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ABSTRACT

This study aims to compare the performance of linear and nonlinear models in data-poor and
data-rich environments with different regularization and loss functions to understand which char-
acteristics of machine learning are useful for macroeconomic forecasting when using Brazilian
macroeconomic variables. For that, we predict three macroeconomic variables that are indicators
of the Brazilian economy: the open unemployment rate of the Metropolitan Region of São Paulo,
the Brazilian inflation rate using the IPCA index, and the spread with the indicator Emerging
Markets Bond Index Plus (EMBI+) for Brazil using 34 linear and nonlinear models that differ in
the hyperparameters, the regularizations and the loss function used. We make the predictions
considering observations of 139 variables for almost 23 years. The main conclusions show that
the best models are the ones with lasso and Elastic Net penalties, and that the data-rich is the best
environment, especially when considering shrinkage methods using the elastic-net estimator.

Keywords: Data-rich. Machine Learning. Forecasting. Macroeconomic Time Series.



RESUMO

Este artigo tem como objetivo comparar vários modelos diferentes em diferentes cenários, a
fim de compreender quais características do aprendizado de máquina são úteis para previsões
macroeconômicas. Este estudo consiste em comparar o desempenho de modelos lineares e
não lineares em ambientes pobres e ricos em dados para diferentes janelas e horizontes para
previsão de diferentes variáveis macroeconômicas brasileiras. Para isso, prevemos três variáveis
macroeconômicas que são indicadores da economia brasileira: a taxa de desemprego aberta da
Região Metropolitana de São Paulo, a taxa de inflação brasileira, usando o índice IPCA, e o
spread com o indicador Emerging Markets Bond Index Plus (EMBI+) para o Brasil usando 34
modelos lineares e não lineares que diferem nos hiper parâmetros, nas regularizações e na função
de perda utilizada. Fazemos as previsões considerando observações de 139 variáveis durante
quase 23 anos. As principais conclusões mostram que os melhores modelos são aqueles com
penalidade de lasso e elastic-net e o ambiente rico em dados (data-rich) é o melhor, especialmente
quando se consideram métodos de shrinkage usando o estimador do elastic-net.

Palavras-chave: Data-rich. Aprendizado de máquina. Previsão. Séries Temporais Macroe-
conômicas.
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1 INTRODUCTION

Machine learning is a powerful tool to learn from data and it is useful for the problem
of modeling and prediction of y given X . Machine learning techniques are increasingly being
used due to their benefits and because of the development and availability of powerful and free
software, such as Python and R that make it very easy to use them. According to the authors in
Mullainathan and Spiess (2017), the success of machine learning at intelligence tasks is mainly
because of its ability to discover complex structure that was not specified in advance and to fit
well in-sample with complex and very flexible functional forms to the data that also perform
well out-of-sample.

This way, machine learning is increasingly being used to forecast macroeconomic vari-
ables, and there are already many papers that have successfully used it to predict US macroe-
conomic variables over the years, for example, Moshiri and Cameron (2000) used artificial
neural network modelling to forecast the inflation rate, Sermpinis et al. (2014) used a hybrid
genetic algorithm–Support Vector Regression (GA-SVR) model to forecast US inflation and
unemployment, and Medeiros et al. (2019) showed that Random Forest outperforms other models
when forecasting the US inflation rate. For the Brazilian case, the macroeconomic forecasting
literature using machine learning models is still very recent. For the Brazilian inflation prediction,
see Araujo and Gaglianone (2023), Garcia, Medeiros, and Vasconcelos (2017) and Medeiros,
Vasconcelos, and Freitas (2016). For the prediction of other Brazilian macroeconomic variables,
see Lindenmeyer and Torrent (2023).

There are many studies that contribute with evidence to prove that machine learning is
useful for macroeconomic forecasting. However, there are not many papers that help to under-
stand what are the main characteristics of machine learning that make a good forecasting model.
The authors in Goulet Coulombe et al. (2022) sought to answer this question by conducting
a meta-analysis of many machine learning products using US and Canadian data, in order to
understand how machine learning is useful for macroeconomic predictability. In their analysis,
the authors identified four main features of machine learning, which are described below:

a) the function that forms the prediction;

b) the regularization penalty;

c) the set of hyperparameters;

d) the loss function.

It is important to highlight that such study is necessarily restrictive because there are
many possibilities regarding the selection of the regression function, the density of regressors, the
correlation between them, the error density, the sample size, the type of polynomial regression,
the kernel function, the smoothing and regularization parameters, the type of squared error
criterion function, among other factors. Considering this, the authors concluded that nonlinearity
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is the true game changer for macroeconomic prediction, that the standard factor model remains
the best regularization, that K-fold cross-validation is the best practice and that the squared error
loss is preferred to the ϵ̄-insensitive in-sample loss.

With the paper "Key features for improving macroeconomic forecasting - Evidence
from Brazil" in section 2, we seek to construct a similar experiment for the Brazilian case by
conducting an exercise of an extensive pseudo-out-of-sample forecasting horse race between
many models that differ with respect to these features in order to see if we reach different
conclusions when analyzing macroeconomic variables for an emerging country. For that, we
forecast the open unemployment rate of the Metropolitan Region of São Paulo (UNRATE), the
Brazilian inflation rate using the Brazilian Consumer Price Index called Índice de Preços ao

Consumidor Ampliado (IPCA) and the Brazilian spread using the Emerging Markets Bond Index
Plus (EMBI+). We chose to make the predictions both in data-poor and data-rich environments
using the model Autoregressive direct (AR) as benchmark, and the models Random Forest,
boosting, Support Vector Regression, factor models and models with ridge, lasso, and Elastic Net
penalties. We use Ipeadata database to conduct the analysis using observations of 139 variables
for almost 23 years and considering five forecasting horizons. We contribute to the literature, by
being, as far as we know, the first paper to use these machine learning models to forecast the open
unemployment rate of the Metropolitan Region of São Paulo (UNRATE), and the EMBI+. We
are also the first paper to analyze the main characteristics of machine learning for an emerging
country. The code used in this paper was developed in R programming language and can be
found in our digital repository on GitHub 1.

1 https://github.com/nathaliaoreda/thesis_UFRGS.

https://github.com/nathaliaoreda/thesis_UFRGS
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2 KEY FEATURES FOR IMPROVING MACROECONOMIC FORECASTING: EVI-
DENCE FROM BRAZIL

PRINCIPAIS ATRIBUTOS PARA MELHORAR A PREVISIBILIDADE MACROE-
CONÔMICA: EVIDÊNCIAS PARA O BRASIL

ABSTRACT

This study aims to compare the performance of linear and nonlinear models in data-poor and
data-rich environments with different regularization and loss functions to understand which char-
acteristics of machine learning are useful for macroeconomic forecasting when using Brazilian
macroeconomic variables. For that, we predict three macroeconomic variables that are indicators
of the Brazilian economy: the open unemployment rate of the Metropolitan Region of São Paulo,
the Brazilian inflation rate using the IPCA index, and the spread with the indicator Emerging
Markets Bond Index Plus (EMBI+) for Brazil using 34 linear and nonlinear models that differ in
the hyperparameters, the regularizations and the loss function used. We make the predictions
considering observations of 139 variables for almost 23 years. The main conclusions show that
the best models are the ones with lasso and Elastic Net penalties, and that the data-rich is the best
environment, especially when considering shrinkage methods using the Elastic Net estimator.

Keywords: Data-rich. Machine Learning. Forecasting. Macroeconomic Time Series.

RESUMO

Este artigo tem como objetivo comparar vários modelos diferentes em diferentes cenários, a
fim de compreender quais características do aprendizado de máquina são úteis para previsões
macroeconômicas. Este estudo consiste em comparar o desempenho de modelos lineares e
não lineares em ambientes pobres e ricos em dados para diferentes janelas e horizontes para
previsão de diferentes variáveis macroeconômicas brasileiras. Para isso, prevemos três variáveis
macroeconômicas que são indicadores da economia brasileira: a taxa de desemprego aberta da
Região Metropolitana de São Paulo, a taxa de inflação brasileira, usando o índice IPCA, e o
spread com o indicador Emerging Markets Bond Index Plus (EMBI+) para o Brasil usando 34
modelos lineares e não lineares que diferem nos hiper parâmetros, nas regularizações e na função
de perda utilizada. Fazemos as previsões considerando observações de 139 variáveis durante
quase 23 anos. As principais conclusões mostram que os melhores modelos são aqueles com
penalidade de lasso e elastic-net e o ambiente rico em dados (data-rich) é o melhor, especialmente
quando se consideram métodos de shrinkage usando o estimador do elastic-net.

Palavras-chave: Data-rich. Aprendizado de máquina. Previsão. Séries Temporais Macroe-
conômicas.
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2.1 INTRODUCTION

Machine learning is a powerful tool to learn from data and it is increasingly being used to
forecast macroeconomic variables due to its ability to uncover complex patterns and fit flexible
forms to the data without overfitting, as described by the authors in Mullainathan and Spiess
(2017). There are already many papers that have successfully used machine learning to predict US
macroeconomic variables over the years, for example, Moshiri and Cameron (2000), Sermpinis
et al. (2014), Medeiros et al. (2019). For the Brazilian case, the macroeconomic forecasting
literature using machine learning models is still very recent. For the Brazilian inflation prediction,
see Araujo and Gaglianone (2023), Garcia, Medeiros, and Vasconcelos (2017) and Medeiros,
Vasconcelos, and Freitas (2016). For the prediction of other Brazilian macroeconomic variables,
see Lindenmeyer and Torrent (2023).

