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ABSTRACT

Academic collaboration networks, graphs that depict researchers as nodes and collabora-

tive works as links, prove challenging to analyze and visualize at a large-scale. This study

improves upon an existing tool, VizColab, originally designed for visualizing a large-

scale Brazilian academic collaboration network. VizColab originally visualized these

networks in three-dimensional space across three hierarchic levels: universities, graduate

programs, and intellectual production authors. The study first enriches VizColab with a

two-dimensional visualization capability, expanding the user’s viewing options and im-

proving the tool’s versatility. A search functionality has been implemented, allowing users

to easily locate nodes of interest within the extensive network. The study also introduces

color-coding based on centrality metrics, offering a more insightful visual representation

of network dynamics. To further support data analysis, tables displaying this centrality in-

formation have been added. Finally, the upgraded VizColab now facilitates the sharing of

customized visualization setups, promoting collaborative exploration of the academic net-

work. This enhanced version of VizColab delivers an enriched, interactive, and intuitive

experience, effectively addressing the complexity of large-scale academic collaboration

networks’ visualization.

Keywords: Academic collaborations. academic co-authorships. visualization. graphs.

graph analysis. co-authorship networks. graduate studies. CAPES.
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1 INTRODUCTION

The growing intricacy of modern scientific pursuits requires both increased spe-

cialization and multidisciplinarity, making collaboration an essential pillar of science

(UTZERATH; FERNáNDEZ, 2017; WANG; WU; PAN, 2014). Despite its importance,

objective discussions about “collaboration” can be challenging due to the nebulous na-

ture of the concept (WOOLGAR, 2012). In this context, metrics and visualizations can

provide valuable insights.

Co-authorships in academia are one of the most visible and easily accessible in-

dicators of collaboration between researchers (ABBASI; ALTMANN; HWANG, 2010),

making them an appealing object of study in analyzing scientific collaboration (MILO-

JEVIć, 2010). In Brazil, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior) maintains and publishes data sets related to the intellectual production of re-

searchers from all stricto sensu graduate programs (CAPES, 2023). Leveraging these fac-

tors, the VizColab (FISCHER, 2022) tool was developed as a web application that allows

for the visualization of a three-dimensional graph of Brazilian academic collaborations

at three hierarchical levels: universities, graduate programs, and academic production

authors.

The original VizColab tool achieved significant success in enabling structured data

visualization and offering a swift means to qualitatively explore various research ques-

tions related to regional, institutional, and individual collaborations in Brazil (FISCHER,

2022). Despite its virtues, VizColab had some limitations, such as the lack of temporal

visualization and more elaborate filters, absence of co-authorship details, and the unavail-

ability of metrics and auxiliary visualization methods to enrich the analysis.

Addressing these limitations, this study sought to enhance VizColab, adding sev-

eral features: two-dimensional visualization, node search functionality, node color-coding

based on centrality values, dynamic tables with centrality information, a temporal filter

to select a specific range of years, and a feature to save and share the current state of the

graph. These improvements were inspired by suggestions from the evaluation commit-

tee of the original VizColab work, input from other UFRGS professors and researchers,

discussions on media appearances1, and original ideas from the authors of the current

study.

The following sections are organized as follows: Chapter 2 discusses the centrality

1VizColab: Vizualização de colaborações - <https://youtu.be/0VYuaq7pn-Y>

https://youtu.be/0VYuaq7pn-Y
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metrics available in the VizColab tool, citing relevant previous work that used these met-

rics to analyze academic collaboration networks. Chapter 3 contains an in-depth explo-

ration of two papers that approached the problem of visualizing co-authorship networks.

That serves as context to the discussion of the new features added to VizColab further

into the article. Chapter 4 describes the original VizColab app, before the enhancements.

Chapter 5 discusses the implementation of the enhancements to the tool, with a section

covering each one. Following this, Chapter 6 explores some use cases that demonstrate

the utility of these enhancements. The thesis concludes with final considerations and

directions for future work in chapter 7.

The emphasis of this study is on improving the VizColab tool, equipping re-

searchers, analysts, and enthusiasts with enhanced functionalities to more comprehen-

sively visualize and explore the landscape of Brazilian academic collaborations.
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2 DEGREE, CLOSENESS, BETWEENNESS AND EIGENVECTOR CENTRALI-

TIES

This section presents the centrality metrics made available in VizColab by this

project, how they are calculated and previous work on exploring their interpretations.

Their visualization is detailed chapter 5.8.

2.1 Degree Centrality

The degree centrality of a node is the number of other nodes it connects to. In

other words, it is the count of edges that contain the node at one of its endpoints. Let’s

denote the degree of a node n as d and the set of graph edges as E. An edge where one

endpoint is node n and another is node m is denoted as (n,m). The degree of a node can

be calculated with the following formula:

d(n) =
∑

(n,m)∈E

1

If we understand the degree centrality of a node simply as the result of this calcu-

lation, using this metric to compare different graphs can be problematic. For instance, a

node of degree 9 in a graph with a total of 10 edges is present in 90% of the graph’s links,

whereas a node with the same degree in a graph with 100 edges is only part of 9% of the

connections, being much less connected in relative terms. For this reason, a node’s degree

centrality is normalized by dividing the node’s degree by the total number of edges in the

graph. In a graph where a node cannot link to itself, this self-link is subtracted from the

total. Thus, for the co-authorship graph, the degree centrality of a node is given by:

CD(n) =
d(n)

total nodes− 1

Nodes with high degree centrality can be considered “popular" and, in the context

of co-authorship networks, have the potential to guide the topics studied by what can be

understood as “research groups": the set of nodes connected to the high centrality node.

However, these groups can be isolated from the network as a whole. This highlights that

degree centrality is a local measure and does not, by itself, position the node within the

network as a whole. In comparison, a measure that does this is, for example, the closeness
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centrality.

2.2 Closeness Centrality

The closeness centrality of a node pertains to how close, on average, a node is to

all others in terms of the number of edges that must be traversed to reach them. One way

to calculate it is by summing the reciprocal of the number of edges traversed from the node

to all other nodes. This calculation is performed in this way to account for disconnected

networks. In the case of two disconnected nodes, the number of edges between them is

considered infinite and the reciprocal of this "distance" is considered zero.

