

Abstract— This paper presents an algorithm for automatic

generation of programs for the functional testing of stack mi-
croprocessors. The algorithm is based on an evolutionary ap-
proach using genetic search. The paper presents the whole
methodology for functional testing of this processor, since the
development of program macros to the details of the genetic
algorithm. The main novelty of the proposed method is the
acceleration of the genetic search by multiple fault injection in
some parts of the algorithm. Experimental results show that a
fault coverage of 84,35% can be achieved using traditional
fault simulation. Using multiple fault injection, the same cov-
erage can be obtained in half of the simulation time.

Index Terms—Test, Functional Testing, Genetic Algo-
rithms.

I. INTRODUCTION

Systems-on-chip are increasing in importance as the ap-
plications are getting more complex and requiring more
computational power. The SoCs traditional methodology is
based on IP cores reuse. Several modules, as microproces-
sors, are taken from third party developers for fast design
and rapid time-to-market. However, this new scenario re-
quires new test approaches.

This paper tackles the test of microprocessor cores. In
general, a SoC will contain one or more of this kind of IP
core embedded into the system. There are three traditional
approaches for the microprocessor test: scan chains, BIST
and functional testing. The scan chains approach is most
commonly used due to its simplicity, but implies a lot of
restrictions and increased cost for testing. First, an expen-
sive tester with significant amount of memory for inputs
and signatures storage is required. Second, the scan chains
imply performance degradation of the core. But most im-
portantly, scan chains need large test time and do not allow
at-speed testing. The BIST approach is very common as
well. It allows at-speed test but suffers from large test time
and extra hardware. Functional testing does not suffer from
any disadvantage mentioned above, but introduces other
challenges.

Functional testing requires the development of a test
program that is able to excite as much as possible of the
processor units. This test method is pretty much suited if
the processor architecture and organization is known by the
programmer. However, this is not the case of SoC design,
in which cores are taken from third parties. Then, automatic
test program generation becomes very attractive to over-

come this problem. Several works addressed this problem,
such as [1][2][3]. Most of them are based on genetic search,
since this kind of algorithm is able to find hardly used parts
of the search space due to pseudo-random crossover and
random mutation operands. Also, genetic algorithms have
an evolutionary behavior, keeping the characteristics of the
best generated programs and exploring new ones, until a
global minimum is found.

The methodology presented in this paper is similar to
[1]. First, to ease the controllability and observability of test
results, the only access point needed for this approach is a
link to the RAM memory. In any SoC that uses a micro-
processor and a RAM memory there will be already input
and output ports to access the RAM memory from other
cores. The only new hardware that should be included (if
not available yet) is a path to the circuit pads. An area of
the memory should be reserved for the test program, while
another area will be used to store a trace information of the
execution. That information will indicate whether the proc-
essor passed or not the test.

The generation of the test program is pseudo-automatic.
First thing that should be developed is a library of macros.
One macro should be developed to test each instruction.
Basically a macro consists in loading the operands to regis-
ters or to the stack (in the case of a stack processor), operate
and write the result back to the memory. In the case of a
jump instruction, a different value should be written in the
memory in case of fail or success. This information will be
used to evaluate whether a fault was detected or not. The
step of creating the macros library should be done manu-
ally. However, this step is very easy and does not need any
special knowledge of the microprocessor architecture. The
program generation for microprocessor testing will be fully
automatically. A fault simulator should be used to evaluate
the fault coverage obtained during the generation process.

Compared to past works that use Genetic Algorithms for
test program generation, this approach presents a new
method for acceleration of the generation process. The ma-
jor weakness of a genetic search is a high CPU time needed
for cost function, which calls a fault simulator. Basically,
this kind of simulation will introduce a stuck-at fault in
each node of the circuit and run one simulation for each
possible fault. In other words, in a circuit with 1500 nodes,
the simulation will be repeated 1500 times, and for each
time a cost function is called. Moreover, a genetic search
needs several cost functions calls in order to achieve an ac-
ceptable convergence.

