
 
 

 

 
Abstract— This paper presents an algorithm for automatic 

generation of programs for the functional testing of stack mi-
croprocessors. The algorithm is based on an evolutionary ap-
proach using genetic search. The paper presents the whole 
methodology for functional testing of this processor, since the 
development of program macros to the details of the genetic 
algorithm. The main novelty of the proposed method is the 
acceleration of the genetic search by multiple fault injection in 
some parts of the algorithm. Experimental results show that a 
fault coverage of 84,35% can be achieved using traditional 
fault simulation. Using multiple fault injection, the same cov-
erage can be obtained in half of the simulation time. 
 

Index Terms—Test, Functional Testing, Genetic Algo-
rithms. 

I. INTRODUCTION 

Systems-on-chip are increasing in importance as the ap-
plications are getting more complex and requiring more 
computational power. The SoCs traditional methodology is 
based on IP cores reuse. Several modules, as microproces-
sors, are taken from third party developers for fast design 
and rapid time-to-market. However, this new scenario re-
quires new test approaches. 

This paper tackles the test of microprocessor cores. In 
general, a SoC will contain one or more of this kind of IP 
core embedded into the system. There are three traditional 
approaches for the microprocessor test: scan chains, BIST 
and functional testing. The scan chains approach is most 
commonly used due to its simplicity, but implies a lot of 
restrictions and increased cost for testing. First, an expen-
sive tester with significant amount of memory for inputs 
and signatures storage is required. Second, the scan chains 
imply performance degradation of the core. But most im-
portantly, scan chains need large test time and do not allow 
at-speed testing. The BIST approach is very common as 
well. It allows at-speed test but suffers from large test time 
and extra hardware. Functional testing does not suffer from 
any disadvantage mentioned above, but introduces other 
challenges.  

Functional testing requires the development of a test 
program that is able to excite as much as possible of the 
processor units. This test method is pretty much suited if 
the processor architecture and organization is known by the 
programmer. However, this is not the case of SoC design, 
in which cores are taken from third parties. Then, automatic 
test program generation becomes very attractive to over-

come this problem. Several works addressed this problem, 
such as [1][2][3]. Most of them are based on genetic search, 
since this kind of algorithm is able to find hardly used parts 
of the search space due to pseudo-random crossover and 
random mutation operands. Also, genetic algorithms have 
an evolutionary behavior, keeping the characteristics of the 
best generated programs and exploring new ones, until a 
global minimum is found. 

The methodology presented in this paper is similar to 
[1]. First, to ease the controllability and observability of test 
results, the only access point needed for this approach is a 
link to the RAM memory. In any SoC that uses a micro-
processor and a RAM memory there will be already input 
and output ports to access the RAM memory from other 
cores. The only new hardware that should be included (if 
not available yet) is a path to the circuit pads. An area of 
the memory should be reserved for the test program, while 
another area will be used to store a trace information of the 
execution. That information will indicate whether the proc-
essor passed or not the test.  

The generation of the test program is pseudo-automatic. 
First thing that should be developed is a library of macros. 
One macro should be developed to test each instruction. 
Basically a macro consists in loading the operands to regis-
ters or to the stack (in the case of a stack processor), operate 
and write the result back to the memory. In the case of a 
jump instruction, a different value should be written in the 
memory in case of fail or success. This information will be 
used to evaluate whether a fault was detected or not. The 
step of creating the macros library should be done manu-
ally. However, this step is very easy and does not need any 
special knowledge of the microprocessor architecture. The 
program generation for microprocessor testing will be fully 
automatically. A fault simulator should be used to evaluate 
the fault coverage obtained during the generation process. 

Compared to past works that use Genetic Algorithms for 
test program generation, this approach presents a new 
method for acceleration of the generation process. The ma-
jor weakness of a genetic search is a high CPU time needed 
for cost function, which calls a fault simulator. Basically, 
this kind of simulation will introduce a stuck-at fault in 
each node of the circuit and run one simulation for each 
possible fault. In other words, in a circuit with 1500 nodes, 
the simulation will be repeated 1500 times, and for each 
time a cost function is called. Moreover, a genetic search 
needs several cost functions calls in order to achieve an ac-
ceptable convergence.  
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This work provides details for the whole proposed tech-
nique and a case study with the FemtoJava microprocessor 
[4]. Femtojava is a stack-based processor that executes Java 
bytecodes. The macros developer, in our case study, does 
not know any detail of the processor architecture. In addi-
tion, the genetic algorithm is totally transparent to the kind 
of microprocessor used. It is important to reinforce that the 
methodology does not require knowledge of the internal 
organization of the microprocessor. 