If we denote the closeness centrality of a node n as CC and the distance between

this node and another node m as d(n,m), considering the set of all nodes N , the formula

for closeness centrality is:

CC(n) =
N − 1∑

m∈N d(n,m)−1

According to (YAN; DING, 2009), closeness centrality "focuses on the breadth of

a node’s influence over the entire network". (LI-CHUN et al., 2006) posits this centrality

as "a measure of how long it will take for information at a node in the network to reach

others". Yet another source, (ABBASI; HOSSAIN; LEYDESDORFF, 2012), argues that

a node closer to all others (on average) can more easily obtain information and disseminate

it throughout the network. They conclude from this that the measure approximates how

independent and efficient a node is in terms of communicating with others. It’s easy to

see how these insights can be applied to co-authorship networks, in analyzing the flow of

information and the influence of researchers and the capillarity of their communications.

2.3 Betweenness Centrality

Betweenness centrality refers to the proportion of shortest paths between two

nodes that pass through the node under analysis. More precisely, if we refer to the be-

tweenness centrality of node n as CB(n), the quantity of shortest paths between two nodes

j and k as σd(j,k), and the quantity of shortest paths between j and k that pass through n

as σd(j,n,k), the formula for betweenness centrality is:
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CB(n) =
∑

j ̸=n̸=k

σd(j,n,k)

σd(j,k)

=
∑

j ̸=n̸=k

Cj,k
B (n)

Where Cj,k
B (n) is the betweenness centrality of the node in relation to the pair of

nodes (j, k).

For disconnected graphs, it is possible that σd(j,k) is equal to 0. In these cases, it

is conventionally accepted that Cj,k
B (n) equals 0. Another point to note is that each pair

of nodes (j, k) contributes to the sum with a value Cj,k
B (n) ∈ [0, 1]. This means that,

calculated in this way, betweenness centrality tends to be higher for nodes in graphs with

more nodes. As will be shown in following chapters, we are interested in calculating

these metrics for graphs of different sizes, corresponding to collaboration networks for

universities, post-graduate programs and individual researchers, so normalizing the values

is useful. This can be done by dividing the value of the sum by the total possible number

of pairs (j, k) that do not include n. If we take the number of nodes in the graph as N ,

for an undirected graph, like the co-authorship one, this value is (N − 1)(N − 2)/2. The

final calculation is:

CB(n) =

∑
j ̸=n̸=k C

j,k
B (n)

(N − 1)(N − 2)/2

Cj,k
B (n) = 0, if σd(j,k) = 0

Cj,k
B (n) =

σd(j,n,k)

σd(j,k)
, if σd(j,k) ̸= 0

(YAN; DING, 2009) cites (LI-CHUN et al., 2006) stating that nodes with high be-

tweenness are "pivots of information flows in the network." According to (YAN; DING,

2009), authors with high betweenness connect groups of researchers with common inter-

ests and, because they connect different groups, often operate in different research areas,

demonstrating interdisciplinarity. Due to their mediating role, high betweenness nodes

can be seen as those whose removal has the most potential to affect the flow of informa-

tion in the network.

(ABBASI; HOSSAIN; LEYDESDORFF, 2012), having studied scientific articles

published in fifteen of the most prestigious journals in the steel structures field from 1999

to 2009, assessed the correlation between the three centrality metrics discussed thus far

and the likelihood of authors forming collaborations with new authors. Their findings

indicated that, for the studied works, betweenness centrality outperformed the other cen-

tralities as a predictor of to which nodes new entrants to the co-authorship network would

connect. However, the authors acknowledged that further studies were required to deter-
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mine whether this observation would hold for other fields of knowledge. In this context,

the resources developed in this work, which include the calculation of centrality metrics

for co-authorship networks using multidisciplinary data from CAPES, and tools to visual-

ize these networks’ evolution over time, may be instrumental in addressing such question,

as well as aiding CAPES decision-makers in understanding who contributes most signifi-

cantly to the growth of co-authorship networks.

2.4 Eigenvector Centrality

Eigenvector centrality is a measure of influence in a network that assigns relative

scores to nodes considering not only their direct connections but also the significance

of their neighbours (BONACICH, 1987). This concept is well-applied in the context of

scientific co-authorship networks, where a researcher’s influence is shaped not merely by

their quantity of collaborations, but also by the prominence of their co-authors.

The eigenvector centrality of a node in the adjacency matrix A of a graph, where

Aij = 1 if nodes i and j are connected and Aij = 0 otherwise, can be calculated by the

following equation:

Ax = λx (2.1)

Here, x is the vector of centrality scores of all nodes and λ is the principal eigen-

value of the adjacency matrix A. This equation signifies that the centrality of a node is

proportional to the sum of the centralities of its neighbours. As such, a node connected to

many high-centrality nodes will have a high centrality itself.

The reason why λ is the largest eigenvalue of A comes from the Perron–Frobenius

theorem, which assures that a positive, square matrix like A will have a single principal

eigenvector (corresponding to the largest eigenvalue) that consists of all positive entries.

This is important, as the centrality measures of all nodes should be non-negative.

The scores are normalized such that the sum of squares equals one,
∑

i x
2
i = 1. As

indicated before, this is particularly important when comparing networks with significant

differences in size and connectivity.

(ABBASI; ALTMANN; HOSSAIN, 2011) utilized Eigenvector centrality in their

analysis of co-authorship networks. They found that researchers who are connected to

many other distinct scholars often have better citation-based performance (g-index) than
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those with fewer connections. However, interestingly, they found that Eigenvector cen-

trality had a negative significant influence on the g-index, suggesting that scholars may

benefit more from working with many students instead of other high-performing scholars.
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3 GRAPH VISUALIZATIONS

This sections explores two papers related to the task of visualizing co-authorship

networks, InterRing (HUANG; HUANG, 2006) and Co-Authorship Networks Visual-

ization System for Supporting Survey of Researchers’ Future Activities (KUROSAWA;

TAKAMA, 2012). The in-depth investigation the articles serves to contextualise VizCo-

lab among previous work in graph visualizations, specially in the context of academic

collaboration.