There are many studies that contribute with evidence to prove that machine learning is
useful for macroeconomic forecasting. However, there are not many papers that help to under-
stand what are the main characteristics of machine learning that make a good forecasting model.
The authors in Goulet Coulombe et al. (2022) sought to answer this question by conducting
a meta-analysis of many machine learning products using US and Canadian data, in order to
understand how machine learning is useful for macroeconomic predictability. In their analysis,
the authors identified four main features of machine learning, which are the function that forms
the prediction, the regularization penalty, the set of hyperparameters and the loss function used.
It is important to highlight that such study is necessarily restrictive because there are many
possibilities regarding the selection of the regression function, the density of regressors, the
correlation between them, the error density, the sample size, the type of polynomial regression,
the kernel function, the smoothing and regularization parameters, the type of squared error
criterion function, among other factors. Considering this, the authors concluded that nonlinearity
is the true game changer for macroeconomic prediction, that the standard factor model remains
the best regularization, that K-fold cross-validation is the best practice and that the squared error
loss is preferred to the ϵ̄-insensitive in-sample loss.

We seek to construct a similar experiment for the Brazilian case by conducting an exercise
of an extensive pseudo-out-of-sample forecasting horse race between many models that differ
with respect to these features in order to see if we reach different conclusions when analyzing
macroeconomic variables for an emerging country. For that, we forecast the open unemployment
rate of the Metropolitan Region of São Paulo (UNRATE), the Brazilian inflation rate using
the Brazilian Consumer Price Index called Índice de Preços ao Consumidor Ampliado (IPCA)
and the Brazilian spread using the Emerging Markets Bond Index Plus (EMBI+). We chose to
make the predictions both in data-poor and data-rich environments using 34 linear and nonlinear
models that differ in the hyperparameters, the regularizations and the loss function used. We
use Ipeadata database to conduct the analysis using observations of 139 variables for almost
23 years and considering five forecasting horizons. As far as we know, this is the first paper to
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use these machine learning models to forecast the open unemployment rate of the Metropolitan
Region of São Paulo (UNRATE), and the EMBI+. It is also the first paper to analyze the main
characteristics of machine learning for an emerging country.

The rest of the paper is organized as follows. Section 2.2 describes the methodology used
for the forecasting exercise. Section 2.3 describes the forecasting setup. Section 2.4 details the
main results of this study. Lastly, section 2.5 concludes.

2.2 METHODOLOGY

This section presents the methodology followed in this paper, with details of the features
studied, the considered data environments, as well as the models chosen.

Consider an observed value y that we want to analyze. We assume that some predictors
X are related to the variable y in some form. We can write this scenario as following:

y = f(X) + ϵ, (1)

where y is the response variable, X is the set of p predictors available for the prediction
(X1, X2, ..., Xp) and ϵ is a random error term. When y is unknown, it is possible to predict it h

steps ahead using
ŷt+h = f̂(Xt) + ϵ, (2)

where f̂ is the estimate for f , and ŷt+h is the resulting prediction for y, h steps ahead. With the
assumption that f̂ and Xt are fixed, it is possible to show that

E(yt+h − ŷt+h)2 = [f(X) − f̂(X)]2 + V ar(ϵ), (3)

where E(yt+h − ŷt+h)2 represents the expected value of the squared difference between the
predicted and actual value of y and V ar(ϵ) represents the variance associated with the error
term ϵ (James et al., 2013). The goal of machine learning methods is to help estimating f(X) as
precisely as possible by minimizing the reducible error ([f(X) − f̂(X)]2).

As described by Goulet Coulombe et al. (2022), the general prediction setup by Hastie,
Tibshirani, and Friedman (2009) can be described as

min
g∈G

{L̂(yt+h, g(Xt)) + pen(g; τ)}, t = 1, . . . , T. (4)

The four main features for this setup are the following:

a) G is the space of possible functions g that combine the data to form the prediction. The
goal is to discover how nonlinearity can contribute to minimize the reducible error. For
that, we compare the performance of both linear and nonlinear models.

b) pen() is the regularization penalty that controls large values for the function g and prevents
overfitting. We discuss the regularization penalties used in this paper in subsection 2.2.1.
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c) τ is the set of hyperparameters including those in the penalty and the approximator g. For
the τ optimization, we consider both in-sample and out-of-sample methods.

- Akaike Information Criterion (AIC) introduced by AKAIKE (1973) is an in-sample
measure that tries to select the model that is closest to the high-dimensional truth.

- Bayesian Information Criterion (BIC) from Schwarz (1978) is also an in-sample
measure that considers the truth as contained in the set of models when n tends to
infinity. Especially for large sample sizes, BIC penalizes more heavily than AIC.

- K-fold cross validation (CV) is an out-of sample measure defined by

CV(k) = 1
k

k∑
i=1

MSEi, (5)

where k are the number of folds in which the set of observations is divided and MSEi is
the mean squared error of the model on the ith fold. The method is fit on k − 1 folds and
the remaining folder is used to compute the mean squared error (MSE). The mean is then
computed from the k estimates of the test error results (James et al., 2013). For our study,
we consider k = 5, since it is widely used in the forecasting literature and it was also used
in Goulet Coulombe et al. (2022), making it easier to compare the results.

d) L̂ is the loss function that penalizes errors in prediction. The most common loss function
is the squared error loss that can be defined as following, according to Hastie, Tibshirani,
and Friedman (2009):

L(Y, f(X)) = (Y − f(X))2. (6)

The squared error loss is the most popular loss function since the expected squared error is
minimized by the conditional mean. However for this study following Goulet Coulombe
et al. (2022), we will also consider the ϵ̄-insensitive loss function for the Support Vector
Regression (SVR) models, defined in subsection 2.2.2.

2.2.1 Environments

Many papers have studied the performance of macroeconomic forecasting using data-
poor and data-rich environments. Machine learning is often associated with big data, since
using a larger dataset with many predictors can help to identify patterns in the data, perform
variable selection and improve the prediction. However, using a large number of predictors can
sometimes lead to worse results by overfitting, i.e., considering random noise as real signal in
the data, causing larger variance and deteriorating the model’s performance. This is known in the
literature as the bias-variance tradeoff. In this paper we follow Goulet Coulombe et al. (2022)
to study different regularization schemes by comparing several models in the following data
environments: Data-Poor H−

t using the autoregressive direct (AR) model, Data-Rich H+
t using
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the autoregression augmented with diffusion indices (ARDI) from Stock and Watson (2002) and
Elastic Net (EN) using special cases of the Elastic Net (EN) problem as alternative shrinkage
methods.

a) The Data-Poor H−
t model is the autoregressive direct (AR) model, which is specified as:

yt+h = c + ρ(L)yt + et+h, t = 1, . . . , T, (7)

where c is a constant, h ≥ 1 is the forecasting horizon, py is the hyperparameter in this
model, which is the order used for the lag polynomial ρ(L) and et+h is the error term. Here
the predictors in X are the variable that is being forecasted and its py lags.

b) The Data-Rich H+
t model is the autoregression augmented with diffusion indices (ARDI)

from Stock and Watson (2002):

yt+h = c + ρ(L)yt + β(L)Ft + et+h, t = 1, . . . , T (8)

Xt = ΛFt + ut, (9)

where c is a constant, Ft are K consecutive static factors, ρ(L) and β(L) are lag polyno-
mials of orders py and pf respectively and et+h and ut are error terms. The estimate of Ft

is obtained by principal component analysis (PCA) and the result is used as data in an Au-
toregressive Distributed Lag model (ARDL) model. py, pf and K are the hyperparameters
of the model. In this model, the predictors X are the variable that is being forecasted with
its py lags and the K consecutive static factors with its pf lags. It is important to highlight
that py and pf always have the same value in our study.

c) The Elastic Net (EN) is used to generate alternative shrinkage methods to provide varia-
tion for the data-rich environment. The Elastic Net estimator by Zou and Hastie (2005)
considers the lasso and ridge estimators as two extreme cases. The Elastic Net selects
variables like the lasso and shrinks together the coefficients of correlated predictors like
ridge (Hastie; Tibshirani; Friedman, 2009). The EN problem is defined as following, as
can be seen in Goulet Coulombe et al. (2022):

min
β

T∑
t=1

(yt+h − Ztβ)2 + λ
K∑

k=1

(
α|βk| + (1 − α)β2

k

)
, (10)

where Zt = B(Ht) is a transformation of the original predictive set Xt and λ is a com-
plexity parameter that controls the amount of shrinkage. We use different B operators and
α to generate variations across shrinkage schemes. Also, by setting α to either 1 or 0 we
generate lasso and Ridge Regression respectively.

Following Goulet Coulombe et al. (2022), we consider the following variation of B for a
fixed λ:
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- B1: taking all observables H+
t : For B1, we consider the whole untransformed high-

dimensional dataset (H+
t ). In this variation, the predictors in Zt are all the untrans-

formed 139 variables of the dataset and its py lags. The hyperparameters in this model
are the λ which is determined by CV and the lag order for the whole untransformed
high-dimensional dataset that we set to py = 12, based on Goulet Coulombe et al.
(2022), that also considered the value 12 as the maximum lag order for the models.

