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ABSTRACT

In this paper, the relativistic Brillouin flow in a crossed-field gap is investigated. For this, the case of a planar magnetron is considered. In
contrast to previous studies, it is assumed that the electron discharge occurs in a timescale that is long compared to the magnetic diffusion
time in the metal. It is found that the Brillouin flow properties and the overall scenario for the loss of magnetic insulation are different from
the short pulse case. In particular, it is shown that two branches of equilibrium Brillouin flow solutions can coexist inside the gap region: one
linearly stable and the other linearly unstable. As the parameters are varied, the two branches coalesce and cease to exist in a bifurcation that
leads to a complete loss of magnetic insulation. Nevertheless, the mere existence of the unstable solution inside the gap is shown to affect the
electron dynamics causing cathode–anode currents. An expression for the onset of the unstable solution is obtained and compared to the rel-
ativistic Hull cutoff condition for the short pulse case. It is found that the loss of magnetic insulation occurs for lower accelerating potentials
in the present case. This effect is noticeable even for weakly relativistic cases.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125449

I. INTRODUCTION

The Brillouin flow is a laminar flow considered as the prevalent
steady state in many electron crossed-field devices, such as magne-
trons, magnetically insulated line oscillators, and magnetically insu-
lated transmission lines.1–6 It is an equilibrium steady state where all
the electrons experience no net force.7 It can be classified as a single-
stream flow because it is a laminar shear flow without orbital crossing.
In the Brillouin flow, the electrons in a cross field device are magnetic
insulated in the sense that they never reach the anode because the
magnetic field force exactly balances the electric forces due to the
accelerating potential and the space charge. Therefore, there is no net
cathode–anode current, which is a key feature for device operation.
Aside from geometry configurations,3 the precise determination of the
Brillouin flow depends on the relevant parameters used to describe the
specific type of crossed-field device.6

In the particular case of magnetrons, the relevant parameters are
the accelerating potential V0 and the magnetic field B0 because they
are both externally applied. The relation between these quantities at
which the electrons just graze the anode is called the Hull cutoff condi-
tion. In the nonrelativistic regime of interaction, it reads b0 ¼

ffiffiffiffiffiffiffi
2v0
p

,
where b0 ¼ eB0L=mc and v0 ¼ eV0=mc2 are the normalized magnetic

field and accelerating potential, m and e are the rest mass and charge
of the electron, L is the distance between the anode and the cathode
(the gap size), and c is the speed of light in vacuo.8 For magnetic fields
that are below this condition, the flow is not magnetic insulated
anymore.

Since the 1970s, many studies have been done on the relativistic
aspects of the Brillouin flow in a magnetron device.2,4,6,9–15 These stud-
ies generally assume that the electron discharge occurs in a timescale
sd shorter than the magnetic field penetration time into the metal
sm ¼ 4d2rl=p2, where d, r, and l are, respectively, the thickness, the
conductivity, and the magnetic permeability of the anode.16 In such a
case, the magnetic field becomes trapped inside the gap and its flux is
conserved along the discharge.17,18 It is shown that in this limit only a
single Brillouin flow solution exists inside the gap, and that the Hull
cutoff condition at which the electrons graze the anode is given by2

b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v0 þ v20

q
: (1)

As expected, in the low energy limit v0 ! 0, Eq. (1) leads to the classi-
cal Hull cutoff condition. However, as the accelerating potential
increases, the relativistic effects demand substantially higher magnetic
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fields to guarantee the insulation. In many crossed-field device applica-
tions, one needs to operate with magnetic fields that are above but
near the Hull cutoff condition. This is, for instance, the case of mag-
netrons, where to enhance the conversion of beam energy to electro-
magnetic energy, it is necessary to prevent net cathode–anode current.
However, at the same time, the electrons should get close enough to
the anode, where their parallel velocity is the largest and might reso-
nate with the slow wave structures.12

