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ABSTRACT

Electrostatic weak turbulence theory for plasmas immersed in an ambient magnetic field is developed by employing a hybrid two-fluid and
kinetic theories. The nonlinear susceptibility response function is calculated with the use of warm two-fluid equations. The linear dispersion
relations for longitudinal electrostatic waves in magnetized plasmas are also obtained within the warm two-fluid theoretical scheme.
However, dissipations that arise from linear and nonlinear wave–particle interactions cannot be discussed with the macroscopic two-fluid
theory. To compute such collisionless dissipation effects, linearized kinetic theory is utilized. Moreover, a particle kinetic equation, which is
necessary for a self-consistent description of the problem, is derived from the quasilinear kinetic theory. The final set of equations directly
generalizes the electrostatic weak turbulence theory in unmagnetized plasmas, which could be applied for a variety of problems including the
electron beam–plasma interactions in magnetized plasma environments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0071803

I. INTRODUCTION

Among the methods in nonlinear plasma theory, the weak turbu-
lence theory occupies a special place. It was developed by early pio-
neers of modern plasma physics—see, e.g., Refs. 1–11. The recent
monograph by one of the present authors (P.H.Y.) expounds on such
a theory from a modern perspective.12 Its usefulness has been demon-
strated by numerous examples including the non-thermal electrons
measured in the solar wind13–17 and the solar type II and type III radio
bursts.18–21 The kappa distribution22 was introduced in order to
empirically fit the observed non-thermal solar wind electron distribu-
tion, but the weak turbulence theory provided the first-principle based
explanation. Specifically, Refs. 12, 23, and 24 demonstrated that the
formation of electron kappa distribution is intimately related to the
long-time evolution of Langmuir turbulence. The weak turbulence the-
ory is also successfully employed to explain the solar radio bursts.25–33

The validity of weak turbulence theory was recently confirmed against
the particle-in-cell (PIC) simulation.34 Several PIC simulations of elec-
tron beam-generated Langmuir turbulence and the ensuing electro-
magnetic (EM) radiation emission have been carried out in the
literature.35–48 However, Ref. 34 stands out in that the PIC simulation
and weak turbulence theory was compared quantitatively.

Despite its successes, the standard weak turbulence theory found
in the literature is mostly limited to unmagnetized plasmas. A fully

general version of such a theory for magnetized plasmas does not yet
exist. Some early efforts49–51 attempted to formulate such a theory
from a fully general kinetic plasma theory, but the usefulness of such
efforts is obscured by the inherent complexity. The more concrete
weak turbulence theories for magnetized plasmas that readily lend
themselves to theoretical and/or numerical analyses, instead, have
been developed by making certain simplifying assumptions at the out-
set. For instance, by assuming a low-frequency and long-wavelength
regime, the magnetohydrodynamic weak turbulence theory was for-
mulated and solved.52–60 The mode-coupling process among electro-
static cyclotron-harmonic waves was discussed within the framework
of weak turbulence ordering.61–64 Recently, a weak turbulence theory
that involves the whistler-mode and lower-hybrid waves was formu-
lated and applied to a number of space plasma situations.65–68 The
weak turbulence theory was extended to interpret the polarization of
solar coronal type III radio bursts.51,69–75 A weak turbulence theory for
general magnetized plasmas was formulated and solved but under the
strict assumption of either parallel or perpendicular propagation.76–80

A major obstacle for extending the weak turbulence theory to
fully magnetized plasmas is the computation of nonlinear susceptibil-
ity, as evidenced by the above-referenced early attempts.49–51 A
method was recently proposed to overcome such a difficulty. In a
recent work,81 one of the present authors (P.H.Y.) noted that one can
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partially reformulate the kinetic weak turbulence theory by resorting
to the warm two-fluid theory. Specifically, it was noted that the nonlin-
ear decay interactions among Langmuir and ion-sound waves could
be fully discussed by resorting to the warm two-fluid approach. The
cold two-fluid theory was pointed out as being inadequate since cer-
tain decay interaction coefficients are inversely proportional to the
electron temperature. Obviously, the cold plasma theory is inapplica-
ble for such processes. While Ref. 81 pointed out the usefulness of the
warm two-fluid approach under a general situation, including the
magnetized plasmas, for actual demonstration, Ref. 81 only considered
the unmagnetized plasma problem as an example that proves the basic
concept.

The weakly turbulent processes in unmagnetized plasmas that
involve the interaction of Langmuir wave, ion-acoustic waves, trans-
verse radiation, and the particles form the basic building blocks for the
so-called plasma emission, which is the fundamental radiation emis-
sion mechanism responsible for the solar coronal and interplanetary
type II and type III radio bursts. However, for type III radio bursts
close to the solar active regions, the effects of finite background mag-
netic field can be an important factor in the interpretation of data. A
recent particle-in-cell simulation of the plasma emission process in
magnetized plasmas shows that the assumption of unmagnetized plas-
mas may be valid under certain conditions, particularly, when the
medium is characterized by a high ratio of electron plasma frequency
to electron–cyclotron frequency; but as the same ratio is reduced, say
to order ten or less, the underlying wave–particle interaction as well as
the mode-coupling (that is, the weakly turbulent plasma) processes
undergo some dramatic shifts in their characteristics, which call for
further theoretical development that reflects plasma magnetization.82

The purpose of this paper is to consider the first example of uti-
lizing the warm two-fluid formalism to derive the basic equations of
weak turbulence theory in magnetized plasmas, with a long-term focus
of extending the existing unmagnetized plasma theory of plasma emis-
sion to that of magnetized plasma theory of plasma emission. To sim-
plify the analysis, however, we first consider the electrostatic problem.
Obviously, a fully electromagnetic version should follow, but it is a
subject of future tasks. Without the electromagnetic effects, the radia-
tion emission cannot be discussed, but the wave–particle interaction
between the type III-emitting electron beams and electrostatic turbu-
lence can be discussed with the electrostatic weak turbulence theory.
For an unmagnetized plasma, the type III electron beams interact with
the Langmuir waves, which undergo nonlinear interaction with the
ion-sound waves and the background protons. The magnetized
plasma analog of such a process will involve the electron beam inter-
acting with the upper-hybrid waves, which undergo nonlinear interac-
tion with the low-frequency sonic type of modes as well as the
protons. The electrostatic weak turbulence theory in warm magnetized
plasmas to be discussed herein is meant to provide a quantitative
description of these processes.

As the remainder of this paper will illustrate, we begin the dis-
course based on the warm two-fluid equations (Sec. II). Section II is
subdivided into subsections that deal with the first- and second-order
iterative solutions, which are then combined into a nonlinear wave
equation. Section III discusses the generic form of an electrostatic
wave kinetic equation under weak turbulence ordering. A detailed der-
ivation of the equations for electrostatic weak turbulence theory in
magnetized plasmas is given in Sec. IV. This section is also subdivided

into subsections, where each subsection deals with various subtopics,
which includes adding kinetic effects for the complete descriptions of
wave–particle interaction. Finally, the findings of the present paper are
summarized in Sec. V, and some discussions related to future direc-
tions of the research are presented therein.

II. NONLINEAR WARM TWO-FLUID EQUATIONS

In the present analysis, na denotes the fluid density for species a;
va denotes the fluid velocity;ma, ea, and c denote the mass, unit electric
charge, and speed of light in vacuum, respectively; E is the electrostatic
field vector; and B0 is the ambient magnetic field. We start from the
electrostatic two-fluid equation in magnetized plasmas as follows:

@na
@t
þr � ðnavaÞ ¼ 0;

mana
dva
dt
þrPa � eana Eþ 1

c
va � B0

� �
¼ 0;

r � E ¼
X
a¼e;i

4peana;

(1)

where d=dt ¼ @=@ þ va � r, and a ¼ e; i denotes electrons and ions,
respectively. Assuming that the pressure is given by the product of
density and temperature, Pa ¼ naTa, and separating density into an
average and fluctuation term, na ¼ n0 þ dna, while also denoting the
velocity and electric field with d preceding them to indicate that they
are fluctuating quantities, we have

@dna
@t
þ n0r � dva þr � ðdna dvaÞ ¼ 0;

@dva
@t
� Xadva � b� ea

ma
dEþrdna

n0
v2Ta

þdva � rdva �
dna
n0

rdna
n0

v2Ta ¼ 0;

r � dE ¼
X
a

4pea dna;

(2)

where v2Ta ¼ Ta=ma represents the square of fluid thermal speed and
Xa ¼ eaB0=mac is the cyclotron frequency for species a. Here, we
assume that the temperature is defined in units of energy; hence, the
Boltzmann constant is set equal to unity, kB ¼ 1. Note that v2Ta differs
from the kinetic counterpart where it is defined by v2Ta ¼ 2Ta=ma.

