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Knowledge is no more expensive than ignorance,

and at least as satisfying

Michael Elliott
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RESUMO

Esta dissertação tem como objetivo desenvolver um código e uma metodologia para a

otimização topológica de materiais piezoelétricos no contexto de mecanismos flexíveis.

Mecanismos flexíveis são dispositivos não rígidos e funcionam com a deformação do ma-

terial para alcançar o objetivo proposto. Para sintetizar tais mecanismos, foi utilizada a

otimização topológica. A otimização topológica é um método matemático que atribui uma

quantidade prescrita de material a um domínio prescrito. A discretização do domínio pelo

método dos elementos finitos é uma abordagem usual e o seu uso foi auxiliado pela utiliza-

ção de bibliotecas Python gratuitas, como o projeto FEniCS (Finite Element Computa-

tional Software) e o dolfin adjoint. Entre o grande número de métodos para a otimização

de topologia, o método PEMAP (PiezoElectric MAterial with Penalization) foi escolhido;

um método semelhante ao SIMP(Solid Isotropic Material with Penalization), mas com o

efeito piezoelétrico como um de seus fatores. Materiais piezoelétricos podem gerar campos

elétricos a partir de deformações assim como ocorre o processo inverso com a aplicação

de um campo elétrico. Atuadores piezoelétricos podem ser usados em diversas aplicações,

dentre elas, sistemas de eletrônica embarcada e uso em equipamentos médicos, ambos

necessitando aplicações em micro e nanoescala. Uma das características dos mecanismos

flexíveis é a ausência de juntas e articulações, o que facilita o uso em pequenas escalas,

uma vez que nenhuma montagem é necessária e não há folgas entre os componentes. A

otimização topologica utilizada teve como objetivo a minimização de mean compliance e

a maximização de mean transduction. Com a metodologia descrita neste trabalho, foram

resolvidos cinco problemas de otimização dupla multi-objetiva de material piezoelétrico e

não piezoelétrico com polaridade no plano estudado. Os resultados apresentados foram

discutidos e a validação foi realizada com todos os passos anteriores do problema.

Palavras-chave: Mecanismos flexíveis; Otimização topológica; Material piezoelétrico

v



ABSTRACT

This dissertation aims to develop code and methodology for the topological optimization

of piezoelectric materials in the context of flexible mechanisms. Flexible mechanisms are

non-rigid devices that operate by deforming the material to achieve the intended objec-

tive. To synthesize such mechanisms, topological optimization was employed. Topological

optimization is a mathematical method that assigns a prescribed amount of material to a

prescribed domain. The discretization of the domain using the finite element method is a

common approach, and its use was assisted by the use of free Python libraries, such as the

FEniCS (Finite Element Computational Software) project and dolfin adjoint. Among the

numerous methods for topology optimization, the PEMAP (PiezoElectric MAterial with

Penalization) method was chosen; a method similar to SIMP (Solid Isotropic Material

with Penalization), but with the piezoelectric effect as one of its factors. Piezoelectric

materials can generate electric fields from deformations, just as the reverse process occurs

with the application of an electric field. Piezoelectric actuators can be used in vari-

ous applications, including embedded electronics and medical equipment, both requiring

applications at micro and nanoscales. One characteristic of flexible mechanisms is the

absence of joints and articulations, which facilitates their use at small scales, as no as-

sembly is required, and there are no clearances between components. The topological

optimization used aimed to minimize mean compliance and maximize mean transduction.

With the methodology described in this work, five double multi-objective optimization

problems for piezoelectric and non-piezoelectric materials with polarity in the studied

plane were solved. The presented results were discussed, and validation was performed

for all previous steps of the problem.

Keywords: Compliant Mechanism; Topology optimization; Piezoelectric material
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1 INTRODUCTION

The first mention of the piezoelectric effect was made by a French mineralogist in

1817 [Piefort, 2001] and in 1880 Curie and Curie made the first demonstration of the phe-

nomenon. The piezoelectric effect is the ability that some materials have to generate an

electric field in response to applied mechanical stress or, for the invert process, generate

mechanical energy through an applied electric field. The latter, called the inverse piezo-

electric effect, was first theorized and proved a year after Curie’s first paper by Lippmann

[apud Moheimani and Fleming, 2006].

A decade later, German physicist, Woldemar Voigt published the basic theory

relating piezoelectricity to crystal symmetry as a result of the tensorial nature of the

effect. His theory formed the basis for the mathematical equations standardized by The

Institute of Radio Engineers (IRE) in 1949. Later, in 1963, the IRE merged with the

American Institute of Electrical Engineers (AIEE) forming The Institute of Electrical and

Electronics Engineers(IEEE). The IEEE, in 1967, published the “Hamilton’s Principle for

Linear Piezoelectric Media” [Tiersten, 1967], consolidating the mathematics view on the

linear piezoelectric effect.

Piezoelectricity started to have field applications with the development of sonars,

during the First World War, where quartz ceramics were used to produce ultrasonic waves

[Piefort, 2001]. During the years after the Great War, the most common applications for

piezoelectric materials started development, such as microphones, accelerometers, and

ultrasonic transducers.

One of the main drawbacks of piezoelectric materials is that the strain produced

by the application of an electric field is very small. The most used piezoceramic, Lead

Zirconate Titanate (PZT), has a recoverable linear strain of 0.1%. If the displacements

produced by the inverse effect could be amplified, the set of possible applications for these

materials could grow significantly. Following this idea, a compliant mechanism (CM) can

be attached to the PZT in order to amplify the mechanism kinematics.

A compliant mechanism transmits force and motion through elastic deformation

instead of hinges and gears. With the needless for distinct parts, CMs do not require

lubricants and are usually frictionless [Howell, 2001]. CMs are generally composed of a

single piece, making assembly and manufacturing easier. Highly scalable, the mechanisms
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can work well with PZT’s micro-scale applications. The compliant mechanism has inher-

ent problems, mainly fatigue susceptibility, energy loss on deformation, and a difficult

design methodology

At the end of the millenium, Salamon and Midha [1998] researched the mechanical

advantages of compliant mechanisms, analyzing designs with concentrated and distributed

compliance, which appeared in publications around the 1990s. While the concentrated

compliance approach is, usually, easier to compare with the rigid solution, the mechanism’s

relationships between force and deflection are still difficult to be determined [Albanesi

et al., 2010]. Moreover, this methodology requires a rigid mechanism design from the start,

while dispersed compliance techniques are more general, with designs obtained without

the need for any commitment or initial topological proposal. Disperse compliance designs

can be created with the use of topology optimization techniques.

Topology optimization (TO) is a computational method that optimizes material

distribution in a defined domain, minimizing a specified cost function to achieve the max-

imum performance for a system. Traditionally, the optimization minimizes material used

and strain energy whilst maintaining mechanical strength [Bendsøe and Sigmund, 2004].

Compliant mechanisms, however, need to maximize the compliance of the system while

adhering to some other constraint, usually a minimum amount of material or maximum

stress. There are several distinct methods for topology optimization, among which the

density-based method, the evolutionary structural optimization (ESO), and the level set

method (LSM) are the most representative [Zhu et al., 2020].

One of the most widely-used methods for topology optimization is the density-

based method developed by Bendsøe and Kikuchi [1988]. The Solid Isotropic Material with

Penalization method is computationally efficient, robust, adjustable, easy to understand,

and does not require homogenization of the microstructure [Rozvany and Olhoff, 2000].

The PEMAP method, developed by Silva and Kikuchi [1999] takes into account the multi-

physics problem of piezoelectric effect when extending the SIMP method.

The density-based approach is usually solved using a Finite Element Method

(FEM) iterative solution. There is an abundance of commercial and noncommercial

solvers of differential equations, needed for computing an FEM problem, among them,

is the FEniCS Project, a research and software project aimed at creating mathematical

methods and software for automated computational mathematical modeling, with effi-
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cient, and flexible software for solving partial differential equations (PDEs) using finite

element methods [Alnæs et al., 2015]. The FEniCS Project is the open-source computing

platform chosen for this work for its high-level programming language, Python and for

solving the forward problem internally, without the need to code the FEM discretization.

The study of compliant mechanisms that incorporate piezoelectric materials is an

area of active research with promising real-world applications in high-precision mecha-

nisms. Such mechanisms can be found in a range of fields, including photographic ma-

chines and computer hard disks. The works of Sigmund et al. [1998] and Silva et al. [1999a]

at the end of the millennium contributed to the notoriety of the subject. Although a great

number of papers were published about topology optimization of piezoelectric material or

compliant mechanisms, few managed to incorporate both (piezoelectricity and CM), and

even fewer were able to optimize two materials as well. Within the studies that manage

to integrate multimaterial and multi-physics optimizations, almost none uses the polar-

ization and electric field in the plane being optimize, therefore restricted in the problem

definition. With the rise of computer technology in recent years, the computational cost

of solving finite element problems dwindles and a rise in topology optimization studies

is clearly seen. The creation of free tools such as the FEniCS library, in 2003, helped

the development of new research, such as Moscatelli’s dissertation [2020] on soft actuator

design using topology optimization method.

This dissertation aims to contribute to the study of compliant mechanisms with

piezoelectric materials by presenting a methodology for topology optimization of those

mechanisms. The method used, PEMAP, with the method of moving asymptotes (MMA)

searches for the optimal arrangement of materials within a given space while taking into

account the desired performance requirements. The two-stage optimization developed is

capable of optimizing the piezoelectric topology, unlike most of the literature that chooses

only one material to optimize.

1.1 Objectives

The main objective of this work is to propose a methodology to solve the multi-

physics problem of topology optimization of a compliant mechanism with a piezoelectric

material. To do so, a formulation using the concept of mean transduction and mean

compliance will be tested. It is also a goal of the present work to develop and make
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available a numerical code to implement the optimization of the piezoelectric material

position and topology of the compliant mechanism.

In a more detailed manner, the specific objectives of this work are:

• propose a framework to deal with the optimization of the shape of the PZT and

the topology optimization of the non-piezo part in order to amplify the output port

displacement of the mechanism;

• test several configurations for boundary conditions and polarization profiles and

obtain the designs that perform best for each case.

• develop a working code, using free software, with examples of the optimizations

made using the workflow.

1.2 Outline of the work

This document begins with the current introductory chapter, contextualizing the

work and showing its motivations and objectives. Following up the second chapter explores

the development of the concepts through the literature in the section titled “Literature

review”. In “Theoretical background”, the third chapter, mathematical equations are

presented and explained, together with the theory used throughout the text, containing

the constitutive equations of piezoelectric materials, theoretical explanations of compliant

mechanisms, the SIMP and PEMAP methods of topology optimization, the filters used,

and the MMA. Chapter 3 aims to clarify the core concepts.

The methodology implemented is presented in the fourth chapter, containing de-

tailed information on the step-by-step of how to go about solving a piezoelectric topology

optimization problem. Chapter five, the second to last, shows the results for all the

benchmark tests done to validate the coding work as well as shows example cases and

their results for the dual material optimization. Lastly, the Conclusion chapter. In it,

the proposed idea is compared to the final result for deliberation on the topic at hand.

Closing this dissertation, the bibliographic references are laid out.
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2 LITERATURE REVIEW

2.1 Multi-material topology optimization

The integration of multiple materials within a structure has always been a challenge

in the design of engineering systems subject to different physical requirements [Monte-

murro et al., 2023]. Multi-material design and topology optimization have been suggested

as the leading method to reduce weight from conventional components and small assembly

structures [Roper et al., 2018].

The first topology optimization problem of two different materials using the SIMP

method was proposed by Sigmund and Torquato [1999]. They use a two-variable ap-

proach to create a three-phase structure (void, material one, and material two). Yin

and Ananthasuresh [2001] developed the peak function interpolation technique, where,

with only one variable, they were able to have a multi-material structure. Tanaka et al.

[2003] published a study of multi-material optimization of adaptive stiffness design, using

the multi-material to create the passive change in the stiffness according to the external

loads. Two years later, Ren et al. [2005] studied the use of compliant mechanism topology

optimization using two materials to increase the mechanical advantage of the device.

An optimization of multi-material to handle strength constraints based on material

failure was presented by Ramani [2010]. In 2015, Park and Sutradhar presented a multi-

resolution implementation for a 3D multi-material topology optimization problem. A year

later, Zuo and Saitou published a paper on ordered multi-material SIMP, a continuation

of Yin and Ananthasuresh’s work, trying to solve the horizontal zero slope problem.