In this paper, we investigate the electron Brillouin flow in a rela-
tivistic magnetron device assuming that the discharge time is long
compared to the penetration time of the magnetic field in the metal,
i.e., sd � sm. In this case, the anode becomes transparent to the mag-
netic field and its magnitude, equal to the externally applied field B0.
We find that the overall scenario for the loss of magnetic insulation in
this case is different from the short pulse case. In particular, we find
that two branches of equilibrium Brillouin flow solutions can coexist
inside the gap. With the aid of N-particle self-consistent numerical
simulations, we are able to determine that one of the branches is line-
arly stable and, the other, linearly unstable. The two branches coalesce
and cease to exist in a bifurcation that occurs inside the gap region. In
other words, there is no stable Brillouin flow solution with the elec-
trons grazing the anode. It is also found that the loss of magnetic insu-
lation occurs for higher magnetic fields as compared to the condition
given by Eq. (1). This effect is noticeable even for weakly relativistic
cases where the pulses are typically longer.

The paper is organized as follows. In Sec. II, we introduce the
crossed-field model considered and the equations that describe its
dynamics. In Sec. III, we revisit the derivation of the relativistic
Brillouin flow and discuss its solutions in the particular case when the
magnetic field is assumed to penetrate the electrodes. In Sec. IV, a lin-
ear stability analysis of the Brillouin flow solutions is performed. In
Sec. V, an N-particle self-consistent code is used to investigate the sta-
tionary state achieved by the electrons in the crossed-field device and
to determine its magnetic insulation properties. Finally, in Sec. VI, we
present our conclusions.

II. MODEL AND BASIC EQUATIONS

The geometry and the electromagnetic field configuration of the
relativistic crossed-field gap considered are shown in Fig. 1. It corre-
sponds to a planar magnetron where two long parallel plates oriented
in the xz-plane and separated by a distance L along the y-axis are kept
at a constant potential difference. The plate at y¼ 0 is a grounded
cathode and the plate at y¼ L is an anode kept at an electric potential
value V0. As a consequence of the electric potential difference, there is
a constant external electric field E0 in the gap region 0 < y < L. There

is also a uniform constant externally applied magnetic field B0 along
the z direction.

Given the symmetry of the cathode and the anode plates, we
assume that the electron distribution is uniform along that xz-plane,
such that all the field quantities only depend on the y coordinate. The
electric scalar potential is self-consistently determined from the parti-
cle distribution by the Poisson equation

d2/
dy2
¼ e
�0

nðyÞ; (2)

satisfying the boundary conditions /ð0Þ ¼ 0 and /ðLÞ ¼ V0,
where n(y) is the electron density. The magnetic field can be
derived from a vector potential as B ¼ r� A. In the limit when
the self-consistent effects of the electron motion on the magnetic
field can be neglected, the uniform external magnetic field can be
obtained by taking A ¼ �B0yx̂ . It is clear, however, that as the
electrons are accelerated toward the anode, they also gain velocity
along the x direction (see Fig. 1). The currents along x create a self-
magnetic field that tends to screen B0. To properly take into
account the self-consistent magnetic effects, the x component of
the vector potential has to satisfy

d2Ax

dy2
¼ el0 nðyÞ vxðyÞ; (3)

with the boundary conditions Axð0Þ ¼ 0 and A0xðLÞ ¼ B0, where
vxðyÞ is the electron flow velocity along the x direction, and the prime
denotes derivative with respect to y. Note that while the boundary con-
dition for Ax at the cathode is arbitrary and was chosen for conve-
nience, the one at y¼ L guarantees that the magnetic field at the anode
is the externally applied B0 in accordance with the assumption that the
electrodes are permeable to the magnetic field.

III. RELATIVISTIC BRILLOUIN FLOW

The relativistic electron dynamics is dictated by the Hamiltonian19

H ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ Px þ eAxðyÞ½ �2 þ P2

y þ P2
z

q
� e/ðyÞ: (4)

Since the Hamiltonian does not explicitly depend on x and z, the
canonical momentum components Px and Pz are constants of motion.
Their values are determined by the electron velocity when entering the
gap region. For a cold injection, Px ¼ 0 ¼ Pz . Note that this condition
does not imply that the momentum parallel to the cathode is always
zero. In fact, since mechanical and canonical momentum are related
by p ¼ Pþ eA, the particles move along the x according to
px ¼ eAxðyÞ.