- B2: taking all principal components of Xt: Here B2() rotates the whole dataset Xt

into factors estimated by principal components, which then constitute Zt to be used
in (10). The hyperparameters in this model are the λ which is determined by CV and
the lag order for the factors estimated by principal components (pf ) that we also set
to 12.

- B3: taking all principal components of H+
t : Finally, B3() is similar to B2 and rotates

the whole dataset Xt into factors estimated by principal components. The result is
then combined to the variable that is being predicted, which then constitute Zt to be
used in (10). The hyperparameters in this model are the λ, which is determined by
CV, the lag order of the variable to be estimated (py) and the lag order for the factors
estimated by principal components (pf ). In this case, we also choose to set py = 12
and pf = 12.

We also compare the Elastic Net variations to the linear boosting model for B1 (b1_cv_boost),
B2 (b2_cv_boost) and B3 (b3_cv_boost). The linear boosting is explained in subsection
2.2.2. Here the lag orders considered are the same as the Elastic Net variations and we also
use k-fold cross-validation to select the number of iterations mstop for our model.

2.2.2 Models

In this subsection, we detail all linear and nonlinear models used in this paper. A summary
of the models used can be seen in table 1.
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Table 1 – Models

Model Model Name Function Regularization Loss Fuction
Data-poor models
1 ar_bic/ ar_aic/ ar_cv Autoregressive direct (AR) Linear Squared Error
2 shrink_poor_cv_ridge Ridge Regression- AR Linear ridge Squared Error
3 shrink_poor_cv_lasso Lasso- AR Linear lasso Squared Error
4 shrink_poor_cv_en Elastic Net- AR Linear en Squared Error
5 rf_poor_cv Random Forest- AR Nonlinear Squared Error
6 bols_poor_cv Linear Boosting- AR Linear Squared Error
7 bbs_poor_cv Boosting with Splines- AR Nonlinear Squared Error
8 svr_linear_poor_cv Support Vector Regression-Linear kernel- AR Linear ϵ̄-insensitive
9 svr_rbf_poor_cv Support Vector Regression-RBF kernel- AR Nonlinear ϵ̄-insensitive

Data-rich models
10 ardi_bic/ ardi_aic/ ardi_cv Autoregression augmented with diffusion indices (ARDI) Linear PCA Squared Error
11 shrink_rich_cv_ridge Ridge Regression- ARDI Linear ridge- PCA Squared Error
12 shrink_rich_cv_lasso Lasso- ARDI Linear lasso-PCA Squared Error
13 shrink_rich_cv_en Elastic Net- ARDI Linear en-PCA Squared Error
14 rf_rich_cv Random Forest- ARDI Nonlinear PCA Squared Error
15 bols_rich_cv Linear Boosting- ARDI Linear PCA Squared Error
16 bbs_rich_cv Boosting with Splines- ARDI Nonlinear PCA Squared Error
17 svr_rich_poor_cv Support Vector Regression-Linear kernel- ARDI Linear PCA ϵ̄-insensitive
18 svr_rbf_rich_cv Support Vector Regression-RBF kernel- ARDI Nonlinear PCA ϵ̄-insensitive
19 b1_cv_boost Linear Boosting-B1 Linear Squared Error
20 b1_cv_ridge Ridge Regression-B1 Linear ridge Squared Error
21 b1_cv_en Elastic Net-B1 Linear en Squared Error
22 b1_cv_lasso Lasso-B1 Linear lasso Squared Error
23 b2_cv_boost Linear Boosting-B2 Linear PCA Squared Error
24 b2_cv_ridge Ridge Regression-B2 Linear ridge-PCA Squared Error
25 b2_cv_en Elastic Net-B2 Linear en-PCA Squared Error
26 b2_cv_lasso Lasso-B2 Linear lasso-PCA Squared Error
27 b3_cv_boost Linear Boosting-B3 Linear PCR Squared Error
28 b3_cv_ridge Ridge Regression-B3 Linear ridge-PCR Squared Error
29 b3_cv_en Elastic Net-B3 Linear en-PCR Squared Error
30 b3_cv_lasso Lasso-B3 Linear lasso-PCR Squared Error

Source: Author.

a) Autoregressive direct (AR) model:

This is the benchmark model used for this paper and it is specified as in (7). We select
the hyperparameter py, which is the order used for the lag polynomial using BIC, AIC,
and CV. The lag order is selected from the subset py = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),
following Goulet Coulombe et al. (2022). For computational purposes, the hyperparameter
is estimated every 12 months.

b) Autoregression augmented with diffusion indices (ARDI) model:

The ARDI model is a data-rich model specified as in (8). The number of consecu-

tive static factors K is selected from the subset {3, 6, 10}, as in Goulet Coulombe
et al. (2022). In addition, the lag orders are also selected from the subset py, pf =
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). All the hyperparameters of this model are selected using
BIC, AIC, and CV and are estimated every 12 months.

c) Shrinkage models (shrink):

The OLS estimator does not take into consideration the trade-off between bias and
variance and it is subject to overfitting. It considers all coefficients as having equal
weights without doing variable selection or regularization. To deal with this issue of
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the OLS estimator and working to improve the prediction accuracy, shrinkage methods
can be used. This way, we estimate a penalized version of the AR model (shrink_poor)
and ARDI model (shrink_rich) that allows potentially more lagged predictors. For the
shrinkage, we consider three different penalties: Ridge Regression, Lasso, and Elas-
tic Net. For all of these methods, the hyperparameter py is estimated from the sub-
set (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for the shrink_poor models using CV and for the
shrink_rich models the number of consecutive static factors K is selected from the subset
{3, 6, 10}, as in Goulet Coulombe et al. (2022) and the hyperparameters py and pf are
selected from the subset (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) using CV. The hyperparameter
λ is also cross validated. For computational purposes, the hyperparameters are estimated
every 12 months. To estimate the shrinkage models, we use package glmnet.

- Ridge Regression (ridge): The parameters for the models using Ridge Regression
are estimated using ridge penalty. In equation (10), the ridge penalty corresponds
to α = 0, that is, λ

∑K
k=1(β2

k). The penalty keeps the β coefficients small to reduce
the variance. It is important to highlight that the ridge penalty does not help with
variable selection since all variables are included in the model even if they have small
β coefficients.

- Least Absolute Shrinkage and Selection Operator (lasso): The lasso penalty is similar
to Ridge Regression; however it may drive some of the β coefficients to 0, potentially
helping with variable selection. In equation (10), the lasso penalty corresponds to
α = 1, i.e., λ

∑K
k=1(|βk|). The lasso penalty forces some of the coefficient estimates

to be exactly 0 when the tuning parameter λ is sufficiently large.

- Elastic Net (en): As described in subsection (2.2.1), the Elastic Net penalty combines
the benefits from both ridge and lasso. The en model is specified as in (10). For
the Elastic Net estimation we consider α = 0.5, which is the same value used in
Medeiros et al. (2019).

d) Random Forest(rf):

A popular way of introducing nonlinearity to the forecast is by using tree-based methods.
This is because trees are intuitive and have natural interpretation. However, they are often
not competitive in terms of predictive accuracy. The inferior prediction accuracy of a
standard tree regression is related to the fact that small changes in the training data lead
to large changes in prediction. As described by Hastie, Tibshirani, and Friedman (2009),
Random Forest is a method to de-correlate the individual tree predictions and can often
perform better. The idea behind Random Forest is to build a number of decision trees on
bootstrapped training samples like the bagging method. However, each time the tree is
split, instead of considering all predictors, a random selection of m predictors is chosen as
split candidates from the full set of p predictors. m is a tuning parameter and we adopt the
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default choice for regression that is m = p/3. For the depth of the tree B, we also adopt
the default value of B = 500. Random Forest is in between parametric and non-parametric
models because it has some structure, but it is not as strict as the structure of the linear
model, for example. Here we don’t do cross-validation to select hyperparameters since
the Random Forest method already does variable selection internally. As also done in
the other models, we consider py = 12 in rf_poor. In addition, for the rf_rich model, we
consider pf = 12 and K = 10. To estimate the Random Forest models, we use package
randomForest.

e) Boosting (bols and bbs):

We also use boosting methods for the forecasting which is a popular and powerful approach.
According to Kauppi and Virtanen (2020), the model is gradually "learned" from the
available data on a term-by-term basis. The generic boosting estimator can be defined as
following:

f̂(.) = f̂ (0) + v
M∑

m=1
ĝ(m)(.), (11)

where M is the stopping criterion of the algorithm, v is a learning rate parameter, f̂ (0) is a
constant that represents the starting point for the boosting process and ĝm)(.) is the learner.
If we consider a specific m, we can define

ĝ(m)(.) = argmin
ĥ(·)

L(f, ĥ(.)), (12)

where the function ĥ is the fitting procedure, and L(·) is the chosen loss function. In
this study, we consider the MSE as the loss function. For the fitting procedure we use
a linear regression with the linear boosting (bols) and the P-spline methodology with
the boosting with splines (bbs) following Schmid and Hothorn (2008), which allows to
introduce nonlinearity to the boosting method and therefore more flexibility to the linear
structure with the use of a nonparametric base.