Renato Hentschke1, Antônio C. S. Beck1, Júlio C.B. Mattos1, Luigi Carro1,2, Marcelo Lubaszewski1,2,
Ricardo Reis1

1 Renato Hentschke, Antônio C. S. Beck, Júlio C.B. Mattos, Ricardo Reis, Informatics Institute, Federal University of
Rio Grande do Sul - UFRGS, Brazil, e-mail:(renato ,caco, julius,reis)@inf.ufrgs.br

2 Luigi Carro, Marcelo Lubaszewski, Electrical Engineering Dept., Federal University of Rio Grande do Sul -
UFRGS, Brazil, e-mail:(carro, luba)@eletro.ufrgs.br

Using Genetic Algorithms to Accelerate Automatic Software Generation
for Microprocessor Functional Testing

JOURNAL INTEGRATED CIRCUITS AND SYSTEMS, VOL 1, NO. 4, DECEMBER 2006. 5

This work provides details for the whole proposed tech-
nique and a case study with the FemtoJava microprocessor
[4]. Femtojava is a stack-based processor that executes Java
bytecodes. The macros developer, in our case study, does
not know any detail of the processor architecture. In addi-
tion, the genetic algorithm is totally transparent to the kind
of microprocessor used. It is important to reinforce that the
methodology does not require knowledge of the internal
organization of the microprocessor.

This paper is organized as follows. First we introduce
the macros generation process and how it works for Femto-
Java microprocessor. After, in section 3, we introduce the
genetic search mechanism. In section 4, we provide details
of CACO-PS, the general purpose simulator used for the
fault simulation. Section 5 provides details of the proposed
approach to reduce the simulation time. Section 6 gives
some preliminary results and section 7 provides conclusions
and future work.

II. MACROS DEVELOPMENT

This section briefly describes how to develop software
macros for our functional testing approach. The macros
methodology is taken from [1], where more details are
given. In this section we show the ideas behind the macros
and detail its implementation for the FemtoJava microproc-
essor.

The basic idea of the macro library is to register a trace
of the program functionality in the memory so that errors
can be observable outside the microprocessor. There is a
macro to test each instruction of the microprocessor. The
macro should write something in the memory if the instruc-
tion has succeeded or any other thing if the instruction has
failed.

Let us consider an arithmetic instruction as an initial ex-
ample. The first two instructions of the macro should load
operands for execution. After, the arithmetic operation
should be called. If there is an error on any part of the in-
struction execution, the result should be wrong. In this case,
for error detection, we can write only the result of the op-
eration in the memory. If the arithmetic operation generated
flags, they should be written in the memory as well.

Other kinds of instructions, such as "ifs", "gotos" etc,
should be dealt with somehow difference. Next sub-
sections provide details on how all the macros were gener-
ated for the FemtoJava processor.

A. FemtoJava Processor

FemtoJava Microcontroller [4] is a stack-based micro-
controller to run Java bytecode. The major characteristics of
this device are reduced bytecode instructions set, Harvard
architecture, and small size.

FemtoJava implements an execution engine for Java in
hardware through a stack machine compatible with Java
Virtual Machine (JVM) specification. Since FemtoJava is a
stack processor, all data transfers pass though the stack.

There are basically six types of instructions in the proc-
essor: arithmetic/logic (iadd, ixor, isub, etc.), stack manipu-
lation (dup, pop, etc.), jump (ifge, if_icmple, goto, etc.),

transfers (putstatic, sipush, etc.), sub-routine (invokestatic,
return, ireturn), local variables (iload, iinc, etc.).

B. Aritmetic/Logic Macros

As detailed above, this is the most intuitive set of mac-
ros. The Femtojava processor does not store flags, so they
do not need to be saved. The arithmetic macros are built as
follows.