Recently, the research done by Montemurro et al. [2023] on multi-material problems under

inhomogeneous Neumann–Dirichlet boundary conditions clarified their role and influence

on the topology optimization problem.

2.2 Topology optimization of compliant mechanisms

The design of compliant mechanisms is interesting partially because of its inherent

multi-objective performance demand; on one hand, the compliant mechanism needs to

suffice its mechanical functionalities with flexibility or displacement output, while, on the

other hand, remaining stiff enough to sustain external loads or force output [Lin et al.,

2008]
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The use of the SIMP methodology to solve compliant mechanism optimizations

was first introduced by Sigmund [1997]. A year later, Nishiwaki et al. [1998] used the

concept of mean compliance to balance the requirements of both flexibility and mini-

mizing strain energy. Lau et al. [2001] researched distinct ways of creating an objective

function for compliant mechanisms and their benefits and shortcomings. In 2003, Saxena

[Saxena and Saxena, 2003] published their work on honeycomb meshes and the benefit

of no checkerboard problem they have. Lu and Chen [2010] studied the use of topology

optimization for the manufacturing of a compliant mechanism of a prosthetic knee joint

creating a bionic mechanism design using SIMP.

Leon et al. [2015] obtained hinge-free mechanisms using stress constraints applied

to the optimization problem. Liu et al. [2017] studied the use of hyperelastic materials and

the effects of large displacements on the topology optimization of complying mechanisms.

Recently, in 2020, Leon et al. investigated the influence of a nonlinear formulation with a

stress constraint, showing that it plays an important role in stress constrained problems.

That same year, Zhu et al. reviewed topology optimization of compliant mechanisms,

clearly showing increased research on the subject over the past three decades.

2.3 Topology optimization of piezoelectric materials

Actuators using the inverse piezoelectric effect have great properties, such as pre-

cision of movement and a backlash-free motion, in a microscale capacity [Mamiya, 2006].

They also play a key role in the development of microelectromechanical systems (MEMS),

which are increasingly important in fields such as medicine, aerospace, and consumer

electronics [Tai, 2012]. One of the major obstacles in using topology optimization for

conventional structural design problems is the generation of complex geometries leading

to high fabrication costs. However, this issue does not apply to the design of MEMS due

to their distinct fabrication technology [Maute and Frangopol, 2003].

The piezoelectric optimization problem was first solved by the SIMP Method in

1998, with the works of Sigmund et al. and in the following years Sigmund and Torquato

[1999] and Silva and Kikuchi [1999] worked on this problem, iterating new ideas and con-

cepts. Kögl and Silva [2005] developed a methodology to optimize the distribution of

materials and the polarity of the piezoelectric actuators. The topology optimization of

compliant mechanisms using piezoelectric material evolved simultaneously with the opti-
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mization of compliant mechanisms as a whole. With the works of Silva et al. [1999b] and

Silva et al. [1999a], the framework of balancing mean transduction and mean compliance

was developed. Sigmund [2001b,a] wrote a two-paper description of the topology optimiza-

tion method applied to the design of multiphysics actuators and electro-thermomechanical

systems.

The early 2000s saw a growth in research of piezoelectric materials in topology

optimization, with papers by Silva et al. [2000]; Lau et al. [2000]; Carbonari et al. [2007];

Zheng et al. [2008]. The next decade saw Luo et al. [2010] use physical programming

together with the SIMP method to capture the inherent multi-criteria characteristic of

compliant actuators. Ruiz et al. [2013] optimize a piezoelectric sensor by optimizing the

ground structure and the polarization profile of the piezoelectric layers. In 2016, Molter

et al. researched topology optimization of static structures and piezoelectric actuators

simultaneously, distributing both materials in the domain. Recently, Gonçalves et al.

[2018] addressed the problem of piezoelectric actuator design for active structural vibration

control, finding the optimum actuator layout and polarization profile simultaneously. He

et al. [2021] work proposed a multi-material topology optimization approach for the design

of energy-harvesting piezoelectric composite structures.

While the field of optimization of mechanisms using piezoelectric material is abun-

dant, works that combine 2D mechanisms and piezoelectric actuation usually consider the

polarization perpendicular to the plane, unlike the proposed in-plane polarization, which

can lead to a more efficient mechanism.
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3 THEORETICAL BACKGROUND

In this chapter, the necessary theory to understand this work is established. Firstly

the theory of piezoelectricity and piezoelectric constitutive equations are shown, followed

up by a brief explication of the SIMP method and its derivation, PEMAP. Sequentially,

the filters used are mathematically described, and at the end of the chapter, the solving

method for the optimization problem is expressed.

3.1 Piezoelectricity

Piezoelectricity is an electric charge that accumulates in some materials (crystals,

ceramics, and biological matter) in response to applied mechanical stress [Piefort, 2001].

The piezoelectric effect is a reversible process, all materials that have it also exhibit the

reverse piezoelectric effect, that is, the generation of mechanical strain resulting from an

applied electric field.

Piezoceramics, such as PZT above a critical temperature, known as Curie tem-

perature, exhibit a simple cubic symmetry without dipole moment -the separation of

positive and negative electrical charges within. However, below the Curie temperature,

each crystal of the piezoceramic material has tetragonal symmetry and, associated with

it, a dipole moment. Adjacent dipoles create local alignment regions called dominions,

each dominion has its own polarization angle, making the ceramic unpolarized on a macro

scale [Gonçalves, 2015].

The dominions can be aligned through a process of polarization, just below the

Curie temperature, where a strong and continuous electric field is prescribed onto the

material. The electric field forces an alignment of all the dominions and with the removal

of the electric field, most of the dipoles stay locked in a similar angle, creating a permanent

polarization. The behavior of a polarized piezoelectric ceramic at a smaller temperature

can be seen in Figure 3.1, where an electric potential difference is applied to a piezoceramic

with different angles of polarization. The dashed square represents the original shape of

the piezo before the current is applied, and the solid line indicates the displaced material.

For a perfect alignment of electric field and polarization, an angle θ of 0 radians,

the material stretches along the normal and contract in the other axis, for the opposite,

with θ = π, the constriction happens along the normal and the elongation on the other
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(a) (b) (c)

Figure 3.1 – Behavior of piezoelectric materials on an electric field with (a) θ = 0, (b)

θ = π, and (c) θ = π/2.

directions. A shear effect can be seen when the angle between polarization and electric

field is in between the previous values.

3.2 Piezoelectric constitutive equations

The electromechanical properties presented in this work are in conformity with

IEEE [Tiersten, 1967] standards. The assumption that the piezoelectric materials present

a linear behavior is valid for lower levels of mechanical tension and electric fields [Gonçalves,

2019]. The constitutive equations are obtained based on the assumption that the total de-

formation is the sum of the deformation made by mechanical stress and by the application

of an electric potential.

With U being the energy density, Ei the electric vector field and Di the electric

displacement vector, the electric enthalpy H can be defined as

H = U − EiDi (3.1)

By deriving Equation 3.1 with respect to time, using the chain rule, Equation 3.2 is

obtained:

Ḣ = U̇ −DiĖi − EiḊi (3.2)

The energy conservation for a linear piezoelectric material can be expressed by

Equation 3.3 [IEEE, 1988].

U̇ = σijṠij + EiḊi (3.3)
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With σij representing the mechanical stress tensor and Ṡij the derivative over time of the

deformation tensor. An equation showing that mechanical deformation and electric field

are independent variables for the electric enthalpy is obtained by combining Equations

3.2 and 3.3, as

Ḣ = σijṠij −DiĖi. (3.4)

With H being a function of the deformation tensor and the electric vector field,

H(Sij, Ei), Equation 3.4 can be rewritten as

H =
1

2
cEijklSijSkl − ekijEkSij −

1

2
εSijEiEj (3.5)

where cEijkl, εSij and eikl are, in order: the elasticity tensor, with the superscript E denoting

a constant electric field for the acquisition of the data; the piezoelectric tensor in the

absence of mechanical strain, denoted by the superscript S; and the dielectric tensor.

The elasticity tensor is a fourth-rank tensor describing the relation between stress and

strain in a linear elastic material [Cowin, 1989]. The third-order linear piezoelectricity

tensor relates the effect of an electric field on mechanical stress. The dielectric tensor

describes the linear transformation from the external electric field to the internal electric

displacement field in anisotropic materials [Liu et al., 2009]. Knowing that

∂H
∂Sij

= σij

∂H
∂Ei

= −Di

(3.6)

and partially derivating the enthalpy (Equation 3.5) with respect to its variables results

in
σij = cEijklSkl − ekijEk

Di = eiklSkl + εSijEj.
(3.7)

These equations are the base for the FEM model definition. They can be further

simplified by the use of Voigt’s notation. By utilizing the inherent symmetries on the

mechanical tensors, the sub-indices can be grouped in pairs, reducing the dimensions of

the tensors. With i, j, k, l representing the Cartesian space, with sub-indices of 1,2 and

3, corresponding to x, y, and z, Voigt’s notation groups the indices in pairs, resulting in,

at most, two new sub-indices: p and q. The rules for these new indices are[Montagner,
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2008]:  p = i if i = j

p = 9− i− j if i ̸= j
(3.8)

Utilizing this notation, p and q can have values from 1 to 6, representing all possible

combinations of x, y, and z. The set of constitutive equations for a piezoelectric material

using Voigt’s notation, reads as

σp = cEpqSq − ekpEk

Di = eiqSq + εSijEj

(3.9)

with the plane stress assumption defining the optimization problems described in this

dissertation, the matrices can be further simplified.

3.2.1 Plane Stress and rotation

A problem with a state of plane stress has the axis perpendicular to the studied

plane assumed to have negligible stress. With the plane being x-y (1-2), the stresses σ3,

σ4, and σ5 are all defined as zero. This is the common Kirchhoff assumption in a simple

plate and shell theory. Before applying this condition to the constitutive equations, an

extra step is needed. The optimization problems in this dissertation have the polarization

angle of the piezoelectric material be in the plane 1-2, therefore, the constitutive values

of the material need to be corrected, since the values presented in most of the literature

for a piezoceramic have the polarization of the material in the z -axis.

To have the polarization of the piezoelectric material be in the xy plane, the tensors

are required to rotate. The rotation to align the former z -axis with the plane is done with

rotation matrices. ψ is the angle of the rotation, assuming a rotation along the x -axis,

90º degrees counter-clockwise, the new y coordinate aligns with the original z, making

the polarization be in the plane. The rotation of the elasticity tensor can be implemented

using Equation 3.10,

c̆E = KcEKT (3.10)
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with

K
[6]
x (ψ) =



1 0 0 0 0 0

0 (cosψ)2 ( senψ)2 2 cosψ senψ 0 0

0 ( senψ)2 (cosψ)2 −2 cosψ senψ 0 0

0 − cosψ senψ cosψ senψ (cosψ)2 − ( senψ)2 0 0

0 0 0 0 cosψ − senψ

0 0 0 0 senψ cosψ



K
[3]
x (ψ) =


1 0 0

0 cosψ − senψ

0 senψ cosψ


the same is true for e and εS, using the equations presented in the second column of table

3.1.

The matrix K is the rotation matrix for a tensor of dimensions determined by

the number in brackets on the superscript along the axis denoted by the subscript. The

superscript T represents the transpose of a matrix and the angle in parenthesis represents

the angle of rotation, counter-clockwise. The rotation matrices presented above are for a

rotation in the x -axis and c̆E is the new coordinate system of the tensor.

Applying the plane stress condition after the rotation, the remaining strains S3,

S4, S5 are not necessarily zero but may be calculated after the primary system is solved.

The ćE constants do not have a one-to-one correspondence to c̆E, the simplified version

of the constants derived from a fully three-dimensional analysis [Junior et al., 2009].

The relationship between the full three-dimensional constants to the plane stress is given

below, the same is true for the piezoelectric and dielectric constants.

ćE11 = c̆E11 −
(c̆E13)

2

c̆E33
ćE22 = c̆E22 −

(c̆E23)
2

c̆E33
ćE66 = c̆E66

ćE12 = c̆E12 −
c̆E13c̆

E
23

c̆E33
έS33 = ε̆S33 +

(ĕ33)2

c̆E33

é31 = ĕ31 − c̆E13ĕ33
c̆E33

é32 = ĕ32 − c̆E23ĕ33
c̆E33

(3.11)

Using these equations, the elastic tensor can be simplified to a 3x3 matrix. Analo-

gously, the eiq tensor, can be reduced from a 3x6 to a 2x3 representation, similar behavior

happens with the tensor εij, changing from a 3x3 to a 2x2 matrix. Equation 3.12 shows
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the new tensors in a plane stress problem with the z -axis perpendicular to the plane.