This paper is organized as follows. First we introduce 
the macros generation process and how it works for Femto-
Java microprocessor. After, in section 3, we introduce the 
genetic search mechanism. In section 4, we provide details 
of CACO-PS, the general purpose simulator used for the 
fault simulation. Section 5 provides details of the proposed 
approach to reduce the simulation time. Section 6 gives 
some preliminary results and section 7 provides conclusions 
and future work. 

II. MACROS DEVELOPMENT 

This section briefly describes how to develop software 
macros for our functional testing approach. The macros 
methodology is taken from [1], where more details are 
given. In this section we show the ideas behind the macros 
and detail its implementation for the FemtoJava microproc-
essor.  

The basic idea of the macro library is to register a trace 
of the program functionality in the memory so that errors 
can be observable outside the microprocessor. There is a 
macro to test each instruction of the microprocessor. The 
macro should write something in the memory if the instruc-
tion has succeeded or any other thing if the instruction has 
failed.  

Let us consider an arithmetic instruction as an initial ex-
ample. The first two instructions of the macro should load 
operands for execution. After, the arithmetic operation 
should be called. If there is an error on any part of the in-
struction execution, the result should be wrong. In this case, 
for error detection, we can write only the result of the op-
eration in the memory. If the arithmetic operation generated 
flags, they should be written in the memory as well. 

Other kinds of instructions, such as "ifs", "gotos" etc, 
should be dealt with somehow difference. Next sub-
sections provide details on how all the macros were gener-
ated for the FemtoJava processor. 

 

A. FemtoJava Processor 

FemtoJava Microcontroller [4] is a stack-based micro-
controller to run Java bytecode. The major characteristics of 
this device are reduced bytecode instructions set, Harvard 
architecture, and small size. 

FemtoJava implements an execution engine for Java in 
hardware through a stack machine compatible with Java 
Virtual Machine (JVM) specification. Since FemtoJava is a 
stack processor, all data transfers pass though the stack.  

There are basically six types of instructions in the proc-
essor: arithmetic/logic (iadd, ixor, isub, etc.), stack manipu-
lation (dup, pop, etc.), jump (ifge, if_icmple, goto, etc.), 

transfers (putstatic, sipush, etc.), sub-routine (invokestatic, 
return, ireturn), local variables (iload, iinc, etc.). 

B. Aritmetic/Logic Macros 

As detailed above, this is the most intuitive set of mac-
ros. The Femtojava processor does not store flags, so they 
do not need to be saved. The arithmetic macros are built as 
follows.  

Example Explanation 
sipush x  
sipush y  
iadd  
putstatic a  

1. load first operator to the stack 
2. load second operator to the stack 
3. perform the operation 
4. write top of the stack (result) in the memory  

C. Stack Macros 

These instructions do some kind of manipulation on the 
global stack. There are instructions for simple duplication 
of the stack top (dup), others for complex duplications and 
triplications (dup_x1, dup2, dup2_x1, etc...) and an instruc-
tion for the elimination of the stack top (pop). The macros 
should detect if the stack has been adequately written. We 
developed the following templates for these instructions: 

Example Explanation 
sipush x  
sipush y  
swap 
if_icmpeq 5 
bipush 1 
putstatic a 
putstatic b  

1. push one (or two) number(s) randomly gener-
ated to the stack 
2. perform the operation 
3. if the result is correct goto 5 
4. write error in memory 
5. write stack top to the memory 

D. Jump Macros 

There are two kinds of jumps: unconditional and condi-
tional. The following guidelines are developed for an un-
conditional jump:  

Example Explanation 
goto 5 
bipush 1 
putstatic a 
bipush 2 
putstatic b 

1. goto 4 
2. write error in memory 
3. goto next instruction 
4. write ok in memory 

For a conditional jump we developed the template:  
Example Explanation 
sipush x 
sipush x 
if_icmplt 5 
bipush 1 
putstatic a 
bipush 2 
putstatic b 

1. push two numbers randomly generated to the 
memory 
2. if (equal, greater, ...) then goto 4 
3. write number1 in memory and goto next instruc-
tion 
4. write number2 in memory 

Note that, for both unconditional and conditional jump, a 
different number will be written in memory if the instruc-
tion fails or not. 