The component-wise boosting procedure used in this paper starts with the simple average as
the f̂ (0). The weak learners are then added to the model sequentially. For each iteration m,
a single predictor is considered and the baseline learner is fitted for each of the predictor’s
lags at a time. A regression is then done to the residuals and the fit with the smallest residual
sum of squares is selected and used to update the estimation f̂ (m) = f̂ (m−1) + vĝ(m). This
procedure is repeated M times.

The boosting idea is to boost weak learners to a strong learner. The algorithm learns slowly
from previous residuals errors and this way can handle complex relationships in the data,
thus improving the accuracy of the model. The component-wise boosting procedure allows
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to optimize each component individually to improve the model’s performance and does
variable selection by not including weak predictors to the model. This way, the boosting
method does not require pre-ordering of the predictors or their lags, as described by Bai
and Ng (2009). Considering this, we chose not to use CV to select the optimal py, pf and
K hyperparameters. For bols_poor and bbs_poor we consider py = 12 and for bols_rich
and bbs_rich we also consider pf = 12 and K = 10. Also, for bbs_poor and bbs_rich, we
adopt the degrees of freedom df = 4, following the authors in Lindenmeyer and Torrent
(2023). The upper bound was fixed in M = 300 and we use k-fold cross-validation to
select the number of iterations mstop, which is the major tuning parameter of boosting, as
stated in Hofner et al. (2012). To estimate the boosting models, we use package mboost.

f) Support Vector Regression (svr):

Support Vector Regression (svr) is the regression for Support Vector Machines (svm)
discussed initially by Vapnik (1996). Support Vector Machines are based on the idea of
constructing a hyperplane that almost separates all the training observations correctly
according to their class labels and that a test data will be classified according to its location
side in this separating hyperplane (James et al., 2013). This is known as a support vector
classifier that uses soft margins to avoid overfitting. As stated in James et al. (2013), "The
support vector machine (SVM) is an extension of the support vector classifier that results
from enlarging the feature space in a specific way, using kernels." This way, SVM is a
nonparametric technique. The Support Vector Regression consists on implementing a linear
epsilon-insensitive SVM (ϵ-SVM) regression which is known as L1 loss. As described in
Goulet Coulombe et al. (2022), the ϵ-SVR can be defined as

min
γ

1
2γ′γ + C

[
T∑

t=1
(ξt + ξ∗

t )
]

s.t.


yt+h − γ′ϕ(Zt) − c ≤ ϵ̄ + ξt

γ′ϕ(Zt) + c − yt+h ≤ ϵ̄ + ξ∗
t

ξt, ξ∗
t ≥ 0,

(13)

where ξt, ξ∗
t are slack variables, ϕ() is the basis function of the feature space implicitly

defined by the kernel, C is the cost of a violation to the margin, ϵ̄ is the insensitive-loss
function, γ are the related weights, c is a constant and T is the size of the sample used for
estimation. The loss function associated with the ϵ−SVR treats errors that are within ϵ̄

distance of the observed value as zero. The low error points are the ones that have small
residuals. This way, the loss function associated with the ϵ−SVR is

Pϵ̄(ϵt+h|t) :=

0 if |et+h| ≤ ϵ̄

|et+h| − ϵ̄ otherwise
. (14)
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For ϵ−SVR the penalty increases at a constant rate once errors are sufficiently large, and it
is different from the squared error loss, where the penalty increases with the size of the
forecasting error.

In this paper, following Goulet Coulombe et al. (2022) we consider both Support Vec-
tor Regression with linear kernel (svr_linear) and with nonlinear RBF kernel (svr_rbf).
For both svr_linear_poor and svr_rbf_poor, py is once again estimated from the subset
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), and for svr_linear_rich and svr_rbf_rich the hyperparam-
eters pf and K are also cross-validated with pf = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) and
K = (3, 6, 10).

The other hyperparameters in these models are the cost (C) selected from the subset C =
(0.1, 0.5, 1, 2, 5) and the epsilon (ϵ̄) selected from the subset ϵ̄ = (0.1, 0.2, 0.3, 0.4, 0.5) to
offer variation from the default values. They are selected every 12 months and by using CV.
In addition for the svr_rbf model a scale parameter σ needed for the kernel is also a hyperpa-
rameter that is cross-validated from the subset σ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
every 12 months. To estimate the Support Vector Regression models, we use package
e1071.

2.3 FORECASTING SETUP

In this section we describe the empirical setup for constructing the forecasting exercise.
We detail the database used, the forecasting exercise and finally the evaluation methods used to
measure the performance of the methods.

2.3.1 Database

The database used in this paper corresponds to monthly data in the period between
January 1996 and May 2019, using the data available in Ipeadata, a macroeconomic, financial,
and regional database of Brazil maintained by Ipea. We decided to start the database in January
1996, because the country’s economic scenario was very unstable before the implementation of
the Real Plan, in February 1994, which could compromise the results of this paper. We decided
to end our analysis in May 2019 since this is the last date available for the open unemployment
rate of the Metropolitan Region of São Paulo used for the forecasting, when this data series was
deactivated.

We construct our dataset based on another dataset, built by the authors Lindenmeyer
and Torrent (2023), where they gathered a base of 140 Brazilian macroeconomic time series
from the following themes: balance of payments, capital stock, consumption and sales, currency
and credit, employment, exchange, financial, foreign trade, national accounts, perception and
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expectation, prices, production, public finance and salary and income.
We used the same dataset as the authors but removed three time series that presented

missing values during the period analyzed. We also included two time series to the dataset that
we also consider for prediction: the Brazilian Consumer Price Index called Índice de Preços ao

Consumidor Ampliado (IPCA); and the Emerging Markets Bond Index Plus for Brazil that is the
difference between the rates of return on bonds from Brazil and those offered by bonds issued by
the US Treasury (EMBI+). This way, our final dataset consists of 139 variables for Brazilian
macroeconomic time series.

To make the data stationary, we follow Lindenmeyer and Torrent (2023) and apply two
tests: the Augmented Dickey Fuller (ADF) test, which was developed by Dickey and Fuller
(1979), and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test developed by Kwiatkowski
et al. (1992). We consider the dataset as treated when the information from both tests can be
interpreted as being stationary.

2.3.2 Forecasting exercise

We make predictions considering the forecasting horizons h = 1, 3, 6, 9, 12 months using
both rolling window and expanding window. To train our models, we use data from January 1996
to December 2008 and to test the results out-of-sample we consider the period from January
2009 to May 2019. Before estimating the forecasting, the data was standardized to ensure that
all variables are on the same scale. This helps with the methods comparison and yields to better
interpretation of the results.

Apart from the boosting and the alternative Elastic Net environment models, where we
optimize hyperparameters every month, we re-optimize hyperparameters every year, i.e., every
12 months to improve computational performance.

In this study, we focus on the prediction of the following three macroeconomic variables
that are indicators of the Brazilian economy using the data in Ipeadata:

a) open unemployment rate of the Metropolitan Region of São Paulo (UNRATE);

b) inflation rate using the Brazilian Consumer Price Index called Índice de Preços ao Con-

sumidor Ampliado (IPCA);

c) spread using the Emerging Markets Bond Index Plus for Brazil, that is the difference
between the rates of return on bonds from Brazil and those offered by bonds issued by the
US Treasury (EMBI+).
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2.3.3 Evaluation

We follow a standard practice in the forecasting literature and use the root Mean Squared
Error (RMSE) to evaluate our forecasting methods. The root Mean Squared Error can be defined
as

RMSE =

√√√√ 1
T

T∑
t=1

(ŷt+h|t,m − yt+h)2, (15)

where T is the total number of out-of-sample forecasts, ŷt+h|t,m is the forecast of model m for
time t + h, and yt+h is the actual value in time t + h. The RMSE is measured in reference to the
benchmark ar_bic in the following way:

relativeRMSPEm
h = RMSPEm

h

RMSPEbench
h

. (16)

This way, when the relative RMSPE < 1, the alternative model performed better than the
benchmark for a horizon h. When the relative RMSPE > 1, the benchmark performed better.

We also perform the Diebold-Mariano test, following Diebold and Mariano (1995) to test
whether difference in expected loss is significantly different from zero for each model against
the reference ar_bic, i.e.

H0 : E
(
L(ŶA, Y ) − L(ŶB, Y )

)
= 0 (17)

This way if we reject H0, we reject the hypothesis that both models perform equally well.
We evaluate Diebold-Mariano test for 1%, 5% and 10% significance.

We also implement the Model Confidence Set (MCS) from Hansen and Nason (2011)
that compares a given set of models to determine the best models for a given variable and horizon.
The MCS is constructed from a collection of competing models where a criterion is used to
evaluate these models empirically. An equivalence test is applied to the set and if this equivalence
test is rejected, there is evidence that one model is better than the other and the null hypothesis
of Equal Predictive Ability is rejected at a certain confidence level. In this case, an elimination
rule is used to discard the models with poor sample performances from M until only the best
models for the criterion used remain in the set M for a given level of confidence. In this paper,
the loss function used for the MCS is the squared error and the test statistic used is the Tmax, as
defined in Hansen and Nason (2011).