3.1 InterRing

(HUANG; HUANG, 2006) developed a co-authorship visualization called Inter-

Ring (figure 3.1). The technique involves representing an author’s co-authorship history

as a series of concentric rings. Each ring represents a year in which the author was in-

volved in collaborative academic publications and rings closer to the center denote earlier

periods. The rings are divided into colored sections, each corresponding to a co-author.

The space occupied by each section is proportional to the relevance of that co-author

within the co-authorships of that particular year. This relevance is determined by taking

into account not only the number of partnerships with the author under analysis, but also

the relative contribution in each publication. This is inferred from the order in which the

authors’ names appear on papers, relying on the commonly recognized convention that

authors are listed by the magnitude of their contributions.

The authors emphasize that this visualization method places more emphasis on

analyzing the temporal dimension, in contrast to graph visualizations which typically

Figure 3.1 – Visualization of an individual’s co-authorship network using the InterRing
technique, sourced from (HUANG; HUANG, 2006)
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Figure 3.2 – Summary of the information contained in a node, extracted from (KUROSAWA;
TAKAMA, 2012). The colors of the sectors represent keywords, with size proportional to their
usage. The division into concentric rings of different saturations indicates whether the author
published only at the beginning of the analyzed period (two de-saturated rings), continuously
throughout the period (central de-saturated ring, outer saturated ring), or only recently (two

saturated rings).

represent only the aggregate outcome at the end of a time period.

Along with the main visualization, the authors also provided panels in the devel-

oped tools listing the articles co-authored by each author. This allowed for a more detailed

understanding of each author’s research and its progression.

3.2 Co-Authorship Networks Visualization System for Supporting Survey of Researchers’

Future Activities

(KUROSAWA; TAKAMA, 2012) sought visualizations that could be used to pre-

dict future activities of researchers. In particular, they aimed for tools capable of identi-

fying rising authors, those most likely to "write an article of interest" in the future, and

the emergence of new research areas. The authors argue that co-authorship networks are

an apt data source to underpin this analysis. This is because scientific papers are often

collaborative endeavors, and new study areas typically arise from the collaboration of

researchers from diverse fields of knowledge.

The proposed system consists of a two-dimensional network of nodes representing

authors and edges representing co-authorships. The way the nodes are colored conveys

the authors’ publication cadence within the analyzed time span, as well as the distribution

of keywords in their academic output (figure 3.2). Additionally, in the graph visualization,

it was possible to select automatic clusterings based on the use of similar keywords.

The researchers evaluated the effectiveness of their tool by providing it to a group

of students who were tasked with using it to identify rising researchers and those who
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Figure 3.3 – Overview of the tool, extracted from (KUROSAWA; TAKAMA, 2012). (a) Panel
with the co-authorship network; (b) Node details, where it’s possible to filter keywords; (c)

Operations panel, where one can configure the analysis interval, among other things.

would act more as "supervisors", having past achievements but whose future contributions

might be less prolific. To assess the impact of specific features, the authors supplied

different versions of the tool, with varying enabled features, and evaluated the outcomes.

Their conclusion was that the tool was effective in aiding analyses, and all proposed

features were deemed relevant.
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4 THE ORIGINAL VIZCOLAB

VizColab emerged as a tool designed to explore Brazilian academic collaboration

networks in a highly visual and interactive way. It offers a comprehensive visualization

of co-authorship relations, presenting data in a structured and user-friendly manner.

For the co-authorship networks and academic collaborations visualized in VizCo-

lab, nodes and edges have different meanings across multiple hierarchical visualization

levels (see Figure 4.1):

1. Collaborations Among Universities: The main page presents a visualization of

academic collaborations in Brazilian postgraduate programs at the university level.

Nodes denote universities, color-coded by regions (North, Northeast, Central-West,

Southeast, South). Their sizes reflect the aggregate academic outputs of each uni-

versity, while edges denote co-authorships among their faculty members. The di-

ameter of these edges signifies the number of co-authorship ties.

2. Collaborations Among Postgraduate Programs of a Given University: For each

university’s data, one can delve into a new graph mapping collaborations among

its postgraduate programs. In this tier, nodes represent the programs, color-coded

according to their primary knowledge domain, and edges symbolize co-authorships

of their respective authors. Like the previous level, the size of the elements scales

with the number of publications and collaborations.

3. Collaborations Among Authors of a Specific Program: At this level, nodes em-

body authors, distinguished by their publication count (node diameter), and edges

denote co-authorships.

4. Collaborations of a Specific Author: One can further explore a node from the pre-

vious tier, representing an author. The resulting visualization uses the same sym-

bols, but the dataset is trimmed to only display co-authorship relations involving

the chosen author.

With the vast dataset it handles, containing 14,883,507 co-authorship relations de-

rived from the Open Data Portal of CAPES (FISCHER, 2022), VizColab has incorporated

several strategies to facilitate analysis:

1. Hierarchical Node Segmentation: A high number of nodes and connections might

result in overlapping visualization elements in VizColab’s three-dimensional dis-

play, hindering discernment of network sections and patterns. That’s why, to miti-
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Figure 4.1 – Screenshots of different hierarchical levels in the original VizColab.
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Figure 4.2 – Comparison of different connection densities, sourced from (FISCHER, 2022).

gate this, VizColab partitions data across the multiple aforementioned graphs, which

categorize information into hierarchical levels, reducing the concurrently displayed

node and edge count.

2. Variable Connection Density: Even with fewer nodes, the number of edges could

sometimes obscure graph exploration. To remedy this flexibly, a feature was incor-

porated to dynamically adjust the connection density on screen, hiding less relevant

edges if necessary. The criterion for "relevance" used here is: the most relevant

edges linked to a node are those connecting it with the nodes with which it col-

laborated the most. By ranking edges in descending order based on collaboration

numbers, and selecting a density d, the system can return a graph that contains only

the top d edges from each node.

While these techniques, combined with the use of color and size differentiation,

already enabled a deep analysis of the data and the extraction of numerous insights (FIS-

CHER, 2022), the literature review on co-authorship network visualization and analysis,

of which particular tools and studies were detailed in chapters 2 and 3, highlighted poten-

tial areas for improvement. Chapter 5 will detail the specific improvements made, provid-

ing a comprehensive overview of the enhanced interactive experience now available for

users exploring Brazilian academic collaboration networks.