Example Explanation
sipush x
sipush y
iadd
putstatic a

1. load first operator to the stack
2. load second operator to the stack
3. perform the operation
4. write top of the stack (result) in the memory

C. Stack Macros

These instructions do some kind of manipulation on the
global stack. There are instructions for simple duplication
of the stack top (dup), others for complex duplications and
triplications (dup_x1, dup2, dup2_x1, etc...) and an instruc-
tion for the elimination of the stack top (pop). The macros
should detect if the stack has been adequately written. We
developed the following templates for these instructions:

Example Explanation
sipush x
sipush y
swap
if_icmpeq 5
bipush 1
putstatic a
putstatic b

1. push one (or two) number(s) randomly gener-
ated to the stack
2. perform the operation
3. if the result is correct goto 5
4. write error in memory
5. write stack top to the memory

D. Jump Macros

There are two kinds of jumps: unconditional and condi-
tional. The following guidelines are developed for an un-
conditional jump:

Example Explanation
goto 5
bipush 1
putstatic a
bipush 2
putstatic b

1. goto 4
2. write error in memory
3. goto next instruction
4. write ok in memory

For a conditional jump we developed the template:
Example Explanation
sipush x
sipush x
if_icmplt 5
bipush 1
putstatic a
bipush 2
putstatic b

1. push two numbers randomly generated to the
memory
2. if (equal, greater, ...) then goto 4
3. write number1 in memory and goto next instruc-
tion
4. write number2 in memory

Note that, for both unconditional and conditional jump, a
different number will be written in memory if the instruc-
tion fails or not.

E. Transfer Macros

The transfer instructions moves data from memory to the
stack and from the stack to memory. It is very easy to test
these instructions. The macro guideline is below:

Example Explanation
sipush x
putstatic a

1. push a number randomly generated to the stack
2. move the number to the memory

F. Sub-routineInstructions

To test this kind of instruction, some part of the program

6 HENTSCHKE et al.: USING GENETIC ALGORITHMS TO ACCELERATE AUTOMATIC SOFTWARE GENERATION

memory should be reserved for subroutines. Figure 1 shows
the final configuration of the program memory for all the
set of macros developed. The potential problem with this
kind of macros is that they introduce "jumps" for distant
parts of the program memory. In the presence of a failure,
the program counter can get lost and the execution get stuck
by an infinite loop. To overcome this, special features can
be introduced in the processor simulator in order to abort
wrong execution. One possibility, that we implemented in
ours, is time-out.

The FemtoJava microprocessor has three sub-routine in-
structions: invokestatic, return and ireturn. The first is the
sub-routine call. The others are void return or return a
value. To test them, we introduced two routines in the pro-
gram memory. The two subroutines are detailed below:
Subroutine 1
Code Explanation
sipush x
putstatic a
return

1. push a random number to the stack
2. write the number in the memory
3. return

Subroutine 2
Code Explanation
sipush x
putstatic a
return

1. push a random number to the stack
2. write the number in the memory
3. return the number

To use both sub-routines, we created two macros:
Macro 1
Code Explanation
invokestatic sub1
putstatic a

1. Call Subroutine1
2. write a number to the memory (if there is a
lost sequence in the program execution, this
number will not be in the memory)

Macro 2
Code Explanation
invokestatic sub2
putstatic a

1. Call Subroutine2
2. write return value to the memory

G. Local Variables

FemtoJava supports local variables within a sub-routine.
For that, replaced the flat program we had before by a sub-
routine called main. Also, the processor supports a pre-
determined number of local variables. For simplicity, we
fixed to 5 variables. These variables will be stored in a
fixed area of the global stack. There are two kinds of local
variable instructions: load/store and arithmetic. The meth-
odology for macro construction of these instructions is the
same as seen previously.

The final configuration of the program memory is shown
in figure 1.

Fig.1 Final configuration of the RAM memory

III. PROGRAM GENERATION

A program will be composed of a sequence of macros

from the library. Each macro, as seen in section 2, is inde-
pendent of the next, as each represents an isolated and
complete computation. So, now, using the macros library,
we discuss how to generate the program for functional test-
ing automatically.

The search mechanism implemented is a genetic algo-
rithm. Each individual in the population will be a complete
test program. The first step in the genetic algorithm is the
generation of random initial programs. The user of our tool
may specify the number of macros contained in the initial
test programs. All selections are made randomly. After that,
several iterations are made. In each iteration we execute
several genetic operators. At the end, the best individual is
selected as best test program. The steps bellow show the
basics of our genetic algorithm.

step 1: Evaluation of all individuals (Fault coverage of
each program)

step 2: Identification of the elite group
step 3: Crossover
step 4: Mutation
step 5: If not finished, go to step 1
Step 1 is accomplished by our fault simulator (section 4).