ćEPZT =


ćE11 ćE12 ćE16

ćE22 ćE26

Sym. ćE66

 , éPZT =

é11 é12 é16

é21 é22 é26

 , έSPZT =

 έS11 έS12

Sym. έS22

 (3.12)

Since the piezoelectric materials are not isotropic, it is important to consider the

influence of the rotation angle of the piezoelectric material along the z -axis in the values

of the tensors. The constants present in Equation 3.12 have the polarization aligned

with the vertical y axis. To obtain the values for any other angle, the tensors need to

be recalculated. With T and R rotation tensors, expressed in Equation 3.13, the new

coordinates system represented by the superscript [(̀·)], can be calculated [Carbonari et al.,

2007]. Table 3.1 presents a summary of the steps toward the matrices that can be used

in the problem. First, the rotation in the x -axis to align the y, then the reduction, and

then the rotation if needed of the polarity.

T =


cos2 θ sen 2θ sen θ cos θ

sen 2θ cos2 θ − sen θ cos θ

−2 sen θ cos θ 2 sen θ cos θ cos2 θ − sen 2θ

 , R =

 cos θ sen θ

− sen θ cos θ

 (3.13)

Tensors First Rotation Plane Stress Rotation along z-axis
cE c̆E = K

[6]
x cEK

[6]T
x c̆E → ćE c̀E = T T ćET

e ĕ = K
[3]
x eK

[6]
x ĕ→ é è = RT éT

εS ε̆S = K
[3]
x εSK

[3]
x ε̆S → έS ὲS = RT έSR

Table 3.1 – Rotation of tensors.

3.3 Compliant mechanisms

A mechanical device capable of transferring or transforming motion, energy, or

force is called a mechanism. In traditional rigid-body mechanisms, the energy is conserved

between input and output, disregarding friction losses. A compliant mechanism also

transfers or transforms motion, energy, or force, but unlike the rigid body mechanism,

CMs gain some or all of their mobility from the deflection of flexible members rather than

movable joints only [Howell, 2001]. By deforming the mechanism, part of the input energy
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is stored in the form of strain energy, if the device was rigid the mechanism would be a

structure instead.

The advantages of using a compliant mechanism instead of a rigid body one can

be separated into two categories: cost reduction and performance gain. CMs have a

potential for reduction in the total number of parts, having fewer (or none) movable joints,

the assembly time for these mechanisms are drastically lower than their counterpart.

Compliant mechanisms can also have a simplified manufacturing process, needing fewer

processes, reducing the overall cost [Howell, 2001]. Fewer movable joints result in reduced

wear and decrease the need for lubrication, a desirable characteristic for difficult-to-access

mechanisms or for operation in harsh environments. Another benefit of low joint count

is the increase in the mechanism precision: fewer gaps and less or no backlash makes the

compliant mechanism a design option for high-precision instrumentation.

The energy stored in the form of strain energy is similar to the energy stored in a

deflected spring, and this similarity can be used in the design of a compliant mechanism.

This characteristic can also be used to design specific properties, for instance, constant

output force regardless of input displacement. In Figure 3.2a a regular clothespin is

presented. In Figure 3.2b the same object is disassembled to show its three components;

a spring and two rigid bodies. The clothespin uses the deformation of the spring to store

energy and ensure grip strength between the rigid parts. A compliant counterpart, shown

in Figure 3.2c, is made of a single piece, requiring no assembly and performing the same

function. Another advantage of CMs is their scalability. With the reduction in the number

of parts, the fabrication of micromechanisms using compliant mechanisms has taken off

in the form of MEMS.

Compliant mechanisms are not without challenges and disadvantages. The energy-

storing capacity can be used as a tool, but also means that the mechanism always retains

some of the energy input, hindering the efficiency of a mechanism. Fatigue can be detri-

mental in the life cycle of a compliant mechanism and needs to be accounted for in cyclic

uses. Other minor issues involve stress relaxation or creep, the inability to produce a

continuous circular motion, and the strength limitation created by the strength of the

deflecting members. In this work a time-independent solution will be created, meaning

no creep of fatigue will be taken into consideration.

The desirable behavior of a CM has conflicting requisites, the mechanism needs to
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(a) (b) (c)

Figure 3.2 – (a) A spring-loaded mechanism, (b) its components, and (c) a compliant

mechanism equivalent.

be rigid enough to transmit energy and be flexible enough to bend and operate [Sigmund,

1997]. Some of the possible ways to evaluate the performance of compliant mechanisms

are: the geometry advantage proportionated by the mechanism, a ratio between the input

and the output displacement; mechanical advantage, a comparison between the input

force and the obtained by the mechanism as output; and energy conversion efficiency,

a measurement of how much energy is transmitted in the device [Abdalla et al., 2005].

Another problem in dealing with CMs is the difficulty in analyzing and designing the

device, especially for distributed compliance, different approaches are studied in this field,

to mitigate this problem [Bahia, 2005].

3.4 Topology optimization

In mathematics, an optimization problem is defined as the problem of finding

the best solution from a set of all possible solutions. In the study of structures, the

optimization can be separated into three: Sizing optimization, when the only parameters

changing are Cartesian scaling; Shape optimization, when the outer boundary of the

structure is modified to solve the problem; and topology optimization, when the aim is

to optimize material layout within a given design space.

Topology optimization usually has, as input variables, applied loads, possible sup-

port conditions, volume constraints of the structure to be manufactured, and possibly
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some additional design restrictions such as the location and size of prescribed holes or

solid areas, with the goal of maximizing the performance of the system. In the most

generic approach, topology optimization should consist of the determination of the ex-

istence of material in every point on the design space [Sigmund and Maute, 2013]. In

a FEM discretization of the real problem, the continuous space is replaced by elements,

making the topology optimization a mesh-dependent process and a discrete optimization

problem.

The SIMP method works by allowing intermediate values between the Young mod-

ulus of the material and the void. To each element is prescribed a variable, usually called

pseudo density, ranging from zero - representing the void- and one - representing material-

and the set of values for the entire domain is the solution to the optimization problem.

The intermediate values, also called grey areas, are undesirable results, for the interpre-

tation of these values is material that has less resistance than the one being optimized

and more than the void, meaning a mixture of both. To skew the results from values

in between the limits of the variable, a penalization is applied, making values closer to

zero or closer to one. The SIMP method proposes a polynomial interpolation function to

characterize the material properties of the intermediate values, the Equation 3.14 shows

the classic interpretation of the method [Andreassen et al., 2010].

Y = Ymin + (Y0 − Ymin)(ρ
η) (3.14)

with Y being the Young’s Modulus for each element of the FEM mesh, Ymin a positive

small value to represent the void mechanical characteristic and avoid singularities on the

stiffness matrix and consequently a ill-conditioned problem, Y0 the elastic modulus of the

isotropic material chosen, ρ the variable pseudo density and η the penalization defined

by the user. The most usual value for the penalization is 3, a smaller value has little

impact on ρ, and a higher value can lead to nonconvergence of solutions. In Figure 3.3 a

graph of the relative elastic modulus for different values of penalty factors is presented.

With an increase of exponential value for the pseudo density, all in-between values of ρ

are penalized towards the void characteristics, making the existence of grey areas more

ineffective in the optimization problem.
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Figure 3.3 – Penalization of the intermediate densities in the SIMP model.

The SIMP method, as originally stated, can solve problems with two phases, ma-

terial, and void, or, if Ymin were to be changed into a different isotropic material, between

two materials. Optimization of two materials without void would not be classified as a

topology problem, since the entire region would have the same topology before and after

the optimization. To encapsulate another material on a TO problem, adding another

phase, there are two main approaches: with multiple variables or with a single one.

The peak function interpolation technique for SIMP uses only one variable for

pseudo density and instead of being penalized to approach 0 or 1, it has mid values for

each other material. Although it can be faster solving and is independent of the number

of materials, this approach tends to have more grey areas, requiring more upfront in terms

of implementation and more post-processing to have steeper solutions [Zuo and Saitou,

2016].

The method proposed by Sigmund and Torquato [1999] has (m−1) variables for a

problem with m phases. In this approach the first pseudo-density defines the existence of

material or void while the second variable determines if it is a certain material or not, this

process continues until all the variables are calculated. For small quantities of phases,

this approach is fairly easy to implement and understand, separating the optimization

problem into m − 1 sequential ones. In the problem studied, the solution requires three

phases ( two materials, and the void), therefore two variables were used. Equation 3.15
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shows how to calculate Young’s modulus using this method [Ge and Kou, 2021].

Y (χ, ρ) = χηa(ρηbYb + (1− ρηb)Ya) + (1− χηa)Ymin (3.15)

with Ya and Yb being the Young’s modulus for material a and b. The design variables are

χ and ρ, being χ the variable that determines if the element is void or material, and ρ

what material it is. The penalization η can be independent for each pseudo-density.

This method, however, cannot be directly applied to piezoelectric materials, as by

definition they are not isotropic and the multi-physics of the problem means that not

only the elastic behavior of the device should be optimized. The penalization can be

applied to the stiffness matrix instead of Young’s modulus for the mechanical equivalent

of the SIMP method. This corrects the problem with anisotropy, but not with the multi-

physics challenge of a piezoelectric solution. To have a counterpart for the SIMP method,

Silva, together with Kikuchi and Nishiwaki [1999] developed the PiezoElectric MAterial

with Penalization method. PEMAP is the extension of SIMP for piezoelectric materials,

penalizing the stiffness, piezoelectric coupling, and dielectric matrices. Using the PEMAP

idea and the dual material approach of Equation 3.15, the group of equations for the

PEMAP method for two variables is represented by

cpq = χη0
n [ρη1n c

PZT
pq + (1− ρη1n )cISOpq ] + (1− χη0

n )cmin

εiq = χη0
n ρ

η2
n ε

PZT
iq + (1− χη0

n )εmin

eik = χη0
n ρ

η2
n e

PZT
ik + (1− χη0

n )emin

(3.16)

where the superscript ISO represents an isotropic material, PZT is a piezoelectric one,

and the subscript min represents a small value similar to the SIMP proposition. On the

original paper, Silva and Kikuchi [1999] instead of using small values to represent the

void as in Equation 3.16, utilized a restriction on the variable itself, making it 0 < χ ≤ 1.

Analyzing these equations it is easy to note that for values of χ close to 0 the element

behaves as void and for values close to 1 the behavior of the material is defined by ρ: 0

making the behavior similar to the isotropic material and 1 to the piezoelectric one.

3.5 Filters

The SIMP method, and therefore the PEMAP, can have issues with the appear-

ance of checkerboard areas on the optimal solution. Checkerboard patterns are alternating
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solid and void elements, a product of numerical approximations introduced by the finite

element method, causing the area to appear artificially strong [Díaz and Sigmund, 1995].

To prevent checkerboard, the use of higher order finite elements can be implemented. In

topology design the use of higher order elements results in a substantial increase in CPU-

time [Bendsøe and Sigmund, 2004]. Patching, nodal-based formulation, high-frequency

filters, and perimeter constrain are other techniques to avoid the issue, but their imple-

mentation can be difficult, mesh-dependent, or not fully work [Bendsøe and Sigmund,

2004].

Mesh dependence refers to the problem of not obtaining qualitatively the same

solution for different mesh-sizes or discretization [Fanni et al., 2013]. It has been shown

that as the mesh density increases, the final design tends to have an increasing number

of members of decreasing size [Zhou et al., 2001], showing a non-unique solution and a

“convergence” to a microestructure, that can lead to impossible manufacture [Sigmund

and Petersson, 1998].

To avoid this problems, a mesh-independent filter was used. The Helmholtz-type

filter (HTF), proposed by Lazarov and Sigmund [2010] utilizes a Helmholtz-type partial

differential equation (PDE) with homogeneous Neumann boundary conditions. By mak-

ing the filtered variable the solution for Equation 3.17, with Equation 3.18 as its boundary

condition, the filtered and unfiltered variables maintain the same sum, which makes pos-

sible the use of volume restrictions on pseudo-densities before or after the filtering.

−r2∇2ρ̂+ ρ̂ = ρ (3.17)

∂ρ̂

∂n
= 0 (3.18)

On Equations 3.17 and 3.18, r represents the strength parameter, ρ̂ the filtered variable,

ρ the original variable, and n the normal vector to the boundary.