We employ an iterative method to obtain the solution, dna ¼ nð1Þa
þnð2Þa þ � � � and dva ¼ vð1Þa þ vð2Þa þ � � �, where nð1Þa and vð1Þa are pro-

portional to OðdEÞ; nð2Þa and vð2Þa are proportional to OðdE2Þ, etc.
That is, we follow the standard weak turbulence ordering where parti-
cle quantities are expanded in power series with each term propor-
tional to the power of the field intensity. We then organize the
resulting equations for each order. We write down the result in spec-
tral form where the spectral transformation is defined by
fk;x ¼ ð2pÞ�4

Ð
dr
Ð
dtf ðr; tÞeixt�ik�r, together with the inverse trans-

formation, f ðr; tÞ ¼
Ð
dk
Ð
dx fk;xe�ixtþik�r ¼

P
k;x fk;xe�ixtþik�r. Let

us adopt the following shorthand notations:

q ¼ ðk;xÞ; rq ¼
nak;x
n0

;

uq ¼ vak;x; g ¼ Xa

x
:

(3)
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We then have the following for each order:

rð1Þq ¼
k � uð1Þq

x
;

uð1Þq � ig uð1Þq � b� kv2Ta
x

rð1Þq �
iea
max

Eq ¼ 0;

rð2Þq ¼
k � uð2Þq

x
þ k

x
�
X
q0

rð1Þq0 u
ð1Þ
q�q0;

uð2Þq � iguð2Þq � b� kv2Ta
x

rð2Þq

� 1
2x

X
q0
ðk � k0Þ � uð1Þq0 u

ð1Þ
q�q0 þ k0 � uð1Þq�q0u

ð1Þ
q0

h i

þ kv2Ta
2x

X
q0

rð1Þq0 r
ð1Þ
q�q0 ¼ 0;

k � Eq ¼ �i
P

a 4pean0 ðr
ð1Þ
q þ rð2Þq Þ:

(4)

Let us pay attention to the momentum equations. One may rear-
range these equations to obtain

ð1� g2Þuð1Þq ¼
v2Ta
x
ðk � igb� k � g2bk � bÞrð1Þq

þ iea
max

ðEq � igb� Eq � g2bb � EqÞ;

ð1� g2Þuð2Þq ¼
v2Ta
x
ðk � igb� k � g2bk � bÞrð2Þq

þ 1
2x

X
q0
ðk � k0Þ � uð1Þq0

�ðuð1Þq�q0 � igb� uð1Þq�q0 � g2bb � uð1Þq�q0Þ

þ 1
2x

X
q0

k0 � uð1Þq�q0

�ðuð1Þq0 � igb� uð1Þq0 � g2bb � uð1Þq0 Þ

� v2Ta
2x

X
q0
ðk � igb� k � g2bk � bÞrð1Þq0 r

ð1Þ
q�q0:

(5)

Let us define

qijx ¼ dij þ
iXa

x
eijkbk �

X2
a

x2
bibj: (6)

Then, we obtain a compact notation

uð1Þiq ¼ qijx
xð1� g2Þ kjv

2
Tar
ð1Þ
q þ

iea
ma

Ej
q

� �
;

uð2Þiq ¼ 1
xð1� g2Þ qijxkjv

2
Tar
ð2Þ
q

�

þ 1
2

X
q0

qijxk
0
k þ qikxðk � k0Þj

h i
uð1Þjq0 u

ð1Þk
q�q0

n

� qijxkjv2Tar
ð1Þ
q0 r
ð1Þ
q�q0

o�
:

(7)

Making use of the velocity fluctuations given by Eq. (7), we may
construct the density fluctuations as follows:

rð1Þq ¼
kiq

ij
x

x2ð1� g2Þ kjv
2
Tar
ð1Þ
q þ

iea
ma

Ej
q

� �
;

rð2Þq ¼
1

x2ð1� g2Þ qijxkikjv
2
Tar
ð2Þ
q

�

þ 1
2

X
q0

ki qijxk
0
k þ qikxðk � k0Þj

h i
uð1Þjq0 u

ð1Þk
q�q0

n

� qijxkikjv2Tar
ð1Þ
q0 r
ð1Þ
q�q0

o�
þ 1

x

X
q0

rð1Þq0 k � u
ð1Þ
q�q0:

(8)

A. First-order solution

The first-order solution can be obtained from coupled equations
given by Eqs. (7) and (8) by ignoring the nonlinear terms and second-
order terms. This results in the following:

rð1Þq ¼
iea
ma

kiq
ij
xE

j
q

x2ð1� g2Þ � k2 � g2ðk � bÞ2
� �

v2Ta
;

uð1Þiq ¼ iea
maxð1� g2Þ

x2ð1� g2Þ � k2 � g2ðk � bÞ2
� �

v2Ta

h i
qijxE

j
q

x2ð1� g2Þ � k2 � g2ðk � bÞ2
� �

v2Ta

0
@

þ
qijxkjkkqklxv

2
TaE

k
q

x2ð1� g2Þ � k2 � g2ðk � bÞ2
� �

v2Ta

!
: (9)

We make note of the fact that the fluid correction becomes impor-
tant near resonances. Thus, the various terms associated with v2Ta
affect the denominators but can be ignored in the numerator.
Adopting such an approximation scheme, we have the first-order
solution as follows:

uð1Þiq ¼ iea
majkj

xqijxkj Eq
x2ð1� g2Þ � k2 � g2ðk � bÞ2

� �
v2Ta

;

rð1Þq ¼
iea

majkj
k2 � g2ðk � bÞ2
� �

Eq
x2ð1� g2Þ � k2 � g2ðk � bÞ2

� �
v2Ta

;

qijx ¼ dij þ ig eijkbk � g2 bibj;

(10)

where we have expressed the electric field vector as

Ej
q ¼

kj
jkj Eq (11)

since we are dealing with an electrostatic problem.

B. Second-order solution

The second-order solution can be discussed with the density rð2Þq

only since the Poisson equation involves only rð1Þq and rð2Þq . Upon mak-
ing use of the first-order solution given by Eq. (10), it is possible to
show, after some tedious but otherwise straightforward algebraic
manipulations, that rð2Þq is given by
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rð2Þq ¼ �
X
q0

1
2
e2a
m2

a

x0ðx� x0Þ
k0jk � k0jRqRq0Rq�q0

� kiq
il
xk
0
mk
0
jq

lj
x0 ðk � k0Þkqmk

x�x0

h
þ kiq

im
x k0 jq

lj
x0 ðk � k0Þlðk � k0Þkqmk

x�x0

i
Eq0Eq�q0

�
X
q0

1
2
e2a
m2

a

x2 � X2
a

xk0jk � k0jRqRq0Rq�q0

� ðx� x0Þ k02 � g02ðk0 � bÞ2
� �

klðk � k0Þkqlkx�x0

h
þx0fðk � k0Þ2 � g002 ðk � k0Þ � b

� �2gklk0 jqljx0i Eq0Eq�q0 ;
(12)

where

Rq ¼ x2 � X2
a � k2 � g2ðk � bÞ2

� �
v2Ta;

Rq0 ¼ x02 � X2
a � k02 � g02ðk0 � bÞ2

� �
v2Ta;

Rq�q0 ¼ ðx� x0Þ2 � X2
a

�fðk � k0Þ2 � g002 ðk � k0Þ � b
� �2gv2Ta;

g ¼ Xa

x
; g0 ¼ Xa

x0
; g00 ¼ Xa

x� x0
:

(13)

It is instructive to carry out the vector multiplications associated

with the following quantities: kiqilxk
0
mk0 jq

lj
x0 ðk � k0Þkqmk

x�x0 ;

kiqimx k0 jq
lj
x0 ðk � k0Þlðk � k0Þkqmk

x�x0 ; klðk � k0Þkqlkx�x0 ; klk
0
jq

lj
x0 . After

carrying out explicit manipulations of these quantities, we have

rð2Þq ¼ �
X
q0

1
2
e2a
m2

a

x0ðx� x0Þ
k0jk � k0jRqRq0Rq�q0

� ðfð1þ gg0Þðk � k0Þ � ðg2 þ g02 þ gg0 � g2g02Þðk � bÞðk0 � bÞ
þ iðgþ g0Þðk � k0Þ � bg � fk0 � ðk � k0Þ � ig00ðk � k0Þ � b
� g002ðk0 � bÞ½ðk � k0Þ � b�g þ fð1þ gg00Þ½k � ðk � k0Þ�
� ðg2 þ g002 þ gg00 � g2g002Þðk � bÞ½ðk � k0Þ � b�
� iðgþ g00Þðk � k0Þ � bgfk0 � ðk � k0Þ þ ig0ðk � k0Þ � b
� g02ðk0 � bÞ½ðk � k0Þ � b�gÞEq0Eq�q0

�
X
q0

1
2
e2a
m2

a

x2 � X2
a

xk0jk � k0jRqRq0Rq�q0

� ððx� x0Þ½k02 � g02ðk0 � bÞ2�fk � ðk � k0Þ
� ig00ðk � k0Þ � b� g002ðk � bÞ½ðk � k0Þ � b�g
þx0fðk � k0Þ2 � g002½ðk � k0Þ � b�2gfk � k0 þ ig0ðk � k0Þ � b
� g02ðk � bÞðk0 � bÞgÞEq0Eq�q0 : (14)

In what follows, we restrict k and k0 to lie in the xz plane,
k ¼ x̂k? þ ẑkk and k0 ¼ x̂k0? þ ẑk0k, while assuming b ¼ ẑ. Then
ðk � k0Þ � b ¼ 0. This is a reasonable assumption since the nonlinear
term in the wave equation is associated with the integral