For a stationary state, the electromagnetic fields and the
Hamiltonian are time independent. In fact, the Hamiltonian corre-
sponds to the conserved total energy of the particle. For a cold injec-
tion and the chosen boundary conditions at the cathode, we find that
the constant value of the Hamiltonian is H ¼ mc2 along the electron
trajectory. From the constancy of the Hamiltonian, we can readily
obtain an expression for the longitudinal momentum as a function of
the electromagnetic fields by isolating Py in Eq. (4),

PyðyÞ ¼ 6
e2 /2ðyÞ � c2A2

xðyÞ
� �

þ 2emc2/ðyÞ
� �1=2

c
; (5)FIG. 1. Schematic diagram of a planar crossed-field gap. The shaded blue region

represents the electron flow.
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where the plus (minus) sign refers to an electron that is moving toward
the anode (cathode), and H ¼ mc2 and Px ¼ 0 ¼ Pz have been used.
In the Brillouin equilibrium limit, there is a complete balance of the
forces acting on the particles such that they do not move along the y
direction. This corresponds to set PyðyÞ ¼ 0. Using this condition in
Eq. (5) and solving for the electric potential, we obtain

/ðyÞ ¼
m2c4 þ e2c2A2

xðyÞ
� �1=2 �mc2

e
; (6)

where we have chosen the physical branch for which /ðyÞ � 0.
Substituting this in Eq. (2), we can derive an expression for the elec-
tron density as a function of the vector potential and its derivatives
that reads

nðyÞ ¼
c�0 AxA0x0 m2c2 þ e2A2

x

� �
þm2c2A02x

� �
m2c2 þ e2A2

x

� �3=2 : (7)

From Hamilton’s equations, we obtain the transverse velocity as given
by vx ¼ dx=dt ¼ @H=@Px . Using Eq. (4) and the Brillouin condition
PyðyÞ ¼ 0, this leads to

vxðyÞ ¼
ecAx

m2c2 þ e2A2
x

� �1=2 ; (8)

where use has been made of Px ¼ 0 ¼ Pz . Substituting Eqs. (7) and
(8) in Eq. (3), we finally obtain a closed differential equation for the
vector potential for the relativistic Brillouin flow. Isolating the term
that depends on second derivative of the vector potential and after
some algebra, this equation can be cast in the form

d2Ax

dy2
¼ e2Ax

m2c2 þ e2A2
x

dAx

dy

	 
2

; (9)

where �0l0 ¼ c�2 has been used.
Equation (9) can be solved analytically. Dividing the equation by

dAx=dy, we readily notice that both sides can be integrated once. The
resulting equation can be cast in the form

dAx

dy
¼ j

eL
m2c2 þ e2A2

x

� �1=2
; (10)

where j is an integration constant to be determined by the boundary
conditions. Note that we have conveniently included the eL factor in
the denominator such that j is dimensionless. Equation (10) can be
readily integrated once more, leading to

AxðyÞ ¼
mc
e
sinh

jy
L

	 

; (11)

where the boundary condition Axð0Þ ¼ 0 has already been used to
determine the value of a second integration constant. Substituting Eq.
(11) in Eq. (6), we obtain a solution for the electric potential

/ðyÞ ¼ 2mc2

e
sinh2

jy
2L

	 

: (12)