Basically, the simulator returns the fault coverage of each
individual in the population. This value is used to classify
the individuals, to select the elite group and to select the
partners for the crossover function.

Step 2 should identify the best individuals, using the
fault coverage given by step 1. The elite groups are indi-
viduals that cannot be changed by any genetic operator.
They can be used as crossover partners but they will not be
eliminated.

Step 3 is the crossover operator. Each individual that is
not in the elite group will select a partner to cross the char-
acteristics. After crossing, the old individual is eliminated.
The crossover operator is detailed in section 3.1.

Step 4 is the mutation operator. In fact, there are 4 muta-
tion operators defined in our genetic algorithm. All of them
are detailed in section 3.2. A mutation will only happen in
non-elite individuals.

Step 5 is simply the stop criterion of the algorithm,
which is a fixed number of iterations.

In each iteration, there is an evaluation of all population
to create a group that we call "elite". The elite is composed
of the best individuals of each generation. The size of this
group may be determined by the user.

A. Crossover Operator

The crossover objective is to propagate the best charac-
teristics to the new generations of individuals. All individu-
als that are not in the elite group may be the "male" of the
crossover operator. The "female" will be chosen based on a
roulette technique, where the probability of choosing an in-
dividual is proportional to the fault coverage achieved by
that individual. All individuals may get a chance to partici-
pate, but the worst ones will have reduced probability. After
the process, the male is eliminated to keep the population
with the same number of individuals.

The process is very simple and is illustrated by figure 2.
Basically each individual represents a program, which is a

JOURNAL INTEGRATED CIRCUITS AND SYSTEMS, VOL 1, NO. 4, DECEMBER 2006. 7

sequence of macros. The chromosome will be exactly this
sequence. The crossover operator selects a split point in
both chromosomes. The new individual will be one of these
possibilities, with 50% probability for each: the first part of
the father’s chromosome plus the second part of the
mother’s chromosome or the first part of the mother’s
chromosome and second part of the father’s chromosome.

There is a probability for the crossover operator to be
called for each operation. In our experiments we used a
96% probability.

Fig. 2 Crossover Operator

B. Mutation Operator

The mutation is responsible for introducing new charac-
teristics to the population, for a higher variability of macros
combinations and operands. Only non-elite individuals are
allowed as operands of a mutation. There are basically four
mutation operands. Each has a different probability to be
called: insert random macro, delete random macro, change
operands of all macros, shuffle the macros order. For our
experiments, we used 60% probability for shuffle, 82% for
insert, 40% for delete, 80% for operand change. Each prob-
ability is independent of the other. It is possible, for exam-
ple, that all mutations are executed. Observe, however, that
the insert probability is higher than the delete one, which
indicates a tendency of increasing the size of the programs.

Shuffle mutation
Figure 3 illustrates this method. Basically the order of

the macros is shuffled. Another order may achieve a transi-
tion that was not achieved in the past. If a new configura-
tion is found and it is good enough to put the individual in
the elite group, the new characteristic will be saved. Other-
wise, a new shuffle is implemented. However, shuffling
may not vary pretty much the fault coverage.

Fig. 3 Shuffle Mutation

3.2.2 Insert Macro Mutation
Figure 4 illustrates this method. Basically a new macro

is inserted in the end of the program, with random oper-
ands. This mutation is very important for the increase of
fault coverage of a given program.

Fig. 4 Insert Macro Mutation

3.2.3 Delete Macro Mutation
Figure 5 illustrates this method. Basically a randomly se-

lected macro is eliminated. This mutation is useful to re-
duce program sizes.

Fig. 5 Delete Macro Mutation

Operand Change Mutation
Figure 6 illustrates this method. Basically all the oper-

ands of all macros are changed randomly. The values of the
operands are very important to the fault coverage.

Fig. 6 Operand Change Mutation

IV. FAULT SIMULATOR

The cost function of the proposed genetic algorithm is
simply a call of the fault simulator to evaluate the fault cov-
erage of the program. CACO-PS [5], a compiled-code cy-
cle-accurate power simulator, was extended to support
stuck-at fault injection.