Lastly we use the cumulative squared forecast errors (CSFE) initially proposed by Welch
and Goyal (2008) to graphically analyze when the models outperforms or underperforms the
benchmark ar_bic. As described by Caldeira and Torrent (2016), the CSFE can be defined as

CSFEm,T =
T∑

t=1
[(ŷt+h|t,bench − yt+h)2 − (ŷt+h|t,m − yt+h)2]. (18)

This evaluation method measures the cumulative squared prediction errors of the model
minus the cumulative squared prediction error of the benchmark. When a line increases, the
alternative prediction is better; whenever it decreases, the benchmark prediction is better.
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2.4 RESULTS

In this section, we detail the main findings of this forecasting study. Tables 2, 3 and 4
present the results found for the three variables studied using rolling window. Figures 1, 2 and 3
show the CSFE results for the models that performed better in the Model Confidence Set (MCS).
We opted to report only 10 models in each plot to improve the data visualization. In the appendix
A, we also present the results using expanding window.

For the prediction of EMBI+, we can see that for h = 1 most of the models root mean
squared error (RMSE) are better than the benchmark (ar_bic), as can be seen in table 2. The
best models in the Model Confidence Set (MCS) were the ones that used the lasso and Elastic
Net penalties. The best model in h = 1 was b1_cv_en that outperformed the benchmark by
approximately 22%. We can see that for all the horizons analyzed, the lasso and Elastic Net
penalties performed well. However, we cannot statistically say that these models are better than
the benchmark, according to the Diebold-Mariano test. We can also see that for the data-poor
environment and for the data-rich B1, B2 and B3 environment the results are very similar and
usually the same, which indicates that the lasso and Elastic Net penalties shrink to zero several
coefficients in the models and that the most important coefficient is the variable itself that is
being predicted. The ridge penalty was outside the MCS for h = 1, however we can see that this
model also performed well in the different horizons. Considering the Diebold-Mariano test, we
can reject the hypothesis that this model and the benchmark performed equally well with 1% of
significance for h = 1 and 10% of significance for h = 3. Analyzing figure 1, it is possible to
check that for h = 6, 9, 12, the cumulative squared forecast errors (CSFE) of ridge prediction
performs better than ar_bic for most of the prediction time.
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Table 2 – EMBI+: RMSPE Rolling Window

model h=1 h=3 h=6 h=9 h=12
Data-poor models

1 ar_bic 0.8980 0.7174 0.7081 0.7014 0.7062
2 ar_aic 1.0908*** 1.000 1.000 1.0454 1.0408
3 ar_cv 0.8986*** 1.003 1.0029 1.0019 1.0253*
4 shrink_poor_cv_ridge 0.8721*** 1.0134* 1.0029 1.0001 0.994
5 shrink_poor_cv_lasso 0.7841 0.9871 0.9988 1.0062 1.0003
6 shrink_poor_cv_en 0.7841 0.9871 0.9988 1.0062 1.0003
7 rf_poor_cv 0.9253*** 1.0815** 1.0445 1.0398 1.0511
8 bols_poor_cv 0.9479*** 0.9923 0.9944 0.9994 1.0013
9 bbs_poor_cv 0.8931*** 0.9947 1.0037 1.0156 1.0112

10 svr_linear_poor_cv 1.0223*** 0.9968 1.026 1.0561 1.0267
11 svr_rbf_poor_cv 1.0126*** 0.9936 1.1124** 1.2097*** 1.1201***
Data-rich models
12 ardi_bic 1.108*** 2.4782* 87.9048 271.9304 193.1272**
13 ardi_aic 3.6637*** 8.4372*** 87.9048 271.9304 193.1272**
14 ardi_cv 1.0113*** 1.0784*** 1.1151* 1.1064** 1.1047
15 shrink_rich_cv_ridge 0.9525*** 1.0309 1.1084** 1.1057** 1.0562
16 shrink_rich_cv_lasso 0.785 0.9866 0.9986 1.0067 1.0011
17 shrink_rich_cv_en 0.7858 0.9867 0.9974 1.0064 1.0006
18 rf_rich_cv 0.8617*** 1.0676*** 1.0799*** 1.0475 1.0417
19 bols_rich_cv 0.9354*** 1.0083 1.0656 1.0536 1.0551
20 bbs_rich_cv 0.8758*** 0.9889 1.0072 1.0106 1.0015
21 svr_linear_rich_cv 1.0869*** 0.9806 1.0322 1.1171** 1.0879
22 svr_rbf_rich_cv 0.848** 0.994 0.9927 1.0105 1.0014
23 b1_cv_boost 0.8847*** 1.0395** 1.0292 1.0111 0.9998
24 b1_cv_ridge 1.0067*** 1.2582*** 1.2835*** 1.2132*** 1.2079***
25 b1_cv_en 0.7839 0.9871 0.9988 1.0062 1.0003
26 b1_cv_lasso 0.7841 0.9871 0.9988 1.0062 1.0003
27 b2_cv_boost 0.8286** 1.0115 1.0172 1.0347 1.014
28 b2_cv_ridge 0.7999 0.999 1.0061 1.0127 1.001
29 b2_cv_en 0.7841 0.9871 0.9988 1.0062 1.0003
30 b2_cv_lasso 0.7841 0.9871 0.9988 1.0062 1.0003
31 b3_cv_boost 0.8705*** 1.0115 1.0138 1.0335 1.0048
32 b3_cv_ridge 0.8083** 1.0006 1.0039 1.0065 0.9937
33 b3_cv_en 0.7842 0.9871 0.9988 1.0062 1.0003
34 b3_cv_lasso 0.7841 0.9871 0.9988 1.0062 1.0003

Source: Author.
Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in Model Confidence Set

are in bold. ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

For the other horizons h = 3, 6, 9, 12, the benchmark is harder to beat. In h = 3, the only
model discarded in the MCS was ardi_aic and for h = 6, 9, 12, the models ardi_bic, ardi_aic and
b1_cv_ridge were eliminated. Analyzing the ardi results, we can conclude that the models were
overfit, especially for h = 6, 9, 12. This can be explained by the fact that the ardi model does not
have any penalty and all coefficients are included with the same weights in the regression.

For the Brazilian inflation rate IPCA, the best RMSE result for all of the horizons was
model b2_cv_lasso, that outperforms the benchmark by approximately 32% in h = 1, 3, 30.5%
in h = 6, 31% in h = 9 and 25% for h = 12, as described in table 3. For h = 3, 6, 9, we can
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Figure 1 – CSFE EMBI+ Rolling Window

−25

−20

−15

−10

−5

0

2010 2012 2014 2016 2018
Time

Model

ar_rw_cv

b1_rw_cv_lasso

b2_rw_cv_boost

b2_rw_cv_ridge

b3_rw_cv_boost

b3_rw_cv_ridge

bbs_poor_rw_cv

rf_poor_rw_cv

shrink_poor_rw_cv_ridge

svr_rbf_rich_rw_cv

h=1

−6

−4

−2

0

2010 2012 2014 2016 2018
Time

Model

ar_rw_aic

b1_rw_cv_lasso

bbs_poor_rw_cv

bbs_rich_rw_cv

bols_poor_rw_cv

bols_rich_rw_cv

shrink_rich_rw_cv_ridge

svr_linear_poor_rw_cv

svr_linear_rich_rw_cv

svr_rbf_rich_rw_cv

h=3

−7.5

−5.0

−2.5

0.0

2010 2012 2014 2016 2018
Time

Model

ar_rw_aic

b1_rw_cv_lasso

b2_rw_cv_boost

b3_rw_cv_boost

bbs_rich_rw_cv

bols_poor_rw_cv

bols_rich_rw_cv

shrink_poor_rw_cv_ridge

svr_linear_poor_rw_cv

svr_rbf_rich_rw_cv

h=6

−15

−10

−5

0

2010 2012 2014 2016 2018
Time

Model

ar_rw_aic

b1_rw_cv_boost

b1_rw_cv_lasso

b2_rw_cv_boost

b3_rw_cv_boost

bbs_rich_rw_cv

bols_poor_rw_cv

shrink_poor_rw_cv_ridge

svr_linear_poor_rw_cv

svr_linear_rich_rw_cv

h=9

−15

−10

−5

0

2010 2012 2014 2016 2018
Time

Model

ar_rw_aic

b1_rw_cv_boost

b1_rw_cv_lasso

b2_rw_cv_boost

b3_rw_cv_boost

bbs_rich_rw_cv

bols_poor_rw_cv

shrink_poor_rw_cv_ridge

svr_linear_poor_rw_cv

svr_linear_rich_rw_cv

h=12

Source: Author.