It is clear that the relativistic Brillouin flow electromagnetic field
profiles given by Eqs. (11) and (12) are valid inside the electron distri-
bution, i.e., in the region 0 � y � yb. Here, yb is the so-called hub

height that corresponds to the beam border position, which still has to
be determined from the boundary conditions. For any point in the
region yb � y � L, the electron density vanishes. The electromagnetic
potentials are then solutions of the one-dimensional Laplace equation
obtained by substituting n(y)¼ 0 in Eqs. (2) and (3), subject to the
boundary conditions /ðLÞ ¼ V0 and A0xðLÞ ¼ B0. These solutions are
obtained straightforwardly. Since at y¼ yb the potentials and their first
derivatives have to be continuous, we find that the potentials given by
Eqs. (11) and (12) have to satisfy the following conditions at y¼ yb:
A0xðybÞ ¼ B0, /ðybÞ ¼ EaðL� ybÞ þ V0, and /0ðybÞ ¼ �Ea, where Ea
is the electric field at the anode, which is yet unknown. These condi-
tions are used to determine the values of the three unknown variables,
namely, yb, Ea, and j. In particular, taking the derivatives of Eqs. (11)
and (12) with respect to y and imposing the conditions A0xðybÞ ¼ B0

and /0ðybÞ ¼ �Ea, we can write the first two variables as a function of
the third as

yb ¼
L
j
cosh�1

b0
j

	 

; (13)

Ea ¼ �
V0

L

b20 � j2
� �1=2

t0
; (14)

where we have conveniently used the dimensionless parameters
b0 ¼ eB0L=mc and t0 ¼ eV0=mc2. It is worth noting that the equilib-
rium is completely determined once the parameters b0 and t0 are
given. Note also that the parameter t0 measures the relevance of the
relativistic effects in the electron flow. Now, evaluating Eq. (12) at
y¼ yb and using Eqs. (13) and (14) in the condition /ðybÞ
¼ EaðL� ybÞ þ V0, we obtain an equation that determines the values
of the variable j that lead to relativistic equilibrium Brillouin flow con-
ditions. This equation can be cast in the form f ðjÞ ¼ 0, where

f ¼ b0
j
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 � j2

p
j

j� cosh�1
b0
j

	 
� �
� 1� t0: (15)

Once a solution for f ðjÞ ¼ 0 is found, we can substitute it in
Eqs. (11)–(14) to obtain a detailed description of the relativistic
Brillouin flow and its electromagnetic fields.

Since f ðjÞ presents a highly nonlinear dependence on its vari-
able, for a given set of the dimensionless parameters b0 and t0, we
need to use numerical methods to determine its roots. In Fig. 2(a), we
plot f ðjÞ for the choice of parameters b0 ¼ 0:374 and t0 ¼ 0:061. We

FIG. 2. (a) f ðjÞ given by Eq. (15) presents two real and distinct roots j1 and j2
when b0 ¼ 0:374 and v0 ¼ 0:063. (b) Maximum yb=L (hub height) observed at the
steady state regime as function of v0 when b0 ¼ 0:374. The shaded green region
corresponds to the values of the parameter where two equilibrium solutions are pre-
sent inside the gap.
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see that the function is non-monotonic and presents two roots located
at j ¼ j1 � 0:349 and j ¼ j2 � 0:361. A quick inspection of
Eq. (13) reveals that ybðj1Þ > ybðj2Þ. As a matter of fact, for this set
of parameters, ybðj1Þ > L such that the only physical solution corre-
sponds to j ¼ j2. Returning to the expression for f in Eq. (15), we
notice that the dependence on the parameter t0 is very simple and
only comes in the last additive term�t0. Hence, as t0 is increased, the
curve of f ðjÞ in Fig. 2(a) just moves downward causing its two roots
to get closer. At a certain value t	0, the root corresponding to j1 enters
the gap region and the system starts to present two physical equilib-
rium solutions. Using yb¼ L in the expressions for the potentials and
their boundary conditions, we can obtain an implicit equation for t	0
(the critical potential for which the two Brillouin physical solutions
emerge) as

b0 ¼ ðt	0 þ 1Þcosh�1ðt	0 þ 1Þ: (16)

