
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

LEONARDO DE SOUZA AUGUSTO

Computationally-Efficient Neural Networks
for Image Compression

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Prof. Dr. Mateus Grellert da Silva

Porto Alegre
February 2024

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. Cláudio Machado Diniz
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“You who are our future, Tell me this and tell me true.

Has your journey been good? Has it been worthwhile?”

— VENAT

ACKNOWLEDGMENTS

First of all, I would like to thank my father, mother and my three brothers, who

always inspired and supported me throughout my entire life with the path that I have

chosen.

To my lovely girlfriend, who went through thick and thin with me throughout

all our graduation, always pushing me forward and supporting me. You inspire me and

always make me be a better person.

To all of my friends that have been with me as long as I can remember, always

making me laugh even in the toughest times, and always encouraging each other.

To all my professors who went above and beyond to teach with passion.

Finally, to my advisor, who actively helped me throughout all the work done in

this thesis, giving me directions and valuable advice, and being a wonderful person.

I would not have reached this far without them, and I cherish every moment we

had.

ABSTRACT

Neural-network image compression (NNIC) is an emerging field, with notable works

achieving promising results in terms of image quality, but yet to achieve feasible com-

putational times. NNIC solutions employ the use of Autoencoders (AEs) (compression

networks made of an encoder and a decoder part), commonly built with convolutional

layers. Recent publications show that NNIC networks are capable of obtaining equal or

better rate-distortion performance and visual quality on image compression when compar-

ing with traditional compression methods, while allowing more flexibility on the model

design. However, these networks introduce new challenges regarding computational cost,

since NNIC demands high computational power for compression and decompression and

has not achieved great results in regards to processing time, even when specialized plat-

forms like GPUs are used. This work proposes to optimize one of the reference models

available in the literature to achieve better processing time while trying to maintain the

compression quality. Differently from other solutions that aim at achieving higher com-

pression or better image quality, our proposal will focus on reducing the computational

cost of NNIC techniques, with special focus on the decoder side of these networks. Exper-

imental results, gathered from compressing and decompressing images from the Kodak

dataset, show that with small pruning-based changes on the decoder layers of the network,

it is possible to achieve, on average, for the lowest compression ratio, 33.33% reduction

in decompression time when using the best model for GPU, with an average PSNR loss

of 0.01 dB. When using the best model for CPU, the decompression time reduction was

of 55%, with a PSNR loss of 0.07 dB. The quality and performance metrics were gath-

ered from compressing/decompressing the images of the Kodak dataset. Although, the

CPU decompression time does not achieve ideal decompression times when compared

to JPEG 2000, while the GPU reaches similar results as JPEG 2000. We expect that this

work sparks interest in developing ways to make NNIC as accessible as possible with cur-

rent technology and that it can help the development of current, and future, media formats.

Keywords: Deep Neural Networks. Autoencoders. Image Compression.

Redes Neurais para Compressão de Imagem Computacionalmente Eficientes

RESUMO

A compressão de imagens em redes neurais (NNIC) é uma área emergente, com traba-

lhos notáveis alcançando resultados promissores em termos de qualidade de imagem, mas

ainda sem atingir tempos computacionais viáveis. As soluções NNIC empregam o uso de

Autoencoders (AEs) (redes de compressão compostas por um codificador e uma parte

decodificadora), comumente construídas com camadas convolucionais. Publicações re-

centes mostram que as redes NNIC são capazes de obter desempenho de taxa-distorção e

qualidade visual iguais ou melhores na compressão de imagens quando comparadas com

métodos de compressão tradicionais, ao mesmo tempo que permitem maior flexibilidade

no design do modelo. Porém, essas redes introduzem novos desafios em relação ao custo

computacional, uma vez que NNIC demanda alto poder computacional para compres-

são e descompressão e não tem alcançado grandes resultados em relação ao tempo de

processamento, mesmo quando são utilizadas plataformas especializadas, como GPUs.

Este trabalho propõe otimizar um dos modelos de referência disponíveis na literatura para

obter melhor tempo de processamento e ao mesmo tempo tentar manter a qualidade da

compressão. Diferentemente de outras soluções que visam obter maior compressão ou

melhor qualidade de imagem, nossa proposta focará na redução do custo computacional

das técnicas NNIC, com um foco especial no lado decodificador destas redes. Resulta-

dos experimentais, obtidos pela compressão e descompressão das imagens do conjunto de

imagens Kodak, mostram que com pequenas alterações baseadas em poda nas camadas

decodificadoras da rede, é possível atingir, em média, para a menor taxa de compressão,

redução de 33.33% no tempo de descompressão, ao utilizar o melhor modelo para GPU,

com uma perda média de PSNR de 0.01 dB. Ao utilizar o melhor modelo para CPU, a

redução do tempo de descompressão foi de 55%, com perda de PSNR de 0.07 dB. Porém,

o tempo de descompressão da CPU não atinge tempos de descompressão ideais quando

comparado ao JPEG 2000, enquanto a GPU atinge resultados semelhantes aos do JPEG

2000. Esperamos que este trabalho desperte o interesse no desenvolvimento de formas de

tornar o NNIC tão acessível quanto possível, com a tecnologia atual, e que possa ajudar

no desenvolvimento de formatos de mídia atuais e futuros.

Palavras-chave: Redes Neurais Profundas, Autoencoders, Compressão de Imagem.

LIST OF ABBREVIATIONS AND ACRONYMS

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

AE Autoencoder

VAE Variational Autoencoder

CAE Convolutional Autoencoder

VR Virtual Reality

HEVC High Efficiency Video Coding

VVC Versatile Video Coding

AV1 AOMedia Video 1

NNIC Neural-Network Image Compression

NLT Non-linear Transforms

CAVLC Context-Adaptive Variable Length Compression

ReLU Rectified Linear Unit

FPS Frames Per Second

MSE Mean Squared Error

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure

MS-SSIM Multiscale Structural Similarity Index Measure

LPIPS Learned Perceptual Image Patch Similarity

BPG Better Portable Graphics

JPEG Joint Photographic Experts Group

LSTM Long Short-term Memory Networks

GDN Generalized Divisive Normalization

IGDN Inverse Generalized Divisive Normalization

GAN Generative Adversarial Networks

BPP Bits Per Pixel

VRAM Video Random Access Memory

CSV Comma-Separated Values

PNG Portable Network Graphics

BMP Bitmap

DCT Discrete Cosine Transform

FDCT Forward Discrete Cosine Transform

LIST OF FIGURES

Figure 2.1 Basic concepts of visual data representation: resolution and color space.18
Figure 2.2 Block diagram of the JPEG Encoder and Decoder..19
Figure 2.3 Image of a Football player encoded with JPEG (left) and BPG (right)

image formats..20
Figure 2.4 One hidden layer between the input and output layers comprise a Neural

Network...21
Figure 2.5 Representation of a node of a NN layer...22
Figure 2.6 Commonly used Activation Functions ..23
Figure 2.7 Two hidden layers, or more, between the input and output layers com-

prise a Deep Neural Network..23
Figure 2.8 (a) 2D kernel convolution. (b) 1D kernel convolution.24
Figure 2.9 Simplified AE diagram. ...25
Figure 2.10 Layers of an AE. ..26
Figure 2.11 Layers of a VAE...27
Figure 2.12 Non-structured (a) vs structured (b) pruning. ..28
Figure 2.13 Knowledge distillation training scheme. ...29

Figure 3.1 Grayscale model layers scheme. The number of parameters of each
layer is given at the bottom. ..31

Figure 4.1 Evaluation Diagram ...36
Figure 4.2 Parameters used in the compression and decompression layer.38

Figure 5.1 Loss during validation and training for each epoch, using λ = 0.004.
The graph shows the difference in loss on training when using the entire
dataset per epoch, versus using only a third of the dataset per epoch.44

Figure 5.2 Loss during validation with default, and different steps per epoch, for
different λ..45

Figure 5.3 The difference in loss between the model trained for 1000 epochs (in
orange) and the model trained for 500 epochs (in purple) is approximately
0.0164, while the training time for 1000 epochs is almost the double than for
500 epochs. ...45

Figure 5.4 BPP values of the base model, for all values of λ ...46
Figure 5.5 Mean GPU Decompression time for all optimized models and the base

model, for λ = 0.001. ...49
Figure 5.6 Mean GPU Compression time for all optimized models and the base

model, for λ = 0.001. ...50
Figure 5.7 PSNR values for all models, with λ = 0.001, in dB. Higher values mean

better quality. Ordered from lowest to highest. ..51
Figure 5.8 MS-SSIM values for all models, with λ = 0.001. Values range from 0

to 1. Higher values mean better quality. Ordered from lowest to highest.51
Figure 5.9 LPIPS values for all models, with λ = 0.001. Values range from 0 to 1.

Higher values mean better quality. Ordered from lowest to highest.......................52
Figure 5.10 Mean decompression time of the optimized models, the base model,

and JPEG 2000, for all λs. The decompression time of the JPEG 2000 on
CPU, while the decompression time of the models are on GPU. The λ on
JPEG 2000 represents the same level of BPP as those of the models.53

Figure 5.11 Mean decompression time of the optimized models, the base model,
and JPEG 2000, for all λs, using the CPU. The λ on JPEG 2000 represents
the same level of BPP as those of the models...54

Figure 5.12 Mean compression time of the optimized models, the base model, and
JPEG 2000, for all λs. The compression time of the JPEG 2000 on CPU,
while the decompression time of the models are on GPU. The λ on JPEG
2000 represents the same level of BPP as those of the models...............................55

Figure 5.13 Mean compression time of the optimized models, the base model, and
JPEG 2000, for all λs, using the CPU. The λ on JPEG 2000 represents the
same level of BPP as those of the models...57

Figure 5.14 GPU decompression time for the optimized models and the base model,
for all values of λ. ...58

Figure 5.15 PSNR distribution by BPP value. ..59
Figure 5.16 MS-SSIM distribution by BPP value...60
Figure 5.17 Image from Kodak dataset compressed for BPP = 0.15.61
Figure 5.18 Image from Kodak dataset compressed for BPP = 0.35.62
Figure 5.19 Image from Kodak dataset compressed for BPP = 0.7.63
Figure 5.20 Image from Kodak dataset compressed for BPP = 1.2.64

LIST OF TABLES

Table 3.1 Summary of related references and a comparison with our proposal.35

Table 4.1 Datasets utilized in this work ..38
Table 4.2 Number of parameters of each model, including the model size in Mb..........40

Table 5.1 Parameters used for model training...43
Table 5.2 Mean compression and decompression time, for both GPU and CPU, of

Ballé’s base model for all λ values, and JPEG 2000, on all Kodak images. It
also includes the mean BPP values for each λ value of the base model, and the
fixed BPP for JPEG 2000..48

Table 5.3 Average PSNR values for each λ and PSNR difference with (BALLÉ;
LAPARRA; SIMONCELLI, 2016)...52

Table 5.4 Mean decompression and decompression times for the best optimized
models and the base model for all λ values, and JPEG 2K, on GPU and on
CPU (Except JPEG 2000, that only runs on CPU). ..56

CONTENTS

1 INTRODUCTION...13
1.1 Document Organization ...15
2 BACKGROUND..16
2.1 Data Compression...16
2.2 Visual data representation ...17
2.3 Conventional Image and Video Codecs...17
2.4 Neural Networks for Compression ..20
2.4.1 Neural Networks ..21
2.4.2 Deep Learning..22
2.4.3 Convolutional Neural Networks ..24
2.4.4 Autoencoders ...25
2.4.5 Variational Autoencoder ..26
2.5 Techniques for complexity reduction of DNNs...27
3 RELATED WORKS ...30
3.1 End-to-end Optimized Image Compression ...30
3.2 Variable Rate Image Compression With Recurrent Neural Networks..............32
3.3 Lossy Image Compression With Compressive Autoencoders.............................32
3.4 Quality and Complexity Assessment of Learning-Based Image Compres-

sion Solutions..33
3.5 Chapter Summary ..34
4 PROPOSAL AND METHODOLOGY ...36
4.1 Dataset..37
4.2 Baseline Model ..37
4.3 Optimizations ..38
4.4 Evaluation..40
4.5 Metrics ...40
5 RESULTS AND DISCUSSION..42
5.1 Environment and Hardware Setup ...42
5.2 Setup of the Training Process ..43
5.3 Quality and Complexity Analysis ..47
5.3.1 Complexity Analysis..48
5.3.2 Quality Analysis...49
5.3.3 In-depth Evaluations ..53
5.3.4 Effects of λ on model performance ...55
5.3.5 Rate-distortion performance ..57
5.3.6 Visual Analysis ..58
6 CONCLUSION AND FUTURE WORKS..65
REFERENCES...67

13

1 INTRODUCTION

Today, most of the data that is transmitted through the Internet is from digital me-

dia, i.e., video streaming (YouTube, Twitch, etc.), images, audio, etc. To quantify this

trend, the Sandvine Global Internet Phenomena Report says that, on the first half of 2022,

almost 65.93% of Internet traffic were videos (this includes TV, video and streaming

downloads) (SANDVINE, 2023). Almost all of this information is transmitted in a com-

pressed form, since its raw (uncompressed) representation requires prohibitive amounts

of data to be stored or transmitted through the Internet. To exemplify, a 3840×2160 (4K

Ultra High Definition – UHD) uncompressed sequence with a frame rate of 60 frames per

second (FPS), with 8 bit depth with 3 channels (24 bits for colored images), and 10 min-

utes long, it would occupy more than 800 Gigabytes, as seen on Equation 1.1. This clearly

demonstrates the necessity of data compression, since it would be completely unfeasible

to store or to transfer this much data through the Internet.