P
q0 ¼

Ð
dk0,

which includes the average over azimuthal angle associated with the k0

vector. Therefore, physical quantities orthogonal to both k and k0 will
be averaged over the azimuthal angle. The terms associated with
k � k0 are such quantities. As such, it is reasonable to assume that

both k and k0 lie in the xz plane and the resultant nonlinear terms can
be averaged over the azimuthal angle in the end. This simplifies the
expression as follows:

rð2Þq ¼ �
X
q0

1
2
e2a
m2

a

x0ðx� x0Þ
k0jk � k0jRqRq0Rq�q0

� ð½ð1þ gg0Þðk � k0Þ � ðg2 þ g02 þ gg0 � g2g02Þkkk0k�
� ½k0 � ðk � k0Þ � g002k0kðkk � k0kÞ� þ fð1þ gg00Þ½k � ðk � k0Þ�
�ðg2 þ g002 þ gg00 � g2g002Þkkðkk � k0kÞg
� ½k0 � ðk � k0Þ � g02k0kðkk � k0kÞ�ÞEq0Eq�q0

�
X
q0

1
2
e2a
m2

a

x2 � X2
a

xk0jk � k0jRqRq0Rq�q0
ððx� x0Þðk02 � g02k02k Þ

� ½k � ðk � k0Þ � g002kkðkk � k0kÞ�
þx0½ðk � k0Þ2 � g002ðkk � k0kÞ

2�
� ðk � k0 � g02kkk

0
kÞÞEq0Eq�q0 : (15)

C. Nonlinear wave equation

We substitute the densities, rð1Þq and rð2Þq to Poisson equation in
Eq. (4). The result can be written in long-hand notation as

eðk;xÞEk;x ¼
X
k0 ;x0

vðk0;x0jk � k0;x� x0ÞEk0;x0Ek�k0;x�x0 ; (16)

where eðk;xÞ is the fluid version of the linear dielectric constant and
vðk0;x0jk � k0;x� x0Þ is the (second-order) nonlinear susceptibil-
ity, which are defined, respectively, by

eðk;xÞ ¼ 1�
X
a

x2
pa

k2
k2 � g2k2k

Rk;x
; (17)

vðk0;x0jk � k0;x� x0Þ

¼
X
a

i
2
ea
ma

x2
pa

kk0jk � k0jRk;xRk0;x0Rk�k0;x�x0

� ½x0ðx� x0Þ
�
½ð1þ gg0Þðk � k0Þ

� ðg2 þ g02 þ gg0 � g2g02Þkkk0k�

� k0 � ðk � k0Þ � g002k0kðkk � k0kÞ
h i
þfð1þ gg00Þ k � ðk � k0Þ

� �
�ðg2 þ g002 þ gg00 � g2g002Þkkðkk � k0kÞg

� k0 � ðk � k0Þ � g02k0kðkk � k0kÞ
h i�
þ x2 � X2

a

x
ððx� x0Þðk02 � g02k02k Þ k � ðk � k0Þ

�
� g002kkðkk � k0kÞ� þ x0 ðk � k0Þ2

�
� g002ðkk � k0kÞ

2
i
ðk � k0 � g02kkk

0
kÞÞ
i
: (18)

In the above, the resonance denominators are now expressed in long-
hand notation as Rk;x ¼ x2 � X2

a � ðk2 � g2k2kÞv2Ta; Rk0;x0 ¼ x02

�X2
a � ðk02 � g02k02k Þv2Ta; Rk�k0;x�x0 ¼ ðx�x0Þ2 �X2

a � ½ðk � k0Þ2

�g002ðkk � k0kÞ
2�v2Ta.
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III. GENERAL WAVE KINETIC EQUATION FOR
ELECTROSTATIC WEAK TURBULENCE

Note that Eq. (16) is given by the standard form of electrostatic
weak turbulence theory. We start from the general form of nonlinear
wave equation given by Eq. (16), regardless of the specific form of
eðk;xÞ or vðk0;x0jk � k0;x� x0Þ, which is compactly rewritten as

0 ¼ eðKÞEjðKÞ þ
X

1þ2¼K
vð1j2ÞEjð1ÞEkð2Þ; (19)

where K ¼ ðk;xÞ; 1 ¼ K1 ¼ ðk1;x1Þ, and 2 ¼ K2 ¼ ðk2;x2Þ. We
multiply this equation with EiðK 0Þ and take the ensemble average

0 ¼ eðKÞhE2iKdðK þ K 0Þ
þ
X
1

vð1jK � 1ÞhEðK 0ÞEð1ÞEðK � 1Þi; (20)

where we have made use of the property of homogeneous and stationary
turbulence, hEðKÞEðK 0Þi ¼ hE2iKdðK þ K 0Þ. The third-body correla-
tion hEðK 0ÞEð1ÞEðK � 1Þi can be obtained in the customary way. That
is, we iteratively solve the wave equation by writing EðKÞ ¼ Eð0ÞðKÞ
þEð1ÞðKÞ, where Eð0ÞðKÞ satisfies the linear dispersion relation,
eðKÞEð0ÞðKÞ ¼ 0. Then, the next-order correction is obtained via the
nonlinear term. Specifically, we have Eð1ÞðK 0Þ ¼ �e�1ðKÞ

P
2 vð2jK 0

�2ÞEð0Þð2ÞEð0ÞðK 0 � 2Þ; Eð1Þð1Þ ¼ �e�1ð1Þ
P

2 vð2j1� 2ÞEð0Þð2Þ
Eð0Þð1� 2Þ, and Eð1ÞðK � 1Þ ¼ �e�1ðK � 1Þ

P
2 vð2jK � 1� 2Þ

Eð0Þð2ÞEð0ÞðK �1� 2Þ. Since odd cumulants of Eð0Þ vanish, the desired
third-body cumulant hEðK 0ÞEð1ÞEðK � 1Þi can be obtained by adding
contributions from hEð1ÞðK 0ÞEð0Þð1ÞEð0ÞðK � 1Þi; hEð0ÞðK 0ÞEð1Þð1Þ
Eð0ÞðK � 1Þi, and hEð0ÞðK 0ÞEð0Þð1ÞEð1ÞðK � 1Þi. This process leads to
the four-body cumulants, but we close this hierarchy by writing the
four-body cumulants as products of two-body cumulants, while
ignoring the irreducible four-body correlation function. In manipu-
lating the products of two-body cumulants, we ignore the correla-
tions when the argument becomes zero, since such quantities
represent spatial correlations separated by an infinite distance, and
temporal correlations separated by an infinitely long interval. Such
terms are clearly unphysical. These procedures are well-described by
the recent monograph,12 but also discussed in standard literature,
including Ref. 83. This method of closure is known as the quasi-
normal closure in the literature. The result is the following:

hEðK 0ÞEð1ÞEðK � 1Þi

¼ �2dðK þ K 0Þ vð�1j � K þ 1ÞhE2i1hE2iK�1
eð�KÞ

 

þ vðKj1� KÞhE2iKhE2iK�1
eð1Þ þ vðKj � 1ÞhE2iKhE2i1

eðK � 1Þ

�
: (21)

From this, we obtain the formal nonlinear spectral balance equation,
but in doing so, we make note of the symmetry property associated
with the linear and nonlinear response functions, eð�KÞ ¼ e�ðKÞ;
vð1j2Þ ¼ vð2j1Þ, and vð1j2Þ ¼ vð1þ 2j � 2Þ. We also take the cus-
tomary approach of replacing the leading linear dielectric constant
by a term that retains the slow time derivative, eðk;xÞhE2ik;x
! eðk;xÞhE2ik;x þ ði=2Þ½@eðk;xÞ=@x�ð@hE2ik;x=@tÞ. The result is
the following:

0 ¼ i
2
@eðk;xÞ
@x

@hE2ik;x
@t

þ eðk;xÞhE2ik;x

þ 2
ð
dk0
ð
dx0

�
vðk0;x0jk � k0;x� x0Þ

� vðk0;x0jk � k0;x� x0Þ

�
hE2ik�k0;x�x0

eðk0;x0Þ þ
hE2ik0;x0

eðk � k0;x� x0Þ

 !
hE2ik;x

� vðk0;x0jk � k0;x� x0Þv�ðk0;x0jk � k0;x� x0Þ

�
hE2ik0;x0 hE2ik�k0;x�x0

e�ðk;xÞ

	
: (22)

By taking the real part of Eq. (22) while ignoring the nonlinear
part, we have Re eðk;xÞ ¼ 0, from which we obtain the wave disper-
sion relation, x ¼ xa

k , where a denotes the possibility of multiple
roots. This also leads to hE2ik;x ¼

P
r¼61

P
a I

ra
k dðx� rxa

kÞ. Upon
substituting this back to Eq. (22), we obtain the final form of weak tur-
bulence wave kinetic equation under electrostatic approximation as
follows:

@Ira
k

@t
¼ � 2 Im eðk;rxa

kÞ
e0ðk; rxa

kÞ
Ira
k �

4p
e0ðk; rxa

kÞ
X
b;c

X
r0;r00¼61

�
ð
dk0 jvðk0; r0xb

k0 jk � k0; r00xc
k�k0 Þj

2

�
Ir00ck�k0 I

ra
k

e0ðk0;r0xb
k0 Þ
þ

Ir0bk0 I
ra
k

e0ðk � k0;r00xc
k�k0 Þ

�
Ir0bk0 I

r00c
k�k0

e0ðk;rxa
kÞ

0
@

1
A

� dðrxa
k � r0xb

k0 � r00xc
k�k0 Þ

� 4
e0ðk;rxa

kÞ
Im
X

b

X
r0¼61

ð
dk0

� P
2fvðk0;r0xb

k0
jk � k0; rxa

k � r0xb
k0
Þg2

eðk � k0;rxa
k � r0xb

k0 Þ
Ir0b
k0

Ira
k ;

(23)

whereP denotes the principal value and

e0ðk; rxa
kÞ ¼

@ Re eðk;rxa
kÞ

@ðrxa
kÞ

: (24)

We remind the readers that Eq. (23) is a generic wave equation for
electrostatic weak turbulence. In the context of the present warm two-
fluid theoretical result, Eqs. (16)–(18), however, the imaginary part of
eðk;xÞ is absent. However, as we will discuss later, we complement
the formulation of electrostatic weak turbulence theory for magnetized
plasmas by computing the imaginary part of eðk;xÞ from the kinetic
theoretical calculation. For this reason, we leave Im eðk;xÞ intact in
the subsequent formulation.