4.1 Backend Architecture: Neo4j Database

A crucial aspect of VizColab’s ability to visualize and navigate vast co-authorship

networks stems from its backend data architecture. To ensure efficient access to highly

interconnected data, VizColab leverages Neo4j, a native graph database management sys-

tem (NEO4J, 2022b).

This database management system is specifically designed to process and store
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intricately related data. Its graph-centric architecture facilitates highly efficient queries,

making it the most popular graph database worldwide. Within this architecture, there are

two primary entities: nodes and relationships.

4.1.1 Nodes in VizColab’s Neo4j Database

• Author: Denotes an intellectual production’s contributor.

• Program: Represents a specific post-graduate program.

• University: Symbolizes a higher education institution.

• Production: Signifies a published article.

4.1.2 Relationships in VizColab’s Neo4j Database

• Authorship: Between Author and Production, marking an individual’s contribution

to an intellectual output.

• Collaboration: Between University and University, showcasing their collaborative

engagements and counting the collaborations.

• Co-authorship: Between Author and Author, signifying a shared contribution, de-

tailing the collaboration count, and itemizing the shared academic works.

• Affiliation to a Program: Associates an Author with a Program, marking the au-

thor’s involvement with a particular post-graduate course.

• Affiliation to a University: Links an Author to a University, signifying the author’s

tie to the educational institution.

This structure allowed VizColab to host a sprawling academic collaboration net-

work, comprising:

• 1,275,852 authors

• 1,708,666 intellectual productions

• 4,685 postgraduate programs

• 532 higher education institutions

• 6,072,199 authorship relations ([author] -> [production])

• 14,883,507 co-authorship relations between authors



24

• 50,003 collaboration relations between educational institutions

• 1,090,185 collaboration relations between postgraduate programs

• 1,275,852 affiliation relations to postgraduate programs ([author] -> [program])

• 1,275,852 affiliation relations to higher education institutions ([author] -> [univer-

sity])

These staggering numbers underscore the depth and breadth of Brazilian academic

collaborations. The ability to dynamically interact with this expansive network, without

significant delays, stands as a testament to both Neo4j’s efficiency and the careful config-

uration of its parameters, detailed in more depth in (FISCHER, 2022).
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5 ENHANCEMENTS TO VIZCOLAB

VizColab underwent significant enhancements to further facilitate and enrich the

exploration of Brazilian academic collaboration networks. These improvements aim to of-

fer users more granular control over the data, diversify visualization modes, display novel

information and provide new ways of interacting with and sharing the network insights.

The following sections elucidate each of these features, highlighting their importance and

the underlying motivation for their inclusion.

5.1 Kubernetes Cluster

The original neo4j database ran in a simple container managed through Portainer1,

a lightweight management UI that allows users to easily manage Docker containers. In

order to improve the reliability, scalability and control over the backend resources, that

deployment was substituted for a deployment of Neo4j in a Kubernetes cluster of the Fed-

eral University of the State of Rio Grande do Sul (UFRGS) Institute of Informatics (INF).

That cluster has more than 100GB of RAM freely available for academic projects and

over 80 cores in total, some of them of high-performance Intel Xeon processors. Hosting

the database on owned infrastructure was thought to enable finer tuning of performance

characteristics and to allow for more streamlined testing of ideias and implementation of

new features, without incurring in extra costs associated with managed cloud solutions.

Whilst it freed the current authors from having to use the limited resources available on

their personal computers, due to difficulties in parallelizing some of the data processing

steps, such as author grouping, and the powerful single core performance of the original

personal computer used to process it (a Macbook with a M1 Pro processor (FISCHER,

2022)) the cluster deployment was only able to match the original total time of importing

and processing the data, at around 33 minutes, and kept the response time of the dynamic

queries issued during use of the tool below the 2 second threshold, which was found to

be satisfactory for interactivity. The achievement of this effort is thus allowing any fu-

ture work on the database to be carried on by students with less powerful computers, and

further tuning might be performed in future works.

To aid in providing some of the new features implemented in this work the neo4j

deployment was enhanced with the installation of the APOC library. APOC (Awesome

1Available in https://www.portainer.io/
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Figure 5.1 – Slider for selecting a year range of data to display on the graphs. "FAIXA DE
ANOS" means "YEAR RANGE", and "DENSIDADE DE CONEXÕES" means

"CONNECTION DENSITY"

Procedures on Cypher) is a powerful addition to neo4j that provides access to user-defined

procedures and functions which extend the use of the Cypher query language into areas

such as data integration, graph algorithms, and data conversion. Particularly in this work,

extensive use was made of it’s list manipulation features. For the implementation of

the time slice filtering feature to be detailed in section 5.2, the aggregates of production

counts in nodes and in co-autorship and collaboration relationships were partitioned into

lists with values for each year using APOC.

5.2 Time Slice Filtering

One of the most powerful ways to understand and interpret data is through the lens

of time. Temporal analysis allows researchers and analysts to identify trends, patterns, and

anomalies that may only become apparent when observing data chronologically.

The data from CAPES available in VizColab spans the years 2017 to 2020 (FIS-

CHER, 2022). To harness the potential of this temporal dimension, a range slider was

added, positioned above the "connection density"(2) selector. This slider provides users

the ability to filter the data based on a specific year or a range of years within that inter-

val. When a time slice is selected using this feature, the displayed graph is dynamically

updated to show only the data relevant to that specified timeframe.

The significance of temporal analysis in academic collaboration networks was

underlined by the works presented in Chapter 3. Both (HUANG; HUANG, 2006) and

(KUROSAWA; TAKAMA, 2012) emphasized the importance of considering the tempo-

ral dimension when visualizing and analyzing collaboration networks. By allowing users
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to select specific time slices, VizColab facilitates a more nuanced exploration of how col-

laboration patterns evolve over time, how certain collaborations might be more prevalent

during specific years, and how the dynamics of the academic world might shift and adapt

with changing contexts.