Note: In the plots, we report only 10 models that were inside the Model Confidence Set (MCS) to improve the data visualization.

also say that the difference in expected loss is significantly different from zero in reference to
the model ar_bic. Here the best models were in the data-rich environment, especially in B1,
B2 and B3. Once again, the models with better RMSE had lasso or Elastic Net penalty. Other
models that performed well with low RMSE and significance in the Diebold-Mariano test were
the nonlinear model svr_rbf_rich_cv and the linear models b2_cv_boost and b2_cv_ridge. The
ardi models were eliminated from the MCS due to overfitting.
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Table 3 – IPCA: Relative RMSE Rolling Window

model h=1 h=3 h=6 h=9 h=12
Data-poor models

1 ar_bic 1.0723 1.0827 1.0544 1.0701 0.9822
2 ar_aic 1.0955*** 1.045** 1.0801** 1.0953 1.0382
3 ar_cv 1.0601*** 0.7714** 0.7632* 0.7855** 1.2103
4 shrink_poor_cv_ridge 0.9278*** 0.9123** 0.9747* 0.9838 1.0046
5 shrink_poor_cv_lasso 0.7624** 0.6926** 0.7014** 0.6983** 0.7577*
6 shrink_poor_cv_en 0.8521*** 0.761** 0.7740** 0.7626* 0.8126
7 rf_poor_cv 1.0003*** 0.9886** 0.9953** 1.0119* 1.1149*
8 bols_poor_cv 1.0457*** 1.0015** 0.9887* 1.0046* 1.0185
9 bbs_poor_cv 1.0629*** 1.2121** 1.7610 1.8225 2.033

10 svr_linear_poor_cv 1.0457*** 0.9946** 1.0739** 1.0434* 1.0495
11 svr_rbf_poor_cv 0.9744*** 0.8518*** 0.8223** 0.8119* 0.8843*
Data-rich models
12 ardi_bic 1.0049*** 0.8567** 306.6598 862.5396 785.3151
13 ardi_aic 2.2529*** 4.7945*** 306.6598 862.5396 785.3151
14 ardi_cv 1.0956*** 1.0419** 1.1724** 1.0357* 1.2261
15 shrink_rich_cv_ridge 0.9428*** 0.8996** 0.9934* 1.0381* 0.9775
16 shrink_rich_cv_lasso 0.7721*** 0.6849** 0.7023** 0.6945** 0.7548*
17 shrink_rich_cv_en 0.8489*** 0.7544** 0.7549** 0.7562* 0.8053
18 rf_rich_cv 0.8899*** 0.8631*** 0.9201*** 0.9294** 0.9878*
19 bols_rich_cv 0.9755*** 0.9075** 0.9062** 0.8973* 0.9066
20 bbs_rich_cv 0.982*** 1.0323** 1.1205 1.0937 1.1920
21 svr_linear_rich_cv 1.0164*** 0.9164*** 1.0051** 0.9331* 0.9394*
22 svr_rbf_rich_cv 0.7457** 0.6848** 0.7063*** 0.6917** 0.7788*
23 b1_cv_boost 0.8889*** 0.8383** 0.8773** 0.8567* 0.8596
24 b1_cv_ridge 0.8485*** 0.8913*** 0.942*** 0.9249*** 1.0034**
25 b1_cv_en 0.8021*** 0.7308** 0.7413** 0.7327* 0.7725*
26 b1_cv_lasso 0.7301** 0.6803** 0.6947** 0.687* 0.7493
27 b2_cv_boost 0.7500*** 0.7017* 0.6989* 0.7014** 0.7649*
28 b2_cv_ridge 0.6901 0.6800** 0.7035** 0.6952** 0.7546*
29 b2_cv_en 0.6886 0.6774** 0.6946* 0.6868* 0.7505*
30 b2_cv_lasso 0.6821 0.6760** 0.6946* 0.6860* 0.7493
31 b3_cv_boost 0.9303*** 0.8488** 0.8514* 0.8468* 0.8797
32 b3_cv_ridge 0.7029* 0.7018** 0.7262*** 0.7181** 0.7760**
33 b3_cv_en 0.8150*** 0.7367** 0.7393** 0.7315* 0.7885*
34 b3_cv_lasso 0.7270** 0.6826** 0.6948** 0.6873* 0.7496

Source: Author.
Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in Model Confidence Set

are in bold. ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

When we analyze the CSFE results in figure 2, we can see that most models performed
close to the benchmark for most of the prediction time. In 2016, we can see that many models
have a significant loss of performance, and after 2017, the prediction stabilizes again. This loss
of performance can be related to the Brazilian severe economic recession of 2016, that resulted
in a sharp decline of GDP, high unemployment rates, and an increase of the inflation rate during
this period.

By analyzing the results for the unemployment rate of the Metropolitan Region of São
Paulo (UNRATE) in table 4, we can see once again that the models with better RMSE are the
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Figure 2 – CSFE IPCA Rolling Window
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Source: Author.

Note: In the plots, we report only 10 models that were inside the Model Confidence Set (MCS) to improve the data visualization.

ones with lasso and Elastic Net penalties and these models are also included as best models in the
MCS. In h = 1, the model with best RMSE is the shrink_poor_cv_lasso which is in the data-poor
environment and outperfomed the benchmark by 36%. In all other horizons, the best models
have lasso or Elastic Net penalty in the data-rich environment. In h = 3, the model with the best
RMSE was b1_cv_lasso, outperforming the benchmark by approximately 32% and with 10%
significance in Diebold-Mariano test. The other models included in the MCS are the models with
ridge penalty (b2_cv_ridge, b3_cv_ridge and shrink_poor_cv_ridge in h = (6, 9, 12), rf_rich_cv
in h = (1, 3, 6), rf_poor_cv in h = 6 and svr_rbf_rich_ CV in all of the horizons. The boosting
models were also included in MCS (bbs_poor_cv in h = (6, 9, 12), b2_cv_boost in h = (3, 6, 9)
and b3_cv_boost in h = 6). Once again, the ardi models were overfit. Analyzing figure 3, we
can also conclude that the models that consistently outperform the benchmark ar_bic are mainly
the ones with lasso and Elastic Net penalties.
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Table 4 – UNRATE: Relative RMSE Rolling Window

model h=1 h=3 h=6 h=9 h=12
Data-poor models

1 ar_bic 1.0744 1.0277 0.8764 0.881 0.8432
2 ar_aic 1.0006*** 1.001*** 1.0315*** 0.9805** 1.0151**
3 ar_cv 0.9277*** 0.9831*** 1.0374*** 1.0158*** 1.0494***
4 shrink_poor_cv_ridge 0.7224 0.7499 0.8790 0.8567 0.9045
5 shrink_poor_cv_lasso 0.6400 0.6729 0.8072 0.8028 0.8376
6 shrink_poor_cv_en 0.6547 0.6870 0.8064 0.8053 0.8398
7 rf_poor_cv 0.7360* 0.7840** 0.9156* 0.9124* 0.9588**
8 bols_poor_cv 0.8666*** 0.9121*** 0.9171* 0.9177** 0.9747**
9 bbs_poor_cv 0.8462*** 0.8635*** 0.908* 0.8866 0.9426

10 svr_linear_poor_cv 0.9844*** 0.9674*** 1.0164*** 1.0256*** 1.0044***
11 svr_rbf_poor_cv 0.7881*** 0.8152*** 0.9185*** 0.9393** 0.9778*
Data-rich models
12 ardi_bic 1.0284*** 2.5647*** 64.1994 151.8136 326.5195
13 ardi_aic 2.9764*** 5.4569*** 64.1994 151.8136 326.5195
14 ardi_cv 1.0736*** 1.1488*** 1.2276*** 1.4296*** 1.3647***
15 shrink_rich_cv_ridge 0.7416* 0.8351*** 1.0223*** 1.0256*** 1.0324***
16 shrink_rich_cv_lasso 0.6415 0.6735 0.8068 0.8030 0.8363
17 shrink_rich_cv_en 0.6585 0.6782 0.8051 0.8051 0.8375
18 rf_rich_cv 0.7204 0.7457 0.9079* 0.9128** 0.9459**
19 bols_rich_cv 0.8434*** 0.858*** 0.9573** 1.027*** 1.0843***
20 bbs_rich_cv 0.7973*** 0.8493*** 0.9391** 0.9256** 0.9824**
21 svr_linear_rich_cv 0.9625*** 1.0141*** 1.0219*** 1.1246*** 1.0882***
22 svr_rbf_rich_cv 0.6753 0.7254 0.8397 0.8053 0.8496
23 b1_cv_boost 0.8937*** 0.9138*** 1.0225*** 1.0476*** 1.1797***
24 b1_cv_ridge 0.8229*** 0.8827*** 0.9985** 1.0293*** 1.0623***
25 b1_cv_en 0.6695 0.6900 0.8142 0.8127 0.8678
26 b1_cv_lasso 0.6410 0.6710* 0.8072 0.8028 0.8377
27 b2_cv_boost 0.7557*** 0.7426 0.8437 0.8751* 0.9646***
28 b2_cv_ridge 0.6540 0.6914 0.8128 0.8071 0.8368
29 b2_cv_en 0.6597 0.6860 0.8070 0.8024 0.8376
30 b2_cv_lasso 0.6592 0.6879 0.8072 0.8028 0.8376
31 b3_cv_boost 0.7530** 0.7976** 0.8472 0.9235*** 0.9966***
32 b3_cv_ridge 0.6476 0.6860 0.8140 0.8096 0.8382
33 b3_cv_en 0.6441 0.6725 0.8108 0.8066 0.8405
34 b3_cv_lasso 0.6576 0.6846 0.8072 0.8028 0.8376

Source: Author.
Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in Model Confidence Set

are in bold. ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

By analyzing the results for the three variables, we can conclude that the best models
are the ones with lasso and Elastic Net penalties, especially in the data-rich environment. This
result is different than the analysis in Goulet Coulombe et al. (2022). In their study, the authors
concluded: "[...] nonlinearities are the true game changer for the data-rich environment, as
they improve substantially the forecasting accuracy for all macroeconomic variables in our
exercise and especially when predicting at long horizons." For the Brazilian macroeconomic
forecasting, the nonlinear models didn’t have the best performance and had trouble beating
the benchmark ar_bic. This difference can be related to the smaller number of observations
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Figure 3 – CSFE UNRATE Rolling Window
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Source: Author.