IV. ELECTROSTATIC WEAK TURBULENCE THEORY
IN MAGNETIZED PLASMAS

We are now ready for a concrete formulation of electrostatic
weak turbulence theory in magnetized plasmas. The first step in the
discussion is the dispersion relation. We then make use of the linear
dispersive properties of the normal mode to simplify the nonlinear
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susceptibility, which leads to the desired wave kinetic equation. The
warm two-fluid theoretical approach is thus adequate for formulating
the nonlinear wave kinetic equation in magnetized plasmas. However,
to complete the analysis, one must supplement the formalism by com-
puting the imaginary part of the dielectric function as well as to pro-
vide a self-consistent description of the dynamical evolution of the
particle distribution function. The kinetic equation for the particles
will thus be provided by invoking the quasilinear kinetic theory.

A. Dispersion relation

We start from a discussion of the wave dispersion relation and
the related properties of the normal modes. If we ignore nonlinear
terms in Eq. (16), the dispersion relation is given by

0 ¼ eðk;xÞ

¼ 1�
x2

pe

x2 � X2
e � k2v2Te þ ðX2

e=x
2Þk2kv2Te

1� X2
e

x2

k2k
k2

� �

�
x2

pi

x2 � X2
i � k2v2Ti þ ðX2

i =x
2Þk2kv2Ti

1� X2
i

x2

k2k
k2

� �
: (25)

Figure 1 plots the numerical solution of the dispersion relation given
by Eq. (25) forxpe=jXej ¼ 5 and Ti=Te ¼ 0:1. The numerical solution
was obtained for low values of Ti=Te since ion-sound waves damp for
high Ti. Although the fluid dispersion relation given by Eq. (25) does
not have an imaginary part, the ion-sound waves damp for high values
of Ti when compared with the electron temperature when we include
the collisional damping effects by adding the kinetic effects. Figure 1
(top-left) corresponds to the Langmuir mode solution for quasi-
parallel angle of propagation, which gradually turns into the upper-
hybrid mode for quasi-perpendicular angle of propagation. In Fig. 1
(top-left), the cases of h ¼ 5� and h ¼ 80� correspond to quasi-
parallel and quasi-perpendicular angles of propagation, with the inter-
mediate value h ¼ 45� also plotted. Figure 1 (top-right) shows the
electron–cyclotron mode, whose frequency is close to the electron–
cyclotron frequency for quasi-parallel propagation, which gradually
decreases as h increases. The bottom-left panel of Fig. 1 plots the ion-
acoustic branch of the solution, which shows that the curves for all
three angles of propagation almost overlap. Finally, Fig. 1 (bottom-
right) plots the ion–cyclotron mode. As with the electron–cyclotron
mode, the ion–cyclotron mode frequency x is close to Xi when h is
low, but as h increases, the frequency decreases. For h ¼ 90�, both
cyclotron modes reduce to zero frequency. The numerical solution

FIG. 1. Numerical solution, x=jXej vs kvTe=jXej, to the dispersion relation given by Eq. (25) for xpe=jXej ¼ 5 and Ti=Te ¼ 0:1. Top-left panel corresponds to the Langmuir/
upper-hybrid mode, top-right plots the electron–cyclotron mode, bottom-left shows the ion-acoustic mode, and bottom-right displays the ion–cyclotron mode. For the Langmuir/
upper-hybrid and ion-acoustic modes, we superpose the analytical dispersion curves. For the Langmuir/upper-hybrid mode, the analytic solution is so close to the numerical
solution that the curves almost completely overlap. For the ion-acoustic mode, the analytical solution is shown with a dotted line, which overlaps almost perfectly for most
ranges of kvTe=jXej until kvTe=jXej becomes quite high.
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shows that the Langmuir/upper-hybrid mode and the ion-acoustic
mode are the propagating thermal modes that directly generalize the
unmagnetized plasma modes. The cyclotron modes are not modified by
thermal effects. We are interested in the extension of the unmagnetized
plasma turbulence—where the Langmuir and ion-sound waves partici-
pate in the wave–particle and wave–wave interactions—to the magne-
tized plasma turbulence. For this purpose, we focus on the Langmuir/
upper-hybrid mode and the ion-acoustic mode participating in the
wave–wave and wave–particle resonances. As such, we will consider
these two thermal modes as the fundamental normal modes of the mag-
netized plasma. For Langmuir/upper-hybrid and ion-acoustic modes,
we superpose the analytic solutions of these modes (to be discussed
later) on top of numerical solutions. The analytic Langmuir/upper-
hybrid mode is so close to the numerical solution that the curves almost
completely overlap. For the ion-acoustic mode, the analytical solution is
shown with a dotted line, which overlaps almost perfectly for most
ranges of kvTe=jXej until kvTe=jXej becomes quite high. For high
kvTe=jXej, the ion-acoustic mode will be heavily damped.

In the present analysis, we generally consider xpe, which is suffi-
ciently higher than jXej. In the example shown in Fig. 1, we chose
xpe=jXej ¼ 5. Generally, we assume x2

pe=X
2
e � 1. This means that

xpe=jXej can be as low as 	2 or 	3, but generally values higher than
these are to be considered. For xpe=jXej ¼ 2, the square of the fre-
quency ratio is x2

pe=X
2
e ¼ 4, which can be marginally satisfying the

requirement x2
pe=X

2
e � 1, but for xpe=jXej ¼ 3, the square of the fre-

quency is x2
pe=X

2
e ¼ 9, which is certainly significantly higher than

unity. Approximate, analytical solution to dispersion relation given by
Eq. (25) is of relevance. For the high-frequency, Langmuir/upper-
hybrid mode, we assume

x2 � X2
e ; x2 � k2v2Te: (26)

We also ignore the ion response. If we ignore thermal effects alto-
gether, then we have

0 ¼ x2ðx2 � x2
pe � X2

eÞ þ x2
peX

2
e � x2

peX
2
e
k2?
k2

(27)

whose solution is

x2 ¼ 1
2

x2
uh þ ðx2

pe � X2
eÞ

2 þ 4x2
peX

2
e
k2?
k2

� �1=2
" #

; (28)

where x2
uh ¼ x2

pe þ X2
e is the square of the upper-hybrid frequency.

To simplify further, we replace the above by an approximate form

x ¼ x2
pe þ X2

e
k2?
k2

� �1=2

¼ ðx2
pe þ X2

e sin
2hÞ1=2: (29)

Figure 2 plots both Eqs. (28) and (29) vs h, for xpe=jXej ¼ 5 and 2. As
Fig. 2 shows, the agreement is excellent.

Making use of the solution given by Eq. (29) as the basis, we add
the thermal correction

0 ¼ x2 � X2
e � x2

pe 1� X2
e

x2

k2k
k2

� �
� k2v2Te 1� X2

e

x2

k2k
k2

� �
: (30)

We write down the approximate solution by

x ¼ xU
k ¼ ðx2

pe þ X2
e sin

2hþ k2v2TeÞ
1=2: (31)

We have superposed this solution to the numerical solution in the
top-left panel of Fig. 1, and as already noted, the two overlap almost
completely. In short, the dispersion relation for the Langmuir/upper-
hybrid wave, which we simply call “upper-hybrid” or Umode, is given
by Eq. (31). The approximate solution given by Eq. (31) amounts to
replacing the dielectric constant for the Umode as follows:

Re eðk;xÞ ¼ 1�
x2

pe

x2 � X2
e sin

2h� k2v2Te
; (32)

where x ¼ rxU
k . This also means that the derivative is given by

e0ðk;rxU
k Þ ¼

@ Re eðk; rxU
k Þ

@ðrxU
k Þ

¼ 2rxU
k

x2
pe

: (33)

Next, we consider the low-frequency ion-acoustic mode. For this
mode, we ignore the thermal and magnetic effects. We also assume

k2v2Te � x2 (34)

for the electrons. This leads to the approximate dispersion relation

Re eðk;xÞ 

x2

pe

k2v2Te
�

x2
pi

x2
¼ 0: (35)

From this, we obtain

x ¼ xS
k ¼ kcS; cS ¼

ffiffiffiffiffi
Te

mi

r
;

Re eðk;xÞ ¼
x2

pe

k2v2Te
�

x2
pi

x2
; x ¼ rxS

k;

e0ðk;rxS
kÞ ¼

2
rxS

k

x2
pe

k2v2Te
:

(36)

We have also superposed this solution to the bottom-left panel of
Fig. 1 and found that the comparison with the numerical solution was
excellent.