5.2.1 Time Slice Filtering Implementation

To support the time slice functionality, the data in the application database re-

quired some preliminary transformations. The aggregate counts of academic productions

of nodes, and the number of total articles pertaining to each collaboration relationship

was partitioned in different values for each year, which were stored in nodes and edges as

prod_counts_per_year and collab_counts_per_year properties, respectively. Those prop-

erties are arrays constructed with the help of list operations offered by the APOC library,

referenced in 5.1. Below is an example of the queries used to annotate collaboration rela-

tionships between universities with the required information, and to annotate universities

themselves with the respective prod_count_per_year arrays:

1 MATCH (u1:University)<-[:WORKS_AT]-(a1:Author)-[:AUTHOR]-(p:

Production)-[:AUTHOR]-(a2:Author)-[:WORKS_AT]->(u2:University

)

2 WHERE u1.name <> u2.name

3 WITH u1, u2, p.year as year, COUNT(DISTINCT p) AS

collabs_count_year

4 WITH u1, u2, year - 2017 as year_index, collabs_count_year

5 MATCH (u1)-[r:COLLABORATES_WITH]-(u2)

6 SET r.collab_counts_per_year = apoc.coll.set(coalesce(r.

collab_counts_per_year, [0,0,0,0]), year_index,

collabs_count_year);

Listing 5.1 – Set collab_counts_per_year for university collaboration edges.

1 MATCH (u:University)<-[:WORKS_AT]-(:Author)-[:AUTHOR]->(p:

Production)

2 WITH u, p.year as year, COUNT(DISTINCT p) AS prod_count_year

3 WITH u, year - 2017 as year_index, prod_count_year

4 SET u.prod_counts_per_year = apoc.coll.set(coalesce(u.

prod_counts_per_year, [0,0,0,0]), year_index, prod_count_year
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)

Listing 5.2 – Set prod_counts_per_year for universities.

The queries for the Program nodes and relationships were similar and are available

in the GitHub repository for the project2. Getting the arrays of prod_counts_per_year and

collab_counts_per_year for Author nodes and CO_AUTHOR relationships was, however,

more involved, due to the sheer number of Author nodes (1,275,852) and co-authorship

relations (14,883,507). The number of collaborations for each year for every pair of

authors in the dataset was computed with the help of a python script whose results were

then imported into the database.

1 # Load data

2 co_authorships = pd.read_csv('output/co_authorships.csv',

delimiter=';')

3 productions = pd.read_csv('output/processed_productions.csv',

delimiter=';')

4

5 # Convert year column to integer

6 productions['AN_BASE'] = productions['AN_BASE'].astype(int)

7

8 # Merge dataframes on production id

9 merged = pd.merge(co_authorships, productions, left_on='PROD_ID'

, right_on='ID_ADD_PRODUCAO_INTELECTUAL')

10

11 # Group by year and co-authors pair, count collaborations

12 collabs_per_year = merged.groupby(['AUTHOR_1', 'AUTHOR_2', '

AN_BASE']).size().reset_index(name='collabs_count')

13

14 # Pivot this DataFrame to have years as columns, fill missing

values with 0

15 collabs_per_year_pivoted = collabs_per_year.pivot_table(index=['

AUTHOR_1', 'AUTHOR_2'], columns='AN_BASE', values='

collabs_count', fill_value=0).reset_index()

16

17 # Now collabs_per_year_pivoted contains each author pair along

with collaboration counts per year.

2https://github.com/ComputerNetworks-UFRGS/vizcolab
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18 collabs_per_year_pivoted.to_csv('output/

co_author_collabs_per_year.csv', index=False)

Listing 5.3 – Script to generate a CSV with the articles jointly published by each author pair

aggregated by year.

The results were imported using the periodic commits feature, which allows writ-

ing intermediate results to disk instead of doing the full computation in-memory and

eventually exhausting the resources of any one pod in the cluster:

1 :auto LOAD CSV WITH HEADERS FROM 'file:///

co_author_collabs_per_year.csv' AS row

2 CALL {

3 WITH row

4 MATCH (a1:Author {id: toInteger(row.AUTHOR_1)})-[coauthor:

CO_AUTHOR]-(a2:Author {id: toInteger(row.AUTHOR_2)})

5 SET coauthor.collab_counts_per_year = [toInteger(row.`2017`),

toInteger(row.`2018`), toInteger(row.`2019`), toInteger(row

.`2020`)]

6 } IN TRANSACTIONS OF 20000 ROWS;

Listing 5.4 – Set collab_counts_per_year for co-authorships.

Setting prod_counts_per_year for Author nodes, in turn, made use of an APOC fa-

cility again: it’s parallel batching iteration features, which made good use of the cluster’s

pods:

1 CALL apoc.periodic.iterate(

2 "MATCH (a:Author)-[:AUTHOR]->(p:Production) RETURN a, p.year

as year, COUNT(DISTINCT p) AS prod_count_year",

3 "WITH a, year - 2017 as year_index, prod_count_year SET a.

prod_counts_per_year = apoc.coll.set(coalesce(a.

prod_counts_per_year, [0,0,0,0]), year_index, prod_count_year

)",

4 {batchSize:10000, parallel:true}

5 )

Listing 5.5 – Set prod_counts_per_year for authors.

The UI for the feature had a more straight-forward implementation. The front-

end of VizColab is developed using React3, a popular JavaScript library for building user
3Documentation available in https://react.dev/
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interfaces. React’s component-based architecture allows for modular development, and

it’s popularity means that a number of ready-made UI components are available from

public packages. For the time slice feature, we incorporated a slider component from the

MUI material library. This particular component was chosen due to its ease of integration,

user-friendly nature, and compatibility with the application’s existing style.

Modern React development makes use of functional programming techniques, us-

ing so called hooks, special functions that let you "hook into" React features, such as

state and lifecycle methods4. The graph visualisation was made to dynamically update by

defining the year range as a reactive data point through the use of the useState() hook, in

combination with useEffect(), which tied the "effect" of re-fetching graph data to changes

of that state. The collaboration counts for edges and production counts for nodes were

then computed in the data fetching query using APOC to sum the values in the arrays

corresponding to the selected range.

1 \\ ...

2 apoc.coll.sum(r.collab_counts_per_year[${yearStartIndex}..${

yearEndIndex + 1}]) as collabs_count

3 \\ ...