V ideo Size =
600 ∗ 60 ∗ 3840 ∗ 2160 ∗ 24

8 ∗ 2ˆ30
= 834.27 Gb (1.1)

Up to this date, we can highlight two ways of compressing data: using tradi-

tional encoders and decoders (jointly referred to as codecs) and using special deep neural

networks (DNN) called autoencoders (AE) (BANK; KOENIGSTEIN; GIRYES, 2020).

Traditional codecs are currently the most used form of compression, with most mod-

ern systems having hardware support for them. Popular codec examples are: High Effi-

ciency Video Coding (HEVC) (SULLIVAN et al., 2012), Versatile Video Coding (VVC)

(BROSS et al., 2021), and AOMedia Video 1 (AV1) (ROSENBERG, 2018). Neural-

network image compression (NNIC) (O’NEILL, 2020), on the other hand, is a relatively

new field that is rising on popularity. The main difference from the codecs is that, instead

of using complex algorithms to encode and decode images and videos, it uses DNN and

other machine learning techniques to achieve this task (YANG et al., 2023). Compression

Neural Networks (NN) represent important alternatives to existing compression solutions,

since the DNNs are highly flexible and can be easily adjusted for different input domains.

With enough effort from research, they have the potential to completely change the field

and even replace traditional codecs in the coming years.

Video and image compression is already a consolidated field, which has a wide

adoption of both hardware and software solutions that were developed in the last decades.

Traditional codecs like HEVC, VVC and AV1 employ what is called a block-based hy-

14

brid coding. Block-based coding is the idea of processing the data of each frame in small

blocks to reduce complexity and also to allow a more fine-grain compression. Hybrid cod-

ing means that the codecs use both prediction and transforms to generate the compressed

form of each block (BUDAGAVI et al., 2013).

One limitation of these codecs is clearly the time needed to finalize a project of

a new codec. HEVC took 10 years after the launch of AVC to be finalized, and VVC

took 7 years, launching in 2020 (BROSS et al., 2021). Even with VVC taking less time

to release, it is still a considerable amount of time. However, This development time is

required because it involves several steps like releasing a call for evidences of relevant

new technology, performing experiments and adjustments, organizing expert meetings to

decide what will effectively be included in the standard, patent/royalties agreements etc.

NNIC, on the other hand, is based on AE networks with non-linear transforms

(NLT) capabilities. NLTs, although being harder to determine for desirable properties,

have a lot of potential on closely adapting to the source, improving compression (BALLÉ

et al., 2020). This also means that it is possible to use NLTs to focus on compression of

specific sources, for example, nature images, space images and so on.

Recent research on NNIC have been tackling the challenge of compression us-

ing lossy compression, non linear transform coding and compressive AEs, for example

(BALLÉ; LAPARRA; SIMONCELLI, 2016) (THEIS et al., 2017). The work proposed by

(BALLÉ; LAPARRA; SIMONCELLI, 2016) employs an end-to-end AE network based

on NLTs for an image compression model, to optimize the rate-distortion performance.

The model was optimized to the Mean Square Error (MSE), but could provide even bet-

ter results using a perception metric instead, according to the authors. This compres-

sion method obtained promising results of an improved rate-distortion over the JPEG

and JPEG-2000 codecs for most images and bit rates and also provides more flexibility

since the model can be optimized for other metrics. The paper by (THEIS et al., 2017)

is also based on compressive AEs for lossy image compression, but this time targeting

a computationally-efficient model. Similarly to Ballé, Theis’ work aims to optimize the

rate-distortion performance while also focusing on the quantization and entropy rate esti-

mation.

One of the main problems that prevent a widespread adoption of NNIC solutions

is related to the computational cost of the DNNs required to build them. We have seen

a lot of progress towards making compression NNs as good as some classic codecs, like

JPEG and JPEG 2000 for images (BALLÉ; LAPARRA; SIMONCELLI, 2016), in terms

15

of image quality, but we are still behind in terms of performance. As reported in (DICK

et al., 2021), these models are much more complex than existing codecs, and, therefore,

are much more costly on the performance. In (DICK et al., 2021), it is reported that even

the fastest compression NN model is still 30× slower than JPEG2000 on decompression.

With that in mind, this work proposes a solution to lower the computational cost

of image compression NNs. Our study builds upon the model proposed by (BALLÉ;

LAPARRA; SIMONCELLI, 2016), since it is one of the most noteworthy solutions in the

literature. It is also highly efficient in terms of compression, while still keeping a simpler

network compared with more recent developments.

In this work, we will be focusing more on the decoder part of the model, since

images and videos are encoded much less often than decoded. For instance, a video that

is uploaded to a streaming platform like YouTube is typically encoded only once on the

user device. On the other hand, any user that watches the same video will have to decode

it every time it is played. The same applies to the images that are used as thumbnails for

the videos. Therefore, solutions that reduce decoding complexity have a much greater

impact on processing and energy performance.

Our motivation comes from the fact that lowering the computing requirements of

these solutions will make them more accessible and enable their processing on consumer-

grade hardware with limited processing and energy resources.

1.1 Document Organization

This document is organized as follows: Chapter 2 will present the theoretical foun-

dation for this work, discussing how compression works, and how do NNs fit on this topic.

Chapter 3 is going to show some of the related works that researched on compression NNs

and that will serve as a base for our work. Chapter 4 will have our proposal and method-

ology for tackling the performance side of the proposed model for our compression NN.

On Chapter 5 we will discuss the proposed models and the results obtained. Finally, on

Chapter 6 we will conclude this work and discuss possible future studies on the topic.

16

2 BACKGROUND

The following sections explain the background of this work, starting on how com-

pression works and some consolidated image compression methods that also serve as a

basis for bench-marking some of the most prominent NNIC solutions. After that, NNs

and deep learning are discussed, as well as how these models are seen as a promising

alternatives compared with state-of-the-art image and video compression methods.

2.1 Data Compression

The compression of data relies on effectively removing the redundancy present on

the bits that represent such data. Considering that we have a sequence of bits, zeros and

ones, that repeat themselves multiple times, compression can be applied to it, by removing

zeros and ones that repeat too many times concurrently and replacing it with some equiv-

alent representation. This can effectively reduce the size of the sequence without losing

its original representation. For example, the sequence of bits 110000, after compression,

is equivalent to 2140 (two ones and four zeros). This example is based on run-length

coding, that is called lossless compression, since, after decompressing, the data will be

the exact same as it was before compression (YANG et al., 2023).

In a more formal way, compression uses the concept of information entropy as a

way of measuring how much information value a symbol has (YANG et al., 2023). A

symbol in this context can be understood as bit or a sequence of bits (YANG et al., 2023).

If a sequence has symbols that occur very often, it has a low entropy, meaning it is easier

to correctly predict the next symbol. By knowing the symbol distribution beforehand,

we can devise en efficient way of compression this data using the probabilities of each

symbol, such that the most common ones have the least amount of bits and can thus be

compressed even more than symbols that do not repeat that often. This approach is em-

ployed in famous compression methods such as Huffman and Context-Adaptive Variable

Length Compression (CAVLC) (RICHARDSON, 2004). The goal of these methods is to

maximize compression for a given unknown distribution (new sequence being encoded)

while keeping complexity relatively low.

To further increase compression, a technique called quantization can be employed.

This technique improves compression by representing the same numbers in a reduced

range of values. Current image and video codecs employ a quantization step in their

17

pipeline (although they also support lossless modes as well) (RICHARDSON, 2010). In

AEs, the quantization was not so trivial to implement until not so long ago, since the quan-

tization process is non-differentiable. Although, there are techniques that make quantiza-

tion effective on AEs as seen in (THEIS et al., 2017). The main disadvantage is that the

quantized data cannot be completely restored (RICHARDSON, 2010), configuring what

is called a lossy compression. In lossy coding, the decoded data will not be the same as

the original, so quality becomes a new parameter that must be considered.

2.2 Visual data representation

A video is a sequential sequence of images, also called frames, that are transmitted

on a screen, with a target rate of frames per second, to create a visual experience. A frame

is the same as an image, and is composed of pixels, which is the name given to a sample

of a numerical value present on the matrix that represents the frame (BUBOLZ, 2021).

Within an image, or video, there are two most common color schemes, represented

as 3 channels, the RGB (Red, Green and Blue) and the YCbCr (Luminance, blue chromi-

nance and red chrominance). On RGB the colors are represented by a combination of the

three colors, red, green and blue, while on YCbCr the luminance information is used to

represent the colors (BUBOLZ, 2021).

Figure 2.1 shows on (a) the Temporal Resolution, where the video frames per

second rate is defined. On (b), the Spatial Resolution, is where the height and width of

the image is defined in pixels. On (c), the Color Space, is where the amount of pixels in

each color space (RGB) are defined (BUBOLZ, 2021).

2.3 Conventional Image and Video Codecs

One of the most classic methods of compression is the JPEG standard, launched

in 1992 and named after the group that created it, the Joint Photographic Expert Group,

mainly used for compressing images (JPEG, 1992). JPEG can be considered one of the

most successful standards because of its capacity to reduce images file size with relatively

simple operations (linear transforms, quantization, and entropy). It is not very efficient in

terms of image quality, but the efficiency on reducing the amount of data from the original

can easily trade off the lack of image quality. JPEG, as it was first released, is considered

18

Figure 2.1: Basic concepts of visual data representation: resolution and color space.

Source: Adapted from (BUBOLZ, 2021)

a lossy compression method. Following its release, JPEG Lossless was also introduced

alongside the JPEG standard. The JPEG standard, although being widely used to this day,

cannot reach lower bit rate compression at acceptable quality levels, as seen in (BALLÉ;

LAPARRA; SIMONCELLI, 2016), in which it is easily surpassed in quality by the AE

model proposed.

Figure 2.2 shows the block diagram of the JPEG codec. In this example, it com-

presses an image with dimension of 8 by 8 pixels, which is spectrally analyzed using a

Forward Discrete Cosine Transform (FDCT) algorithm, and its resulting Discrete Cosine

Transform (DCT) scalars are scalar quantized. Then, after quantization, the DCT quan-

tized values are entropy coded, using run-length coding. The decompression is then done

by the encoder, which does the inverse operations of the encoder (HASKELL et al., 1998).