E. Transfer Macros 

The transfer instructions moves data from memory to the 
stack and from the stack to memory. It is very easy to test 
these instructions. The macro guideline is below:  

Example Explanation 
sipush x 
putstatic a 

1. push a number randomly generated to the stack 
2. move the number to the memory 

F. Sub-routineInstructions 

To test this kind of instruction, some part of the program 
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memory should be reserved for subroutines. Figure 1 shows 
the final configuration of the program memory for all the 
set of macros developed. The potential problem with this 
kind of macros is that they introduce "jumps" for distant 
parts of the program memory. In the presence of a failure, 
the program counter can get lost and the execution get stuck 
by an infinite loop. To overcome this, special features can 
be introduced in the processor simulator in order to abort 
wrong execution. One possibility, that we implemented in 
ours, is time-out.  

The FemtoJava microprocessor has three sub-routine in-
structions: invokestatic, return and ireturn. The first is the 
sub-routine call. The others are void return or return a 
value. To test them, we introduced two routines in the pro-
gram memory. The two subroutines are detailed below: 
Subroutine 1 
Code Explanation 
sipush x 
putstatic a 
return 

1. push a random number to the stack 
2. write the number in the memory 
3. return 

 

Subroutine 2 
Code Explanation 
sipush x 
putstatic a 
return 

1. push a random number to the stack 
2. write the number in the memory 
3. return the number 

To use both sub-routines, we created two macros: 
Macro 1 
Code Explanation 
invokestatic sub1 
putstatic a 

1. Call Subroutine1 
2. write a number to the memory (if there is a 
lost sequence in the program execution, this 
number will not be in the memory) 

 

Macro 2 
Code Explanation 
invokestatic sub2 
putstatic a 

1. Call Subroutine2 
2. write return value to the memory 

G. Local Variables 

FemtoJava supports local variables within a sub-routine. 
For that, replaced the flat program we had before by a sub-
routine called main. Also, the processor supports a pre-
determined number of local variables. For simplicity, we 
fixed to 5 variables. These variables will be stored in a 
fixed area of the global stack. There are two kinds of local 
variable instructions: load/store and arithmetic. The meth-
odology for macro construction of these instructions is the 
same as seen previously.  

The final configuration of the program memory is shown 
in figure 1. 

 
Fig.1  Final configuration of the RAM memory 

III. PROGRAM GENERATION 

A program will be composed of a sequence of macros 

from the library. Each macro, as seen in section 2, is inde-
pendent of the next, as each represents an isolated and 
complete computation. So, now, using the macros library, 
we discuss how to generate the program for functional test-
ing automatically.  

The search mechanism implemented is a genetic algo-
rithm. Each individual in the population will be a complete 
test program. The first step in the genetic algorithm is the 
generation of random initial programs. The user of our tool 
may specify the number of macros contained in the initial 
test programs. All selections are made randomly. After that, 
several iterations are made. In each iteration we execute 
several genetic operators. At the end, the best individual is 
selected as best test program. The steps bellow show the 
basics of our genetic algorithm. 

step 1: Evaluation of all individuals (Fault coverage of 
each program)  

step 2: Identification of the elite group  
step 3: Crossover  
step 4: Mutation  
step 5: If not finished, go to step 1 
Step 1 is accomplished by our fault simulator (section 4). 

Basically, the simulator returns the fault coverage of each 
individual in the population. This value is used to classify 
the individuals, to select the elite group and to select the 
partners for the crossover function.  

Step 2 should identify the best individuals, using the 
fault coverage given by step 1. The elite groups are indi-
viduals that cannot be changed by any genetic operator. 
They can be used as crossover partners but they will not be 
eliminated.  

Step 3 is the crossover operator. Each individual that is 
not in the elite group will select a partner to cross the char-
acteristics. After crossing, the old individual is eliminated. 
The crossover operator is detailed in section 3.1.  

Step 4 is the mutation operator. In fact, there are 4 muta-
tion operators defined in our genetic algorithm. All of them 
are detailed in section 3.2. A mutation will only happen in 
non-elite individuals. 

Step 5 is simply the stop criterion of the algorithm, 
which is a fixed number of iterations. 

In each iteration, there is an evaluation of all population 
to create a group that we call "elite". The elite is composed 
of the best individuals of each generation. The size of this 
group may be determined by the user. 

A. Crossover Operator 

The crossover objective is to propagate the best charac-
teristics to the new generations of individuals. All individu-
als that are not in the elite group may be the "male" of the 
crossover operator. The "female" will be chosen based on a 
roulette technique, where the probability of choosing an in-
dividual is proportional to the fault coverage achieved by 
that individual. All individuals may get a chance to partici-
pate, but the worst ones will have reduced probability. After 
the process, the male is eliminated to keep the population 
with the same number of individuals.  