Note: In the plots, we report only 10 models that were inside the Model Confidence Set (MCS) to improve the data visualization.

available for Brazilian macroeconomic forecasting and therefore less years available for the
training sample. Since nonparametric estimation assumes no structure on the data, it is necessary
a large training sample to guarantee a smaller variance. Also, as discussed in Clements, Franses,
and Swanson (2004), a model that captures nonlinearities in the dataset and generates a good
in-sample fit does not necessarily mean that it will also generate a good out-of-sample forecast
as there are many unknowns and the economic system is extremely complex.

For the regularization, we can conclude that the data-rich environment leads to better
results than the data-poor environment, however we found that the Elastic Net regularizations
with B1, B2 and B3 usually contribute to generating better models, especially lasso and Elastic
Net. In addition, the predictions for ridge penalty and boosting models also improve in these
environments. Regarding the loss function, we reach similar conclusions as the authors in Goulet
Coulombe et al. (2022) that the main benefits from the use of SVR is the nonlinearity of the RBF
kernel and the squared error is preferred to the ϵ̄-insensitive loss function.

The results for the Brazilian inflation rate are consistent with Garcia, Medeiros, and
Vasconcelos (2017) and Medeiros, Vasconcelos, and Freitas (2016) that showed that models with
the lasso penalty, such as lasso and the Flex-adaLasso are the best models for short horizons.
On the other hand, the results found in this paper are different for longer horizons. In Medeiros,
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Vasconcelos, and Freitas (2016), the author showed that for longer horizons, the AR and the
factor models performed better. Also, in Araujo and Gaglianone (2023), the authors showed that
the nonlinear models such as Random Forest play an important role to forecast the Brazilian
inflation rate at longer horizons. For our study, we have showed that the models with lasso
and Elastic Net penalties performed better than the nonlinear models even for longer horizons,
however it is possible to see that the nonlinear models become more competitive in longer
horizons.

In the appendix A, we show the results using an expanding window. By analyzing the
results, we can reach the same conclusions as the rolling window analysis.

2.5 CONCLUSION

This paper’s goal was to understand what are the key characteristics of machine learning
that are useful for macroeconomic forecasting. We studied a long-term comprehensive dataset of
Brazilian macroeconomic variables from Ipeadata, spanning almost 23 years, and conducted a
forecasting horse-race between 34 models at five different horizons to identify what makes a good
forecasting model for the Brazilian macroeconomic variables, considering the four main features
of machine learning. By analyzing the results for the three Brazilian variables unemployment
rate, inflation and spread, we can conclude that:

a) The ar_bic model is not so easy to beat, especially when considering a big lag order for the
model. Even so, there were some models that consistently outperformed the benchmark
for the three variables considered.

b) The nonlinear models didn’t perform the best as one might expect; however, they became
more competitive in longer horizons. Considering the trade-off between bias and variance,
even though the nonlinear models can help to decrease bias, they increase the variance of
the prediction, and can harm the forecasting performance.

c) The lasso and Elastic Net penalties models have the ability to perform variable selection
and overall had the best relative RMSE, outperforming the benchmark ar_bic as much
as 36%. Also, they were always contained in the set of best models of the MCS. This is
in line with the findings of the authors for the Brazilian inflation rate Garcia, Medeiros,
and Vasconcelos (2017) and Medeiros, Vasconcelos, and Freitas (2016) that showed that
models with the lasso penalty are the best for short horizons.

d) We can also affirm that the data-rich environment is the best and the alternative Elastic
Net penalty can contribute to improving the predictability and making the models more
competitive, for example the ridge penalty and the boosting models.
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e) Lastly, we can conclude that the squared error loss function remains as being the best for
forecasting, as also affirmed by Goulet Coulombe et al. (2022).

Overall, by comparing the results of this paper with the ones found by Goulet Coulombe
et al. (2022), we can also say that the key features of machine learning can vary depending on
the variables and on the country that is being analyzed, and the results can change in different
contexts. We suggest future research on studying the main characteristics of machine learning
for other emerging countries and to extend the analysis to other macroeconomic variables. In
addition, including different machine learning models is desirable for understanding how the
characteristics may change depending on the context of the macroeconomic forecasting analysis.
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3 CONCLUSION

This work aimed to understand what are the key characteristics of machine learning that
are useful for macroeconomic forecasting. . We studied a long-term comprehensive dataset of
Brazilian macroeconomic variables from Ipeadata, spanning almost 23 years, and conducted a
forecasting horse-race between 34 models at five different horizons to identify what makes a
good forecasting model for the Brazilian macroeconomic variables, considering the four main
features of machine learning: the function considered for prediction, the regularization penalty,
the set of hyperparameters and the loss function used. To analyze the predictions made, we
followed the known practice to calculate the relative RMSE and performed the Diebold-Mariano
test and the Model Confidence Set (MCS). Finally, we also analyzed the results graphically by
using the cumulative squared forecast errors (CSFE).

By analyzing the results for the three Brazilian variables unemployment rate, inflation
and spread, we can arrive to the following conclusions:

a) The ar_bic model is not so easy to beat, especially when we consider a big lag order for the
model. Even so, there were some models that consistently outperformed the benchmark
for the three variables considered.

b) The lasso and Elastic Net penalties models had overall the best relative RMSE, outper-
forming the benchmark ar_bic as much as 36%. Also, they were always contained in the
best models of the MCS. This is in line with the findings of the authors for the Brazilian
inflation rate Garcia, Medeiros, and Vasconcelos (2017) and Medeiros, Vasconcelos, and
Freitas (2016) that showed that models with the lasso penalty are the best for short hori-
zons. The lasso has the benefit to do variable selection, while the Elastic Net combines the
benefits from ridge and lasso penalties. According to the authors in Zou and Hastie (2005):
"Similar to the lasso, the Elastic Net simultaneously does automatic variable selection
and continuous shrinkage, and it can select groups of correlated variables." By analyzing
the nonlinear models, they didn’t have the best performance, however they became more
competitive in longer horizons.

c) We can also affirm that the data-rich environment is the best and the alternative Elastic
Net penalty can contribute to improving the predictability and making the models more
competitive, for example the ridge penalty and the boosting models.

d) We can conclude that the squared error loss function remains as being the best for forecast-
ing, as also affirmed by Goulet Coulombe et al. (2022).

Lastly, by comparing the results of this paper with the ones found by Goulet Coulombe
et al. (2022), we can also say that the key features of machine learning can vary depending on
the variables and on the country that is being analyzed, and the results can change in different
contexts. We suggest future research on studying the main characteristics of machine learning
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for other emerging countries and to extend the analysis to other macroeconomic variables. In
addition, including different machine learning models is desirable for understanding how the
characteristics may change depending on the context of the macroeconomic forecasting analysis.
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APPENDIX A – RESULTS USING EXPANDING WINDOW

In this appendix, we present the results using the expanding window for forecasting.

Table 5 – EMBI+: Relative RMSE Expanding Window

Model h=1 h=3 h=6 h=9 h=12
Data-poor models

1 ar_bic 0.8891 0.7088 0.7089 0.7065 0.7070
2 ar_aic 1.093*** 1.000 1.000 0.9753* 1.0036
3 ar_cv 0.9013*** 1.0037 1.0059 1.0091 1.003
4 shrink_poor_cv_ridge 0.872*** 1.0076 1.0036 0.9737 0.9869
5 shrink_poor_cv_lasso 0.7935 0.9980 0.9967 1.0002 0.9996
6 shrink_poor_cv_en 0.7935 0.9980 0.9967 1.0002 0.9996
7 rf_poor_cv 0.9195*** 1.096** 1.0849* 1.0207 1.0636
8 bols_poor_cv 0.965*** 0.9982 0.9951 0.9963 0.9772
9 bbs_poor_cv 0.9025*** 0.9961 1.0095 1.0005 1.0023