Listing 5.6 – Computing collab_counts_per_year dinamically using cypher query langue strings

interpolated with Javascript

5.3 Adapted InterRing Visualization for Author Networks

An adapted version of the InterRing technique (described in 3.1) was implemented

for the detail panels of author nodes inside VizColab. Detail panels are cards that show to

the side of the screen displaying additional information when the user clicks a node. The

primary aim remained the same: offering a deep dive into an individual’s co-authorship

history by visualizing it through a series of concentric rings. However, we found that the

convention of listing the most important authors first was not widely adopted in Brazil.

The variety of institutions and fields of study encompassed in the data-set meant there

were multiple conventions at play, with some groups listing the project financiers first,

others the less senior members first, others the most senior, some those that performed

advisory roles but often did not perform the bulk of the research. With that in mind,

4Documentation available at https://react.dev/.
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instead of, like the original InterRing, making the arcs taken by coauthors take into ac-

count the positions of their names on papers, we chose the simpler method of making the

coauthor arcs proportional to the number of partnerships with the analyzed author each

year.

5.3.1 Coloring Arcs

A notable challenge, for which no solution was presented in the original paper,

was making sure author arcs had preferably unique or at least well varied colors, so that

they wouldn’t get mixed up when inspecting the visualization. A clever approach was

devised taking into account the fact that colors in CSS can be represented in the so called

hexadecimal short form by three hexadecimal digits, which line up nicely with characters

produced by the inexpensive and readily available MD5 hash algorithm. Colors for each

coauthor were made to be the first three characters from the hash of their full names. This

approach guaranteed three main advantages:

• Uniqueness: Each co-author, based on their full name, would have a distinct color.

• Stability: The color assigned to a co-author remains consistent across different

views or sessions.

• Variety: With the capability to produce colors for up to 163 co-authors, the palette

remains diverse, ensuring clarity and reducing the potential for confusion.

The visual elements, namely the rings, were constructed using SVG elements and

were drawn using the D3 library5. SVG ensures that the visualization retains its quality

across different screen sizes and resolutions. Leveraging D3 allowed for efficient data

binding, enabling the dynamic creation and modification of the visualization based on the

inspected author.

5.4 Two-dimensional View

The introduction of a two-dimensional view in our visualization tool is primarily

motivated by two key factors. First, the 2D view requires fewer computational resources

compared to the 3D view, making it a more accessible and efficient option for users with

5Data-Driven Documents, created by Mike Bostock. <https://d3js.org/>

https://d3js.org/
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Figure 5.2 – The adapted InterRing visualization showcasing an individual’s co-authorship
history. Hovering over sections displays the corresponding author names at the top right, as is

being shown with Lucas Bondan. The full list of coauthors is shown if the user scrolls the panel.

Figure 5.3 – A profiling of the use of CPU (yellow) and heap memory (blue) resources. At around
the 20000ms mark the view switches from 3D to 2D, the drop in resource usage is noticeable.

less powerful computing equipment. Second, the 2D view can be more easily captured

and reproduced in documents, such as research papers or presentations, offering a more

familiar and straightforward representation of the network.

The adoption of a 2D view aligns with the approach taken in many existing net-

work visualizations, such as the previously mentioned (KUROSAWA; TAKAMA, 2012)

and (HUANG; HUANG, 2006), where two-dimensional visualizations are utilized. The

2D view also makes it easier to interpret the relationships and patterns present in the net-

work without the need for complex interactions, like rotating or zooming in a 3D space.

However, moving to a 2D view comes with its own set of challenges. The loss

of a dimension means that nodes are more likely to overlap and pile up on top of each

other, making it difficult to distinguish individual nodes and their connections. To address



33

Figure 5.4 – The 2D view of the university graph. Nodes are transparent and have borders to aid
inspection when they’re close to each others.

this issue, we made nodes semi-transparent in this view and added borders around them

and their labels. This allows users to visually separate overlapping nodes, providing bet-

ter clarity and readability of the network. Additionally, the semi-transparency helps to

reveal the connections between nodes even when they are overlapping, allowing users to

understand the underlying relationships more effectively.

In conclusion, the introduction of the 2D view serves as a valuable addition to our

visualization tool, making it more versatile, accessible, and efficient. It provides an al-

ternative representation of the network that can be easily reproduced in documents, while

also being more lightweight in terms of computational requirements. The enhancements

made to the nodes and their labels in this view help to mitigate the challenges posed by

the loss of a dimension, offering a more clear and interpretable visualization.

5.5 Node Search and Focus

A common challenge that users encountered in the initial version of the tool was

the difficulty in locating specific nodes within the graph. Based on this feedback, a key

enhancement in the revised tool is the ability to easily search for and focus on a particular

node.
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Figure 5.5 – The Universidade Federal do Rio Grande do Sul node focused with it’s detail panel
openend to the side.

5.5.1 Node Search and Selection

Users can now easily search for nodes of interest using a selector in the header.

As they type the node’s name into the selector, a list of matching nodes is dynamically

presented, allowing the user to select the desired node. Unlike the previous version, se-

lecting a node’s name in this updated tool does not immediately transition to the graph

of that node’s data. Instead, the camera’s center coordinates are focused on the selected

node, providing users with a clear view of the node within the broader graph context.

5.5.2 Camera Focus and Exploration

The distance between the camera and the focused node is calculated to be propor-

tional to the node’s size, preventing the camera from ending up inside large nodes. This

ensures that the focused node is comfortably visible within the screen. Users can explore

the focused node by either “Ctrl clicking" on it or using the "Explore" button in the details

panel (double click on the node).

In the default 3D view, the distance between the camera and the node center is

scaled based on the position and size of the node, ensuring that the camera is always

positioned outside of it, regardless of its diameter. In the 2D view detailed in 5.4, the

focused node is made to fit completely within the canvas with a 10 pixel padding to the

nearest sides. This guarantees that the entire node is visible and ensures a consistent visual

experience across both 2D and 3D views.
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Figure 5.6 – The share button added to the header. A tooltip that’s shown on hover is displayed.

Figure 5.7 – The two states of the share feature modal, the last state displays the shareable URL.
The logo at the top right spins whilst the URL is being created to give feedback to the user that

the operation is still ongoing.