FIG. 2. Comparison between the exact cold-plasma solution given by Eq. (28) vs
approximate solution given by Eq. (29) for xpe=jXej ¼ 5 and 2.
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B. Wave kinetic equations for upper-hybrid/ion-sound
turbulence

We now write down the wave kinetic equation for a ¼ U and
a ¼ S, respectively. In doing so, we note that only the three-wave
interaction of the type U þ S$ U is allowed from the viewpoint of
wave energetics and that we only retain the induced scattering of
the type U þ i$ U in the wave kinetic equation for the U mode,
while we ignore the induced scattering for the Smode. Such consid-
erations are a direct analogy with the case of unmagnetized
Langmuir/ion-acoustic turbulence situation. We thus write down
the specific wave kinetic equations for the U and S modes as
follows:

@IrUk
@t
¼ �rxU

k lU
k Im eðk;rxU

k Þ IrUk � 2prxU
k lU

k

�
X

r0;r00¼61

ð
dk0 jvðk0;r0xU

k0 jk � k0;r00xS
k�k0 Þj

2

� r0xU
k0l

U
k0 I

r00S
k�k0 I

rU
k þ r00xS

k�k0l
S
k�k0 I

r0U
k0 IrUk

�
� rxU

k lU
k Ir

0U
k0 Ir

00S
k�k0
�
dðrxU

k � r0xU
k0 � r00xS

k�k0 Þ

� 4rxU
k lU

k Im
X

r0¼61

ð
dk0 Ir

0U
k0 IrUk

� p
fvðk0;r0xU

k0 jk � k0;rxU
k � r0xU

k0 Þg
2

eðk � k0; rxU
k � r0xU

k0 Þ
; (37)

@IrSk
@t
¼ � rxS

kl
S
k Im eðk; rxS

kÞ IrSk

� prxS
kl

S
k

X
r0;r00¼61

ð
dk0 jvðk0;r0xU

k0 jk � k0;r00xU
k�k0 Þj

2

� r0xU
k0l

U
k0 I

r00U
k�k0 I

rS
k þ r00xU

k�k0l
U
k�k0 I

r0U
k0 IrSk

�
� rxS

kl
S
k I

r0U
k0 Ir

00U
k�k0
�
dðrxS

k � r0xU
k0 � r00xU

k�k0 Þ; (38)

where we have defined

lU
k ¼

x2
pe

ðxU
k Þ

2 ; lS
k ¼

k2v2Te
x2

pe
: (39)

A quantity of relevance is the nonlinear susceptibility, which is
determined entirely by the electron response. This is because the
lighter and more mobile electrons readily respond to the perturba-
tion, while the heavier ions remain much less mobile. We make note
of the fact that we are generally concerned with the weakly magne-
tized situations exemplified by the condition x2

pe � X2
e . We also

note that the U mode is a fast mode, while the S mode is a slow
mode in the following sense:

xU
k � kvTe;

jXej
xU

k

� 1;

xS
k � kvTe;

jXej
xS

k

� 1:
(40)

Because of this, let us approximate the susceptibility by first making
use of the relative magnitudes of g, g0, and g00; but in doing so, we
retain terms that survive in the unmagnetized limit. Thus, we approxi-
mate the following depending on various limits:

veðk0;x0jk � k0;x� x0Þ

¼ � i
2

e
me

x2
pe

kk0jk � k0jRk;xRk0;x0Rk�k0;x�x0

� x0ðx� x0Þ ðk � k0Þ k0 � ðk � k0Þ � g002k0kðkk � k0kÞ
h in�

þ k � ðk � k0Þ � g002kkðkk � k0kÞ
h i

k0 � ðk � k0Þ
� �o

þxðx� x0Þk02 k � ðk � k0Þ � g002kkðkk � k0kÞ
h i

þxx0 ðk � k0Þ2 � g002ðkk � k0kÞ
2

h i
ðk � k0Þ

�
(41)

for g� 1; g0 � 1; g00 � 1,

veðk0;x0jk � k0;x� x0Þ

¼ � i
2

e
me

x2
pe

kk0jk � k0jRk;xRk0;x0Rk�k0;x�x0

� x0ðx� x0Þ ðk � k0 � g02kkk
0
kÞ k0 � ðk � k0Þ
� �n�

þ k � ðk � k0Þ
� �

k0 � ðk � k0Þ � g02k0kðkk � k0kÞ
h io

þxðx� x0Þðk02 � g02k02k Þ k � ðk � k0Þ
� �

þxx0ðk � k0Þ2ðk � k0 � g02kkk
0
kÞÞ (42)

for g� 1; g0 � 1; g00 � 1, and

veðk0;x0jk � k0;x� x0Þ

¼ � i
2

e
me

x2
pe

kk0jk � k0jRk;xRk0;x0Rk�k0;x�x0

� x0ðx� x0Þ ðk � k0 � g2kkk
0
kÞ k0 � ðk � k0Þ
� �n�

þ k � ðk � k0Þ � g2kkðkk � k0kÞ
h i

k0 � ðk � k0Þ
� �o

�xg2 ðx� x0Þk02 k � ðk � k0Þ
� �

þx0ðk � k0Þ2ðk � k0Þ
n o�

(43)

for g� 1; g0 � 1; g00 � 1.
Next, we retain the dominant terms in relations to the magni-

tudes of x, x0, and x� x0, i.e.,

veðk0;x0jk � k0;x� x0Þ

¼ � i
2

e
me

x2
peðk � k0Þxx0 ðk � k0Þ2 � g002ðkk � k0kÞ

2
h i

kk0jk � k0jRk;xRk0;x0Rk�k0;x�x0
(44)

for x� kvTe; x0 � k0vTe; x� x0 � jk � k0jvTe
veðk0;x0jk � k0;x� x0Þ

¼ � i
2

e
me

x2
pe k � ðk � k0Þ
� �

xðx� x0Þðk02 � g02k02k Þ
kk0jk � k0jRk;xRk0;x0Rk�k0;x�x0

(45)

for x� kvTe; x0 � k0vTe; x� x0 � jk � k0jvTe, and

veðk0;x0jk � k0;x� x0Þ

¼ � i
2

e
me

x2
pe k0 � ðk � k0Þ
� �

x0ðx� x0Þðk2 � g2k2kÞ
kk0jk � k0jRk;xRk0;x0Rk�k0;x�x0

(46)

for x� kvTe; x0 � k0vTe; x� x0 � jk � k0jvTe.
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Next, we approximate the resonant denominators accordingly as
follows:

veðk0;x0jk � k0;x�x0Þ ¼ i
2
e
me

x2
pe

xx0
k � k0

kk0jk � k0j

�
ðk� k0Þ2 � g002ðkk � k0kÞ

2

X2
e þ ðk� k0Þ2 � g002ðkk � k0kÞ

2
h i

v2Te

(47)

for x� kvTe; g� 1; x0 � k0vTe; g0 � 1; x� x0 � jk � k0jvTe;
g00 � 1

veðk0;x0jk � k0;x� x0Þ ¼ i
2

e
me

x2
pe

xðx� x0Þ
k � ðk � k0Þ
kk0jk � k0j

�
ðk02 � g02k02k Þ

X2
e þ ðk02 � g02k02k Þv2Te

(48)

for x� kvTe; g� 1; x0 � k0vTe; g0 � 1; x� x0 � jk � k0jvTe;
g00 � 1, and

veðk0;x0jk � k0;x� x0Þ ¼ i
2

e
me

x2
pe

x0ðx� x0Þ
k0 � ðk � k0Þ
kk0jk � k0j

�
k2 � g2k2k

X2
e þ ðk2 � g2k2kÞv2Te

(49)

for x� kvTe; g� 1; x0 � k0vTe; g0 � 1; x� x0 � jk � k0jvTe;
g00 � 1.