Continuing to increase t0 beyond t	0, the two physical solutions get
closer and closer until at a certain critical value t0c they coalesce. The
critical value can only be computed numerically. For the present case
with b0 ¼ 0:374, we find t0c � 0:0635. For t0 > t0c, the system
presents no Brillouin flow solution. In Fig. 2(b), we show the equilib-
rium hub height yb as a function of t0 for b0 ¼ 0:374. In accordance
with the discussion above, we see that for t0 < t	0, a single solution
exists; in the range t	0 < t0 < t0c, two equilibrium solutions are pre-
sent; and for t0 > t0c, the systems presents no Brillouin flow equilib-
rium. For the sake of simplicity, we will denominate the solution
corresponding to the lower branch in Fig. 2(b) (solid curve) as yb,
whereas the upper branch solution (dashed curve) will be designated
as y	b . It is worth noticing that the scenario found here is different
from the one found in the case without magnetic field penetration
where only a single equilibrium solution exists inside the gap region.2

IV. LINEAR STABILITY

In order to determine the linear stability of the Brillouin equilib-
rium solutions found in Sec. III, we use an N-particle self-consistent
code to describe the electron flow evolution. In the code, the dynamics
of each particle is dictated by the Hamiltonian given in Eq. (4),
resulting in19

dyi
dt
¼

Pi
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 þ e2ðAi
xÞ

2 þ ðPi
yÞ

2
q ; (17)

dPi
y

dt
¼ � ce2Ai

xB
i
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 þ e2ðAi
xÞ

2 þ ðPi
yÞ

2
q � eEi

yðyÞ; (18)

where 1 � i � N is the particle label, and N is the total number of par-
ticles in the gap region. The electromagnetic fields are computed from
Eqs. (2) and (3) using Green’s function method.20 Electrons are emit-
ted from the cathode at y¼ 0 with a vanishing initial velocity and are
removed from the simulation if they return to the cathode or reach the
anode.

To test the linear stability, we initialize the electron distribution
in the gap according to the prescribed equilibrium density and trans-
verse velocity obtained from Eqs. (7) and (8), where AxðyÞ is given by
Eq. (11). As a seed for perturbations to grow in the case of an instabil-
ity, we launch the electrons with a small spread in the longitudinal

momentum Py—recalling that in the Brillouin flow all the particles
have Py¼ 0. We initially focus the linear stability analysis on the
parameter region where more than one equilibrium solution is present
in the gap. In particular, we consider the case with b0 ¼ 0:374 and
v0 ¼ 0:063, where equilibrium solutions with hub heights yb=L
¼ 0:846 and y	b=L ¼ 0:961 exist. To measure if the initial perturbation
is increasing, we compute the evolution of the average of the magni-
tude of the longitudinal force j�Fyj as the system evolves.21 In Fig. 3, we
present the results for yb (solid red line) and y	b (dashed blue line) in a
linear-log scale. The figure shows that for the equilibrium with the
smaller hub height yb, the net force exponentially decreases with time,
indicating a stable solution. On the contrary, for the case with the
larger hub height y	b , the net force experiences an exponential growth
before it saturates at ct=L � 250, indicating that this solution is line-
arly unstable.

In Fig. 4, we present snapshots of the normalized y � Py phase
space obtained from the numerical simulations at the instant of time
ct=L ¼ 0 (gray dots) and ct=L ¼ 900 (red/blue dots). In panel (a), for
the case with yb, we notice that the spread in momentum decreases as
the system evolves, tending to the Brillouin flow with all particles

FIG. 3. Time evolution of the mean longitudinal force j�Fy j measured assuming par-
ticles are initially at the hub heights yb=L ¼ 0:846 (solid red line) and y	b =L
¼ 0:961 (dashed blue line). The results indicate the upper (lower) hub height is lin-
early unstable (stable). The dotted-dashed line serves as a guide to the eye and
indicates an exponential growth of jFy j. Here, b0 ¼ 0:347 and v0 ¼ 0:063.