The JPEG 2000 image compression standard, released in 2000, 8 years after the

first release of JPEG, was developed as the successor to the JPEG providing options

for both lossless and lossy compression on launch, contrary to standard JPEG, that was

launched only with lossy compression. JPEG-2000 provides significantly lower distortion

than traditional JPEG for the same bit-rate at the cost of more computational complexity.

It has more options for compressing images, being able to focus on different goals for the

compression and it works better than JPEG for high resolution images (MARCELLIN et

al., 2000) (JPEG, 2000).

After many years of the creation of JPEG, in 2014, the BPG (Better Portable

Graphics) standard was created by the programmer Fabrice Bellard, proposing it as an

successor for the original JPEG format. It was based on the High Efficiency Video Cod-

19

Figure 2.2: Block diagram of the JPEG Encoder and Decoder

Source: (HASKELL et al., 1998)

ing compression standard (explained later on) and it has a high compression ratio, with

files being much smaller than JPEG, but with similar quality. It also supports lossless

compression and compression for animations (BELLARD, 2018). The main difference

between BPG and JPEG and JPEG-2000 is that BPG doesn’t have a well consolidated

hardware support for it, contrary to both JPEG and JPEG-2000 standards. However, the

BPG format is supported by most web browsers with a JavaScript decoder (BELLARD,

2018).

Figure 2.3 shows a visual comparison of both codecs. Both images have the same

file size. We can observe that BPG has better visual quality while the JPEG shows visible

degradation in quality, noted by the blocks between different adjacent colors. Also, it is

noticeable that on the red shirt the quality is better, that is due to that part of the image

being mostly red, therefore having low entropy and being easier to compress.

In addition to image encoders, there are also specialized tools for video compres-

sion. The main advantage of video codecs over image ones is that temporal redundancy is

also explored to improve compression even more. Among the several video codecs avail-

able, we can highlight three projects/standards as being the most widely used or discussed

about by industrial and research experts: HEVC, VVC, and the AV1 codec.

The HEVC was created with the purpose of having increased video resolutions and

increased parallel processing architectures, improving on top of the AVC codec (SULLI-

VAN et al., 2012).

The VVC is the successor to the HEVC codec. It has a 50% decrease in bit-rate

20

Figure 2.3: Image of a Football player encoded with JPEG (left) and BPG (right) image
formats.

Source: (BELLARD, 2014)

over HEVC, which in turn had 50% decrease in bit-rate over AVC (BROSS et al., 2021).

VVC was designed to be capable of efficiently encode and decode videos with 4K and

even higher resolutions, 360-degree videos and also for screen sharing and computer-

generated content (BROSS et al., 2021).

AV1, contrary to the previous mentioned codecs, is open-source, created by the

Alliance for Open Media (AOM). Their main goal was to create a royalty-free video for-

mat (GROIS; NGUYEN; MARPE, 2016) that was focused on streaming media (ROSEN-

BERG, 2018). The AV1 has up to 50% increase in compression performance in compari-

son to AVC (LIU, 2018).

2.4 Neural Networks for Compression

The goal of DNNs for compression is to use NNs and machine learning techniques

to replace the traditional compression tasks. In extreme cases, the entire codec is replaced

by one or more DNNs, in a setup that is referred to as end-to-end compression networks.

The following subsections explain some important concepts on this field.

21

Figure 2.4: One hidden layer between the input and output layers comprise a Neural
Network.

Source: (JOHNSON, 2020)

2.4.1 Neural Networks

A NN is a directed graph of layers of nodes (also called neurons) that compute

functions from the input layer to the output layer. Between the input and output layers,

there are hidden layers (AGGARWAL, 2023). Figure 2.4 shows an example of a NN with

one hidden layer.

The input layer is the set of features that are going to be computed by the NN

to make predictions on the output (AGGARWAL, 2023). Each node corresponds to a

feature that is going to be computed and stored on the next layer, the hidden layer. A

hidden layer, and an output layer as well, has nodes that contains a variable that is the

result of a computation.

The nodes are connected by edges that are parameterized with weights, and the

resulting function of the NN is the accumulated result of the functions computed on each

layer, considering the weights on its edges and the value on its nodes. This results in a

NN that is capable of computing almost any function from the input to the output (AG-

GARWAL, 2023).

A NN learns by either unsupervised learning or supervised learning. On super-

vised learning the NN learns by creating a function based on the training data fed to the

inputs and outputs and adjusting the weights to match the observed data. While on un-

supervised learning there is no guidance on what the input should be, instead, it learns

the data structure to identify natural patterns (GOOGLE, n.d.). The resulting value of a

node is sometimes called an activation, and its value is calculated applying an activation

22

Figure 2.5: Representation of a node of a NN layer.

Source: (GANESH, 2020)

function to the sum of the multiplication of weights with features.

Figure 2.5 shows the representation of a NN layer node. The data is received on

the input, then the weights are calculated for each value and then summed up to apply the

activation function. There is also the bias value that serves to shift the activation function

to the left or right, when added to the node value before the activation function.

The activation function can be a linear function, like the identity function, or a

nonlinear function, like sigmoid or hyperbolic tangent (tanh), for example (AGGARWAL,

2023). Figure 2.6 shows some commonly used activation functions on NNs. All of the

activation functions showed are nonlinear.

The sigmoid and the tanh functions are often used on the hidden layers of NNs,

with the difference between them being that when the desired output is either positive or

negative, the tanh function is used. The Rectified Linear Unit (ReLU) function is similar

to the sigmoid but is more simple to compute and has great results. The book from

(AGGARWAL, 2023) is a great reference for further learning on activation functions and

its types.

2.4.2 Deep Learning

Deep learning is a type of learning that relies on NNs with multiple hidden layers,

also known as DNNs. While other machine learning methods map relations from the

input features directly to the output, the DNNs use the hidden layers to improve and add

complexity in-between the input and output layers. Each successive layer can also be

thought of as a feature extraction process, and the outputs of such layers are commonly

23

Figure 2.6: Commonly used Activation Functions

−10 −5 0 5 10
−1

−0.5

0

0.5

1

(a) Sigmoid
−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

(b) Tanh

−2 −1 0 1 2
−1

−0.5

0

0.5

1

(c) ReLU

referred to as feature maps. Figure 2.7 shows the graph of a DNN with 2 hidden layers.

Figure 2.7: Two hidden layers, or more, between the input and output layers comprise a
Deep Neural Network.

Source: (JOHNSON, 2020)

The objective of having multiple hidden layers is to make the model more pow-

erful (more complex tasks with better performance). This happens due to the use of

nonlinear activation functions, which helps modeling many complex tasks that are not

linearly related with the inputs (AGGARWAL, 2023).

As you go deeper into the hidden layers you can have even more specific relations

from the previous layers, due to the calculations using the activation functions and the

weights on each edge, then finally you can decide the output based on it.

DNNs are widely employed due to their efficiency in solving numerous complex

24

tasks, such as object detection, language translation, and even image/video compression

(AGGARWAL, 2023).

One of the most efficient operation used to extract features from input or from in-

termediate layers is called convolution, so DNNs are commonly composed of one or more

layers that employ this operation. A NN mostly composed by layers with convolutional

operations is called a Convolutional Neural Network (CNN) (AGGARWAL, 2023).

2.4.3 Convolutional Neural Networks

An important type of DNN for this work is the CNN, which are composed of one

or more layers that employ single-dimensional or multi-dimensional convolution. This

operation, illustrated in Figure 2.8, works by using a kernel that filters the original input

by applying a mathematical operation at each sample point while moving the kernel along

the input until the operation has been applied to all elements of the input.

Figure 2.8: (a) 2D kernel convolution. (b) 1D kernel convolution.

Source: (WANG et al., 2019)

When 2D convolution is employed, CNNs become capable of handling matrices

as inputs, capturing the spatial relations between the input features (AGGARWAL, 2023).

This is specially interesting for images, since they are represented as 2D matrices (one for

each color channel). In addition, the spatial relation that is captured by 2D convolutions is

useful because it allows these networks to detect patterns in objects or particular patterns

in the image. For the purpose of image compression, this property makes CNN-based

AEs capable of detecting spatial relations and redundancies, making them more efficient

for this task when compared to 1D CNN-based AEs.

25

2.4.4 Autoencoders

AEs are a type of NN that contains an encoding and a decoding part, making them

appealing for compression. The goal of an AE is to encode the input data and compress it

into a meaningful form, commonly referred to as latent representation or latent-space data.

The latent representation is then sent to the decoding part, in which data as reconstructed

back to its original form (BANK; KOENIGSTEIN; GIRYES, 2020).

Figure 2.9 shows a simplified AE diagram, with an image of the number 6 as the

input. The encoder is the layers that compress the information to the latent space, and

the decoder layers do the opposite, decompressing the information on the latent space to

a reconstructed representation. The combination of these layers compose the NN of the

AE. In this example the image is encoded to a compressed representation (latent space)

and then decoded to a recreation of the original input. It is clear that the image on the

output is the number 6, although not being exactly as the original, in terms of quality.

Figure 2.9: Simplified AE diagram.

Source: (BANK; KOENIGSTEIN; GIRYES, 2020)

Figure 2.10 shows the NN inside an AE. The input image is first encoded on

the encoder layers and the middle hidden layer, called latent space, is the result of the

encoding, then the decoder receives the latent space data (encoded data) and reconstructs

the image. It is important to note that the latent space is a compressed form of the original

data, thus having a smaller layer than the original input layer. This representation is

the one packed as a bitstream for transmission or storage. We also note the presence

of decoder layers that are built as a reflection of the encoder ones. Although this is not

mandatory, it is definitely the most common approach employed by similar works.

AEs are rising in popularity due to several promising characteristics. They are

flexible in terms of complexity, meaning that it is possible to have an encoder and decoder

with different computational costs. Flexibility also means that AE models can evolve

26

Figure 2.10: Layers of an AE.

Source: (FLORES, 2019)

together with new technology and adapt to new media formats, for example 360-degree

videos or Virtual Reality (VR) content (THEIS et al., 2017), while, as mentioned before,

a new codec standard could take years of development until its release.

AEs can be trained end-to-end, like the proposed by (BALLÉ; LAPARRA; SI-

MONCELLI, 2016), or layer by layer (BANK; KOENIGSTEIN; GIRYES, 2020). There

are multiple types of AEs, and the most relevant to this work are the Convolutional Au-

toencoders (CAE) and Variational Autoencoders (VAE).

As mentioned on Section 2.4.3, any NN that uses convolutional operations are

considered CNNs, and this also applies to AEs, being called CAEs. Since AEs are pri-

marily focused on images, they heavily benefit from having convolutional layers in their

composition and are one of the main points of compression AEs.

2.4.5 Variational Autoencoder

As an improvement to regular AEs, the VAE is a generative model that uses

probabilistic distribution to describe data generation (BANK; KOENIGSTEIN; GIRYES,

2020). Figure 2.11 shows the diagram of a VAE, similar to the diagram of an AE on

Figure 2.10.

Contrary to a standard AE, the output of the encoder, that would go into the latent

27

space, is a probability distribution. In this case, the latent space from a standard AE is

replaced by two vectors, as seen on Figure 2.11, one representing the mean distribution

and the other representing the standard deviation (or variance) distribution. From a sample

of these distributions as an input of the decoder, the original input is then reconstructed

(JORDAN, 2018).

However, the addition of probability distribution creates a new problem during

backpropagation since it cannot be done when using the random sampling process. The

solution to this problem is called the reparameterization trick. This will not be discussed

in this work, but these references provide great insights on this topic (BANK; KOENIG-

STEIN; GIRYES, 2020; FLORES, 2019; JORDAN, 2018).

Figure 2.11: Layers of a VAE.