In Figure 3.4a, different solutions for the filtering of a one-dimensional signal are

shown. The initial values are 0 and 1 and the mesh length is unitary. The right region

shows what a 1D checkerboard pattern is: a high-frequency area. Changing the strength

parameter r changes the damping effect of the filter, much like a length parameter would

work on a mesh-dependent filter. The pattern shown is filtered to a non-binary variable,

smoothing the form of the initial variable. Figure 3.4b shows the values presented in the

graph as a image, where 0 is represented by black and 1 with a light gray. The HTF has
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(a) (b)

Figure 3.4 – (a) Helmholtz-type filter behavior for distinct values of r. (b) A visual

representation.

the tendency to depart variables from extreme values, somewhat undoing what the SIMP

method tries to accomplish. To mitigate the problem, another filter can be used after it.

To further deviate the variables from mid values, some techniques can be applied.

A simple threshold can be established using a Heaviside function, where any value below

it is reduced to 0 and any above increases to 1. The problem with this approach is the

non-continuous nature of the step function, its non-differentiability hindering the ability

to calculate gradients. Sharpening the values using methods similar to image processing

ones can be an alternative, but they are mesh dependent. The smooth Heaviside function

(SHF) is a continuous take on the step function and was chosen to project the values

towards the extremes in this dissertation. The Equation 3.19 presents the filter [Leon

et al., 2015].

ρ̃i =
tanh(βα) + tanh (β(ρ̂i − α))

tanh(βα) + tanh(β(1− α))
(3.19)

With ρ̃i being the projected variable ρ̂i, β determinating the slope of the function

and α the threshold. In Figure 3.5 different values and their behavior on the function

are shown, if not explicit, the α variable is set to 0.5, the mid value. The projection

filtering has a simple implementation, however, it does not guarantee that the sum of the

variables remains the same after projection, meaning that the use of this projection alters
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Figure 3.5 – Smooth Heaviside filter behavior.

the volume of the solution. The slope of the function can drastically change the behavior

of the optimization [Leon et al., 2015], because of this, it’s usual to start with a small

value and increase it with each iteration.

Using both filters in the example presented in Figure 3.4a, the one-dimension

checkerboard, Figure 3.6 was constructed. The first image is the original signal. The

second signal shows the HTF applied, with damped values. The third and final signal is

the projection of SHF used after the initial filter, creating a signal similar to the original

but continuous and without the high-frequency checkerboard problem. Figure 3.6d is

a visual representation of these three steps. An image post-process comparison can be

made with how each filter works: HTF works similarly to a blur effect and SHF works as

a sharpening in the contrast.

3.6 Solvers

Optimization problems can be solved in three major ways, analytically, graphically,

and numerically. Analytical forms are divided into differential and variational calculus,

both being restricted to simple optimization problems [Silva, 2007]. The graphical solu-

tions are restricted to only two variables, leaving numerical approaches as the only viable

solution for the proposed problem [Silva, 2007].

The generic numerical solutions are separated into subfields, each with a distinct

ideology. Heuristics methods such as evolution programming, genetic algorithms, and
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(a) (b)

(c) (d)

Figure 3.6 – (a) Original signal example, (b) signal after Helmholz filter, (c) final signal,

after HTF and SHF. (d) A visual representation of the values shown prior.

differential evolution, have no assumptions about the problem being optimized but their

computational cost increases considerably with the size of project variables [Silva, 2007].

Convex programming is a particular case of nonlinear programming, where all variables

are convex functions. Convex approximation methods generate and solve a sequence of

explicit approximate problems until the optimal solution of the original problem is reached

[Svanberg, 1987]. Equation 3.20 shows the standard optimization problem.

minimize
x

f0(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , w

(3.20)

with f0(x) being the objective function to be minimized, gi(x) the inequality constraint

functions, x the vector of design variables and hj(x) the equality constrains. m and w



23

variables are the number of inequality and equality constraints, respectively. While solv-

ing the problem, inaccurate approximations can cause numerical difficulties, conservative

approximations lead to slow convergence and faster approximations to oscillation. The

Method of Moving Asymptotes (MMA), developed by Svanberg [1987], uses upper and

lower moving asymptotes to adjust the curvature of the approximate functions. Selection

of the moving asymptotes is largely heuristic [Svanberg, 1987].

The approach consists in solving the first iteration with initial guesses, calculating

the objective function and its gradient; approximating a subproblem, with the functions

replaced by particular convex functions, determined by the gradient and the upper and

lower boundary; solving this subproblem and, with the result, creating the initial guesses

for the next iteration. The code implemented in this dissertation uses a code written

by Arjen Deetman Deetman over the Matlab work done by Krister Svanberg Svanberg

for the application of MMA, both under the terms of GNU General Public License as

published by the Free Software Foundation. It solves the following optimization problem:

minimize
x

f0(x) + a0z +
∑(

ciyi +
diy

2
i

2

)
subject to fi(x)− aiz − yi ≤ 0, i = 1, . . . ,m

z ≥ 0, yi ≥ 0, i = 1, . . . ,m

xj
¯

≤ xj ≤ x̄j, j = 1, . . . , n

(3.21)

with fi being the constraint functions, n being the numbers of variables, xj
¯

and x̄j repre-

senting the minimum and maximum value for each individual xj. z and y (formed by yi

components) are auxiliary scalar and vector variables and the others (a0, ai, ci and di) are

input weights. To transform Equation 3.21 problem to one similar to that on Equation

3.20, first a0 needs to equal one, and ai = 0, then z will equal 0 in any optimal solution.

Further, letting di be one and ci a large number, the variable yi becomes “expensive”,

pointing it to be equal to zero.

For the use of a convex approximation method, the gradient of f0(x) needs to be

calculated every iteration. An efficient way of calculating this is the use of the adjoint

method. The adjoint state is a numerical method for efficiently computing the gradient of

a function or operator in a numerical optimization problem [Plessix, 2006]. Considering

F (ζ, An) = 0 is the forward model defined by the PDE of the governing equations, where

An is generic project variable An (were An can represent χ or ρ) and ζ is the solution
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vector. J(ζ, An) is the defined functional of interest. Applying the chain rule on dJ
dAn

results in [de Miranda Kian]
dJ

dAn

=
∂J

∂ζ

dζ

dAn

+
∂J

∂An

(3.22)

and the derivative of ζ can be obtained by taking the derivative of the FEM system of

equations, since the PDE operator F is defined in explicit form.

∂F

∂ζ

dζ

dAn

+
∂F

∂An

= 0 (3.23)

dζ

dAn

= −
(
∂F

∂ζ

)−1
∂F

∂An

(3.24)

Applying Equation 3.24 in Equation 3.22 results in

dJ

dAn

= −∂J
∂ζ

(
∂F

∂ζ

)−1
∂F

∂An

+
∂J

∂An

(3.25)

Defining the adjoint vector (λ∗) as

λ∗ = −
(
∂F

∂ζ

)−1

(3.26)

with ∗ representing the complex conjugate of the transpose.

The adjoint method first solves the adjoint equation ∂F∗
∂ζ
λ = ∂J∗

∂ζ
and them uses

the adjoint solution to compute the functional gradient dJ
dAn

= λ ∗ ∂F
∂An

+ ∂J
∂An

.

After an optimized topology is calculated, the discreteness of this topology can

be measured by a gray-level indicator as introduced by Sigmund [2007]. Equation 3.27

shows how to calculate the discreteness. Mnd being the measure of non-discreteness with

0(%) meaning a converged design is fully discrete, that is, there are no elements with

intermediate density values. For a design totally grey, all elements’ densities are equal

to 0.5, and Mnd is 100(%). The ρ̃i represents the variable and n the number of variables

that make the problem.

Mnd =
n∑

i=1

4ρ̃i(1− ρ̃i)

n
(3.27)
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4 METHODOLOGY

In this chapter, the workflow for optimizing the topology of a compliant mechanism

with piezoelectric material is shown. The methodology here presented was developed for

a two-dimension problem but can be applied to a three-dimensional one. The first section

presents the finite element method used. The definition of the optimal problem is, then,

explained, followed up by the objective function definition. The sensitivity analysis and

the method of moving asymptodes are then explored. Finalizing the chapter, the post

processes and the code structure are explained.

4.1 FEM formulation

The finite element method (FEM), a general numerical method for solving partial

differential equations, requires a particular space discretization in the space dimensions,

which is implemented by the construction of a mesh: a numerical domain with a finite

number of points. A boundary value problem is a differential equation subjected to

boundary conditions. Boundary conditions specify the values that a function (Dirichlet),

or the derivative of a function (Neumann), needs to take along the contour of the domain.

Most applications have displacement restrictions on parts of the boundary, those, along

with electric potential, can be described with Dirichlet’s (first-type) boundary conditions.

To solve a boundary value problem using the FEM, two steps are required: In

the first step, the original problem is rephrased in its weak form. The second step is

discretization, where the weak form is discretized in a finite-dimensional space. The weak

form of a piezoelectric problem, stated by Carbonari et al. [2007], is written as∫
Ω

σ : SdΩ +

∫
Ω

D ·EdΩ =

∫
Ω

b · udΩ +

∫
Γ

t · udΓ +

∫
Γ

Q · ϕdΓ. (4.1)

Assuming no body forces (b) and no electric charges (Q), the Equation 4.1 can be sim-

plified as ∫
Ω

σ : SdΩ +

∫
Ω

D ·EdΩ =

∫
Γ

t · udΓ. (4.2)

The solution for Equation 4.2 is a set of values for each finite element, (u,ϕ), with u

being the displacement vector and ϕ the scalar value for electric potential. To obtain this

result, a mixed space is required, with a vector-valued and a scalar-valued finite element

functions of the Lagrangian family, with V̂ the test space and V the trial space. The
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trial function is split into U and φ and the test function into utest and vtest. Utilizing the

definition on Equation 3.9, the Equation 4.2 can be stated as:∫
Ω

(
cES(U)− eTE(φ)

)
: S(utest)dΩ +

∫
Ω

(
eS(U) + εSE(φ)

)
·E(vtest)dΩ =

∫
Γ

t · udΓ

(4.3)

V = {(U,φ) ∈ H1(Ω) : (U,φ) = (u, ϕ) on Γ}

V̂ = {(utest, vtest) ∈ H1(Ω) : (utest, vtest) = 0 on Γ}

where H1(Ω) is the Sobolev space. Using the definitions of symmetric strain tensor and

electric field present in Equation 4.4, together with the Equations 3.16 and the appropriate

boundary conditions, the FEM problem can be solved.

S(u) = 1
2

(
∇u+ (∇u)T

)
= Bu

E(ϕ) = −∇ϕ
(4.4)

with B being the derivation operator for a 3D problem and B́ the plane stress counter-

part[Gonçalves, 2019].

B =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0


, B́ =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x



The second step to solve a boundary value problem is discretization. The Python

library, FEniCS project, starting from the weak form, discretizes the space according to

the chosen element and directly provides, the already discretized, linear system. Equation

4.5 is the finite element equation for modeling a linear piezoelectric medium considering

a static analysis, as stated by Lerch [1990].Kuu Kuϕ

KT
uϕ −Kϕϕ

U

ϕ

 =

F

Q

 (4.5)

Where U , ϕ, F and Q are the nodal displacement, nodal electric potential, nodal me-

chanical force, and nodal electrical charge vectors, respectively. Kuu, Kuϕ and Kϕϕ are
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the stiffness, piezoelectric and dielectric matrices, defined as [Piefort, 2001]

Kuu =
∫
Ω
BT

uc
EBudΩ

Kuϕ =
∫
Ω
BT

ue
TBϕdΩ

Kϕϕ = −
∫
Ω
BT

ϕεBϕdΩ

with Bu = BNu and Bϕ = ∇Nϕ being the matrices derived from the interpolation

functions Nu and Nϕ.

4.2 Definition of the optimization problem

After the FEM formulation completed, the process of topology optimization re-

quires the definition of the design space. With the space set, the boundary conditions can

be determined, together with any external loads. The materials for the compliant mecha-

nism need also to be determined and the desired output definition set. In a CM, the usual

objective is maximizing the displacement of an output region. If the objective function

was simply stated as such, the optimization would not ensure material on the region, for

void is viewed as the “material” with more compliance, making the region of output a no

material region, rendering an undesirable mechanism. The necessary correction on the

objective function is further explained in the next section.