The first step is to run the program normally as storing
the final configuration of the RAM memory of a correct
execution. After that, for each possible stuck-at fault of the
circuit, the simulation is repeated. If the stuck-at fault im-
plies in a erroneous final memory configuration, that fault
is detected, otherwise it is not.

The simulator supports multiple abstraction levels to de-
scribe each component. The FemtoJava processor descrip-
tion that we worked on is basically RTL. Components like
ALU and control are not detailed. The fault simulator may
only interact with I/O of this blocks. Because of that, there
is a reduced number of possible stuck-at faults achieved by
our microprocessor description (1700 in this case). By tra-
ditional fault simulation, 1700 possible faults with result in
1700 simulations to find the fault coverage of a single pro-
gram. This consumes too much CPU time, so that running
times of our genetic algorithm can last more than a day. To
overcome this problem, one possibility is running the simu-
lator in parallel, as done by [1]. We experimented a new
approach, that is explained in details in section 4.1. Basi-
cally injects mutliple faults in the same CPU.

A. Mutiple Fault Injection

Our idea is to modify the genetic algorithm so that an
imprecise fault coverage evaluation can be used without
harming the search. Basically, there are two uses for the
cost function in our genetic algorithm. First is to evaluate
the individuals to classify them by the cost criterion, so that
the roulette for crossover can be made and the elite group
can be selected. The second use is to return the fault cover-
age of the winner. Obviously that we do not want that an
imprecise fault coverage is returned for the user. But an im-
precise fault coverage can be used for internal comparisons
of the genetic algorithm, since all individuals use the same

8 HENTSCHKE et al.: USING GENETIC ALGORITHMS TO ACCELERATE AUTOMATIC SOFTWARE GENERATION

algorithm for fault coverage evaluation.
By that, we implemented an optimistic fault coverage es-

timation based on multiple faults. Basically, each time that
the simulator runs it injects two (could be more) faults si-
multaneously. If the RAM memory is not correct, it is as-
sumed that both faults where covered by the test program.
If the RAM is correct, it is assumed that both faults were
not detected. It is a very rare situation that a fault will cor-
rect the other fault, so the last assumption tends to be true.
The problem of impreciseness is related to the first assump-
tion.

To escape from the situation of faults masking other
faults, we tried to inject multiple faults in distant nodes of
the circuit. Basically, the fault simulator has a vector data
structure to store the nodes of the processor. The multiple
faults were injected in distant positions of the vector. Each
signal in the processor is composed by a certain amount of
bits. In addition of getting distant signals, we pass through
the different bits of the signals differently (from the first to
the last bit or the vice-versa) in each new genetic genera-
tion. To implement that, we select a different random seed
at each iteration and, each time the simulator is called, the
random seed is reinitialized.

The modified genetic algorithm is described below.
step 1: Evaluation of all individuals (is done with unpre-

cise estimation)
step 2: Reevaluation of the best one to be displayed (true

evaluation)
step 3: Identification of the elite group (using the unpre-

cise measure done in step1).
step 4: Crossover
step 5: Mutation
step 6: If not finished, go to step 1
This technique provides n times speedup, depending

only on the number n of multiple injected faults. By some
experiments, we observed that the multiple fault injection
does not degrade the quality of final solution neither the
convergence of the process (see section 5). However, some
limitations of our experiments must be highlighted. First,
the description of our architecture is at the RTL level. The
internal blocks, such as ALU, registers and others are not
detailed. Only the inputs and outputs are considered
“wires”, so that they can be stuck-at or not. Internal wires
are not considered for fault injection. That limitation may
point the obtained results are not correct. On the other hand,
increasing the number of wires may be good for the effec-
tiveness of the technique. If there were more wires, it would
be easier to find non-correlated wire, so that multiple injec-
tion could be more effective.

V. EXPERIMENTAL RESULTS

We made some experiments to check the effectiveness
of the proposed technique. The experiments were made
based on two sets of macros.

