0.38±0.19
1NNCombined 0.38±0.02 0.37±0.03 0.35±0.03 0.41±0.03 0.40±0.03 0.39±0.02
2NNCombined 0.38±0.02 0.38±0.03 0.35±0.03 0.41±0.02 0.41±0.02 0.40±0.02
4NNCombined 0.41±0.02 0.42±0.03 0.40±0.02 0.49±0.01 0.48±0.01 0.47±0.01
8NNCombined 0.48±0.01 0.48±0.04 0.47±0.03 0.55±0.05 0.55±0.05 0.54±0.04
16NNCombined 0.64±0.03 0.64±0.03 0.63±0.02 0.61±0.07 0.61±0.07 0.60±0.06
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Table A.42: Final Loss obtained with the edge-building methods experiments for the GCN
and GAT models for the FashionMNIST dataset

Method
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
RAG 0.48±0.01 0.49±0.01 0.46±0.00 0.48±0.01 0.48±0.01 0.45±0.01
1NNSpatial 0.49±0.00 0.50±0.01 0.45±0.01 0.48±0.01 0.49±0.01 0.45±0.01
2NNSpatial 0.50±0.01 0.50±0.01 0.46±0.01 0.49±0.01 0.49±0.01 0.46±0.01
4NNSpatial 0.49±0.01 0.50±0.01 0.47±0.01 0.47±0.01 0.47±0.01 0.45±0.01
8NNSpatial 0.54±0.01 0.54±0.01 0.52±0.01 0.49±0.02 0.49±0.02 0.47±0.02
16NNSpatial 0.63±0.01 0.63±0.01 0.61±0.01 0.54±0.03 0.54±0.02 0.52±0.02
1NNCombined 0.45±0.01 0.45±0.02 0.40±0.01 0.47±0.01 0.48±0.01 0.44±0.01
2NNCombined 0.45±0.00 0.45±0.01 0.41±0.01 0.47±0.01 0.48±0.01 0.45±0.01
4NNCombined 0.46±0.01 0.46±0.01 0.43±0.00 0.49±0.01 0.50±0.01 0.47±0.01
8NNCombined 0.49±0.01 0.50±0.01 0.47±0.00 0.51±0.01 0.51±0.01 0.49±0.00
16NNCombined 0.56±0.01 0.56±0.01 0.54±0.01 0.56±0.03 0.55±0.03 0.54±0.03

Table A.43: Final Loss obtained with the edge-building methods experiments for the GCN
and GAT models for the CIFAR10 dataset

Method
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
RAG 1.26±0.02 1.27±0.01 1.20±0.01 1.27±0.01 1.28±0.02 1.22±0.02
1NNSpatial 1.22±0.02 1.22±0.02 1.13±0.02 1.26±0.01 1.26±0.02 1.21±0.02
2NNSpatial 1.22±0.01 1.21±0.01 1.14±0.01 1.27±0.01 1.27±0.02 1.22±0.01
4NNSpatial 1.27±0.02 1.27±0.01 1.20±0.02 1.29±0.02 1.29±0.02 1.24±0.01
8NNSpatial 1.32±0.01 1.33±0.00 1.27±0.01 1.31±0.02 1.32±0.02 1.26±0.02
16NNSpatial 1.44±0.02 1.45±0.02 1.40±0.02 1.34±0.02 1.35±0.01 1.30±0.01
1NNCombined 1.19±0.01 1.20±0.01 1.11±0.02 1.25±0.01 1.26±0.02 1.20±0.02
2NNCombined 1.20±0.01 1.21±0.01 1.12±0.01 1.26±0.02 1.26±0.02 1.21±0.01
4NNCombined 1.22±0.01 1.22±0.02 1.14±0.01 1.26±0.02 1.27±0.01 1.22±0.01
8NNCombined 1.27±0.02 1.28±0.01 1.20±0.01 1.29±0.01 1.30±0.01 1.25±0.01
16NNCombined 1.35±0.01 1.35±0.01 1.29±0.01 1.33±0.01 1.34±0.01 1.29±0.00

Table A.44: Final Loss obtained with the edge-building methods experiments for the GCN
and GAT models for the CIFAR100 dataset

Method
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
RAG 2.94±0.04 2.93±0.02 2.76±0.05 2.86±0.03 2.86±0.02 2.66±0.03
1NNSpatial 2.84±0.04 2.83±0.03 2.63±0.06 2.82±0.02 2.80±0.01 2.61±0.03
2NNSpatial 2.89±0.05 2.88±0.04 2.70±0.06 2.82±0.02 2.81±0.02 2.62±0.02
4NNSpatial 2.93±0.04 2.91±0.04 2.75±0.06 2.87±0.02 2.86±0.02 2.68±0.03
8NNSpatial 3.06±0.05 3.04±0.05 2.89±0.07 2.92±0.04 2.90±0.03 2.72±0.05
16NNSpatial 3.49±0.56 3.48±0.56 3.38±0.61 3.02±0.04 3.01±0.04 2.82±0.06
1NNCombined 2.80±0.05 2.78±0.04 2.58±0.07 2.84±0.02 2.82±0.02 2.62±0.03
2NNCombined 2.81±0.05 2.79±0.05 2.59±0.07 2.83±0.01 2.82±0.02 2.61±0.02
4NNCombined 2.87±0.05 2.85±0.03 2.67±0.07 2.85±0.00 2.83±0.02 2.64±0.01
8NNCombined 2.94±0.04 2.92±0.03 2.74±0.07 2.89±0.02 2.88±0.01 2.69±0.02
16NNCombined 3.10±0.03 3.08±0.02 2.92±0.06 2.98±0.02 2.97±0.01 2.79±0.02
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Table A.45: Final Loss obtained with the edge-building methods experiments for the GCN
and GAT models for the STL10 dataset

Method
GCN GAT
Loss Loss

Test Val. Train Test Val. Train
RAG 1.50±0.02 1.49±0.02 1.42±0.01 1.49±0.02 1.47±0.02 1.42±0.02
1NNSpatial 1.47±0.03 1.44±0.03 1.35±0.03 1.49±0.03 1.46±0.03 1.42±0.03
2NNSpatial 1.46±0.02 1.44±0.03 1.36±0.02 1.49±0.01 1.47±0.02 1.41±0.01
4NNSpatial 1.51±0.04 1.50±0.03 1.44±0.03 1.50±0.02 1.48±0.02 1.42±0.01
8NNSpatial 1.56±0.02 1.55±0.03 1.50±0.02 1.53±0.02 1.50±0.02 1.46±0.02
16NNSpatial 1.65±0.03 1.65±0.04 1.61±0.01 1.58±0.02 1.56±0.03 1.53±0.03
1NNCombined 1.44±0.03 1.42±0.01 1.30±0.03 1.48±0.02 1.46±0.02 1.40±0.02
2NNCombined 1.42±0.02 1.41±0.02 1.29±0.03 1.48±0.01 1.46±0.02 1.40±0.01
4NNCombined 1.45±0.03 1.42±0.02 1.33±0.03 1.51±0.01 1.48±0.03 1.43±0.01
8NNCombined 1.49±0.03 1.47±0.02 1.39±0.01 1.52±0.01 1.52±0.01 1.45±0.01
16NNCombined 1.59±0.03 1.57±0.02 1.52±0.03 1.57±0.02 1.55±0.03 1.52±0.04
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