The design space can be one-, two-, or three-dimensional. Numerically, the space

can have any natural number of dimensions other than null, but with few or no applications

in engineering. Choosing a 2D plane as the domain can lead to simplification in the overall

calculations by reducing a dimension. To work with a planar design space the plane stress

hypothesis was used, as stated in section 3.2.

The interface between materials is assumed to be a perfect bond. No hyper-

elasticity was studied and the problem is considered a steady state system. The choice of

materials is straightforward, with the caveat that one of the materials should be piezo-

electric and the other is not required.

4.3 Objective function

In topology optimization of compliant mechanisms using piezoelectric actuators the

objective of the optimization is to maximize the displacement generated in a determined

region when the electric potential is applied [Silva et al., 1999b]. As previously mentioned,
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(a) (b)

Figure 4.1 – (a) Generic piezoelectric problem and (b) the auxiliary problem

the approach to such a problem requires assurance of material in the region. For this, the

problem is split into two distinct problems: the maximization of mean transduction and

the minimization of mean compliance. Figure 4.1a shows the original problem where the

mean transduction is calculated and the changes required in the boundary conditions to

solve for the mean compliance are present in Figure 4.1b. Γ represents a boundary region,

with the subscript determining its function: O represents the desirable displacement; t

the mechanical dummy loads; u the prescribed displacements; ϕ represents the grounded

region; and d the positive electric potential region.

The concept for mean transduction, firstly described by Silva [Silva et al., 1999a],

comes from an extension of the reciprocal theorem from elasticity theory. By maximizing

the mean transduction, the displacement generated by the piezoelectric is also maximized.

However, if only the maximization of the mean transduction is considered, an “empty”

structure can be obtained as optimal solution [Silva et al., 2003], that is, a structure with

no stiffness. To solve this problem a second optimization needs to take place. By mini-

mizing the compliance, using a dummy load in the opposite direction as the mechanism

desired output, the mechanism is forced into having a connection between the output

region and the rest of the CM, creating a rigid region.

Figure 4.1a represents the problem this methodology is trying to solve, a generic

problem with no external forces or charges and a prescribed electric potential and displace-

ments. Equations 4.6 and 4.7 define the mean transduction and the mean compliance,
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respectively.

L2(u1, ϕ1) =

∫
Γt2

t2 · u1dΓt2 +

∫
ΓQ2

Q2 · ϕ1dΓQ2 (4.6)

The mean transduction is defined by the sum of two integrals, with t2 representing a

dummy load in the same direction of the desired displacement, Γt2 the same as ΓO, u1

the displacement calculated and Q2 an electric charge not present in the problem described

in this work, therefore, equaling zero.

L3(u3, ϕ3) =

∫
Γt2

t3 · u3dΓt2 (4.7)

Mean compliance can be defined as the work done by external forces [Frecker et al., 1997].

The structural function of minimizing the mean compliance is to guarantee the compliant

mechanism has material in the objective region. The mean compliance is calculated on

the problem described by Figure 4.1b, with no electric charges and no prescribed electric

field, the mean compliance is obtained through a fully mechanical problem, with u3 being

the displacement in the ΓO region and with an opposite direction dummy load defined as

t3 = −t2.

Minimizing mean compliance while maximizing mean transduction can be achieved

by maximizing a combination of Equations 4.6 and 4.7, such as Equation 4.8, proposed

by Silva et al. [2000].

fmax
0 = L2/L3 (4.8)

Usually, an optimization problem is expressed in terms of minimizing a function.

Since Equation 4.8 has the opposite goal, an inverse function can be stated, such as

fmin
0 = L3/L2, fmin

0 = −L2/L3. (4.9)

To solve an optimization problem using PEMAP, the design variables need a initial

value. Typically, the first guess of any variable is a constant value in all of the domain, so

as to not skew the results in any direction. This value can be the target volume for the final

design, helping the convergence. Volume is used here as a generic term, meaning actual

volume, for three-dimensional cases, and area for planar ones. With Vχ and Vρ being the

maximum values for the volumes of each variable, the inequalities can be stated.∫
Ω
χidΩ ≤ Vχ∫

Ω
ρidΩ ≤ Vρ

(4.10)
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Since V is a mesh-dependent value, with a more refined mesh, more elements and

greater values are obtained. To maintain a constant value while refining the mesh it is

best to work with a percentage approach. With fχ and fρ being the maximum percentage

values of volume a variable can have in the domain, V can be defined as

Vχ =
∫
Ω
fχdΩ

Vρ =
∫
Ω
fρdΩ

(4.11)

with the pseudo densities being an array of values from zero to one, Equations 4.10 and

4.11 can be rewritten as, mesh independent, inequalities:∫
Ω

(χ− fχ)dΩ ≤ 0 (4.12)

∫
Ω

(ρ− fρ)dΩ ≤ 0 (4.13)

With the inequalities that restrict the optimization problem defined, the optimiza-

tion problem of the first varialbe, χ can be defined as

minimize
χ

f0(χ) =
L3

L2

subject to
∫
Ω

(χi − fχ)dΩ ≤ 0, i = 1, . . . ,m

0 ≤ χj ≤ 1, j = 1, . . . , n

(4.14)

Similarly, changing the variable on Equation 4.14 to ρ will result in the optimization

problem being solved secondly. Variable ρ controls what percentage of the material is

piezoelectric. It is advisable to have a initial value this variable with at least a continuous

path between positive and negative -or ground- electric potentials boundary conditions

so that for the first iteration the piezoelectric component has an electric field to influence

the objective function.

To calculate the objective function there are two finite elements problems to be

solved (boundary conditions (a) and (b) from Figure 4.1). The results from them are two

sets of values, (u1,ϕ1) and (u3,ϕ3). Solving Equations 4.6 and 4.7 the objective function

f0 can be calculated.



31

4.4 Sensitivity analysis

The sensitivity analysis of the objective function express how and how much

changes in the parameters of an optimization problem modify the optimal objective func-

tion value and the point where the optimum is attained [Castillo et al., 2008]. This

knowledge is required to better optimize the topology and is needed to use the MMA.

The sensitivities (derivatives) can calculated with the adjoint method using the def-

inition present in section 3.6. Equation 4.15 shows the gradient of the function f0 = L3/L2

in respect to a generic project variable An (were An can represent χ or ρ) [Carbonari,

2003].
∂f0
∂An

=
1

L2

(
∂L3

∂An

)
− L3

(L2)2

(
∂L2

∂An

)
(4.15)

with the partial derivatives of L2 and L3 defined as

∂L2

∂An

= −
∫
Ω

εS(u2)
T ∂c

E

∂An

(u1)dΩ−
∫
Ω

(∇ϕ2)
T ∂e

T

∂An

εS(u1)dΩ+

−
∫
Ω

εS(u2)
T ∂e

∂An

∇ϕ1dΩ +

∫
Ω

(∇ϕ2)
T ∂ε

S

∂An

∇ϕ1dΩ

(4.16)

∂L3

∂An

= −
∫
Ω

εS(u3)
T ∂c

E

∂An

(u3)dΩ−
∫
Ω

(∇ϕ3)
T ∂e

T

∂An

εS(u3)dΩ+

−
∫
Ω

εS(u3)
T ∂e

∂An

∇ϕ3dΩ +

∫
Ω

(∇ϕ3)
T ∂ε

S

∂An

∇ϕ3dΩ

(4.17)

These partial derivatives, together with the Jacobian ∂fi
∂xj

used as input vectors for the

MMA subprogram.

In the case of using the FEniCS platform with dolfin-adjoint [Alonso], it is not

necessary to derive the adjoint equations by hand. The program interprets the equations

defined in the FEniCS enviroment and applies a generic algorithmic differentiation model

resulting in the sensitivities desired.

4.5 Definition of MMA problem

The method of moving asymptotes, an optimization method, requires the input

of 18 variables, with eleven of them mentioned in Section 3.6, being them: m, n, a0, a,

c, d, x, xj
¯

, x̄j, fi and f0. Of the seven remaining, five are iteration variables: previous

lower and upper asymptotes, the current iteration, and the last two iterations values
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for x. This values are calculated within the code provided by Deetman. The final two

needed variables are a column vector with the derivatives of the objective function f0

with respect to the variables xj( ∂f0
∂xj

) and the m × n matrix with the derivatives of the

constraint functions fi with respect to the variable xj ( ∂fi
∂xj

). Both variables are obtained

through the sensitivity analysis.

The output variables of the MMA problem are the five iteration variables required

as inputs for the next iteration and y and z, the vector and scalar auxiliary variables,

equaling 0.

The optimization problem this work proposes to solve has two variables, χ and

ρ. Therefore, the MMA is split into two distinct optimization problems, one for each

variable. Their solution is calculated simultaneously, that is, within the same iteration

both variables are calculated.

The first variable to be iterated is χ, the pseudo density responsible to ensure the

existence or nonexistence of material. In the set of Equations 3.16 the null value for the

variable results in an approximate zero amount of mechanical characteristics (non-zero for

computational stability). With the restriction that fχ ≥ fρ the first optimization problem

stated in Equation 4.14 is the first variable optimization problem.

In the inner workings of the MMA solver, the maximum change a variable can have

(move) is usually set to 0.3 (30% of the value), bigger changes can lead to not finding the

local minima and smaller ones can lead to a slow convergence. Table 4.1 presents the inner

parameters of the MMA solver, with the default values used in this dissertation. epsmin is

the convergence condition for solving the MMA sub-problem, hence, it should approximate

0 to guarantee the calculation accuracy. raa0 is associated with the second derivative of

the approximate function, the optimization could be more conservative with a greater

value. albefa have a similarly function to move, working by scaling the distance between

the upper and lower asymptotes. asyinit is a parameter applied to the calculation of the

asymptotes in the first two iterations. asyincr is used to move the asymptotes away from

the current iteration point, smaller values lead to conservativeness of the optimization.

Finally, asydecr is used to move the asymptotes closer from the current iteration [Yu

et al., 2022].
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Parameter Value
epsmin 10−7

raa0 10−5

move 0.3
albefa 0.1
asyinit 0.5
asyincr 1.2
asydecr 0.7

Table 4.1 – Material properties for the beams benchmark.

4.6 Post processing

As briefly mentioned in section 3.5, the PEMAP method can have problems with

checkerboard patterns or intermediate values (grey areas). To remediate those problems

two solutions were used.

To reduce the occurrence of checkerboard patterns and small floating islands of

material, the HTF is used after every iteration of the design variables. The filter has only

one parameter r, and its value should be decided experimentally. The smaller the value

of r, minor the impact of the filter on the final result. The use of a Helmholtz-type filter

implies an increase in undesirable mid-values for the variables. To steer the values to

desirable ranges, the projecting filter (SHF) is used in sequence after every use of HTF.

The desirable values for the design variables χ and ρ are 0 or 1, since any inter-

mediate value represents a mixture of materials or void. Using SHF, the intermediate

values can be skewed towards one of the two meaningful values while staying continu-

ous, a desirable characteristic to calculate the derivatives required by the optimization

solver (MMA). Parameter α is set to 0.5, with any larger value tending towards 1 and

any smaller to 0. Increasing β increases the function slope, however, starting the problem

with a large value can lead to numerical issues [Leon et al., 2015]. The approach used in

this work is a continuation method, that is, starting with a small value for β and slowly

increasing its magnitude after a certain number of iterations. This method is considered

slow (in convergence) and can cause slight artificial perturbations to the topology [Guest

et al., 2011]. The chosen rule was: starting with β = 1 and after 50 iterations doubling

it, to the maximum of 128 on the 350th iteration.
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Figure 4.2 – Flowchart for the Python code

4.7 Numerical implementation

The methodology required to create a generic code that works for any 2D problem

with the polarization on the plane will be expressed in this section.

The program, written in Python, requires additional libraries. Numpy is a library

widely used for scientific computing, providing a multidimensional array of objects (vec-

tors, matrices) and various mathematical operations on them [Harris et al., 2020]. UFL,

or Unified Form Language, is a part of the FEniCS Project and defines a flexible interface

for choosing finite element spaces and defining expressions for weak forms in a notation

close to mathematical notation [Alnæs et al., 2014]. The MMA subprogram is responsible

for solving the optimization problem using the method of moving asymptotes [Deetman].

The subprograms created by the author, input_data and Equations were both created

to accompany the main code and have the input values and all equations described in

this work. The FEniCS Project is the main library used in the program, helping the

clarity and usage of it. The dolfin_adjoint project automatically derives the discrete

adjoint and tangent linear models from a forward model written in the Python interface

to FEniCS [Mitusch et al., 2019].