The process is very simple and is illustrated by figure 2. 
Basically each individual represents a program, which is a 
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sequence of macros. The chromosome will be exactly this 
sequence. The crossover operator selects a split point in 
both chromosomes. The new individual will be one of these 
possibilities, with 50% probability for each: the first part of 
the father’s chromosome plus the second part of the 
mother’s chromosome or the first part of the mother’s 
chromosome and second part of the father’s chromosome.  

There is a probability for the crossover operator to be 
called for each operation. In our experiments we used a 
96% probability. 

 
Fig. 2  Crossover Operator 

B. Mutation Operator 

The mutation is responsible for introducing new charac-
teristics to the population, for a higher variability of macros 
combinations and operands. Only non-elite individuals are 
allowed as operands of a mutation. There are basically four 
mutation operands. Each has a different probability to be 
called: insert random macro, delete random macro, change 
operands of all macros, shuffle the macros order. For our 
experiments, we used 60% probability for shuffle, 82% for 
insert, 40% for delete, 80% for operand change. Each prob-
ability is independent of the other. It is possible, for exam-
ple, that all mutations are executed. Observe, however, that 
the insert probability is higher than the delete one, which 
indicates a tendency of increasing the size of the programs. 

 
Shuffle mutation 
Figure 3 illustrates this method. Basically the order of 

the macros is shuffled. Another order may achieve a transi-
tion that was not achieved in the past. If a new configura-
tion is found and it is good enough to put the individual in 
the elite group, the new characteristic will be saved. Other-
wise, a new shuffle is implemented. However, shuffling 
may not vary pretty much the fault coverage. 

 
Fig. 3  Shuffle Mutation 

3.2.2 Insert Macro Mutation  
Figure 4 illustrates this method. Basically a new macro 

is inserted in the end of the program, with random oper-
ands. This mutation is very important for the increase of 
fault coverage of a given program. 

 
Fig. 4  Insert Macro Mutation 

3.2.3 Delete Macro Mutation  
Figure 5 illustrates this method. Basically a randomly se-

lected macro is eliminated. This mutation is useful to re-
duce program sizes. 

 
Fig. 5  Delete Macro Mutation 

Operand Change Mutation  
Figure 6 illustrates this method. Basically all the oper-

ands of all macros are changed randomly. The values of the 
operands are very important to the fault coverage. 

 
Fig. 6  Operand Change Mutation 

IV. FAULT SIMULATOR 

The cost function of the proposed genetic algorithm is 
simply a call of the fault simulator to evaluate the fault cov-
erage of the program. CACO-PS [5], a compiled-code cy-
cle-accurate power simulator, was extended to support 
stuck-at fault injection. 

The first step is to run the program normally as storing 
the final configuration of the RAM memory of a correct 
execution. After that, for each possible stuck-at fault of the 
circuit, the simulation is repeated. If the stuck-at fault im-
plies in a erroneous final memory configuration, that fault 
is detected, otherwise it is not.  

The simulator supports multiple abstraction levels to de-
scribe each component. The FemtoJava processor descrip-
tion that we worked on is basically RTL. Components like 
ALU and control are not detailed. The fault simulator may 
only interact with I/O of this blocks. Because of that, there 
is a reduced number of possible stuck-at faults achieved by 
our microprocessor description (1700 in this case). By tra-
ditional fault simulation, 1700 possible faults with result in 
1700 simulations to find the fault coverage of a single pro-
gram. This consumes too much CPU time, so that running 
times of our genetic algorithm can last more than a day. To 
overcome this problem, one possibility is running the simu-
lator in parallel, as done by [1]. We experimented a new 
approach, that is explained in details in section 4.1. Basi-
cally injects mutliple faults in the same CPU. 

A. Mutiple Fault Injection 

Our idea is to modify the genetic algorithm so that an 
imprecise fault coverage evaluation can be used without 
harming the search. Basically, there are two uses for the 
cost function in our genetic algorithm. First is to evaluate 
the individuals to classify them by the cost criterion, so that 
the roulette for crossover can be made and the elite group 
can be selected. The second use is to return the fault cover-
age of the winner. Obviously that we do not want that an 
imprecise fault coverage is returned for the user. But an im-
precise fault coverage can be used for internal comparisons 
of the genetic algorithm, since all individuals use the same 
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algorithm for fault coverage evaluation. 
By that, we implemented an optimistic fault coverage es-

timation based on multiple faults. Basically, each time that 
the simulator runs it injects two (could be more) faults si-
multaneously. If the RAM memory is not correct, it is as-
sumed that both faults where covered by the test program. 
If the RAM is correct, it is assumed that both faults were 
not detected. It is a very rare situation that a fault will cor-
rect the other fault, so the last assumption tends to be true.  
The problem of impreciseness is related to the first assump-
tion.  