The first set of macros contains only few macros, ex-
cluding jumps, sub-routine and any other operation that
modifies the program counter. This limitation was done
because on previous versions of the fault simulator the pro-
gram could get lost by an error on the PC signal, for exam-

ple. This was overcome by limiting the number of executed
cycles to the number of cycles of the execution without in-
jected faults.

Initially, we tried to start from very small programs (us-
ing 1 to 3 macros on the initial population) and let the ge-
netic algorithm find the appropriate size for the program.
The generation of the initial population, which is random,
found a fault coverage of 61% (in the best individual). The
genetic algorithm finished with a fault coverage of 73,4%.
The cost variation curve is shown in figure 6.

Fig. 6 Fault coverage variation for a genetic algorithm execution with

reduced macros set

The second try was to start with larger programs in the
initial population and see what else the genetic algorithm
could do to improve the fault coverage. The initial popula-
tion started in 72,1% and the genetic search found 73,4%,
the same as in the last experiment. The results show that the
genetic algorithm is able only to do few improvements on
the fault coverage. We believe that this happens due to the
high level description of the architecture. A genetic algo-
rithm would be able to find better configurations if there
were more faults modeled in the architecture.

After the first set of experiments and after we fixed our
fault simulator to accept event jump macros, we ran new
experiments. First, we started from a population of 1 to 3
macros randomly chosen. The starting fault coverage was
76,6%. At the end, the genetic algorithm found a fault cov-
erage of 84,35%.

To verify our multiple fault injection approach, we ran
the same simulation, under exactly the same conditions, and
we achieved the same fault coverage on half of the time!
Figure 7 shows the real fault coverage variation of the mul-
tiple faults approach, showing that the process converge to
better configurations.

Fig. 7 – Real fault coverage variation for a genetic algorithm execution

with full macros set and multiple faults

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a genetic algorithm to be used as
test program generator for functional testing of microproc-
essor. By the experiments run over the Femtojava proces-
sor, we observed that it is pretty much relevant the size of
the macros library for the test program generation. In the
initial experiments, we tested a restricted set of macros and

JOURNAL INTEGRATED CIRCUITS AND SYSTEMS, VOL 1, NO. 4, DECEMBER 2006. 9

achieved a maximum fault coverage of 73,4%. Using a full
set of macros, we achieved 84,35%.

The main conclusion of this work is that multiple fault
injection can be used to accelerate the genetic algorithm
without harming its search capability.

Some improvements can be done to increase the effec-
tiveness of the technique. First, a study of the processor ar-
chitecture could help to select the best partners for multiple
fault injection. Second, the RAM memory could be in-
spected for a number of different words. If there is just one
wrong word, then we could assume that one of the faults
was propagated to the memory, increasing the preciseness
of the multiple injection.

VII. REFERENCES

[1] F. Corno, M. Sonza Reorda, G. Squillero, M. Violante, "On the Test
of Microprocessor IP Cores", IEEE Design, Automation & Test in
Europe, 2001, pp. 209-213

[2] [2] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, "Fully
Automatic Test Program Generation for Microprocessor Cores",
IEEE Design, Automation & Test in Europe, 2003, pp. 1530-1591

[3] [3] N. Kranitis, G. Xenoulis, D. Gizopoulos, A. Paschalis, Y. Zorian,
“Low-Cost Software-Based Self of RISC Processor Cores”, IEEE
Design, Automation & Test in Europe, 2003, pp. 1530-1591

[4] [4] S. A. Ito; L. Carro; R. P. Jacobi; Making Java Work for Micro-
controller Applications. Design & Test of Computers, IEEE, Vol-
ume: 18, Issue: 5 , Sept.-Oct. 2001, pp. 100 –110

[5] [5] A.C.S. Beck F., J.C.B. Mattos, F.R. Wagner, L. Carro, “CACO-
PS: A General Purpose Cycle-Accurate Configurable Power-
Simulator”, 16th Brazilian Symp. Integrated Circuit Design (SBCCI
2003), Sep. 2003

10 HENTSCHKE et al.: USING GENETIC ALGORITHMS TO ACCELERATE AUTOMATIC SOFTWARE GENERATION

	capa.pdf
	capa_interna.pdf
	INDICE.pdf
	jics4_ARTIGOS_CAPA_FINAL_BLA.pdf