Figure 4.2 presents the flowchart of how the code works, with caption showing each

of the main libraries used is responsible for each part.

The main.py python code starts by importing the libraries needed, followed by
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the creation of objects with information about the problem to be solved, described in the

subprogram input_data.

import numpy as np

from MMA import mmasub

from f e n i c s import ∗

from do l f i n_ad jo in t import ∗

from u f l import tanh

from input_data import ∗

from Equations import ∗

After the import of the required libraries and the creation of the mesh and subdomains

such as output displacement area or the fixed support region, the boundary conditions

are created ( two, one for each sub-problem L2 and L3) as well as initializing the MMA

arrays of initial variables.

x_1 = csi_0 . vec to r ( ) . ge t_loca l ( )

x_2 = rho_0 . vec to r ( ) . ge t_loca l ( )

n , m = x_1 . s i z e , 1

xmin , xmax = np . z e r o s ( ( n , 1 ) ) , np . ones ( ( n , 1 ) )

xval_1 , xval_2 = x_1 [ np . newaxis ] . T, x_2 [ np . newaxis ] .T

xold1_1 , xold2_1 = xval_1 . copy ( ) , xval_1 . copy ( )

xold1_2 , xold2_2 = xval_2 . copy ( ) , xval_2 . copy ( )

low_1 , upp_1 = np . ones ( ( n , 1 ) ) , np . ones ( ( n , 1 ) )

low_2 , upp_2 = np . ones ( ( n , 1 ) ) , np . ones ( ( n , 1 ) )

a0 = 1

a = np . z e r o s ( (m, 1 ) )

c = np . ones ( (m, 1 ) ) ∗ 1 e9

d = np . ones ( (m, 1 ) )

move , change , loop = 0 . 3 , 1,−1

Obj_1 = np . z e r o s ( ( pdat . i t e r a t i o n s , 1 ) )

Obj_2 = np . z e r o s ( ( pdat . i t e r a t i o n s , 1 ) )

while ( change > 1e−5 ) and ( loop<pdat . i t e r a t i o n s ) :

loop = loop+1

f0val_1 , df0dx_1 , fval_1 , dfdx_1 , f rac_so l id , f rac_pzt =
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Forward (x_1 , x_2 , 1 )

After this pre-iteration step, the filters (HTF and SHF) are applied to both vari-

ables, followed up with the calculation of both forward problems and the objective func-

tion, utilizing the Equations subprogram.

def Forward ( x1 , x2 , switch ) :

c s i . vec to r ( ) [ : ] , rho . vec to r ( ) [ : ] = x1 , x2

w,w2 =Function (mdat .W) , Function (mdat .W)

(U, V) = Tr ia lFunct ions (mdat .W)

( utest , v t e s t ) = TestFunct ions (mdat .W)

rho_hf=he lmho l t z_ f i l t e r ( rho , fda t . r , mdat .M)

rho_pj=p r o j e c t i n g ( rho_hf , fdat , mdat .M)

cs i_hf=he lmho l t z_ f i l t e r ( c s i , f da t . r , mdat .M)

cs i_pj=p r o j e c t i n g ( cs i_hf , fdat , mdat .M)

U_form=inner ( sigma_i (U,V, cs i_pj , rho_pj , pdat , adat ) , e p s i l o n ( u t e s t ) )∗ dx

V_form=inner (D_i(U,V, cs i_pj , rho_pj , pdat , adat ) ,−grad ( v t e s t ) )∗ dx

F = U_form + V_form

b i l i n e a r 1 = dot ( Constant ( ( 0 . 0 , 0 . 0 ) ) , u t e s t )∗dx

b i l i n e a r 2 = dot ( pdat . DummyLoadNegative , u t e s t )∗ dsCont (1 )

problem1=LinearVar iat iona lProb lem (F, b i l i n e a r 1 ,w, bcs=bc1 )

s o l v e r 1=L inea rVa r i a t i ona l So l v e r ( problem1 )

s o l v e r 1 . parameters [ ’ l i n e a r_so l v e r ’ ] = ’ umfpack ’

s o l v e r 1 . s o l v e ( )

Depending on what variable will be used, the sensitivity analysis are calculated by

the dolfin_adjoint. The derivatives are calculated with respect to χ if it is the first cal-

culation of the iteration (switch==1) or with respect to ρ if it is the second (switch==2).

The last phase before the optimization solver is to change all the variables that are at-

tributed to a mesh into a matrix or vector, making the solver strictly mathematical.

i f switch==1:

c on t r o l = Control ( c s i )

vc=UFLInequal i tyConstra int ( ( c s i −pdat . FracVol )∗dx , c on t r o l )

f v a l=np . array ( vc . f unc t i on ( c s i ) , dtype=f loat ) [ np . newaxis ]
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[ np . newaxis ]

e l i f switch==2:

c on t r o l = Control ( rho )

vc=UFLInequal i tyConstra int ( ( rho−pdat . FracVol_Pzt )∗dx , c on t r o l )

f v a l=np . array ( vc . f unc t i on ( rho ) , dtype=f loat ) [ np . newaxis ]

[ np . newaxis ]

else :

print ( " e r r o r " )

df0dx_func = compute_gradient ( f0va l , c on t r o l )

df0dx = df0dx_func . vec to r ( ) . ge t_loca l ( ) [ np . newaxis ] .T

dfdx = np . array ( vc . j a cob ian ( c on t r o l . vec to r ( ) . ge t_loca l ( ) ) )

With all the values calculated, the MMA is started and proceeds to calculate any changes

in the variables. If no stop criteria is met, a new iteration occurs. After one of the stop

criteria is achieved, the information is saved. Among the saved information is the history

of the objective function, both variables in all iterations, as well as the output of the

weak formulation, the displacement, and the electric potential. The Figure 4.2 presents

a flowchart of the Python code structure.

An ill-conditioned problem is one where a small change in the input brings a large

change in the output. Ill-conditioned systems are inherently difficult to solve, it can occur

with matrices that have drastic changes in the order of magnitude within them. This

problem can be avoided using partial pivoting, modifying the usual row reduction algo-

rithm. UMFPACK (Unsymmetric MultiFrontal Package) is a library developed by Davis

[Davis], which is designed to solve large, sparse, unsymmetric linear systems of equations.

The FEniCS project utilizes of the UMFPACK solver not only in linear problems, but

also within each iteration of a nonlinear solve via Newton’s method, an eigenvalue solve,

or time-stepping [Logg et al., 2012].

In some problems the objective function calculated can be a small value, when

using the definition f0 = −L2/L3, with an order of magnitude 10−7, and with the small

scale of f0 floating errors creep up and the problem can lead to non-convergence. To solve

this problem an increase in the voltage could be done, increasing the mean transduction

without increasing the mean compliance or multiplying f0 by 107 to bring the value to

a bigger number and avoid rounding errors. Ultimately, the approach used was to solve
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with f0 = L3/L2 instead, to avoid this problem altogether.
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5 RESULTS

In this chapter, the results of each step taken to develop the code for optimizing

the piezoelectric material and an isotropic one in the same design domain, to create a

compliant mechanism are shown. Firstly all the benchmarks are done to ensure the inner

workings of each singular step and then the results for the five problems developed are

discussed.

5.1 Benchmarks

To ensure the validity of the obtained results, benchmark problems were studied.

Three distinct problems, each validating a different aspect of the methodology, were as-

sessed. They are the displacement inverter mechanism, a classical compliant mechanism;

an adaptive sandwich beam and a surface-mounted actuation beam for validating the

multi-physics formulation; and a flextensional actuator using the methodology proposed

by Silva et al. [2003], to validate the mean transduction and mean compliance approach

of solving the TO problem.

5.1.1 Inverter mechanism

The inverter mechanism benchmark is a classical problem of optimization [Zheng

et al., 2008]. The design domain is a square with vertical symmetry, with an input region

in the middle of a side and the output in the middle of the opposing side, with two fixed

corners. The objective of such mechanism is to invert the motion on the input region,

that is, for a positive input displacement on the x -axis, a negative output displacement

will appear. Since there is vertical symmetry, the problem can be divided by half using

the correct boundary conditions, as shown in the Figure 5.1.

The methodology to solve this optimization process is similar to the methodology

used for this dissertation but made simpler by virtue of the use of only one material, an

isotropic one. Therefore, no multi-physics was required and, to ensure the output region

had material, a dummy spring (Kout) was used on the boundary of the output. A input

force (t3) was used as an outside force in the equilibrium equation. The created mesh for

this domain, and all domains described in this dissertation, utilizes Linear Strain Triangles

(LST) elements, stacked to form 2D rectangles, tiling a rectangle domain. The total
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(a) (b)

Figure 5.1 – Design domain of inverter mechanism. (a) The entire domain and (b) half

domain with the boundary conditions

L[mm] 150 Kout 10−3

t3 [1,0] ν 0.2
Y [MPa] 1 η 3
Ymin 10−6 r 2.1

Table 5.1 – Inverter problem specifications

number of triangles elements is 2nxny and the total number of vertices, (nx + 1)(ny + 1),

nx and ny being the desirable number of cells in each direction, with nx being the same

as L, the size of the domain, and ny being half of that value due to symmetry constraint,

the size of each cell is equal to the unity of the problem (in this case 1 mm). The input

and output regions sizes are 6.67% of the size of the side in which they appear. The table

5.1 shows the material specifications as well as the requirements of Equations 3.14 and

3.17

Figure 5.2a shows the result of the topology optimization for a maximum volume

fraction of 25%. Even with a generic material and loads, the outcome represents a mech-

anism with similar topology and functionality of what is usual in the literature, as shown

in Figure 5.2b. This benchmark validates the initial use of the FEniCS library, the MMA

subprogram, and the filter used (Helmholtz-type). The mesh used for this problem con-

sisted of 11099 triangles, the Mnd equal to 1.35% and, with an input displacement of 0.985

mm and an inverse displacement of 2.355 mm, the geometrical advantage [Wang, 2009]
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obtained was 2.39.

(a) (b)

Figure 5.2 – (a) Final result of topology optimization and (b) an inverter obtained by

Wang et al. [2017]

5.1.2 2D beams

The work of Zhang and Sun [1996] on adaptive sandwich structures and the surface-

mounted counterpart allows for a comparison between the FEM, using Equation 4.3, and

the governing equations based on the variational principle developed by Zhang and Sun

[1996]. Figure 5.3 indicates both problems studied.

(a) (b)

Figure 5.3 – (a)Adaptive beam and (b) a surface-mounted actuation beam.

The problem described in Figure 5.3a is an adaptive beam with no external forces

and a vertical current applied, the upper piezoelectric has an opposite direction of electric

field and polarization while the bottom one is aligned. With the Equation 5.1, a theoretical

value for the vertical displacement (w) along the length of the beam is calculated.

wa =
K1K6

K2

(
x+

sinh [λ(L− x)]

λ cosh (λL)
− tanh (λL)

λ

)
+

1

2K2

(
K1K5

K4

− 1

)(
1

3
x2 − Lx

)
xD

(5.1)
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with L representing the total length of the beam, 1m, x the distance on the x -axis, D = 0

and λ and Ki defined as

K1 =
1
2
D11ttc(tc + t) + 1

2
DE

33t
3
c

K2 =
1
6
D11t

2(4t+ 3tc)

K3 =
1
6
D11t

2t2c +
1
9
DE

33tt
3
c

K4 =
1
3
(4t+ 3tc)D

E
55tc(1 +

K1

K2
)

K5 =
1

3K2
(4t+ 3tc)D

E
55tc

K6 =
1

3K4
(4t+ 3tc)e15Etc +

K3K5

K2
4
D+ tc

K4
D

λ =
√

K4

K3

where t represents the top and bottom thickness, tc the middle layer thickness, e15 the

dielectric tensor component of the piezoelectric material, and E the electric field according

to Equation 4.4. With the additional definitions of

D11 =
Y

(1−ν2)
DE

33 = cE33 −
(cE13)

2

cE11
DE

55 = cE55

and with cE representing the components of the elasticity tensor of the piezoelectric

material as well as Y and ν representing the elastic modulus and Poisson’s coefficient of

the isotropic material, respectively, the value is, compared to the displacement obtained

by the FEniCS program using the multi-physics approach.

The graph presented in Figure 5.4a shows both displacements with respect to the

length of the beam. The R-squared (r2) value for the correlation between both curves is

0.999980596, a great indication of well-implemented piezoelectric FEM.