10 svr_linear_poor_cv 1.0185*** 0.9868 0.9954 0.9964 0.9713
11 svr_rbf_poor_cv 1.0352*** 1.0073 1.011 1.011 1.0237
Data-rich models
12 ardi_bic 1.1107*** 1.0046 11.3348 7.9001 10.1987
13 ardi_aic 1.5711*** 3.3188* 11.4972 8.1235 10.3186
14 ardi_cv 1.019*** 1.017 1.0279 1.0415** 1.1008
15 shrink_rich_cv_ridge 0.9419*** 1.002 1.0095 1.0295 1.0358
16 shrink_rich_cv_lasso 0.7936 0.9979 0.9967 1.0002 0.9995
17 shrink_rich_cv_en 0.7936 0.9980 0.9967 1.0003 0.9996
18 rf_rich_cv 0.9119*** 1.0705*** 1.0513** 1.0353 1.059***
19 bols_rich_cv 0.9537*** 0.9982 0.9982 1.0049 1.0039
20 bbs_rich_cv 0.9205*** 1.0005 1.0046 1.0027 0.9984
21 svr_linear_rich_cv 1.0969*** 0.9945 1.0201 1.0319 1.0429
22 svr_rbf_rich_cv 0.8716*** 0.9999 1.0011 1.0027 1.0013
23 b1_cv_boost 0.9296*** 1.0651 1.0472 1.0009 0.9996
24 b1_cv_ridge 0.9916*** 1.2244*** 1.2185*** 1.1924*** 1.1985***
25 b1_cv_en 0.7938 0.9980 0.9967 1.0002 0.9996
26 b1_cv_lasso 0.7935 0.9980 0.9967 1.0002 0.9996
27 b2_cv_boost 0.8436** 1.0195 0.9924 0.9925 0.9973
28 b2_cv_ridge 0.8714*** 1.0853*** 1.0923*** 1.0647* 1.0385
29 b2_cv_en 0.7935 0.9980 0.9967 1.0002 0.9996
30 b2_cv_lasso 0.7935 0.9980 0.9967 1.0002 0.9996
31 b3_cv_boost 0.9108*** 1.0204 0.9911 0.9873 1.0098
32 b3_cv_ridge 0.8782*** 1.0851*** 1.0898*** 1.0568* 1.0308
33 b3_cv_en 0.7935 0.9980 0.9967 1.0002 0.9996
34 b3_cv_lasso 0.7935 0.9980 0.9967 1.0002 0.9996

Source: Author.
Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in model confidence set

are in bold. ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.
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Table 6 – IPCA: Relative RMSE Expanding Window

model h=1 h=3 h=6 h=9 h=12
Data-poor models

1 ar_bic 1.0671 0.9584 0.8746 0.8582 0.8122
2 ar_aic 1.0436*** 1.038*** 1.0276** 1.0014* 1.000**
3 ar_cv 0.9866*** 0.9014*** 0.9198*** 0.9077*** 1.0213*
4 shrink_poor_cv_ridge 0.9322*** 0.922** 0.9549** 0.9584* 1.0118*
5 shrink_poor_cv_lasso 0.7308* 0.7642* 0.8371** 0.8509* 0.8991*
6 shrink_poor_cv_en 0.7956*** 0.7756** 0.8382** 0.8536** 0.8996*
7 rf_poor_cv 0.9879*** 1.0347** 1.0287** 1.0649* 1.1867*
8 bols_poor_cv 1.0174*** 0.9945*** 0.9377** 0.9742* 1.0076
9 bbs_poor_cv 1.0187*** 0.919** 0.9282** 0.9515* 0.9799*

10 svr_linear_poor_cv 1.0207*** 0.9909*** 1.0751** 0.9732** 0.9908**
11 svr_rbf_poor_cv 0.9633*** 0.9333** 0.9575*** 0.9248*** 0.9492**
Data-rich models
12 ardi_bic 0.9998*** 0.9191*** 2.2917 30.2984 3.1345
13 ardi_aic 1.2353*** 1.349** 2.4489* 30.373 3.3158
14 ardi_cv 1.0021*** 1.0153*** 1.1758*** 1.077** 1.0316***
15 shrink_rich_cv_ridge 0.8785*** 0.8974*** 0.9907** 1.0402* 0.9577***
16 shrink_rich_cv_lasso 0.7454** 0.7652* 0.8403** 0.856** 0.9009*
17 shrink_rich_cv_en 0.8092*** 0.7798** 0.8418** 0.8578** 0.9002*
18 rf_rich_cv 0.8785*** 0.8705** 0.9718*** 1.0169* 1.0705*
19 bols_rich_cv 0.9575*** 0.922*** 0.9255** 0.9402** 0.9633**
20 bbs_rich_cv 0.9532*** 0.8927** 0.9003** 0.9193** 0.9551**
21 svr_linear_rich_cv 0.9629*** 0.9845*** 0.9643*** 1.0145** 1.0172**
22 svr_rbf_rich_cv 0.777** 0.7927* 0.8645*** 0.8655** 0.9408***
23 b1_cv_boost 0.8885*** 0.8718** 0.9161** 0.9595** 0.9667*
24 b1_cv_ridge 0.7636*** 0.9206*** 1.0253*** 1.0577*** 1.1372***
25 b1_cv_en 0.7662*** 0.7716** 0.8377** 0.8544** 0.8993*
26 b1_cv_lasso 0.711 0.7642* 0.8371** 0.8509* 0.8991*
27 b2_cv_boost 0.7245* 0.7585 0.8468** 0.8524* 0.913*
28 b2_cv_ridge 0.75*** 0.8416*** 0.9239*** 0.9428** 1.0069**
29 b2_cv_en 0.6855 0.7642* 0.8371** 0.8509* 0.8991*
30 b2_cv_lasso 0.6853 0.7642* 0.8371** 0.8509* 0.8991*
31 b3_cv_boost 0.9414*** 0.8517** 0.8802** 0.8909** 0.9309**
32 b3_cv_ridge 0.7325** 0.8519*** 0.9370** 0.9607** 1.0152**
33 b3_cv_en 0.7681*** 0.7703** 0.8369** 0.8518** 0.8993*
34 b3_cv_lasso 0.7106 0.7642* 0.8371** 0.8509* 0.8991*

Source: Author.
Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in model confidence set

are in bold. ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.
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Table 7 – UNRATE: Relative RMSE Expanding Window

model h=1 h=3 h=6 h=9 h=12
Data-poor models

1 ar_bic 1.0531 1.0144 0.8582 0.8669 0.8228
2 ar_aic 1.0041*** 0.994*** 1.0343*** 0.988*** 1.0283**
3 ar_cv 0.8887*** 0.9587*** 1.0612*** 1.0223*** 1.0839***
4 shrink_poor_cv_ridge 0.7419 0.7645 0.891 0.888 0.8936
5 shrink_poor_cv_lasso 0.6581 0.6808 0.8236 0.816 0.8582
6 shrink_poor_cv_en 0.6707 0.6989 0.8181 0.8127 0.8525
7 rf_poor_cv 0.7675** 0.8008** 0.9314* 0.9241* 0.9788**
8 bols_poor_cv 0.8756*** 0.9267*** 0.9368* 0.9404** 0.9878**
9 bbs_poor_cv 0.8974*** 0.9166*** 0.9188 0.9186* 0.9601

10 svr_linear_poor_cv 1.006*** 0.9616*** 1.0361*** 1.0069*** 1.0135**
11 svr_rbf_poor_cv 0.8255*** 0.8238** 0.9382* 0.9934** 0.976***
Data-rich models
12 ardi_bic 0.9743*** 0.871*** 1.4186 2.9937 2.8748
13 ardi_aic 1.201*** 1.2916*** 2.0418*** 3.4212* 3.3586**
14 ardi_cv 0.9896*** 1.0741*** 1.2865*** 1.2196*** 1.0793**
15 shrink_rich_cv_ridge 0.7526* 0.8058** 1.0085** 1.048*** 1.0517***
16 shrink_rich_cv_lasso 0.6581 0.6819 0.8234 0.816 0.8582
17 shrink_rich_cv_en 0.6619 0.7018 0.8164 0.8086 0.8499
18 rf_rich_cv 0.7283 0.7729* 0.9288* 0.928** 0.9599**
19 bols_rich_cv 0.8672*** 0.8775*** 0.9623* 1.0428*** 1.1074***
20 bbs_rich_cv 0.8375*** 0.8398*** 0.9839** 0.9613** 1.0182**
21 svr_linear_rich_cv 0.9902*** 1.0098*** 1.0947*** 1.1906*** 1.114***
22 svr_rbf_rich_cv 0.681 0.7395 0.8275 0.816 0.8899
23 b1_cv_boost 0.9126*** 0.9125*** 0.992* 1.0665*** 1.1265***
24 b1_cv_ridge 0.789** 0.832** 0.9581* 1.0038*** 1.0409***
25 b1_cv_en 0.6793 0.7043 0.8275 0.8238 0.8675
26 b1_cv_lasso 0.6544 0.6814 0.8236 0.816 0.859
27 b2_cv_boost 0.7319 0.7682** 0.8704 0.9292** 1.0035***
28 b2_cv_ridge 0.6788 0.7105 0.8392 0.8296 0.8651
29 b2_cv_en 0.6717 0.6961 0.8236 0.8167 0.8584
30 b2_cv_lasso 0.6717 0.6972 0.8236 0.816 0.8582
31 b3_cv_boost 0.7426 0.7983** 0.8889 0.9417** 0.9984**
32 b3_cv_ridge 0.6718 0.7054 0.8408 0.8344 0.8696
33 b3_cv_en 0.657 0.6826 0.826 0.8199 0.8553
34 b3_cv_lasso 0.6647 0.6943 0.8236 0.816 0.8582

Source: Author.
Note: The numbers represent the relative, with respect to AR,BIC model, root MSPE. Models retained in model confidence set

are in bold. ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.
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Figure 4 – CSFE EMBI+ Expanding Window
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Note: In the plots, we report only 10 models that were inside the Model Confidence Set (MCS) to improve the data visualization.
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Figure 5 – CSFE IPCA Expanding Window
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Source: Author.

Note: In the plots, we report only 10 models that were inside the Model Confidence Set (MCS) to improve the data visualization.
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Figure 6 – CSFE UNRATE Expanding Window
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Source: Author.

Note: In the plots, we report only 10 models that were inside the Model Confidence Set (MCS) to improve the data visualization.
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