5.6 Sharing Visualizations

In the latest version of VizColab, we have added a feature that allows users to

easily share the state of the visualizations they create with others. This sharing feature

enables users to generate a link that, when accessed, loads the same graph that was shared,

including the node positions, the hierarchy level (universities, programs, or authors, as

detailed in 4), the selected connection density (2), year range (5.2), and node color key.
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5.6.1 Backend Implementation

To implement this sharing feature, we created a backend whose main responsibil-

ity is to provide endpoints to save and retrieve the application states. When a user clicks

the sharing button on the front-end, the current application state is sent to the backend in

JSON form. This state is then inserted into a JSONB column in a PostgreSQL database.

Each state is assigned a generated ID, which is returned to the front-end. The front-end

constructs a URL using this ID, which is shared by the user. When the URL is accessed,

the front-end retrieves the saved state from the backend and reconstructs the graph ac-

cordingly.

5.6.2 Database Choice

At first glance, it may seem that a NoSQL database, such as MongoDB, would be

a suitable fit for this application given that we are saving JSON objects directly and not

performing any complex queries. Moreover, the format of the saved data might change

as new features are added to the tool, requiring more state to be kept. However, we chose

PostgreSQL for this task due to the availability of the JSONB column type in newer ver-

sions of the database. Introduced in PostgreSQL 9.4 in 2014, JSONB columns allow the

database to act as a "document store" similar to document-only databases like MongoDB,

and were implemented partially in response to the growing popularity of such solutions.

They encode a binary representation of JSON and are very performatic.

One key advantage of using PostgreSQL’s JSONB column type is that it gives us

all the features of common document-only databases, such as flexibility in storing semi-

structured data and efficient storage of JSON documents, but in addition, it provides the

ability to query specific JSON fields and to use this data in tandem with more traditional,

normalized relational tables, should the need arise in the future. Moreover, as the en-

tire infrastructure is managed using Kubernetes, as described in section 5.1, deploying a

PostgreSQL instance is straightforward.
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5.6.3 Deployment

The backend server was implemented using Express.js, a popular Node.js web

application framework. This server was packaged into a Docker container, providing

a self-contained and easily deployable unit. This container was then deployed to the

Kubernetes cluster described in section 5.1, where it runs alongside the graph database

and the NGINX deployment that serves the React SPA.

5.6.4 Limitation on Camera Rotation Recreation

It is important to note a limitation regarding the sharing feature’s ability to recreate

camera rotations in the 3D view. While zoom and "look at" positions can be reconstructed

successfully, we encountered difficulties in accurately reproducing camera rotations using

the available APIs in the 3D graph rendering library utilized. As a result, when a user

rotates the camera and shares the graph state, the recipient will not be able to view the

nodes at the same angle as the original user. We acknowledge that this discrepancy may

affect the accuracy of the reconstructed view and have documented it as a known issue in

the project’s repository. This limitation is a potential area for future work, and we hope it

gets addressed in subsequent versions of the tool by exploring alternative approaches or

leveraging future updates to the rendering library.

5.7 Table View

In addition to the visual graph views, we introduced a Table View feature to enable

users to interact with the data in a more structured and detailed format. This feature is

designed to facilitate deeper exploration and analysis of the underlying numbers.

The Table View allows users to perform various operations to customize their data

presentation. Key functionalities include:

1. Sorting Rows: Users can sort rows based on specific columns to help prioritize or

organize the information according to their interests or requirements.

2. Collapsing and Expanding Rows: Users can collapse or expand rows to better

manage the displayed data. This feature is particularly useful for exploring hierar-

chical relationships within the data or focusing on particular sections.
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Figure 5.8 – The table view applied to universities, some columns are hidden (a feature available
in the eye menu in the top left) and rows are ordered by betweenness centrality. The table, or

“ranking" view is displayed by clicking the trophy icon in the header.

3. Showing or Hiding Columns: Users have the flexibility to customize the table by

showing or hiding specific columns, making it easier to focus on relevant informa-

tion and reduce visual clutter.

4. Filtering Rows by Text: For text-based columns, such as author names, cities, or

university affiliations, users can apply text filters to narrow down the displayed rows

to match their search criteria.

5. Filtering Rows by Value or Interval: For numeric columns, such as academic

production counts or node centralities, users can filter rows based on specific values

or value intervals to focus on relevant data ranges.

6. Filtering Data by Time Period: Filtering the data by time period, as described in

section 5.2, is also possible to do when visualizing the table.

The Table View was implemented using the widely-adopted AgGrid library, specif-

ically its community version. As a result, certain features like showing or hiding columns

were custom implemented, as they were not natively supported in this version of the li-

brary.

The Table View complements the existing visualization tools and offers an alter-

native approach for users who prefer a more granular or quantitative perspective on the

data. It provides users with a customizable interface for exploring and analyzing the data,

catering to a broad range of use cases and analytical needs.
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5.8 Coloring Nodes by Centrality Measures

The centrality measures discussed in Chapter 2 provide valuable insights into the

roles and importance of nodes within the network. To visualize these measures, we im-

plemented a feature that allows users to color nodes according to their centrality values.

This feature offers an intuitive way to identify influential nodes or observe patterns in the

network based on the selected centrality measure.

The centrality measures available for coloring include betweenness centrality, de-

gree centrality, closeness centrality, and eigenvector centrality. Each centrality measure

offers a different perspective on the significance of a node within the network, as de-

scribed in Chapter 2. The exact centrality values for each node are displayed in the node’s

detail panel, which can be accessed by clicking on the node.

To color the graph according to node centralities, we use a gradient to represent

the range of centrality values. Users can choose between two scaling options for mapping

centrality values to positions in the gradient: a logarithmic scale or a linear scale. Each

scaling method offers distinct advantages:

• Linear Scale: The linear scale assigns colors to centrality values based on their

absolute magnitude. It provides a straightforward visualization of the differences

between nodes. This scale is appropriate for cases where the centrality measures

are more evenly distributed. That is often the case with degree centrality, but can

vary depending on the specific network.

• Logarithmic Scale: The logarithmic scale assigns colors based on the order of

magnitude of centrality values. It is especially useful for highlighting nodes with

extremely high or low centrality values in networks with skewed centrality distri-

butions. This scale is particularly suitable for betweenness centrality, which often

exhibits a power-law distribution where a few nodes have exceptionally high values

compared to the majority of nodes.