The same process happens for the surface-mounted actuation beam described by

Figure 5.3b. In it, the piezoelectric layer is the middle one and the polarization in it is in

the direction of the length, making it perpendicular to the applied electric field. In the

original papper, Zhang and Sun study the time dependent actuation of the beam, but

have the Equation 5.2 for a static solution as well.

wb =
−Dx3

6EI
+

1

2EI
[DL+ ex31(t+ tc)tE]x

2 (5.2)

Equation 5.2 has ex31 as one of the parameters, calculated by ex31 = e31 − cE13−e33
cE33

with EI defined as

EI =
1

6
DE

11t
3 +

1

2
DE

11(t+ tc)
2t+

1

23
D11t

3
c
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and DE
11 = cE11 −

(cE13)
2

cE33
. Figure 5.4b shows a graph for the vertical displacement values,

similar to the first problem. The r2 value for the curve is 0.999902145.

(a) (b)

Figure 5.4 – : Vertical displacement of (a) an adaptive beam and (b) a surface-mounted

actuation beam

With both examples having similar results for a 2D or a 3D mesh, using the ma-

terials described in table 5.2, the benchmark was deemed correctly implemented and the

FEM implementation, together with the plane stress approach, was considered accurate.

The values presented in table 5.2 are the constitutive values for a PZT-5H material with

polarization in the z -axis. For the surface-mounted actuation beam problem, where the

polarization points towards the x -axis, a correction was used. Utilizing the equations

presented in table 3.1 for the angles of ψ = −π/2 radians and θ = −π/2 radians, the

result tensors are presented in Equation 5.3.

cEPZT =


60.867 31.371 0

76.469 0

Sym. 23

 [GPa]

ePZT =

23.3 −6.5 0

0 0 −17

 [ C
m2 ]

εSPZT =

1477.27 0

Sym. 1707.95

 /ε0

(5.3)
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PZT-5H material properties

Elastic
constants

cE11, cE22, cE33 126

GPa
cE12 79.5

cE13, cE23 84.1
cE44 23.3

cE55, cE66 23

Piezoelectric
constants

e31, e32 -6.5
C
m2e33 23.3

e24, e15 17
Dielectric
constants

εS11/ε0, εS22/ε0 1707.95 −
εS33/ε0 1477.27

Aluminum material properties
Elastic
constants

Y 70.3 GPa
ν 0.345 −

Table 5.2 – Material properties for the beams benchmark.

5.1.3 Flextensional actuator

The topology optimization of a flextensional actuator, described by Silva et al.

[2003], uses the mean compliance and mean transduction approach to solving the opti-

mization of a piezoelectric activated actuator. The actuator, named f2b0830, has the

design constraint described in the Figure 5.5. Having a fixed piezoelectric domain and

optimizing only the nonpiezoelectric material, a static solution for this problem is the

stepping stone to the methodology used in this work and helps ascertain the correct im-

plementation of FEniCS weak formulations, objective function of mean compliance and

mean transduction, MMA optimization routine, and mesh-independent filters.

The left and lower boundaries are symmetry axes to reduce the size of the domain

Figure 5.5 – Design specifications of a flextensional actuator (symmetry is applied here).
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by three-quarters, they constrict movement on the x and y axes respectively. The arrow

on the top right corner represents the desired displacement of the compliant mechanism.

The region defined by d is the electrode region with the positive electric potential. The

result obtained by the FEniCS implementation is compared to the result presented in

Silva et al. [2003] and in Silva et al. [2000]. Table 5.3 presents the materials used in Silva

et al. [2000] and for this benchmark.

Dielectric constants are usually expressed as a dimensionless property, being the

ratio of the permittivity of the material in relation to 0, the vacuum permittivity. Ac-

cording to NIST, the National Institute of Standards and Technology, ε0 has a value of

approximately 8.854× 1012F/m. Figure 5.6 shows the result obtained in this dissertation

together with the ones in the literature. The distinct parts of the topology presented are

caused by different materials (in the case of Figure 5.6b) and different filters (in both

cases).

The Mnd for this problem was 23.303%, showing the presence of a lot of grey area.

In the way the problem was constructed, all the piezoelectric material was set to have a

pseudo density of 0.5. Ignoring the area of the piezo material, the Mnd value becomes

1.871%, a more consolidated value.

(a) (b) (c)

Figure 5.6 – (a) Obtained design; (b) Actuator f2b0830 [SILVA et al., 2003]; and (c)

design obtained by SILVA et al.[2000].

The final design was obtained after 30 iterations on a 10000 elements mesh, with

the same element as proposed in the subsection 5.1.1. The final displacement in the output

region was 1.64×10−8 mm on the horizontal axis and −1.16×10−7 mm on the vertical axis,

with a 20V electric potential on the upper region of the piezoceramic. The original works

of Silva et al. [2000, 2003] are studies of actuators and the information shared is frequency

driven. Therefore no static values of displacement were used to quantify the validation
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PTZ-5 material properties

Elastic
constants

cE11 121

GPa

cE12 75.4
cE13 75.2
cE33 111
cE44 23
cE66 21

Piezoelectric
constants

e31 -5.4
C
m2e33 15.8

e51 12.3
Dielectric
constants

εS11/ε0 1650 −
εS33/ε0 1700

Brass material properties
Elastic
constants

Y 106 GPa
ν 0.3 −

Table 5.3 – Material properties for the Flextensional problem.

of the compliant mechanism developed. With a qualitative analysis of the topologies and

with an output displacement in the correct direction, the benchmark was considered well

implemented. With all previous benchmarks working as intended, the next stage was to

implement the second variable to optimize the piezoelectric material as well.

5.2 Optimization of a multi-material, piezoelectric activated, compliant mech-

anism

The aim of this section is to implement the Python code with the capacity to op-

timize a compliant mechanism activated by piezoelectric material with an electric field,

present in section 4.7. Creating an optimization in two levels, optimizing both the piezo-

electric material and the isotropic one, evaluating the mechanisms and the displacements

achieved. Five distinct problems were created, changing angles of polarization and electric

field, symmetries, desirable displacements, and boundary conditions. In the next sections,

they will be displayed and discussed.

5.2.1 Problem definition

The first problem explored in this chapter is a 2D optimization, with dimensions of

the design domain chosen to be in the millimetric scale to better represent a possible use of

this methodology. A square area of 50 by 50 mm with restrain in the y-axis movement of
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(a) (b)

Figure 5.7 – (a) The design domain with boundary conditions and (b) the mesh model

used.

the upper boundary and full restriction of movement on the lower part of the left boundary

(5 mm) was selected. The Figure 5.7a shows the domain with all the boundary conditions

and the picked objective displacement (a 5mm region) of the compliant mechanism. The

small hatched upper region represents an electrode with a prescribed electric potential d,

measured in Volts, the bottom border is grounded, creating a vertical electric field. Figure

5.7b shows the final mesh used on the domain. The use of a triangle mesh that stacks

in a zigzag pattern is to not have an artificial anisotropy caused by mesh configuration,

where one diagonal could have more definition than the other.

The multi-material aspect of the problem means that two distinct materials should

be defined. The nonpiezoelectric material picked was an aluminum Al 1050 with mechan-

ical properties listed in table 5.4. The piezoelectric material, PZT-5A, has its properties

displayed in the same table. All properties for the piezoceramic are displayed with a

polarization on the z -axis, the alterations required to rotate them were explained prior,

in chapter 3.2.

To further state the problem, the initial values for the design variables need to be

defined. Together with a desirable volume (fχ and fρ), filter dials, PEMAP weights, and

boundary conditions, these values make the overall definition of the proposed problem.
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PZT-5A material properties

Elastic
constants

cE11 121

GPacE13 75.2
cE33 111
cE66 22.6

Piezoelectric
constants

e31 -5.4
C
m2e33 15.8

e51 12.3
Dielectric
constants

εS11/ε0 916 −
εS33/ε0 830

Al 1050 material properties
Elastic
constants

Y 71 GPa
ν 0.33 −

Table 5.4 – Material properties for the optimization of piezoelectric activated compliant

mechanisms.

d[V] 200 α 0.5
t2 [-1,0] β0 1
χ0 0.5 βmax 128
ρ0 0.25 r 0.2
fχ 0.5 η0, η1 3
fρ 0.25 η2 1

Table 5.5 – Initial values for the first problem

Table 5.5 shows these initial conditions. β0 represents the initial value for the smooth

Heaviside function, that after some iterations double and βmax a maximum value for this

variable. The initial vectors for the design variables were set to be constant throughout

the mesh and have the same value as the desirable volume percentage. Since the problem

has no outside force, t3 is defined by t3 = −t2 and it is used to calculate the mean

compliance, as shown in Equation 4.7.

The final consideration before solving the topology optimization problem is to

determine the stop criteria. A maximum number of iterations of 1000 and a element

convergence value of 10−3 were selected. To calculate the current element convergence

value the difference between each variable and its previous iteration is calculated, then

the maximum value of this vector is chosen. If this value is lower than the minimum
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(a) (b)

Figure 5.8 – (a) Final χ distribution; (b) Final ρ distribution.

(10−3), the optimization is considered convergent and the iterations stop, as presented in

Elmin = min

(
min

(∣∣∣∣χ[it] − χ[it−1]

χ[it]

∣∣∣∣) ,min

(∣∣∣∣ρ[it] − ρ[it−1]

ρ[it]

∣∣∣∣)) (5.4)

where Elmin is the element convergence value of the current iteration [it].

Another stop criterion was created when the objective function showed signs of

convergence but the element convergence was still bigger than 0.1%. The new criterion

chosen was the objective convergence, a difference between the objective function of the

current iteration and the last. If the last 5 values of objective convergence were smaller

than (10−3), the optimization was considered convergent and the program interrupted.

5.2.2 Mesh size

Running the code for a 100x100 mesh grid, the obtained result after 141 iterations

is shown in Figure 5.8, representing the values of variables χ and ρ, respectively. On

Figure 5.8a, the Mnd value was 1.532%, for Figure 5.8b, Mnd=0.149%. Both Equations

4.12 and 4.13 are satisfied with χ representing 49.08% of the total design space and ρ

representing 24.38%.

Analyzing Figure 5.8, the presence of ρ is visibly dependent on χ, appearing only

where the latter has a positive value, instead of zero. This result bears physical meaning

since χ is the pseudo density that dictates the absence or the presence of material. If ρ

appeared where χ was null, the element would not contribute to the constitutive equa-
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Figure 5.9 – Final design for the topology optimized compliant mechanism.

tions shown in Equation 3.9, this restriction occurs naturally in a multi-material problem

with two-layer optimization, since with the optimization elements not contributing to the

mechanism are discarded. It can also be noticed that the piezoelectric material extends

from top to bottom. This is required by the definition of the problem, where the top and

bottom regions have prescribed electric potential, without a piezoelectric material run-

ning from one border to the other, the gradient E would be discontinued, and therefore

no displacement would result from the mechanism.

The final mechanism represented in Figure 5.9 was obtained by colorizing Figures

5.8a and 5.8b with a white-red scale for representing χ and a green-yellow color scale

for ρ. Combining both images with ρ on top and excluding any value less then 0.01, the

mechanism is presented. The material PZT-5A is present where yellow appears, aluminum

is where red is the color, while green tints are the intermediary values between both

materials and pinkish tones are representing a mixture of aluminum and void. Figure 5.9

contains a mechanism with some undesirables characteristics. A green region, representing

a non binary solution is present in the bottom right part of the mechanism, where both

materials would be touching. A small hole on the aluminum region made of one element,

in other iterations this hole disappears, showing it was a fluke.

The desirable displacement had an initial value of −7.081 × 10−10mm and after

the optimization, this value was −8.186× 10−8mm, still an infinitesimal amount, but two

orders of magnitude larger than the initial. The displacement shown in the mechanism can

be seen in Figure 5.10, with an increase in the displacement scale for better visualization.
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Figure 5.10 – Displacement of the compliant mechanism. In black, the mesh without the

electric field, in blue, the mesh with electric field applied.

In black, the mesh without any deformation and in blue, the mesh with the boundary

conditions applied.

The results of topology optimizations should be mesh-independent to a certain

degree. With a very small number of elements, no real mechanism can be visualized,

but with enough resolution, the design should be very similar among distinct mesh sizes.