Making use of all this, we now approximate the following nonlin-
ear susceptibilities of interest:

jvðk0;r0xU
k0 jk � k0; r00xS

k�k0 Þj
2

¼ 1
4
e2

m2
e

lU
k lU
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2

X2
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2

h i
v2Te

������
������
2

;

gSk�k0 ¼
jXej

r00xS
k�k0

;

(50)
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k0 jk � k0; rxU

k � r0xU
k0 Þg

2

¼ � 1
4
e2
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k lU
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2
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h i
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������
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2

;

gUk;k0 ¼
jXej

rxU
k � r0xU

k0
;

(51)

jvðk0;r0xU
k0 jk � k0;r00xU

k�k0 Þj
2 ¼ 1

4
e2

m2
e

lU
k0l

U
k�k0 k
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� �2

k2k02jk � k0j2

�
k2 � ðgSkÞ

2k2k

X2
e þ k2 � ðgSkÞ

2k2k

h i
v2Te

������
������
2

;

gSk ¼
jXej
rxS

k

: (52)

This leads to the following provisional weak turbulence wave
kinetic equations, where the imaginary parts related to the linear
dielectric constant are yet to be determined:

@

@t
IrUk
lU
k
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pe

rxU
k

Im eðk;rxU
k Þ
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k
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k
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k Im

X
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Ir
0U

k0
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�P
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; (53)
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where

VU
k;k0 ¼

p
4
e2

m2
e

ðlU
k Þ

2ðlU
k0 Þ

2lS
k�k0 ðk � k

0Þ2

k2k02jk � k0j2

�
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2

X2
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2�v2Te

����
2

;

VS
k;k0 ¼

p
4
e2

m2
e

ðlU
k0 Þ

2ðlU
k�k0 Þ

2lS
k½k
0 � ðk � k0Þ�2

k2k02jk � k0j2

�
���� k2 � gSkk

2
k

X2
e þ ½k2 � gSkk

2
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����
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;
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m2
e

ðlU
k Þ
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�
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2
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2gv2Te

����
2

:

(55)

Note that the nonlinear terms in Eqs. (53) and (54) associated with the
three-wave resonance delta function condition represent the decay
interactions. In the Umode wave kinetic equation, the last term on the
right-hand side of Eq. (53) denotes the induced scattering terms. The
linear terms associated with the imaginary parts of the dielectric con-
stant in Eqs. (53) and (54) correspond to the quasilinear growth/
damping (or induced emission) terms.

Let us consider the inverse dielectric constant with shifted
argument
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1

eðk � k0;rxU
k � r0xU

k0 Þ
: (56)

Since the shifted frequency rxU
k � r0xU

k0 is small, the low-frequency
expression of the real part is applicable, i.e.,

eðk � k0;rxU
k � r0xU

k0 Þ



x2

pe

jk � k0j2v2Te
þ i Im eðk � k0;rxU

k � r0xU
k0 Þ: (57)

Thus, we have

ImP
1

eðk � k0;rxU
k � r0xU

k0 Þ
¼ �ðlS

k�k0 Þ
2 Im eðk � k0;rxU

k � r0xU
k0 Þ: (58)

Consequently, the induced scattering term in the U mode wave equa-
tion can be alternatively written as

@

@t

����
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IrUk
lU
k

¼ �rxU
k

X
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IrUk
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k

;

M0k;k0 ¼
e2

m2
e

jk � k0j2

x4
pe

ðlU
k Þ

2ðlU
k0 Þ

2ðk � k0Þ2

k2k02

�
ðk � k0Þ2v2Te � gUk;k0 ðkk � k0kÞ

2v2Te

X2
e þ fðk � k0Þ2 � gUk;k0 ðkk � k0kÞ

2gv2Te

�����
�����
2

:

(59)

The provisional wave kinetic equation given by Eqs. (53) and
(54) with the modified induced scattering term given by Eq. (59) are
almost complete, except that the imaginary part of the dielectric con-
stant is undetermined. Under the strict warm two-fluid formalism, the
dielectric constant is purely real. However, the present warm two-fluid
formalism does not provide a complete description of the electrostatic
weak turbulence in magnetized plasmas. We thus turn to kinetic the-
ory in order to supplement the missing information as far as the warm
two-fluid approach goes. Also, the wave kinetic equation must be
solved in conjunction with the particle kinetic equation. For that, we
resort to the quasilinear theory.

C. Adding kinetic effects

We start from the Vlasov–Poisson system of equations given by

@

@t
þ v � r þ ea

ma
Eðr; tÞ þ v

c
� B0

� �
� @
@v

� 
faðr; v; tÞ ¼ 0;

r � Eðr; tÞ ¼ 4p
X
a

eana

ð
dv faðr; v; tÞ:

(60)

Separating the physical quantities into average and fluctuating parts,
faðr; v; tÞ ¼ Faðv; tÞ þ dfaðr; v; tÞ and Eðr; tÞ ¼ dEðr; tÞ, and consid-
ering only linear equation for the perturbation, we obtain

@Fa
@t
¼ ea

ma

@

@vi

ð
dk
ð
dx

ki
k
hE�k;�x f akxi;

Ekx ¼ �
4pi
k

X
a

ean0

ð
dv f akx;

@f akx
@u
þ iðx� k � vÞ

Xa
f akx ¼

ea
maXa

Ekx
ki
k
@Fa
@vi

;

(61)

where we have assumed the gyrotropy for Fa, and we have expressed
the results in spectral representation.

Solving for the perturbed distribution function—third equation
in Eq. (61)—following the standard textbook method, we have

f ak;x ¼
�iea
mak

X1
n¼�1

JnðbÞeib sinu�inu

x� kkvk � nXa þ i0

� nXa

v?

@

@v?
þ kk

@

@vk

 !
FaEk;x: (62)

Substituting Eq. (62) to the Poisson equation—second equation in Eq.
(61), we have the kinetic version of the wave dispersion relation,
together with the kinetic definition for the dielectric response function

0 ¼ eðk;xÞEk;x;

eðk;xÞ ¼ 1þ
X
a

x2
pa

k2

ð
dv
X1

n¼�1

J2nðbÞ
x� kkvk � nXa þ i0

� nXa

v?

@

@v?
þ kk

@

@vk

 !
Fa:

(63)

From this, we obtain the desired expression for the imaginary part of
dielectric constant given by

Im eðk;xÞ ¼ �
X
a

px2
pa

k2

ð
dv
X1

n¼�1
J2n

k?v?
Xa

� �

� dðx� kkvk � nXaÞ
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@v?
þ kk

@

@vk

 !
Fa: (64)

Inserting Eq. (62) to the particle kinetic equation in Eq. (61), we
also obtain the desired quasilinear velocity–space diffusion equation as
follows:

@Fa
@t
¼ pe2a

m2
a

ð
dk
ð
dx
X
n

nXa

v?

@

@v?
þ kk

@

@vk

 !

� J2n
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�
hdE2ik;x

k2
nXa

v?

@

@v?
þ kk

@

@vk

 !
Fa: (65)

D. Summary of equations

We are now in a situation to write down the complete set of
equations that can describe electrostatic turbulence in magnetized
plasmas. The onset of turbulence may be initiated by some free energy
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source associated with the particles. For instance, an electron beam
traveling along the ambient magnetic field may excite primarily
Langmuir instability, but during the course of nonlinear mode cou-
pling, the beam-generated Langmuir waves may undergo backscatter-
ing and decay that involves upper-hybrid waves and low-frequency
ion-sound waves. The set of equations to be summarized here can be
solved either by analytical means or by fully numerical means to
describe such processes. To present the final result, we take the expres-
sion for the imaginary part of dielectric constant computed from
kinetic theory, namely, Eq. (64). We also make use of the particle
kinetic equation (65) to provide a self-consistent dynamical descrip-
tion of the particle distribution function. We next discuss the incorpo-
ration of these kinetic effects.

First, we note that the upper-hybrid mode is a high-frequency
mode. As such, we may ignore ions in the linear growth/damping (or
induced emission) term given by

crU
k ¼ rxU

k lU
k

px2
pe

2k2

ð
dv
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n¼�1
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k?v?
jXej

� �

� dðrxU
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� njXej
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@vk

 !
Fe: (66)

The Langmuir/upper-hybrid mode is characterized by xU
k 	 xpe, xuh.

Consequently, the resonance condition leads to vk 	 ðrxU
k � njXejÞ=

kk. If the instability is driven by the electron beam, then it is seen that
the harmonic mode number corresponding to

n 	
rxU

k � kkvb
jXej
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pe

X2
e

þ k2?
k2
þ k2v2Te
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 !1=2

�
kkvb
X2

e

2
4

3
5; (67)

where vb is the average electron beam speed, is expected to make the
most important contribution. If xpe=jXej is, say, 3 or so, then n could
also be close to 3. If xpe=jXej 	 5, then n 	 5, etc. On the other hand,
the Bessel function factor J2nðk?v?=jXejÞ decreases for increasing n.
This means that there is a trade-off between the resonance condition
and the Bessel function multiplicative factor. In general, many har-
monic terms need to be included in the summation.

For the S mode, on the other hand, the frequency is low so that
one may keep only the lowest harmonic term in the electron Bessel
function series. In fact, only the n¼ 0 term (the Landau resonance)
will be sufficient. The S mode, however, is affected by the ions as well,
but since many higher-harmonics of ion terms need to be kept, we
approximate the problem by treating the ions as unmagnetized. Thus,
the Smode damping rate can be approximated by
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: (68)

For the induced scattering (nonlinear Landau damping) term in
the U mode wave equation, we retain only the ion (proton) contribu-
tion. As such, we also replace the expression by its unmagnetized
counterpart given by
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where

Uk;k0 ¼
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Finally, we treat ions as a stationary background so that we only solve
for the electron velocity–space diffusion equation. For the electrons,
only the U mode waves contribute to the velocity–space diffusion,
since the low-frequency S mode is generally unimportant for the elec-
trons especially in the range of electron beam.

The final set of equations are thus summarized as follows: The
wave kinetic equation for the Umode is given by
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where crU
k is given by Eq. (66); VU

k;k0 is defined in Eq. (55); the disper-
sion relations xU

k and xS
k are defined in Eqs. (31) and (36), respec-

tively; the quantities lU
k and lS

k are given in Eq. (39); and the
coefficient Uk;k0 is defined by Eq. (70).