Source: (JORDAN, 2018)

2.5 Techniques for complexity reduction of DNNs

Since our primary objective is to optimize the inference time on the decoder part

of the AE, compression techniques for compressing NNs are crucial. The goal of these

techniques is to simplify NNs structures, while trying to keep a balance between compu-

tational cost and performance. Most of these techniques are thoroughly explained on a

paper by James O’Neill (O’NEILL, 2020).

One simple technique is NN pruning (illustrated in Figure 2.12), which consists

of removing nodes or weights from the layers, that are not as beneficial to the model

performance. This technique is a great starting point for lowering the AE complexity

28

since it is relatively straightforward. One can select the removed instances, for example,

by setting a specific threshold to determine what is pruned and what is not. Some authors

also advocate the use of structured pruning, which is the idea of removing regular sets of

nodes/connections with the purpose of optimizing the computing parallelism.

Figure 2.12: Non-structured (a) vs structured (b) pruning.

Source: (CAI et al., 2021)

Knowledge distillation (illustrated in Figure 2.13 involves learning a smaller NN

(called student network) based on a larger one (called teacher network), while minimizing

the entropy, distance or divergence between the probabilistic estimates (O’NEILL, 2020).

Since DNN models for image compression have a substantial size, this technique could

prove to be very useful on lowering their complexity.

Quantization is a technique to represent the values on a reduced number of bits,

which, when training on a GPU, are typically 32-bit floating point numbers, 16-bit floating

point and 16-bit integers. With quantization, these numbers are represented on a reduced

type representation, going down to even to 1 bit representations in some cases (O’NEILL,

2020).

29

Figure 2.13: Knowledge distillation training scheme.

Source: (YANG; SONG, 2021)

30

3 RELATED WORKS

This chapter will review state-of-the-art research that serve as inspiration for this

work. The papers (BALLÉ; LAPARRA; SIMONCELLI, 2016), (TODERICI et al., 2016)

and (THEIS et al., 2017) focus on presenting new NN compression methods based on

AEs, except for (DICK et al., 2021) paper, that focuses more on analyzing the complexity

and quality of these types of compression.

3.1 End-to-end Optimized Image Compression

(BALLÉ; LAPARRA; SIMONCELLI, 2016) propose an end-to-end optimized

compression method, consisting of a nonlinear analysis, an uniform quantizer and a non-

linear synthesis, optimizing the model for MSE. Unlike most CNNs, the authors use joint

nonlinearity to introduce some form of local gain control.

The analysis and synthesis transforms, which are the encoder and decoder part of

their AE, were built using Generalized Divisive Normalization joint nonlinearity (GDN),

thus forming a cascade of linear convolutions and nonlinearities, followed by a uniform

scalar quantization. Then the image is reconstructed using a approximate parametric in-

verse nonlinear transform. The GDN is a continuous, differentiable and invertible trans-

form, inspired by neuroscience, that is used as the activation function of the convolution

layer, focusing on creating a form of local gain control (BALLÉ; LAPARRA; SIMON-

CELLI, 2016), (BALLé; LAPARRA; SIMONCELLI, 2016). It implements a type of

locally-informed normalization using the equation 3.1:

[h!]yi =
xi

(βi + sumj(γj,i ∗ |xj|α))ε
(3.1)

In Equation 3.1, i and j iterate over channel dimensions, and the α, β, γ, and ε

parameters are trainable in order to customize the normalization based on the input data.

To fix the problem of non-differentiability on the quantization step during back-

propagation, the authors switched the quantization for additive uniform noise. The anal-

ysis transform consists of three stages of normalization, subsampling and GDN, and the

synthesis transform mirrors the analysis, consisting of three stages of convolution fol-

lowed by a upsampling and an approximate inverse for GDN (IGDN).

Figure 3.1 shows the layer structures of the greyscale model proposed in his work,

31

with the number of parameters in each layer. The analysis arrow represents the encoder

layers, while the synthesis arrow represents the decoder layers. The amount of filters

here are lower than the ones on the model used for colored images, which use 192 filters,

and 3 channels, while this uses 128 filters and 1 channel. The GDN/IGDN and Up-

sampling/Downsampling are jointly implemented on the convolutional layers (BALLÉ;

LAPARRA; SIMONCELLI, 2016).

Figure 3.1: Grayscale model layers scheme. The number of parameters of each layer is
given at the bottom.

Source: (BALLÉ; LAPARRA; SIMONCELLI, 2016)

The main objective of their work is to optimize the weighted sum of rate and

distortion, given by R + λD, with λ being a scalar controlling the trade-off between

them. Optimization was done using a subset of images from ImageNet database and the

model trained for each value of λ. For evaluation the images were compressed using uni-

form quantization, since the additive noise was only for training (backpropagation), using

the Kodak image dataset (KODAK, 1999), and compared against JPEG and JPEG 2000.

They evaluate the distortion by using the Multiscale Structural Similarity Index Measure

(MS-SSIM) (WANG; SIMONCELLI; BOVIK, 2003) metric, which is a more advanced

form of the Structural Similarity Index Measure (SSIM) (WANG et al., 2004). Their

method shows improvements over all images tested and all bit rates. And when evalu-

ating with Peak Signal-to-Noise Ratio (PSNR), the method exhibits better rate-distortion

performance on most images, specially on lower bit rates, when compared to JPEG and

JPEG 2000.

32

3.2 Variable Rate Image Compression With Recurrent Neural Networks

In (THEIS et al., 2017), the authors propose a solution for image compressing

utilizing a NN framework that focuses on compressing low scale images. The reason

being, is that traditional codecs, like the previously mentioned JPEG and JPEG 2000, are

highly efficient for compressing large scale images that benefits from having high spatial

redundancy and by using techniques to capitalize on that. Although, when compressing

low scale images, the same properties do not apply, since they are images that likely

contain difficult to compress information. This problem, allied to the fact that there is

a high traffic of low scale images through search engines, video thumbnails, photos and

so on, can be worked upon to vastly improve the user experience while navigating the

Internet.

To achieve this task, they used LSTM with extensions to introduce spatial informa-

tion to the network and non-LSTM networks using a feed-forward architecture, feeding

the residuals (output) from one AE to another. Four networks were used, two non-LSTMs

and two LSTMs, all following the same stages: an encoder network, followed by a quan-

tizer and then a decoder network. The simplest one is a non-LSTM composed of stacked

fully-connected layers with constant amount of 512 units in each layer, the next is similar

to the previous, but utilizing LSTM on the layers for both encoder and decoder parts. The

last two networks are improvements on the previous LSTM and non-LSTM networks, by

utilizing convolution and deconvolution on its layers. The training used learning rates of

{0.1, 0.3, 0.5, 0.8, 1} and the Adam training algorithm.

The SSIM perceptual measure is used to evaluate the models compression per-

formance. Utilizing scores ranging from 0 (worst) to 1 (perfect reconstruction) the best

result from the traditional codecs was from the JPEG with a score of 0.80 on the best case.

The worst case performance was from the convolutional and deconvolutional non-LSTM

network with a score of 0.45, while the best case performance was from the convolu-

tional and deconvolutional LSTM network with a score of 0.87, an 8.75% increase in

performance from the JPEG.

3.3 Lossy Image Compression With Compressive Autoencoders

The work proposed by (THEIS et al., 2017) demonstrates an AE that optimizes the

rate-distortion trade-off by making minimal changes to the rate-distortion trade-off, due

33

to its non-differentiable nature. This AE is composed of three components: an encoder, a

decoder and a probabilistic model which is used for entropy coding.

For this end, the authors used the smooth approximation function r(y) = y (iden-

tity) only in the derivative of the rounding function during backpropagation. This ap-

proach fixes the non-differentiability of the rounding-based quantization and also makes

it easier to implement, since the gradients are passed without modifications from the de-

coder to the encoder. Since the probabilistic model is also non-differentiable, they used a

continuous, differentiable approximation to solve this. For the encoder and decoder, they

used common CNNs, while the decoder mirrors the encoder, it uses sub-pixel convolu-

tions to do the upsampling. In order to have variable bit rates, they used a method called

scale parameters, which is better explained on their paper.

All models were trained using the Adam algorithm applied to batches of 32 im-

ages with a resolution of 128 by 128 pixels. The training has two steps, first the model is

trained for a fixed rate-distortion trade-off with the learning rate starting from 10−4 until

10−5. Then, they introduce the scale parameters for other values of the trade-off while

keeping all other parameters fixed, with a learning rate starting from 10−3 and continu-

ously decreased by a factor of 10000.8/(1000 + t)0.8 with t being the number of updates.

For evaluation, they used multiple perception metrics: PSNR, SSIM and MS-

SSIM. The comparison was made between JPEG, JPEG 2000 and the implementation of

(TODERICI et al., 2017) compression method. For PSNR, their method performs similar

to JPEG 2000, although slightly worse at low and medium bit rates and slightly better at

higher bit rates. For SSIM, their method outperforms all of the others. For MS-SSIM,

their methods performs similar to the other methods except for very low bit rates. Also,

they found the results to be very image dependant.

3.4 Quality and Complexity Assessment of Learning-Based Image Compression So-

lutions

Contrary to the previously mentioned works, the work of (DICK et al., 2021)

presents an analysis on learning-based compression methods, comparing eight models

present on the Compression package (TENSORFLOW, 2022) with JPEG 2000 and BPG

in regards to quality and processing time. While BPG wasn’t evaluated on the previously

mentioned works of this section, it still plays a major role in compression, since it is one

of the biggest differences from traditional codecs.

34

The models from TensorFlow are all reproductions of models from some of the

authors mentioned on this section, with the only difference being the use of integer arith-

metic operations related to conditional priors that provide consistent performance over

different hardwares. The models are based on the CNN architectures of nonlinear trans-

form coders, VAs and Generative Adversarial Networks (GAN), and all of them have

slight changes for better evaluation that is explained in more details in (DICK et al.,

2021). The training was made using the MSE distortion metric, and the evaluation was

done using the Kodak data set using the PSNR, MS-SSIM and Learned Perceptual Image

Patch Similarity (LPIPS) (ZHANG et al., 2018) perception metrics.

Their work makes a thorough comparison between the models and codecs visual

quality, but the most interesting part is the complexity comparison between the models

and codecs, that compares the processing time for compressing and decompressing on

CPU and GPU. Some interesting results were obtained for the models. For example,

the VAs model and the GAN, while obtaining higher quality results, also showed sig-

nificant increase in complexity as is expected, with the GAN model having the slowest

decompression time overall, reaching at impressive 4.53 seconds to decompress on CPU,

while JPEG 2000 took only 0.01 seconds and the slowest learning-based model besides

the GAN model reached 1.01 seconds. It is also observed that there is a low increment

in complexity for nonlinear transform models, but at the same time having better quality

results than JPEG 2000. There is also a direct relation to the model size and processing

time. On average, the learning-based compression methods take 49.1% more time to de-

compress on a CPU and 16.12% on a GPU, when compared to traditional transform-based

compression. This brings great attention to the purpose of this work, that intends to im-

prove on the decompression time. GPUs also were shown to have savings in processing

time, since there has been a growth in machine learning specs in these components, but

are not a viable solution for resource-constrained devices.

3.5 Chapter Summary

Table 3.1 shows a comparison of the related references presented in this chapter,

as well as the goals set for this work based on this analysis. Note that Bits Per Pixel (BPP)

range and PSNR ranges are not the exact value, since they were obtained from graphics

on the respective works.

We will focus on using (BALLÉ; LAPARRA; SIMONCELLI, 2016) work as ref-

35

erence, while also having a BPP range a little bigger, and evaluation the quality with

LPIPS together with PSNR and MS-SSIM. The range values of BPP and PSNR defined

on the table are approximations taken by looking at the graphs of the experimental results

on each work, since most of those works did not define a range.