The same is true for the objective function: with minor fluctuations caused by slight

numerical changes, the overall behavior of the objective function should be consistent

among different mesh sizes. Figure 5.11 shows the values of the objective function in the

defined problem for five distinct mesh sizes, 20x20, 40x40, 60x60, 80x80, and 100x100. The

scale present on the graph depicted in Figure 5.11 is logarithmic for better visualization,

since the initial values are orders of magnitude larger than the subsequent ones.

Figure 5.11 – Objective function optimized.
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Figure 5.12 – Objective function and mesh resolution.

Analyzing the graph, some fluctuations occur where the value of the objective

function changes values drastically, but are quickly returned and the overall behavior of

the objective function is the same for every mesh resolution tested. In Figure 5.12, the

number of elements and the objective function at 150 iterations are shown. Although all of

the problems achieved an objective convergence prior to 150 iterations, to better evaluate

the functions, the comparison was made in a fixed iteration. The f0 values decrease with

a more refined mesh but after a big enough resolution the value remains within acceptable

tolerance of 10−3.

From Figure 5.12, it can be seen that the best choice of mesh resolution for this

particular problem is 80x80. The objective value reached a plateau and the number of

elements is significantly lower than the 100x100 mesh, reducing the computational cost.

However, only the objective value converging does not guarantee the topology remains

the same across mesh variations.

Figure 5.13 shows the topology result of the optimizations for the distinct mesh

sizes. It is visible that the overall design remains the same, with more branches appearing

in the finer meshes and the contact between materials having the tendency to diminish.

The upper contact between the piezoceramic and the aluminum tends to a fractal canopy

topology to better transform the y elongation of the piezoelectric material to horizontal

displacement. By elongating in the y-axis, the triangle composed of vertical connections

between both materials and the branch origin enlongates in the vertical axis while short-

ening on x -axis
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(a) 20x20 mesh (b) 40x40 mesh

(c) 80x80 mesh (d) 100x100 mesh

Figure 5.13 – Compliant mechanism for different mesh sizes.

5.3 Additional design problems

To further analyze the results of the implemented code, another four distinct prob-

lems were created after the first. The design domains of these optimization problems

were chosen to create a large number of distinct features. Table 5.6 exhibits the initial

variables of each problem, with all the problems being squares of side 50mm, mesh size

80x80. Some of the problems can be reduced to half by having some axe of symmetry, on

those cases the mirror side will have 25mm of length and be 40 cells wide.

The unmentioned values of table 5.6 are equal to all cases and can be seen in table

5.5 with the exception of χ0 and ρ0 that are defined as vectors with all values equal to fχ

and fρ, respectively.
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fχ fρ domain size θ t2
(a) 0.5 0.25 25x50 mm π [0,1]
(b) 0.4 0.2 50x50 mm 0 [0,-1]
(c) 0.3 0.15 50x25 mm π [1,0]
(d) 0.5 0.4 50x50 mm π/2 [1,0]

Table 5.6 – Initial values for the additional design problems.

Figure 5.14 – Vertical amplifier problem boundary conditions

5.3.1 Second problem: vertical displacement amplifier

The second problem tested with the methodology described in this work is pre-

sented in Figure 5.14. The vertical amplifier aims to maximize the displacement of the

right upper corner of the domain. The design domain is a square of size 50mm with

vertical symmetric boundary conditions, it can be reduced by half with prescribed dis-

placement on the x -axis of zero in the symmetry axis. With clamped bottom corners, a

prescribed electric potential (represented by the + and - signals) of 200V, and a desirable

output displacement indicated by the upwards arrow, the problem is fully defined.

With an angle of π between the electric field and the polarization of the piezoelectric

material, the initial displacement of PZT-5A is to contract in the y-axis and expand in

the abscissa. This deformation is in opposition to the desired output, so the mechanism

is not as trivial as it would be if θ = 0. The final mechanism can be seen in Figure 5.15a,

with calculated Mnd equal to 0.0128 for χ and 0.0317 for ρ.
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(a) (b) (c)

Figure 5.15 – (a) Compliant mechanism topology for the vertical displacement amplifier,

(b) the full device, and (c) the displacement caused by the electric field

As in the previous problem, the piezoceramic bridges top and bottom boundaries.

The mechanism uses aluminum to constrict movement in the x -axis and to create a lever

on the top region to make the horizontal extension contribute to the objective displace-

ment, represented in the Figure 5.15c. The initial objective function of this problem was

calculated to be 62314.79, while at the end of the 78th iteration, the objective function was

2810.14. The achieved displacement on the output region (10% of the length parameter,

that is, 2.5 mm) was 7.116× 10−8 mm.

5.3.2 Third problem: vertical displacement amplifier without imposed sym-

metry

The third problem developed, similarly to the second one, has a vertical symmetry

axis, but no simplification of the design domain was made. This choice had the purpose

to inspect if a symmetric compliant mechanism would be created without the imposed

symmetry nonetheless. Remaining a square of side 50 mm and with the bottom side fixed,

the domain has an output region located in the upper side with length of 5mm. Another

change in the design is the electric field on this problem. The prescribed electrodes are

on vertical sides, requiring the rotation of the polarized material to remain aligned with

the electric field. The constitutive matrices in this problem require similar rotations and

changes to the ones used for the benchmark problem of the surface-mounted actuation
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beam on Equation 5.3. Figure 5.16 presents the design domain with the boundary condi-

tions.

Figure 5.16 – Vertical displacement amplifier problem boundary conditions

Figure 5.17a shows the final topology after 127 iterations. TheMnd values for χ and

ρ were 0.0121 and 0.0516, respectively. It is possible to see the symmetry arising as it was

predicted. The Mnd for ρ is 5%, meaning an expressive amount of grey areas (represented

with the green tilt in the colorized image). The stop criterion for the program was five

iterations with less than 0.1% change in the objective function, showing a plateau. The

displacement presented in Figure 5.17b is −4.534× 10−8 mm, this value is lesser then the

other ones present in this dissertation, part of this stands from the use of d31 modulus,

where the output is mostly driven by the constriction happening in the y instead of the

elongation of x, part because the final device bears a close resemblance to a truss structure.

The initial and final objective function values were 298788 and 8130 respectively.

5.3.3 Fourth problem: horizontal displacement amplifier

The next problem developed was created with a horizontal symmetry and two

regions of constraint, represented in Figure 5.18, with a displacement-restricted area op-

posite to the desirable output and on the top of the domain and with size of 50x25 mm2.

The horizontal symmetry can be accomplished in two ways: mirroring all the design con-

straints appearing in Figure 5.18, including positive and negative electric potentials and

polarization angle, meaning the full mechanism would need a boundary condition in the

middle of the domain. Or preserving the relationship with an electric field and polar-
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(a) (b)

Figure 5.17 – (a) Compliant mechanism topology for the Vertical displacement amplifier

without imposed symmetry and (b) the displacement caused by the electric field

Figure 5.18 – Horizontal displacement amplifier problem boundary conditions

ization of the top half, that is, an angle of π and 200V in 25 mm, and create a bottom

one with the same characteristics. In this particular example, the top boundary has an

electric potential of 200V while the symmetry axis has 0V. To recreate the same problem

with a full domain, while the top electric potential would remain the same, the bottom

boundary would have -200V of electric potential, and the entire domain would have a

uniform polarization angle of π.

The optimal solution for the piezoelectric compliant mechanism is exhibited in

Figure 5.19a. The gray values for χ and ρ were 0.0114 and 0.0112, respectively. The

number of iterations required for the objective function to stabilize was 72. As with all

problems using this methodology, the piezoelectric material bridged the electric potential

boundaries, and the upper boundary was nested in close proximity to the fixed region,
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(a) (b) (c)

Figure 5.19 – (a) Compliant mechanism topology for the Horizontal amplifier, (b) the

full device, and (c) the displacement caused by the electric field

which was filled with isotropic material. This optimization problem had the polarization in

the opposite direction of the electric field and the initial objective function was calculated

as 1716573 with the last iteration having a value of 6641. The horizontal displacement of

the output region (2.5mm) was 9.310×10−8 mm. The constriction on the left was unused

by this mechanism, since it hinders the horizontal movement.

5.3.4 Fifth problem: Perpendicular polarization mechanism

The fifth and final example created for this work was the following: a square of

50x50mm with a fixed bottom and an electric potential positive on top and negative on

bottom. The mechanism should displace the right corner region (5mm) in the positive x -

axis. This problem is presented in Figure 5.20. The distinct characteristic of this problem

in regards to all the previous ones is the polarization angle, while the other topologies

had aligned polarization with electric field with both orientations, this problem has a

perpendicular polarization. As seen in chapter 3.1, the piezoelectric material will shear in

a perpendicular electric field. Another distinct characteristic of this particular problem is

the heavy amount of piezoceramic in comparison to aluminum.

Figure 5.21a presents the compliant mechanism obtained after 49 iterations of the

topology optimization problem, the initial and final values for the optimized function

were 56739 and 6663. The χ has 0.6726% of gray area while ρ has 0.6727%. The fast

convergence of this problem is due to the low volume fraction of distinct materials, while

other compliant mechanisms were made with 50% aluminum and 50% PZT-5A the one in

question has 80% piezoceramic and 20% aluminum. The horizontal displacement obtained
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Figure 5.20 – Fifth optimization problem boundary conditions

was 2.259× 10−7 mm.

(a) (b)

Figure 5.21 – (a) Compliant mechanism topology for the perpendicular polarization

mechanism and (b) the displacement caused by the electric field
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6 CONCLUSIONS

A topology optimization of compliant mechanisms activated by piezoceramics was

proposed. The piezoelectric phenomenon was explained and quantified through the con-

stitutive equations, the concepts of compliant mechanisms and topology optimization

were defined, as well as the concepts for mean transduction and mean compliance. The

methodology implemented in this dissertation manages to achieve desirable topologies

for both the piezoelectric material and the isotropic nonpiezoelectric material, creating

compliant mechanisms capable of increasing the desirable output displacement.

The PEMAP was successfully used to optimize the piezoceramic and the final re-

sults show compliant mechanisms in accordance with the design constraints and, utilizing

the filters chosen for this work, minimal grey area and checkerboard patterns. The use

of in-plane polarization contributes to the study of TO using piezoelectric material, the

flexibility of polarization and electric field allows distinct mechanisms using elongation,

constriction or sheer deformations to achieve the CM’s objective.

The objective of creating a methodology and a Python code capable of solving

topology optimizations of compliant mechanisms using electric fields and piezoelectric

material as activators was achieved. The free licensing of all tools used for the cre-

ation of the code proposed in this dissertation allows for the sharing and building of the

main code. The benchmarks proposed to verify the applications envelop the main ideas

and implementations of the proposed problem, allowing a step-by-step approach to the

optimization. The generic plane stress with an in-plane polarization compliant mecha-

nism topology optimization problem can be solved with the Python codes available at

https://github.com/apivar/Dissertation .

6.1 Suggestions for future works

To further the studies on the topics presented in this work, some paths are pro-

posed:

• Implement the PiezoElectric MAterial with Penalization and Polarization (PEMAP-

P) methodology, where the polarization direction of the piezoelectric material is fixed

but its orientation can be optimized, as previously done by Gonçalves et al. [2019].
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• Similarly to optimize the fiber orientation of a composite material, the θ can be

made into a design variable, having different polarization regions.

• Evaluate the possibility of using boundary condition propagation to find solutions

with design-dependent electrodes. When the piezoelectric material is considered

polarized in the direction perpendicular to the plane, it can be assumed that both

potential and ground electrodes are defined in the whole domain, as presented in

Carbonari et al. [2007]. However, to generate forces in the plane efficiently using

piezoelectric material that is also polarized in a direction in the plane, it is required

to consider the electrodes as boundary conditions, which makes the design dependent

on the electrode configuration. A propagation scheme similar to the one proposed

by Moscatelli et al. [2023] could improve the performance of the designed mechanism

by applying the electrodes only where the piezoelectric material is defined, according

to the optimization progress.

• Implement contact within both materials. Since piezoceramics are very brittle, the

regions of contact between the materials can be susceptible to fracture damage.

• Expand the work to dynamic problems. All solutions presented here in this disser-

tation were static solutions, one of the biggest problems with compliant mechanisms

is the fact that they are favorable to fatigue. The use of piezoelectric in vibration

problems is also a reason to deepen the knowledge of the topic.

• Create a physical mechanism. Manufacturing a design obtained through the method-

ology presented in this paper and then evaluating the theoretical displacement and

the one obtained with the prototype would help future development on the field.
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