FIG. 4. Snapshots of the electron phase space obtained from the N-particle self-
consistent simulations for b0 ¼ 0:374 and v0 ¼ 0:063. The particles are initially
launched according to the Brillouin flow equilibrium (gray dots) corresponding to
the two existing hub solutions: yb=L ¼ 0:846 in (a) and y	b =L ¼ 0:961 in (b). The
red (blue) dots show the stable (unstable) distribution at the instant of time
ct=L ¼ 900:
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satisfying Py¼ 0. For the case with y	b , panel (b), the scenario is
completely different with the instability generating a more complex
phase space distribution with an overall larger spread in momentum
that has no resemblance with the equilibrium Brillouin flow.

We have also investigated the linear stability for other parameter
values, and the general conclusion is that the yb branch of Fig. 2(b) is
always stable, whereas the y	b branch is always unstable. Hence, the over-
all scenario is that the system presents a single stable Brillouin flow solu-
tion with a hub height yb up to t0 ¼ t0c where a bifurcation occurs as it
collides with the unstable y	b solution and ceases to exist. This occurs
before the stable equilibrium solution reaches the anode. In particular,
for b0 ¼ 0:374, we see from Fig. 2(b) that the maximum extent of the
equilibrium electron flow corresponds to yb=L � 0:9. Again, we note
that this is completely different from the case studied in Ref. 2 where the
Brillouin flow only ceases to exist when it touches the anode.

V. STATIONARY STATE AND MAGNETIC INSULATION

To investigate the stationary state achieved by a crossed-field
device and its magnetic insulation properties, we use the N-particle
self-consistent code described in Sec. IV. However, to describe a realis-
tic operation, we now initialize the simulation with an empty gap,
N¼ 0, and continuously inject the electrons from the cathode as time
evolves. The system eventually reaches a stationary state. This is illus-
trated in Fig. 5, where snapshots of the normalized y � Py phase space
at different simulation times for b0 ¼ 0:374 and v0 ¼ 0:063 are pre-
sented. These parameters are the same as those used in Figs. 3 and 4,
which correspond to a case where the two equilibrium Brillouin flow
solutions coexist. For the early times, Fig. 5(a) shows that the electron
distribution resembles a ring in phase space. In this stage, as the par-
ticles are injected from the cathode they are accelerated by the poten-
tial difference, increasing their momentum. Near the middle of the
gap, the magnetic force becomes dominant and the electrons start to

lose momentum, being reflected before reaching the anode. They
eventually return to the cathode with nearly the same momentum as
the injection. The ringlike distribution of Fig. 5(a) is nevertheless
unstable because small perturbations lead to electron trapping inside
the gap.22,23 Hence, as the system evolves, particles start to fill the inner
region of the ring, distorting it as seen in Fig. 5(b). With further evolu-
tion, the electron distribution progressively approaches the stable
Brillouin flow predicted by the theory, with a decrease in the momen-
tum spread and the hub height approaching yb, as seen in Figs. 5(c)
and 5(d). We have also compared the electromagnetic field profiles for
the stationary state achieved by the simulation with the ones predicted
by the theory, and a very good agreement was found. It is worth noting
that although the system eventually reaches the stable Brillouin flow
solution, the magnetic insulation is not complete. It can be seen in Fig.
5(b) that some particles are reaching the anode and, therefore, leading
to a transient net cathode–anode current.

Nevertheless, the normalized magnetic field used in Fig. 5
(b0 ¼ 0:374) is well above the critical one predicted by Eq. (1),
namely, b0 ¼ 0:360. This indicates that the penetration of the mag-
netic field into the metal may lead to a noticeable decrease in the mag-
netic insulation capability.