Table 3.1: Summary of related references and a comparison with our proposal.
Work Image-scale

focus
Evaluation
metric

Architecture Quality
analysis

Complexity
analysis

BPP range PSNR
range
(dB)

(BALLÉ; LA-
PARRA; SI-
MONCELLI,
2016)

General PSNR and MS-
SSIM

CNN Yes No 0.025 - 0.45 20 - 39

(TODERICI et
al., 2016)

Thumbnail SSIM LSTM and
non-LSTM

Yes No 0.62 - 1.37 N.A.

(THEIS et al.,
2017)

General PSNR, SSIM and
MS-SSIM

CNN Yes No 0.4 - 2.4 29 - 41

Proposed work General PSNR, MS-SSIM
and LPIPS

Low-Complexity
CNN (Inspired
by (BALLÉ;
LAPARRA;
SIMONCELLI,
2016))

Yes Yes 0.15 - 1.2 20 - 39

Source: The Author

36

4 PROPOSAL AND METHODOLOGY

This chapter discusses the proposal and methodology for achieving our main ob-

jective, which is lowering the computational cost of image compression NNs while main-

taining image quality, in this case, using the model proposed by (BALLÉ; LAPARRA;

SIMONCELLI, 2016) as the base model. Figure 4.1 shows the methodology employed in

this work.

Figure 4.1: Evaluation Diagram

Source: The Author

As mentioned in Section 3.4, (DICK et al., 2021) work showed that there is a lot

of room for research on improving the decompression time of learning-based models.

The proposal for this work is to evaluate the feasibility of a simplified learning-

based model, in terms of complexity, that has a low decompression time while still keep-

ing a decent amount of visual quality. The chosen coding platform was Google Colab as

it is a great place to code machine learning models with the TensorFlow API and its tools.

As mentioned in Section 1, our goal is to utilize the model proposed by (BALLÉ;

LAPARRA; SIMONCELLI, 2016) and build a simplified version (or versions) of it. The

model will be mainly optimized on the decoder end as to increase the possibility of using

the compression method on general-use or low-end computers. This is possible since

learning-based compression methods have the added flexibility of being able to implement

encoders and decoders separately. Our focus is on the decoder end, because the encoder

can be computed in another machine that has high computational power that can bear

with the higher complexity, while the decoder end will be the end-user, a person using a

37

smartphone or a personal computer for example.

4.1 Dataset

To train the models, it was initially planned to use one of the following data sets:

CIFAR100 (KRIZHEVSKY, 2009) and COCO or its reduced version, COCOmini (LIN

et al., 2015)(SAMET; HICSONMEZ; AKBAS, 2020). The CIFAR-100 (KRIZHEVSKY,

2009) is a small image dataset composed of millions of small 32×32 images. The origi-

nal COCO dataset (LIN et al., 2015) is a large-scale object detection, segmentation, and

captioning dataset, and has 330 thousand images, while the COCOmini dataset (SAMET;

HICSONMEZ; AKBAS, 2020) is a subset of images from the original COCO dataset,

having 25 thousand images that are randomly sampled from COCO, while also preserv-

ing the overall ratio of objects in the images.

We ended up choosing the COCOmini, with images with resolution larger or equal

to 256 by 256 pixels, as our training dataset. It has a good amount of images, and will

guarantee better reproducibility during training, since it would be difficult to train the

entire dataset if it was bigger. Also, since the model has an input of 128x128, the CIFAR-

100 dataset would not be adequate for training due to having images smaller than the

input.

As for evaluation, we used the (KODAK, 1999) dataset that is an uncompressed

set of images commonly used to evaluate image compression methods and is also used

on (BALLÉ; LAPARRA; SIMONCELLI, 2016) work. Since the model is fully convolu-

tional, we can train the model with lower resolution images (128×128) and, after training,

test the model with the Kodak dataset with the 768×512 images from the Kodak dataset.

Table 4.1 shows the amount of images per dataset which were used for train-

ing, validation and evaluation of the models. Only the filtered version of the COCOmini

dataset (256×x256 images and larger only) was utilized for the final results.

4.2 Baseline Model

Figure 4.2 shows the convolution kernel size, channels size layers structure of the

baseline model, from (BALLÉ; LAPARRA; SIMONCELLI, 2016), used in this work.

In this work, the original model presented in Chapter 3 was slightly modified to accept

38

Table 4.1: Datasets utilized in this work

Dataset Training Images Validation Images Evaluation Images

COCOmini 25000 5000 -

COCOmini (256x256
and larger only)

24831 4958 -

Kodak - - 24
Source: The Author

RGB-color images (3 input channels).

Figure 4.2: Parameters used in the compression and decompression layer.

Source: Based on the diagram from (BALLÉ; LAPARRA; SIMONCELLI, 2016)

In Figure 4.2, conv stands for convolution layers, and the subsequent values rep-

resent the kernel size (9×9 in the first layer), the number of output filters (192×3). The

downsample N layers represent an N : 1 downsampling operation (the same goes for

upsampling). The GDN/IDGN and the Upsampling/Downsampling operations are jointly

implemented in the Convolutional layer, which is called SignalConv2D in the Tensorflow

Compression library (TENSORFLOW, 2022).

4.3 Optimizations

To optimize the base model, the techniques mentioned on Section 2.5 were con-

sidered, but the only one that was successfully employed in this work was pruning.

The only technique that was not tested, was knowledge distillation, because that

it would be quite complex to do it using the base model, since it is a custom model, with

custom layers and loss function, that does not work well with the rest of the TensorFlow

API without some adjustments, which would take more work. This is also the reason why

the weight pruning and quantization techniques did not work so well with the base model.

39

The quantization and weight pruning techniques were tested using the TensorFlow

Lite API, which has support for these techniques, but again, since the base model is

very customized, the optimizations did not work due to incompatibilities between the

implementation of the model and the API.

As mentioned in (BALLÉ; LAPARRA; SIMONCELLI, 2016), training with a

perceptual metric instead of MSE could provide better results in terms of quality, leaving

space for more optimizations on the decoder. With this in mind we tested utilizing the

LPIPS1 metric instead of MSE, but due to its implementation being made for older ver-

sions of TensorFlow 1 (we used TensorFlow 2), it was incompatible with our code. Even

with a non-official conversion of the LPIPS metric for TensorFlow 22, it still didn’t work

with the base model, so we scrapped that idea and continued using MSE.

For optimizing the base model through pruning, we tried changing only the model

with λ = 0.001, with the lowest BPP, and then reflecting the best changes to the other

models, since it takes roughly 5 hours to train each model for 500 epochs. The following

list shows the changes to the decoder side from the base model, together with the labels

used to represent their respective optimized models on the figures:

• 2L: Removing the intermediate convolutional layer.

• K3x3: Lowering the kernel size from the first two convolutional layers from 5 by 5

to 3 by 3.

• 2L, K3x3: Removing one convolutional layer and decreasing the kernel size from

the first convolutional layer from 5x5 to 3x3.

• 2L, K9x9: Removing one convolutional layer and increasing the kernel size from

the first convolutional layer from 5x5 to 9x9.

Table 4.2 details the amount of parameters of each proposed network, as well as

the one proposed by (BALLÉ; LAPARRA; SIMONCELLI, 2016). It is noticeable that

the 2L, K9x9 model is actually more complex than all the other models, but even so, the

decompression times are still lower when using GPU, but slower when using CPU, as will

be seen on Chapter 5. That is due to the GPU taking advantage of the bigger kernel size,

while the CPU can not.

1Available at https://github.com/alexlee-gk/lpips-tensorflow
2Available at https://github.com/moono/lpips-tf2.x

40

Table 4.2: Number of parameters of each model, including the model size in Mb.
Model Name Encoder Parameters Decoder Parameters Total Parameters Model Size (Mb)

Ballé, 2016 (3L, K5x5) 2338176 2338179 4676355 17.84

2L 2338176 1195011 3533187 13.48

K3x3 2338176 1011075 3349251 12.78

2L, K3x3 2338176 531459 2869635 10.95

2L, K9x9 2338176 3406851 5745027 21.92

Source: The Author

4.4 Evaluation

For the evaluation, we used the work of (DICK et al., 2021) as an inspiration for

comparing the processing time between the learning-based models, and also compare the

quality of the compression using the quality metrics MSE, PSNR, MS-SSIM and LPIPS.

Together with the amount of BPP on the compressed image to measure the compression

rate. With BPP, we can calculate the approximate amount of bits on an image, without

considering any file overhead. Figure 4.1 shows a diagram with the evaluation flow very

similar to the one used on their work.

The evaluation flow will start by feeding the encoder network with the models

parameters and the (KODAK, 1999) image dataset to be compressed, then it will follow

the compression steps, but at each step we will save the respective metrics needed for

the evaluation, them being: Encoding and Decoding time for the Encoder and Decoder,

respectively, Bits per Pixel (BPP) on the latent space and lastly, the reconstructed dataset

will be compared to the original dataset using the visual quality metrics PSNR, MS-SSIM

and LPIPS to measure the effectiveness of the model(s).

4.5 Metrics

The chosen metrics for visual quality were PSNR, MS-SSIM and LPIPS and also

we will be measuring the processing time of the model running on GPU and CPU to

evaluate the computational cost, as well as the number of parameters.

The visual quality metrics PSNR and MS-SSIM were chosen due to being present

on both of the main works of inspiration (BALLÉ; LAPARRA; SIMONCELLI, 2016)

and (DICK et al., 2021), so we have a good basis of comparison. And LPIPS is a good

41

metric since it is specifically targeted to learning-based methods and its scores have a

good correlation with human perception (ZHANG et al., 2018).

42

5 RESULTS AND DISCUSSION

The following sections will present the specifications of the computer used to train

the model, and also all of the main parameters set to train and evaluate the model and its

optimizations, while discussing the reason for choosing these parameters and optimiza-

tions. After presenting the implementation, the performance and quality results obtained

from both the base model and the optimized models will be evaluated against each other,

as well as comparing them to Kakadu1 implementation of the JPEG 2000 compression

algorithm with similar BPP for the images.

5.1 Environment and Hardware Setup

As mentioned before, the AE model from (BALLÉ; LAPARRA; SIMONCELLI,

2016) was used as a base model on which to improve performance time. All of the code

used was run on a Google Colab notebook, while using a local environment for code ex-

ecution. The code for (BALLÉ; LAPARRA; SIMONCELLI, 2016) model was imported

from the TensorFlow Compression GitHub page (BALLé, 2022), with some minor ad-

justments to fit our base code. A local environment was used instead of regular Google

Colab hosted execution environment, since it provided faster training and execution times

due to the dedicated GPU.

The hardware setup of the local environment is the following:

• CPU: Intel I5 11400F with 6 cores and 12 threads, and max core clock of 4.40GHz.

• GPU: NVIDIA GeForce RTX 4070 with 12 Gb of Video RAM (VRAM).

• RAM: 32 Gb.

To be able to take advantage of the CUDA cores capabilities from the GPU, the Jupyter

Notebook used as local environment on Google Colab was running on WSL2 with Ubuntu

22.04.3 LTS distro, on Windows 10, with Python 3.10 and TensorFlow 2.14.0 library, the

CUDA SDK 12.3.0 and the NVIDIA driver GeForce Game Ready 546.65.

1Available at https://kakadusoftware.com/

43

5.2 Setup of the Training Process

For training the AE model, it was used the COCOminitrain (SAMET; HICSON-

MEZ; AKBAS, 2020) dataset containing 25000 images for training and 5k images for

validation. To optimize the dataset training speed, only crops of the original images were

utilized, and images that were smaller than 256 by 256 were discarded to maintain a rea-

sonable level of image quality. Table 5.1 shows the chosen model parameters for training,

and the next paragraphs explains them.

Table 5.1 summarizes all the parameters mentioned above.

Table 5.1: Parameters used for model training

Parameter Value

Input size 128x128

Steps per epoch 1000

Batch size 8

Train images/epoch 8000

Epochs 100

Lambda 0.001, 0.004, 0.01, 0.03

Filter size 192

Color mode RGB

Learning rate 10−4

The input size is the dimension of the images used in the model during training.