The S mode wave kinetic equation is a slight modification of Eq.
(54) where
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where crS
k is defined in Eq. (68), and VS

k;k0 is defined in the same man-
ner as in Eq. (55). The ions are treated as quasistationary, but the elec-
tron distribution Fe evolves according to the dictates of the quasilinear
velocity–space diffusion equation given by
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This completes the formulation of weak turbulence in magnetized
plasmas under the assumption of electrostatic interaction. If we elimi-
nate the correction that arises from the presence of ambient magnetic
field, then the set of equations that we have derived thus far reduce to
that of unmagnetized plasmas, which had been derived with kinetic
theory and solved for one- and two-dimensional (or three-dimensions
with azimuthal symmetry) situations.33,84–95

V. SUMMARY AND DISCUSSIONS

To summarize the present paper, we have made use of a hybrid
technique that involves a warm two-fluid theory to compute the linear
dispersion relation, nonlinear susceptibility, and the basic form of non-
linear wave equation under the weak turbulence ordering. We have
then formulated the general weak turbulence analysis to derive the
wave kinetic equation that describes linear wave–particle interaction,
or induced emission, nonlinear wave–wave interaction, or decay/coa-
lescence, and nonlinear wave–particle interaction, or induced scatter-
ing process. Among these, the decay term is adequately described by
the warm two-fluid approach, but the processes that involve particles
cannot be discussed with macroscopic theory. We have thus employed
the linear and quasilinear kinetic theory to provide the mathematical
expressions for induced emission and induced scattering terms. We
have also derived the quasilinear diffusion equation for the particles,
thereby completing the formalism.

As noted in Sec. I, the present state of matter regarding the weak tur-
bulence theory in magnetized plasmas is not at a mature state. Instead,
weak turbulence theory for magnetized plasmas is discussed under vari-
ous simplifying assumptions. Despite some early efforts,49–51 completely
general kinetic theory of weak turbulence in magnetized plasmas is not
practical. The purpose of the present paper has been to derive a reduced
theory of weak turbulence in relatively weakly magnetized plasmas under
the assumption of electrostatic interaction. Unlike the early works,49–51

the present paper has taken amore pragmatic approach in that, we started
from the warm two-fluid theory. Recently, one of us (P.H.Y.) demon-
strated that the warm two-fluid theory is capable of partially reproducing
the weak turbulence wave equation for unmagnetized plasmas, which is
normally derived from full kinetic theory.81 The present paper adopted
such an approach, which is combined with quasilinear kinetic theory, and
succeeded in formulating the weak turbulence theory for magnetized plas-
mas under the assumption of electrostatic interaction.

In the future, the set of equations derived in this paper will be
analyzed/solved for a practical problem. Further, the present formal-
ism will be extended to a fully electromagnetic formalism. Such tasks
are beyond the scope of the present work, however.
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16L. Berčič, M. Maksimovič, M. S. Landi, and L. Matteini, Mon. Not. R. Astron.
Soc. 486, 3404 (2019).

17J. S. Halekas, P. Whittlesey, D. E. Larson, D. McGinnis, M. Maksimovic, M.
Berthomier, J. C. Kasper, A. W. Case, K. E. Korreck, M. L. Stevens et al.,
Astrophys. J. Suppl. Ser. 246, 22 (2020).

18D. J. McLean and N. R. Labrum, Solar Radiophysics: Studies of Emission from
the Sun at Metre Wavelengths (Cambridge University Press, Cambridge, 1985).

19D. B. Melrose, Aust. J. Phys. 23, 871 (1970).
20D. B. Melrose, in Universal Heliophysical Processes: Proceedings of the IAU
Symposium, edited by N. Gopalswamy and D. F. Webb (International Astronomical
Union, 2009), Vol. 257, p. 305.

21D. B. Melrose, Rev. Mod. Plasma Phys. 1, 5 (2017).
22V. M. Vasyliunas, J. Geophys. Res. 73, 2839, https://doi.org/10.1029/
JA073i009p02839 (1968).

23P. H. Yoon, J. Geophys. Res. 119, 70774, https://doi.org/10.1002/2014JA020353
(2014).

24P. H. Yoon, Eur. Phys. J. Spec. Top. 29, 819 (2020).
25V. L. Ginzburg and V. V. Zheleznyakov, Sov. Astron. 2, 653 (1958).
26M. V. Goldman, Sol. Phys. 89, 403 (1983).
27D. B. Melrose, Aust. J. Phys. 43, 703 (1990).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 122302 (2021); doi: 10.1063/5.0071803 28, 122302-12

Published under an exclusive license by AIP Publishing

https://doi.org/10.1029/JA080i031p04181
https://doi.org/10.1029/JA086iA02p00547
https://doi.org/10.1029/JA088iA11p08893
https://doi.org/10.1029/JA088iA11p08893
https://doi.org/10.1093/mnras/stz1007
https://doi.org/10.1093/mnras/stz1007
https://doi.org/10.3847/1538-4365/ab4cec
https://doi.org/10.1071/PH700871
https://doi.org/10.1007/s41614-017-0007-0
https://doi.org/10.1029/JA073i009p02839
https://doi.org/10.1002/2014JA020353
https://doi.org/10.1140/epjst/e2020-900215-4
https://doi.org/10.1071/PH900703
https://scitation.org/journal/php


28P. A. Robinson and I. H. Cairns, Theory of Type III and Type II Solar Radio
Emissions, AGU Monograph Series 119 (American Geophysical Union,
Washington, D.C., 2000), p. 119.

29B. Li, I. H. Cairns, and P. A. Robinson, J. Geophys. Res. 113, A06104, https://
doi.org/10.1029/2007JA012957 (2008).

30B. Li and I. H. Cairns, J. Geophys. Res. 118, 4748, https://doi.org/10.1002/
jgra.50445 (2013).

31B. Li and I. H. Cairns, Sol. Phys. 289, 951 (2014).
32H. A. S. Reid and H. Ratcliffe, Res. Astron. Astrophys. 14, 773 (2014).
33L. F. Ziebell, P. H. Yoon, L. T. Petruzzellis, R. Gaelzer, and J. Pavan, Astrophys.
J. 806, 237 (2015).

34S.-Y. Lee, L. F. Ziebell, P. H. Yoon, R. Gaelzer, and E. Lee, Astrophys. J. 871, 74
(2019).

35Y. Kasaba, H. Matsumoto, and Y. Omura, J. Geophys. Res. 106, 18693, https://
doi.org/10.1029/2000JA000329 (2002).

36T. Umeda, Y. Omura, T. Miyake, H. Matsumoto, and M. Ashour-Abdalla,
J. Geophys. Res. 111, A10206, https://doi.org/10.1029/2006JA011762 (2006).

37M. Karlick�y and M. Vandas, Planet. Space Sci. 55, 2336 (2007).
38T. Rhee, C.-M. Ryu, M. Woo, H. H. Kaang, S. Yi, and P. H. Yoon, Astrophys. J.
694, 618 (2009).

39T. Rhee, M. Woo, and C.-M. Ryu, J. Korean Phys. Soc. 54, 313 (2009).
40U. Ganse, P. Kilian, R. Vainio, and F. Spanier, Sol. Phys. 280, 551 (2012).
41U. Ganse, P. Kilian, F. Spanier, and R. Vainio, Astrophys. J. 751, 145 (2012).
42J. O. Thurgood and D. Tsiklauri, Astron. Astrophys. 584, A83 (2015).
43H. Che, M. L. Goldstein, P. H. Diamond, and R. Z. Sagdeev, Proc. Natl. Acad.
Sci. U.S.A. 114, 1502 (2017).

44P. Henri, A. Sgattoni, C. Briand, F. Amiranoff, and C. Riconda, J. Geophys.
Res. 124, 1475, https://doi.org/10.1029/2018JA025707 (2019).

45C. Li, Y. Chen, S. Ni, B. Tan, H. Ning, and Z. Zhang, Astrophys. J. Lett. 909, L5
(2021).

46V. V. Annenkov, E. P. Volchok, and I. V. Timofeev, Astrophys. J. 904, 88 (2020).
47S. Ni, Y. Chen, C. Li, J. Sun, H. Ning, and Z. Zhang, Phys. Plasmas 28, 040701
(2021).

48C. Krafft and P. Savoini, Astrophys. J. Lett. 917, L23 (2021).
49V. N. Tsytovich and A. B. Shvartsburg, “Contribution to the theory of nonlin-
ear interaction of waves in a magnetoactive anisotropic plasma,” Sov. Phys.
JETP 22, 554 (1966).

50V. V. Pustovalov and V. P. Silin, “Nonlinear theory of the interaction of waves
in a plasma,” in Theory of Plasmas, Proceedings (Trudy) of the P. N. Lebedev
Physics Institute Vol. 61, edited by D. V. Skobel’tsyn (Consultants Bureau,
New York, 1975), p. 37.

51D. B. Melrose and W. Sy, Astrophys. Space Sci. 17, 343 (1972).
52S. Sridhar and P. Goldreich, Astrophys. J. 432, 612 (1994).
53C. S. Ng and A. Bhattacharjee, Astrophys. J. 465, 845 (1996).
54C. S. Ng and A. Bhattacharjee, Phys. Plasmas 4, 605 (1997).
55S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys. 63,
447 (2000).