To further investigate the issue of magnetic insulation, we have
run many numerical simulations for different values of the parameters
and computed the normalized integrated cathode–anode current
Qout=Qin. All the runs were performed up to the same normalized
time ct=L ¼ 900. The results are summarized in Fig. 6, where we
showQout=Qin as a function of v0 for b0 ¼ 0:374. We notice that while
Qout=Qin is negligible when only the stable solution is present, it rap-
idly increases with the presence of the unstable solution in the gap
(shaded regions in the figure), becoming nearly the unity once the two
solutions bifurcate and cease to exist. Hence, although a stationary
cathode–anode current only appears when there are no equilibrium sol-
utions in the gap, we notice that the presence of the unstable solution
may be responsible for the onset of transient currents. We therefore can
use Eq. (16) as a threshold condition that guarantees a complete mag-
netic insulation in the case of magnetic field penetration into the metal.
We have also performed simulations with other values of b0, and the
overall scenario is analogous to the one depicted in Fig. 6, such that by
increasing (decreasing) the magnetic field, the v0 value where Qout=Qin

FIG. 5. Electron phase spaces at different instants of time: t ¼ 10L=c (a),
t ¼ 300L=c (b), t ¼ 1000L=c (c), and t ¼ 10 000L=c (d) assuming b0 ¼ 0:374
and v0 ¼ 0:063. As the electron flow evolves, it approaches the lowest hub height
yb that corresponds to the linearly stable solution.

FIG. 6. Qout=Qin as a function of v0 assuming b0 ¼ 0:374. The shaded green
region represents the range v	0 < v0 < v0c where two equilibrium solutions are
present inside the gap [same as in Fig. 2(b)].

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 30, 012107 (2023); doi: 10.1063/5.0125449 30, 012107-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


becomes significant is displaced to the right (left). It indicates that a large
magnetic field amplitude allows us to further increase the potential dif-
ference before the magnetic insulation loss.

In Fig. 7, we compare the different conditions for magnetic field
insulation. The solid red curve corresponds to v	0ðb0Þ obtained from
Eq. (16), below which a complete magnetic insulation is expected. The
dotted black curve shows v0cðb0Þ, where the two equilibrium solutions
collide and cease to exist. Above this curve, there is no insulation with
the presence of a stationary cathode–anode current. Finally, the dashed
blue curve presents the magnetic insulation condition found in the
case of no magnetic field penetration into the metal given by Eq. (1). It
is noticeable that the relativistic effects on the magnetic insulation
properties are more pronounced in the case of a penetrating magnetic
field. This can cause a significant reduction in the region of operation
of the crossed-field device.10,11 In fact, even for weakly relativistic
cases, the penetration of the magnetic field has significant effects. For
instance, if we consider an accelerating potential V0 ¼ 100 kV, the
increase in the magnetic field to prevent the onset of a stationary cath-
ode–anode current is 10% when compared to the case without pene-
tration into the metal.

VI. CONCLUSIONS

We have investigated the Brillouin flow in a relativistic crossed-
field device assuming that the discharge time is long compared to the
penetration time of the magnetic field in the metal. We have consid-
ered a planar magnetron model and found that the overall scenario for
the loss of magnetic insulation is different from the short pulse case
where no magnetic penetration into the metal is assumed. In particu-
lar, we found that two branches of equilibrium Brillouin flow solutions
can coexist inside the gap. Using N-particle self-consistent numerical
simulations, we were able to determine that one of the branches is line-
arly stable and, the other, linearly unstable. The two branches coalesce
and cease to exist in a bifurcation that occurs inside the gap region.
In other words, there is no stable Brillouin flow solution with the
electrons grazing the anode. From the simulations, we observed
that the existence of the unstable solution inside the gap may affect
the electron dynamics causing cathode–anode currents. Hence, the
analytical expression that was obtained for the onset of the

unstable branch, Eq. (16), was used as the critical condition for a
complete magnetic insulation and compared to the one obtained
in the short pulse case, Eq. (1). It was found that the loss of mag-
netic insulation occurs for lower accelerating potentials in the case
of penetrating magnetic fields. This effect is noticeable even at a
weakly relativistic limit. It is anticipated that the penetration of the
magnetic field into the metal may play a relevant role in other
types of crossed-field devices, such as magnetically insulated trans-
mission lines.6,24,25 In that regard, it would be interesting to extend
the theory presented here to such different configurations.
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