During training, only images with this exact dimension can be used. For inference, any

image dimension can be used, since there is no defined size for the input, and the model

is fully convolutional. We maintained the initial training input size of 128 by 128, same

as Ballé’s (TENSORFLOW, 2022).

The COCOmini dataset was used through a TensorFlow API dataset object, to

load images during training. Previously we were utilizing all of the images in the training,

during an epoch, but later, tried the approach of using only 1000 steps per epoch, which

meant that for each step of the epoch, we loaded eight samples from the batch. This

means that instead of loading all the images in a single epoch, around 25000, we used

only 8000 images per epoch (1000x8 = 8000). This choice of steps per epoch made the

training almost three times faster. It also lowered the "smoothness" of the loss function

during training, but the contrary happened for the validation, having even better loss on

44

validation as exemplified in Figures 5.1 and 5.2

The graph on Figure 5.1 shows the difference between using all images or one

third of the images from the training dataset in one epoch. The blue and green lines are

from the model using the partial dataset per epoch, and the yellow and purple are using the

entire dataset per epoch. Using only a portion of the dataset per epoch is clearly better for

the validation loss and even for the training time, being almost three times lower, which

allows training the model for more epochs in less time.

Figure 5.1: Loss during validation and training for each epoch, using λ = 0.004. The
graph shows the difference in loss on training when using the entire dataset per epoch,
versus using only a third of the dataset per epoch.

Source: The Author

The graph on Figure 5.2 shows the difference between using all images or one

third of the images from the training dataset in one epoch. The dark blue, yellow and

green lines are from the model using one third of the images per epoch, and the orange,

cyan and purple are using the entire dataset per epoch. Using only a portion of the dataset

per epoch is clearly better for the validation loss and even for the training time, being

roughly three times lower, which allows training the model for more epochs in less time.

Initially the models would be trained for 1000 epochs, as is defined in the base

code (TENSORFLOW, 2022), but the models were trained for 500 epochs, since the loss

function for 500 epochs and 1000 epochs were similar, as is seen on Figure 5.3, and took

half the time to train the models, facilitating the experiments.

The batch size is the number of samples (images) that are processed before up-

dating the model’s parameters. The batch size for training is eight, same as Ballé’s. This

value was already good enough and wouldn’t bring much improvements to the training

45

Figure 5.2: Loss during validation with default, and different steps per epoch, for different
λ.

Source: The Author

Figure 5.3: The difference in loss between the model trained for 1000 epochs (in orange)
and the model trained for 500 epochs (in purple) is approximately 0.0164, while the train-
ing time for 1000 epochs is almost the double than for 500 epochs.

Source: The Author

with other values.

The loss function used to train our models, presented in Eq. 5.1 is the rate-

distortion trade-off function presented earlier, with the Rate being the amount of Bits

per Pixel (BPP) and the Distortion being Mean Squared Error (MSE).

Loss = BPP + λ ∗MSE (5.1)

In (5.1), the λ parameter is a scalar controlling the trade-off between rate (BPP)

and Distortion (MSE). It is a fixed value, set when creating the model, and does not

46

Figure 5.4: BPP values of the base model, for all values of λ

Source: The Author

change. The BPP calculation is better defined at (BALLÉ; LAPARRA; SIMONCELLI,

2016).

Since the model needs to be trained to a specific value of λ, it is not possible to

set a fixed value for the BPP to define a desired compression rate. Instead, four values of

λ were chosen to approximate different compression qualities, and also based on the BPP

values presented on (BALLÉ; LAPARRA; SIMONCELLI, 2016), together with higher

BPP values.

The chosen λs are: 0.001, 0.004, 0.01, 0.03. These correspond to the desired target

BPP (Bits Per Pixel) approximated values of 0.15, 0.35, 0.7 and 1.2 respectively. The λ

values were obtained by trial and error, by training the model until the BPP validation

value was relatively close to the target values defined. It is important to notice that the

BPP of the compressed images is not the same for every image, so that is why these values

are only an approximation.

In Figure 5.4, it is clear that the BPP values of the model are not constant, and that

the variance in BPP is even more noticeable at higher λ values, i.e., lower compression

ratio. On the other side, JPEG 2000 is able to maintain a fixed rate for the images, since

the rate (BPP) can be explicitly set when compressing the images.

The amount of filters on the convolution layers are 192. This value is the default

value on the base model code (TENSORFLOW, 2022).

Tests were made with models using models with 256 filters and inputs of 256 by

256 images. While the quality of the images for these models were better, their inference

47

time were not ideal in comparison with the base model, so we did not include them in the

experiments results.

We opted to train the model only with colored images, i.e., three channels in the

RGB color model, to have more meaningful results and for a better comparison with

(BALLÉ; LAPARRA; SIMONCELLI, 2016) results, since that is what was used in his

work.

For the learning rate, the Adam training algorithm was used, with a learning rate

of 10−4, same as on the base model (TENSORFLOW, 2022). This value was constant

throughout all the models, since it would not improve the inference times.

5.3 Quality and Complexity Analysis

To evaluate the quality of the trained models, all the images of the Kodak dataset

were compressed and uncompressed, and the values of BPP, MSE, MS-SSIM, PSNR (dB)

and LPIPS were gathered. The same metrics were gathered for JPEG 2000 as well. The

results were then saved on a Comma-Separated Values (CSV) file to facilitate plotting and

data summarization using Python libraries like Seaborn and Pandas.

To evaluate the processing time, all images from the Kodak dataset were com-

pressed and decompressed, utilizing either the GPU or the CPU. It is important to men-

tion that the decompression and compression does not include saving or loading the image

from the disk, but it includes the entropy coding and decoding, so the performance calcu-

lation is not only the inference time of the network.

To gather meaningful timings, for each image, we did 10 warm-up runs, to dis-

card the possible overhead operations that happen at the first time the GPU is used, then,

compressed or decompressed the same image 100 times, and calculated the mean time of

these 100 runs as a result. Although the warm-up runs were mostly due to the GPU, we

also did them on CPU to guarantee comparable results.

The inference time of the decompression on the model was calculated using the

python process_time() method from the default python time library. We tried searching

for better methods to calculate the inference time within the TensorFlow API, but it seems

that there is not an implementation for that at the time of writing.

48

5.3.1 Complexity Analysis

Table 5.2 shows a table with compression and decompression times for both GPU

and CPU using the base model, that will be called Ballé, 2016 in the following figures.

The processing time between CPU and GPU, on the base model, shows a time difference

of two decimal places, for both compression and decompression, which is already an

incredible difference. This is due to the GPU being specially designed to do parallel

processing, much better than the CPU, when working with DNNs (GYAWALI, 2023).

Table 5.2: Mean compression and decompression time, for both GPU and CPU, of Ballé’s
base model for all λ values, and JPEG 2000, on all Kodak images. It also includes the
mean BPP values for each λ value of the base model, and the fixed BPP for JPEG 2000.

Model Name Platform BPP λ Mean Compression
Time (s)

Mean Decompression
Time (s)

Ballé, 2016 CPU 0.104 0.001 0.611 0.661

0.292 0.004 0.594 0.635

0.555 0.010 0.586 0.629

1.031 0.030 0.584 0.627

Average 0.594 0.638

GPU 0.104 0.001 0.008 0.009

0.292 0.004 0.008 0.009

0.555 0.010 0.008 0.009

1.031 0.030 0.008 0.010

Average 0.008 0.009

JPEG2K CPU 0.150 - 0.005 0.005

0.350 - 0.004 0.004

0.700 - 0.004 0.004

1.200 - 0.004 0.004

Average 0.005 0.005
Source: The Author

Comparing the compression and decompression times with JPEG 2000, in Table

5.2, we see that the GPU processing time of the base model is roughly twice as slow than

JPEG 2000, at similar BPP values, but is already a small enough difference to compete

with JPEG 2000, although the same can not be said about the CPU processing time of the

base model.

Figures 5.5 and 5.6 show a processing time comparison between the optimized

49

Figure 5.5: Mean GPU Decompression time for all optimized models and the base model,
for λ = 0.001.

Source: The Author

models and the base models, for λ = 0.001, using the GPU. The models with two layers

show significant improvement over the base model, while the model with three layers, but

with a smaller kernel of 3 by 3, shows only a slight improvement.

In Figure 5.5, the models with two layers have approximately 2ms less time for

decompression, a 25% improvement over the base model. This shows that the number of

layers on the model has significantly more impact to the performance than the changes on

the kernel size.

The GPU average compression time was similar throughout all models, as seen on

Figure 5.6, since the encoder layers of the base model were not changed. Although, these

times did lower a little, on the optimized models, even though the encoder layers were the

same. This is probably due to the AE model being trained end-to-end, thus, changes on

the decoder also changes the model as a whole.

5.3.2 Quality Analysis

After analyzing the performance of the optimized models, the quality analysis

is needed to evaluate which models maintain quality, since we do not want to sacrifice

quality to gain in performance. The Kodak test images were used in these experiments as

50

Figure 5.6: Mean GPU Compression time for all optimized models and the base model,
for λ = 0.001.

Source: The Author

well.

Figure 5.7 shows the PSNR values in dB, for every model with λ = 0.001. From

the optimized models, the models K3x3 and 2L,K9x9 are the closest to the original PSNR

quality from the base model, while the 2L, K3x3 and 2L fails to reach that same level of

quality. Although, when comparing the MS-SSIM metric, the same is not true, as the

Figure 5.7 shows that all the models seem to have maintained similar levels of quality,

although 2L, K9x9 has slightly less variation, as seen in the box plot superior and inferior

limit. Still, in MS-SSIM, even though by a small difference, the 2L, K3x3 model is still

the worst of them all in terms of quality.

Figure 5.9 shows the LPIPS metric results for all models. Here, the LPIPS metric

did not provide much useful information, since all the models obtained similar results,

making it hard to decide which model performed better.

Table 5.3 shows the average PSNR (db) values obtained for each learning-based

model, as well as JPEG 2000. The values inside parentheses represent the difference

between the average PSNR obtained with the Ballé, 2016 base model and each of the

other models presented. The λ values for JPEG represent the same BPP range as the

models.

We can observe that the 2L, K9x9 model has a small PSNR loss of up to 0.07 dB

51

Figure 5.7: PSNR values for all models, with λ = 0.001, in dB. Higher values mean better
quality. Ordered from lowest to highest.

Source: The Author

Figure 5.8: MS-SSIM values for all models, with λ = 0.001. Values range from 0 to 1.
Higher values mean better quality. Ordered from lowest to highest.

Source: The Author

52

Figure 5.9: LPIPS values for all models, with λ = 0.001. Values range from 0 to 1.
Higher values mean better quality. Ordered from lowest to highest.

Source: The Author

(λ = 0.03) for the tested lambda values. In some cases, PSNR gains are observed (up to

0.2 dB for λ = 0.01). The K3x3 presented event higher gains of 0.29 dB for λ = 0.01.

We can also observe that JPEG2K is considerably less efficient.

The models 2L, K9x9 and K3x3 obtained the best quality results compared to the

other optimizations. 2L, K9x9 had the best performance time from all the models, and

although the K3x3 did not have the same performance level as 2L, K9x9, it still did better

than the base model.

While the 2L and 2L, K3x3 models had good decompression times, they were

obtained with a great penalty to image quality, specially for 2L, K3x3.

Table 5.3: Average PSNR values for each λ and PSNR difference with (BALLÉ; LA-
PARRA; SIMONCELLI, 2016)

λ 0.001 0.004 0.01 0.03

Ballé, 2016 23.83 dB 26.49 dB 29.31 dB 33.14 dB

2L, K9x9 23.82 dB (-0.01) 26.57 dB (0.08) 29.50 dB (0.20) 33.08 dB (-0.07)

K3x3 23.76 dB (-0.07) 26.57 dB (0.08) 29.60 dB (0.29) 33.13 dB (-0.02)

JPEG2K 23.40 dB (-0.43) 25.19 dB (-1.31) 27.40 dB (-1.91) 30.88 dB (-2.27)

Source: The Author

53

Figure 5.10: Mean decompression time of the optimized models, the base model, and
JPEG 2000, for all λs. The decompression time of the JPEG 2000 on CPU, while the
decompression time of the models are on GPU. The λ on JPEG 2000 represents the same
level of BPP as those of the models.