56S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, Astrophys. J. 564,
L49 (2002).

57S. Galtier and A. Bhattacharjee, Phys. Plasmas 10, 3065 (2003).
58Q. Luo and D. Melrose, Mon. Not. R. Astron. Soc. 368, 1151 (2006).
59J. C. Perez, J. Mason, S. Boldyrev, and F. Cattaneo, Phys. Rev. X 2, 041005
(2012).

60P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021).
61R. A. Ellis and M. Porkolab, Phys. Rev. Lett. 21, 529 (1968).
62M. Porkolab and R. P. H. Chang, Rev. Mod. Phys. 50, 745 (1978).
63M. Porkolab, Phys. Rev. Lett. 54, 434 (1985).
64V. S. Mikhajlenko and K. N. Stepanov, Plasma Phys. 23, 1165 (1981).
65G. Ganguli, L. Rudakov, W. Scales, J. Wang, and M. Mithaiwala, Phys. Plasmas
17, 052310 (2010).

66L. Rudakov, M. Mithaiwala, G. Ganguli, and C. Crabtree, Phys. Plasmas 18,
012307 (2011).

67C. Crabtree, L. Rudakov, G. Ganguli, G. Mithaiwala, M. Galinsky, and V.
Shevchenko, Phys. Plasmas 19, 032903 (2012).

68M. Mithaiwala, L. Rudakov, C. Crabtree, and G. Ganguli, Phys. Plasmas 19,
102902 (2012).

69V. Y. Trakhtengerts, Radiofizika 13, 697 (1970).
70Y.-C. Chin, Planet. Space Sci. 20, 711 (1972).
71D. B. Melrose, Aust. J. Phys. 28, 101 (1975).
72E. Y. Zlotnik, Astron. Astrophys. 101, 250 (1981).
73G. A. Melrose, D. B. Dulk, and S. F. Smerd, Astron. Astrophys. 66, 315 (1978);
available at https://adsabs.harvard.edu/pdf/1981A%26A...101..250Z.

74D. B. Melrose, G. A. Dulk, and D. E. Gary, Proc. Astron. Soc. Aust. 4, 50
(1980); available at https://adsabs.harvard.edu/pdf/1978A%26A....66..315M.

75A. J. Willes and D. G. Melrose, Sol. Phys. 171, 393 (1997).
76P. H. Yoon, Phys. Plasmas 22, 082309 (2015).
77P. H. Yoon, Phys. Plasmas 22, 092307 (2015).
78P. H. Yoon, Phys. Plasmas 22, 082310 (2015).
79G. Brodin and L. Stenflo, Phys. Plasmas 22, 104503 (2015).
80P. H. Yoon, J. LaBelle, and A. T. Weatherwax, J. Geophys. Res. 121, 7981,
https://doi.org/10.1002/2016JA022889 (2017).

81P. H. Yoon, Plasma Phys. Controlled Fusion 63, 125012 (2021).
82S.-Y. Lee, P. H. Yoon, E. Lee, and W. Tu, Astrophys. J. (in press),
arXiv:2109.11663v1 (2021).

83P. H. Yoon, “Polarization vector formalism of plasma weak turbulence,” AIP
Advances 11, 125103 (2021).

84P. H. Yoon, Phys. Plasmas 7, 4858 (2000).
85L. F. Ziebell, R. Gaelzer, and P. H. Yoon, Phys. Plasmas 8, 3982 (2001).
86R. Gaelzer, L. F. Ziebell, A. F. Vi~nas, P. H. Yoon, and C.-M. Ryu, Astrophys. J.
677, 676 (2008).

87L. F. Ziebell, R. Gaelzer, and P. H. Yoon, Phys. Plasmas 15, 032303 (2008).
88L. F. Ziebell, R. Gaelzer, J. Pavan, and P. H. Yoon, Plasma Phys. Controlled
Fusion 50, 085011 (2008).

89J. Pavan, L. F. Ziebell, R. Gaelzer, and P. H. Yoon, J. Geophys. Res. 114,
A01106, https://doi.org/10.1029/2008JA013557 (2009).

90J. Pavan, L. F. Ziebell, P. H. Yoon, and R. Gaelzer, Plasma Phys. Controlled
Fusion 51, 095011 (2009).

91S. Yi, T. Rhee, C.-M. Ryu, and P. H. Yoon, Phys. Plasmas 17, 122318 (2010).
92L. F. Ziebell, P. H. Yoon, R. Gaelzer, and J. Pavan, Plasmas Phys. Controlled
Fusion 54, 055012 (2012).

93L. F. Ziebell, P. H. Yoon, R. Gaelzer, and J. Pavan, Astrophys. J. Lett. 795, L32
(2014).

94S. F. Tigik, L. F. Ziebell, P. H. Yoon, and E. P. Kontar, Astron. Astrophys. 586,
A19 (2016).

95L. F. Ziebell, L. Petruzzellis, P. H. Yoon, R. Gaelzer, and J. Pavan, Astrophys. J.
Lett. 818, 61 (2016).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 122302 (2021); doi: 10.1063/5.0071803 28, 122302-13

Published under an exclusive license by AIP Publishing

https://doi.org/10.1029/GM119p0037
https://doi.org/10.1029/GM119p0037
https://doi.org/10.1029/2007JA012957
https://doi.org/10.1002/jgra.50445
https://doi.org/10.1007/s11207-013-0375-8
https://doi.org/10.1088/1674-4527/14/7/003
https://doi.org/10.1088/0004-637X/806/2/237
https://doi.org/10.1088/0004-637X/806/2/237
https://doi.org/10.3847/1538-4357/aaf476
https://doi.org/10.1029/2000JA000329
https://doi.org/10.1029/2006JA011762
https://doi.org/10.1016/j.pss.2007.05.015
https://doi.org/10.1088/0004-637X/694/1/618
https://doi.org/10.3938/jkps.54.313
https://doi.org/10.1007/s11207-012-0077-7
https://doi.org/10.1088/0004-637X/751/2/145
https://doi.org/10.1051/0004-6361/201527079
https://doi.org/10.1073/pnas.1614055114
https://doi.org/10.1073/pnas.1614055114
https://doi.org/10.1029/2018JA025707
https://doi.org/10.1029/2018JA025707
https://doi.org/10.3847/2041-8213/abe708
https://doi.org/10.3847/1538-4357/abbef2
https://doi.org/10.1063/5.0045546
https://doi.org/10.3847/2041-8213/ac1795
https://doi.org/10.1007/BF00642906
https://doi.org/10.1086/174600
https://doi.org/10.1086/177468
https://doi.org/10.1063/1.872158
https://doi.org/10.1017/S0022377899008284
https://doi.org/10.1086/338791
https://doi.org/10.1063/1.1584433
https://doi.org/10.1111/j.1365-2966.2006.10191.x
https://doi.org/10.1103/PhysRevX.2.041005
https://doi.org/10.1063/5.0062561
https://doi.org/10.1103/PhysRevLett.21.529
https://doi.org/10.1103/RevModPhys.50.745
https://doi.org/10.1103/PhysRevLett.54.434
https://doi.org/10.1088/0032-1028/23/12/005
https://doi.org/10.1063/1.3420245
https://doi.org/10.1063/1.3532819
https://doi.org/10.1063/1.3692092
https://doi.org/10.1063/1.4757638
https://doi.org/10.1007/BF01030773
https://doi.org/10.1016/0032-0633(72)90155-9
https://doi.org/10.1071/PH750101
https://adsabs.harvard.edu/pdf/1981A%26A...101..250Z
https://doi.org/10.1017/S1323358000018762
https://adsabs.harvard.edu/pdf/1978A%26A....66..315M
https://doi.org/10.1023/A:1004993601351
https://doi.org/10.1063/1.4928446
https://doi.org/10.1063/1.4930205
https://doi.org/10.1063/1.4928380
https://doi.org/10.1063/1.4934938
https://doi.org/10.1002/2016JA022889
https://doi.org/10.1088/1361-6587/ac2e40
http://arxiv.org/abs/2109.11663v1
https://doi.org/10.1063/5.0070559
https://doi.org/10.1063/5.0070559
https://doi.org/10.1063/1.1318358
https://doi.org/10.1063/1.1389863
https://doi.org/10.1086/527430
https://doi.org/10.1063/1.2844740
https://doi.org/10.1088/0741-3335/50/8/085011
https://doi.org/10.1088/0741-3335/50/8/085011
https://doi.org/10.1029/2008JA013557
https://doi.org/10.1088/0741-3335/51/9/095011
https://doi.org/10.1088/0741-3335/51/9/095011
https://doi.org/10.1063/1.3529359
https://doi.org/10.1088/0741-3335/54/5/055012
https://doi.org/10.1088/0741-3335/54/5/055012
https://doi.org/10.1088/2041-8205/795/2/L32
https://doi.org/10.1051/0004-6361/201527271
https://doi.org/10.3847/0004-637X/818/1/61
https://doi.org/10.3847/0004-637X/818/1/61
https://scitation.org/journal/php

	AI-PHP#210764_Web.pdf
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78
	c79
	c80
	c81
	c82
	c83
	c84
	c85
	c86
	c87
	c88
	c89
	c90
	c91
	c92
	c93
	c94
	c95