To escape from the situation of faults masking other 
faults, we tried to inject multiple faults in distant nodes of 
the circuit. Basically, the fault simulator has a vector data 
structure to store the nodes of the processor. The multiple 
faults were injected in distant positions of the vector. Each 
signal in the processor is composed by a certain amount of 
bits. In addition of getting distant signals, we pass through 
the different bits of the signals differently (from the first to 
the last bit or the vice-versa) in each new genetic genera-
tion. To implement that, we select a different random seed 
at each iteration and, each time the simulator is called, the 
random seed is reinitialized. 

The modified genetic algorithm is described below. 
step 1: Evaluation of all individuals (is done with unpre-

cise estimation)  
step 2: Reevaluation of the best one to be displayed (true 

evaluation) 
step 3: Identification of the elite group (using the unpre-

cise measure done in step1). 
step 4: Crossover  
step 5: Mutation  
step 6: If not finished, go to step 1 
This technique provides n times speedup, depending 

only on the number n of multiple injected faults. By some 
experiments, we observed that the multiple fault injection 
does not degrade the quality of final solution neither the 
convergence of the process (see section 5).  However, some 
limitations of our experiments must be highlighted. First, 
the description of our architecture is at the RTL level. The 
internal blocks, such as ALU, registers and others are not 
detailed. Only the inputs and outputs are considered 
“wires”, so that they can be stuck-at or not. Internal wires 
are not considered for fault injection. That limitation may 
point the obtained results are not correct. On the other hand, 
increasing the number of wires may be good for the effec-
tiveness of the technique. If there were more wires, it would 
be easier to find non-correlated wire, so that multiple injec-
tion could be more effective.  

V. EXPERIMENTAL RESULTS 

We made some experiments to check the effectiveness 
of the proposed technique. The experiments were made 
based on two sets of macros. 

The first set of macros contains only few macros, ex-
cluding jumps, sub-routine and any other operation that 
modifies the program counter.  This limitation was done 
because on previous versions of the fault simulator the pro-
gram could get lost by an error on the PC signal, for exam-

ple. This was overcome by limiting the number of executed 
cycles to the number of cycles of the execution without in-
jected faults.  

Initially, we tried to start from very small programs (us-
ing 1 to 3 macros on the initial population) and let the ge-
netic algorithm find the appropriate size for the program.  
The generation of the initial population, which is random, 
found a fault coverage of  61% (in the best individual). The 
genetic algorithm finished with a fault coverage of 73,4%. 
The cost variation curve is shown in figure 6. 

 
Fig. 6  Fault coverage variation for a genetic algorithm execution with 

reduced macros set 

The second try was to start with larger programs in the 
initial population and see what else the genetic algorithm 
could do to improve the fault coverage. The initial popula-
tion started in 72,1% and the genetic search found 73,4%, 
the same as in the last experiment. The results show that the 
genetic algorithm is able only to do few improvements on 
the fault coverage. We believe that this happens due to the 
high level description of the architecture. A genetic algo-
rithm would be able to find better configurations if there 
were more faults modeled in the architecture. 

After the first set of experiments and after we fixed our 
fault simulator to accept event jump macros, we ran new 
experiments. First, we started from a population of 1 to 3 
macros randomly chosen. The starting fault coverage was 
76,6%. At the end, the genetic algorithm found a fault cov-
erage of 84,35%.  

To verify our multiple fault injection approach, we ran 
the same simulation, under exactly the same conditions, and 
we achieved the same fault coverage on half of the time! 
Figure 7 shows the real fault coverage variation of the mul-
tiple faults approach, showing that the process converge to 
better configurations.  

 
Fig. 7 – Real fault coverage variation for a genetic algorithm execution 

with full macros set and multiple faults 

VI. CONCLUSIONS AND FUTURE WORK 

This paper describes a genetic algorithm to be used as 
test program generator for functional testing of microproc-
essor. By the experiments run over the Femtojava proces-
sor, we observed that it is pretty much relevant the size of 
the macros library for the test program generation. In the 
initial experiments, we tested a restricted set of macros and 
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achieved a maximum fault coverage of 73,4%. Using a full 
set of macros, we achieved 84,35%. 

The main conclusion of this work is that multiple fault 
injection can be used to accelerate the genetic algorithm 
without harming its search capability. 

Some improvements can be done to increase the effec-
tiveness of the technique. First, a study of the processor ar-
chitecture could help to select the best partners for multiple 
fault injection. Second, the RAM memory could be in-
spected for a number of different words. If there is just one 
wrong word, then we could assume that one of the faults 
was propagated to the memory, increasing the preciseness 
of the multiple injection. 
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