Source: The Author

Seeing that the models 2L, K9x9 and K3x3 obtained the best quality and perfor-

mance results compared to the other optimizations, we will focus only on them for the

in-depth analysis.

5.3.3 In-depth Evaluations

In this section the chosen optimized models will be compared with the base model

and the JPEG 2000 codec. First, comparing GPU times and quality between them, then

comparing GPU and CPU times, to check if the same performance gain of the optimized

models were also reflected when using the CPU.

Figure 5.10 compares the best optimized models, the base model, and the JPEG

2000 codec in terms of decompression time, for all λ values, using the GPU for the models

and CPU for JPEG 2000. It is interesting to note that the models kept the same level of

speed between each other in all λs, except K3x3, that got worse results as the λ got higher,

being better than the base model only at the lowest λ. We also see that the 2L, K9x9 model

is by far the fastest of the AEs, proving to be an effective optimization when using GPU

54

Figure 5.11: Mean decompression time of the optimized models, the base model, and
JPEG 2000, for all λs, using the CPU. The λ on JPEG 2000 represents the same level of
BPP as those of the models.

Source: The Author

due to the parallel processing, as mentioned on Section 5.3.1.

Figure 5.11 shows the mean decompression time, same as Figure 5.10, but this

time using the CPU. Here we see the same level of speed throughout all λ. Although,

contrary to Figure 5.10, here we see that the model K3x3 performed at an almost three

times less speed than the fastest model on GPU, 2L, K9x9, that performed even worse than

the base model. The cause of that is definitely due to the kernel size being way smaller on

K3x3, thus, having less parallel operations, while 2L, K9x9, even though having one less

layer, had an increased cost in performance.

Though the model K3x3 had better performance time than the base model, all of

them can not even compare to the performance time of JPEG 2000, being so faster than

the AE models that it did not even appear in the plot.

Figures 5.12 and 5.13 shows that, as was expected, the compression times for both

the CPU and GPU of the optimized models did not have significant differences, when

compared to the decompression times, as we did not change the layers of the encoder.

Although, both optimized models, 2L, K9x9 and K3x3, had slightly lower com-

pression times for λ = 0.001 and λ = 0.004, and for λ = 0.03 2L, K9x9 was almost a

milissecond faster than the other models on GPU.

55

Figure 5.12: Mean compression time of the optimized models, the base model, and JPEG
2000, for all λs. The compression time of the JPEG 2000 on CPU, while the decompres-
sion time of the models are on GPU. The λ on JPEG 2000 represents the same level of
BPP as those of the models.

Source: The Author

On CPU the 2L, K9x9 model was faster for all λ, while K3x3 was the slowest

overall, except for λ = 0.001.

Further analyzing the CPU and GPU compression and decompression times, the

Table 5.4 shows the compression and decompression times, as well as their average

through all λs, for both GPU and CPU of the optimized models and base model, together

with JPEG 2000 times.

5.3.4 Effects of λ on model performance

To have an idea on how much theλ values affect the model performance, Figure

5.14 shows how the decompression time on the GPU varies for each model, for all values

of λ. As shown in Figure 5.4, we see that the BPP values increases in variance the higher

the λ is. This same behavior is reflected in Figure 5.14 as we see that the variance in

decompression time is minimal for λ = 0.001 when compared to λ = 0.03.

56

Table 5.4: Mean decompression and decompression times for the best optimized models
and the base model for all λ values, and JPEG 2K, on GPU and on CPU (Except JPEG
2000, that only runs on CPU).

Model Name λ Platform Mean Compression Time (s) Mean Decompression Time (s)

Ballé, 2016 0.001 CPU 0.611 0.661

Ballé, 2016 0.004 CPU 0.594 0.635

Ballé, 2016 0.010 CPU 0.586 0.629

Ballé, 2016 0.030 CPU 0.584 0.627

Average 0.594 0.638

Ballé, 2016 0.001 GPU 0.008 0.009

Ballé, 2016 0.004 GPU 0.008 0.009

Ballé, 2016 0.010 GPU 0.008 0.009

Ballé, 2016 0.030 GPU 0.008 0.010

Average 0.008 0.009

2L, K9x9 0.001 CPU 0.568 0.734

2L, K9x9 0.004 CPU 0.585 0.764

2L, K9x9 0.010 CPU 0.580 0.759

2L, K9x9 0.030 CPU 0.569 0.735

Average 0.576 0.748

2L, K9x9 0.001 GPU 0.007 0.006

2L, K9x9 0.004 GPU 0.008 0.008

2L, K9x9 0.010 GPU 0.007 0.007

2L, K9x9 0.030 GPU 0.008 0.009

Average 0.008 0.008

K3x3 0.001 CPU 0.584 0.336

K3x3 0.004 CPU 0.609 0.348

K3x3 0.010 CPU 0.608 0.349

K3x3 0.030 CPU 0.588 0.341

Average 0.597 0.344

K3x3 0.001 GPU 0.007 0.008

K3x3 0.004 GPU 0.008 0.009

K3x3 0.010 GPU 0.008 0.009

K3x3 0.030 GPU 0.009 0.010

Average 0.008 0.009

JPEG2K 0.001 CPU 0.005 0.005

JPEG2K 0.004 CPU 0.004 0.004

JPEG2K 0.010 CPU 0.004 0.004

JPEG2K 0.030 CPU 0.004 0.004

Average 0.005 0.005

Source: The Author

57

Figure 5.13: Mean compression time of the optimized models, the base model, and JPEG
2000, for all λs, using the CPU. The λ on JPEG 2000 represents the same level of BPP as
those of the models.

Source: The Author

5.3.5 Rate-distortion performance

To prove that the rate-distortion trade-off is maintained for the optimized models

we have Figures 5.15 and 5.16. Each sample on the figures are the results obtained for an

image from the Kodak dataset. The samples that are grouped forming a curve represents

the images for a specific λ value, increasing from left to right.

We can see, on both figures, that both PSNR and MS-SSIM are maintained in

the optimized models. Figure 5.15 shows that, while the optimized models have slightly

better PSNR values per sample, they also balance that by having more BPP on the images.

For MS-SSIM, the 2L, K9x9 model has slightly higher samples than the other two models,

which shows that this model has better MS-SSIM quality overall, for the same values of

BPP.

58

Figure 5.14: GPU decompression time for the optimized models and the base model, for
all values of λ.

Source: The Author

5.3.6 Visual Analysis

Even though the optimized models obtained great results in both quality and per-

formance, the metrics presented are still not the only measure that should be taken into

account, since image quality is often subjective.

The following images were compressed by the AEs, then saved on a Portable

Network Graphics (PNG) format. The JPEG 2000 images had to be saved on the Bitmap

(BMP) format due to incompatibilities with PNG on the Kakadu software.

On Figure 5.17, one of the main differences between the models and JPEG 2000

is overall smoothness of the image. On JPEG 2000 there seems to be a lot of noise on

the bushes and trees, while on the models these parts are mostly blurred. Even though

the images have visible differences between them, their quality metrics values are really

similar, with only the LPIPS value of the JPEG 2000 compressed image being a little

lower than the others.

One interesting thing, present on the images compressed by the models, is the

presence of blocking artifacts, usually seen in both JPEG and JPEG2000, on the images

compressed by the model, which is something that is not present on the images presented

on (BALLÉ; LAPARRA; SIMONCELLI, 2016). This is probably due to the fact that the

59

Figure 5.15: PSNR distribution by BPP value.

Source: The Author

60

Figure 5.16: MS-SSIM distribution by BPP value.

Source: The Author

61

Figure 5.17: Image from Kodak dataset compressed for BPP = 0.15.

JPEG2K, BPP: 0.15, PSNR: 21.28 dB, MS-SSIM:
0.817, LPIPS: 0.321.

Ballé, 2016, BPP: 0.15, PSNR: 21.29 dB, MS-
SSIM: 0.809, LPIPS: 0.335.

2L, K9x9, BPP: 0.158, PSNR: 21.26 dB, MS-
SSIM: 0.817, LPIPS: 0.341.

K3x3, BPP: 0.155, PSNR: 21.20 dB, MS-SSIM:
0.807, LPIPS: 0.342.

Source: (KODAK, 1999)

models presented here are all trained on compressed images, from the (SAMET; HIC-

SONMEZ; AKBAS, 2020) dataset.

Although the blocking artifacts are present on the images compressed by the AE

models, this is not very noticeable on the 2L, K9x9 model, while on the K3x3 model it

is very noticeable, specially on images with low BPP. This shows a direct correlation

between the size of the blocking artifacts and the kernel size of the convolutional layers.

Figure 5.18 shows images compressed to a BPP value of 0.35. Here we still see

some differences between JPEG 2000 and the models. On the images compressed by the

2L, K9x9, and the Ballé, 2016 model, we can notice that the details on the faces of the

persons are a little better defined. The text at the front of the raft is also slightly more

defined on 2L, K9x9 than the others. Overall, the compression of the models have better

outlines around the edges of objects, as you can see on the edges of the raft, as well as the

words written at the front of the raft.

Figure 5.19 shows images compressed to a BPP value of 0.7. Contrary to the

previous images, that had similar metric values, the image compressed by JPEG 2000, in

this figure, has a significantly lower PSNR value than the other two, while the perceptual

62

Figure 5.18: Image from Kodak dataset compressed for BPP = 0.35.

JPEG2K, BPP: 0.35, PSNR: 27.01 dB, MS-SSIM:
0.934, LPIPS: 0.690.

Ballé, 2016, BPP: 0.335, PSNR: 27.38 dB, MS-
SSIM: 0.926, LPIPS: 0.658.

2L, K9x9, BPP: 0.351, PSNR: 27.43 dB, MS-
SSIM: 0.932, LPIPS: 0.654.

K3x3, BPP: 0.356, PSNR: 27.37 dB, MS-SSIM:
0.922, LPIPS: 0.663.

Source: (KODAK, 1999)

63

Figure 5.19: Image from Kodak dataset compressed for BPP = 0.7.

JPEG2K, BPP: 0.7, PSNR: 28.56 dB, MS-SSIM:
0.970, LPIPS: 0.840.

Ballé, 2016, BPP: 0.695, PSNR: 29.58 dB, MS-
SSIM: 0.969, LPIPS: 0.826.

2L, K9x9, BPP: 0.716, PSNR: 29.67 dB, MS-
SSIM: 0.971, LPIPS: 0.845.

K3x3, BPP: 0.721, PSNR: 29.71 dB, MS-SSIM:
0.970, LPIPS: 0.855.

Source: (KODAK, 1999)

metrics have similar values.

Other than the differences mentioned before, in these images it is possible to notice

that the images compressed by the models tend to blend some parts of the image that have

similar colors. For example, at the balcony, and at the windows, on the JPEG 2000 image

we see that there are flower pots with red flowers in them. Then, if you check the other

images, we can barely see any color other than green. Looking closely, the flowers are

still faintly visible, but they do not maintain their original colors.

Figure 5.20 shows images compressed to a BPP value of 1.2. As these images

have a low compression ratio, compared to the previous images, they do not have any

outstanding differences. The blocking artifacts present on the images compressed by the

models are not even noticeable anymore.

64

Figure 5.20: Image from Kodak dataset compressed for BPP = 1.2.

JPEG2K, BPP: 1.2, PSNR: 34.14 dB, MS-SSIM:
0.986, LPIPS: 0.924.

Ballé, 2016, BPP: 1.158, PSNR: 34.35 dB, MS-
SSIM: 0.986, LPIPS: 0.941.

2L, K9x9, BPP: 1.19, PSNR: 34.25 dB, MS-SSIM:
0.985, LPIPS: 0.944.

K3x3, BPP: 1.187, PSNR: 34.31 dB, MS-SSIM:
0.986, LPIPS: 0.946.

Source: (KODAK, 1999)

65

6 CONCLUSION AND FUTURE WORKS

Throughout this work, we stated the possibilities of image compression utilizing

neural networks, with its advantages and disadvantages when compared to conventional

codecs. While (BALLÉ; LAPARRA; SIMONCELLI, 2016) work propose an end-to-end

compression model, with great compression quality, it did not delve deeper on evaluating

its runtime performance. Thus, did (DICK et al., 2021) work gave us a general idea on the

compression and decompression times of current learning-based models, showing that it

was still not up to the same level in terms of runtime performance, as that of conventional

codecs, such as JPEG 2000 and BPG.

Seeking to lower the decompression time of the AE proposed by (BALLÉ; LA-

PARRA; SIMONCELLI, 2016), we tried lowering the complexity of the decoder layer

of its model, by experimenting with multiple architectures, and selecting the two models

with the best results, the K3x3, fastest on the CPU, and 2L, K9x9, fastest on GPU. These

lower complexity models still managed to maintain the quality of the original model, with

some small quality differences.

The quality of the images are certainly very different between the AE models and

JPEG 2000, but this does not mean that one is better than the other. Quality in images

can be subjective, and the quality metrics used in this work, like the PSNR, MS-SSIM and

LPIPS, are not the only thing that needs to be considered when comparing images. Notice

that some of the images presented in this work, have almost identical quality values, but

the image are still not visually identical, specially when comparing the learning-based

models with the JPEG 2000.

We managed to obtain, on average, approximately 25% reduction in decompres-

sion time for the 2L, K9x9 model, when decompressing the images with the GPU. This

model achieved decompression times competitive enough to be compared with the JPEG

2000 codec, which is an amazing feat for such a small NN. These results were achieved

utilizing one of the newest mid-range consumer GPU, which is not the most cheap GPU

available on the market, but also not as expensive as a high-end GPU, or a datacenter-

grade GPU.

On CPU, the decompression times did not manage to reach JPEG 2000 levels, but

we also saw an incredible 50% lower average decompression time, while only a lowering

the kernel size of the first two layers of Ballé, 2016 model, from a 5 by 5 kernel size to a

3 by 3.

66

Future works have a lot of paths to choose for experimenting, both on quality

and on complexity perspectives of learning-based models. As mentioned by (BALLÉ;

LAPARRA; SIMONCELLI, 2016), different metrics could be used during training to

possibly increase image quality. Unfortunately this did not work in our case, but with fur-

ther improvements to these metrics implementations, and TensorFlow, they could provide

interesting results.

We utilized a dataset with already compressed images, on the JPEG format, and

identified the presence of blocking artifacts on the images compressed by the proposed

optimized models, which could probably be avoided by using datasets with less compres-

sion and different compression algorithms.

The fact that the model was trained with COCOmini dataset, and then evaluated

with the Kodak dataset, shows the power of generalization that this model has, since it

still managed to obtain great results without necessarily testing it against the same dataset

used in training

Learning-based models have an incredible potential for image compression, see-

ing how flexible they can be, and how new research can bring new improvements to

complexity and quality, bringing them even closer to current conventional compression

methods. Also, different complexity reduction techniques could be applied on these mod-

els, as the TensorFlow API receives updates, improving compatibility with custom models

and adding new features.

To conclude this work, we can highlight how practical it is to test new archi-

tectures for an AE, after the initial coding setup is implemented, and how different the

results can be with only small changes to the network, achieving high quality images,

at high compression ratios, while lowering decompression times. Although the train-

ing time is still quite a challenge, we saw how much improvement on training time can

have, by taking advantage of the GPU computational power. With the increase in AI

technologies, machine learning is rising in popularity, and with Nvidia now becoming

an "AI company" (ROACH, 2023), we can expect that even more machine learning fo-

cused hardware will be developed in coming years, possibly increasing the adoption of

machine-learning-based solutions, like AE models, for example.

67

REFERENCES

AGGARWAL, C. C. Neural Networks and Deep Learning, 2nd Edition. [S.l.]:
Springer, 2023.

BALLÉ, J. et al. Nonlinear transform coding. CoRR, abs/2007.03034, 2020. Available
from Internet: <https://arxiv.org/abs/2007.03034>.

BALLÉ, J.; LAPARRA, V.; SIMONCELLI, E. P. End-to-end optimized image
compression. CoRR, abs/1611.01704, 2016. Available from Internet: <http:
//arxiv.org/abs/1611.01704>.

BALLé, J. Ballé Autoencoder model. 2022. <https://github.com/tensorflow/
compression/blob/8137024697286624971adb8f6ee4dd3d35d83619/models/bls2017.
py>. Accessed: 2024-01-26.

BALLé, J.; LAPARRA, V.; SIMONCELLI, E. P. Density Modeling of Images using a
Generalized Normalization Transformation. 2016.

BANK, D.; KOENIGSTEIN, N.; GIRYES, R. Autoencoders. CoRR, abs/2003.05991,
2020. Available from Internet: <https://arxiv.org/abs/2003.05991>.

BELLARD, F. Codecs demo and comparison. 2014. <https://xooyoozoo.github.io/
yolo-octo-bugfixes/#soccer-players&jpg=t&bpg=t>. Accessed: 2023-08-04.

BELLARD, F. BPG Image format. 2018. <https://bellard.org/bpg/>. Accessed:
2023-07-23.

BROSS, B. et al. Developments in international video coding standardization after avc,
with an overview of versatile video coding (vvc). Proceedings of the IEEE, v. 109, n. 9,
p. 1463–1493, 2021.

BUBOLZ, T. L. A. Accelerating Intra Frame Partitioning in Versatile Video
Coding (VVC) Encoder Using Deep Neural Networks. 2021. Available from Internet:
<http://guaiaca.ufpel.edu.br/handle/prefix/8073>.

BUDAGAVI, M. et al. Core transform design in the high efficiency video coding (hevc)
standard. IEEE Journal of Selected Topics in Signal Processing, IEEE, v. 7, n. 6, p.
1029–1041, 2013.

CAI, Y. et al. Yolobile: Real-time object detection on mobile devices via compression-
compilation co-design. In: Proceedings of the AAAI conference on artificial
intelligence. [S.l.: s.n.], 2021. v. 35, n. 2, p. 955–963.

DICK, J. et al. Quality and complexity assessment of learning-based image compression
solutions. In: 2021 IEEE International Conference on Image Processing (ICIP). [S.l.:
s.n.], 2021. p. 599–603.

FLORES, S. Variational Autoencoders are Beautiful. 2019. <https://www.compthree.
com/blog/autoencoder/>. Accessed: 2023-08-05.

68

GANESH, K. S. What’s The Role Of Weights And Bias In
a Neural Network? 2020. <https://towardsdatascience.com/
whats-the-role-of-weights-and-bias-in-a-neural-network-4cf7e9888a0f>. Accessed:
2024-01-31.

GOOGLE. Supervised vs. unsupervised learning: What’s the difference? n.d.
<https://cloud.google.com/discover/supervised-vs-unsupervised-learning>. Accessed:
2024-01-31.

GROIS, D.; NGUYEN, T.; MARPE, D. Coding efficiency comparison of av1/vp9,
h.265/mpeg-hevc, and h.264/mpeg-avc encoders. p. 1–5, 2016.

GYAWALI, D. Comparative Analysis of CPU and GPU Profiling for Deep Learning
Models. 2023.

HASKELL, B. et al. Image and video coding-emerging standards and beyond. IEEE
Transactions on Circuits and Systems for Video Technology, v. 8, n. 7, p. 814–837,
1998.

JOHNSON, J. What’s a Deep Neural Network? Deep Nets Explained. 2020.
<https://www.bmc.com/blogs/deep-neural-network/>. Accessed: 2023-08-20.

JORDAN, J. Variational Autoencoders. 2018. <https://www.jeremyjordan.me/
variational-autoencoders/>. Accessed: 2023-08-05.

JPEG. JPEG Site. 1992. <https://jpeg.org/jpeg/index.html>. Accessed: 2023-07-23.

JPEG. JPEG 2000 Site. 2000. <https://jpeg.org/jpeg2000/index.html>. Accessed:
2023-07-23.

KODAK, E. Kodak Lossless True Color Image Suite. 1999. <https://r0k.us/graphics/
kodak/>. Accessed: 2023-08-014.

KRIZHEVSKY, A. Learning Multiple Layers of Features from Tiny Images.
2009. <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>. Accessed:
2023-08-17.

LIN, T.-Y. et al. Microsoft COCO: Common Objects in Context. 2015.

LIU, Y. AV1 beats x264 and libvpx-vp9 in practical use case.
2018. <https://engineering.fb.com/2018/04/10/video-engineering/
av1-beats-x264-and-libvpx-vp9-in-practical-use-case/>. Accessed: 2023-07-09.

MARCELLIN, M. et al. An overview of jpeg-2000. In: Proceedings DCC 2000. Data
Compression Conference. [S.l.: s.n.], 2000. p. 523–541.

O’NEILL, J. An overview of neural network compression. CoRR, abs/2006.03669,
2020. Available from Internet: <https://arxiv.org/abs/2006.03669>.

RICHARDSON, I. The h.264 advanced video compression standard: Second edition. 04
2010.

RICHARDSON, I. E. H. 264 and MPEG-4 video compression: video coding for
next-generation multimedia. [S.l.]: John Wiley & Sons, 2004.

69

ROACH, J. Nvidia is ‘no longer a graphics company’. 2023. <https://www.
digitaltrends.com/computing/nvidia-said-no-longer-graphics-company/>. Accessed:
2024-02-11.

ROSENBERG, J. Introducing the Industry’s Next Video Codec: AV1. 2018.
<https://blogs.cisco.com/collaboration/av1-video-codec>. Accessed: 2023-07-09.

SAMET, N.; HICSONMEZ, S.; AKBAS, E. HoughNet: Integrating near and
long-range evidence for bottom-up object detection. 2020.

SANDVINE. The Global Internet Phenomena Report. [S.l.], 2023.

SULLIVAN, G. J. et al. Overview of the high efficiency video coding (hevc) standard.
IEEE Transactions on Circuits and Systems for Video Technology, v. 22, n. 12, p.
1649–1668, 2012.

TENSORFLOW. Tensorflow Compression GitHub page. 2022. <https://github.com/
tensorflow/compression>. Accessed: 2024-01-30.

THEIS, L. et al. Lossy image compression with compressive autoencoders. ArXiv,
abs/1703.00395, 2017. Available from Internet: <https://arxiv.org/abs/1703.00395>.

TODERICI, G. et al. Variable Rate Image Compression with Recurrent Neural
Networks. 2016.

TODERICI, G. et al. Full Resolution Image Compression with Recurrent Neural
Networks. 2017.

WANG, F. et al. Joint activity recognition and indoor localization with wifi fingerprints.
IEEE Access, v. 7, p. 1–1, 06 2019.

WANG, Z. et al. Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing, v. 13, n. 4, p. 600–612, 2004.

WANG, Z.; SIMONCELLI, E.; BOVIK, A. Multiscale structural similarity for image
quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems
& Computers, 2003. [S.l.: s.n.], 2003. v. 2, p. 1398–1402 Vol.2.

YANG, L.; SONG, J. Rethinking the knowledge distillation from the perspective of
model calibration. arXiv preprint arXiv:2111.01684, 2021.

YANG, Y. et al. An introduction to neural data compression. Foundations and Trends®
in Computer Graphics and Vision, Now Publishers, Inc., v. 15, n. 2, p. 113–200, 2023.
Available from Internet: <https://arxiv.org/abs/2202.06533>.

ZHANG, R. et al. The unreasonable effectiveness of deep features as a perceptual metric.
In: CVPR. [S.l.: s.n.], 2018.