The choice between linear and logarithmic scaling depends on the centrality mea-

sure being visualized and the specific distribution of centrality values in the network.

Users can toggle between the two scales to explore the data from different perspectives

and gain a deeper understanding of the network’s structure and the roles of its nodes.
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Figure 5.9 – Authors from the Computer Science program in UFRGS colored according to their
betweenness centrality in both logarithmic (top) and linear (bottom) scales.
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Figure 5.10 – Post-graduate programs from the UNOPAR university colored according to Degree
Centrality ("GRAU" means "DEGREE") in both a logarithmic scale (top) and a linear scale

(bottom).
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6 ENHANCEMENT USE CASES

To give an idea of the sort of use the features made available might lend them-

selves to, the authors of this thesis have developed brief explorations for demonstrative

purposes. They may serve as starting points for deeper dives into the data by researchers

or enthusiasts.

6.1 Highlighting nodes that connect hubs

Looking at the authors from the computer science postgraduate program from

UFRGS with the research area coloring, it’s already possible to see that among the greater

network there are smaller clusters, usually formed by researches acting in the same re-

search areas. It is vital that those clusters do not isolate completely, making collabora-

tions between their members and those from other clusters very valuable. Changing the

node colors to represent betweenness centrality makes researchers that do so more ap-

parent. Figure 6.1 shows an example of this. Even though it was already possible to

see the importance of some nodes, the new coloring makes it obvious and quantitatively

ascertainable.

6.2 Flagging isolated clusters

Another thing the centrality metrics make pop is isolated clusters. Such clusters

usually have a single very important node that gets strongly colored. In figure 6.2 we can

see how the isolated cluster around a researcher at the top right stands out in a strong red

whilst most nodes are tinted a shade of orange. That’s a position where that wouldn’t be

easily spotted otherwise. The camera focus feature, in turn, makes it possible to easily

inspect such cluster in detail, which would be hard to do before because the camera was

locked into looking at the center of the graph and that micro cluster is in the periphery. The

central node is seen focused in figure 6.3. Furthermore, if we check its details panel we

can quickly see that its closeness centrality (“CENTRALIDADE DE PROXIMIDADE”)

is 1, which is the highest value possible since all centralities are normalized. That imme-

diately confirms that every node in that cluster has directly collaborated with the node,

without the need to carefully inspect the graph. A look into the details of every node in
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Figure 6.1 – UFRGS Computer Science authors, seen colored according to research area and
betweenness centrality. Betweenness centrality flags authors that connect the different hubs

around the research areas.
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Figure 6.2 – At the top right, an isolated cluster is made apparent by turning into a strong red
island when coloring nodes by proximity. Most other nodes are similar shades of orange.
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Figure 6.3 – The node and his students are diconnected from the greater computer science
network of UFRGS if we take into consideration only the top 7 connections of every author.

the cluster reveals that asides from the central node, no other node in it corresponds to a

UFRGS researcher, with the large majority of them being students.

6.3 Identifying unique and common traits of authors and students networks

If we go into the graphs for individual authors they are rendered with greatly

disparate centralities to others in most cases, as expected, because those are graphs whose

premise is that nodes connected with the author. One example can be seen on the graph

for Juliano Araujo Wickboldt in figure 6.4. A thing of note, however, is that such an effect

does not seem to happen with students, which is shown on the same figure for the graph of

Gustavo Herminio de Araujo, a student. Their graphs show much more evenly distributed

centralities for the nodes. That’s a reflection of the fact that they have small amounts

of articles published and that those articles are usually in co-authorship with the same

group of researchers, that are themselves very connected to each other. It can happen,

however, that the graph of a researcher shows other nodes with very similar centralities,

that is the case to a lesser degree with Cristiano Bonato Both and Lisandro Zambenedetti

Granville in Juliano’s own graph too. That can be attributed to the fact that Lisandro,

who is one of the most prolific authors from UFRGS according to our data, was Juliano’s

thesis advisor and one of his main collaborators early on. Cristiano was the coordinator

of a project where Juliano acted as a postdoctoral researcher. To a greater degree, that

effect is seen in figure 6.5. That seems to indicate both authors publish disproportionately

often together. VizColab makes publication patterns such as those evident. They can be
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Figure 6.4 – A researcher’s own collaboration network usually shows them with relatively high
centrality. That is contrasted with student graphs which are more homogeneous in that regard.
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Figure 6.5 – Two researchers that publish very often together.

of great interest to officials in governmental agencies that oversee educational institutions

and seek to understand the evolution of research within the country, for example.

6.4 Quantifying the relative participation of researchers in different programs

In the data-set, the intellectual productions of nodes aren’t differentiated accord-

ing to the context of what postgraduate program they were published in. Moreover, re-

searchers with large corpuses tend to participate in more than one program. Thus, that

data point in isolation is not sufficient to fully grasp the participation of a researcher in

any one specific program. We’ve found however, that combining the centrality metrics

with the production counts provides a good approximation of the relative participation of

a researcher in different programs. Figure 6.6 shows a researcher that specializes in micro-

electronics and participates in both the more general postgraduate program in Computing

and the more focused Microelectronics program. He contributes significantly to both pro-

grams, but is much more central to the Microelectronics one. This can be explained by

his known field of expertise.

6.5 Identifying outstanding data for each year

Combining the time filtering feature with the table or ranking view, it’s possible to

survey the top researchers for each year according to the metrics made available. Doing

so reveals that the metrics don’t always correlate. Some researchers may hold important
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Figure 6.6 – Researchers that participate in many programs can have their specialties highlighted
by the centrality metrics. They’re relative participation in each program may be quantatively

compared considering such metrics.
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Figure 6.7 – The top five researchers by betweenness centrality for each year, from top to bottom
2017 to 2020.

positions with few publications, an extreme case of this is shown in figure 6.7, where a

researcher occupies one of the most central positions in the network having published a

single paper in the year of 2018.
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7 FINAL CONSIDERATIONS AND FUTURE WORK

This article presented the enhancements made to the original VizColab, a graph

visualization tool designed to explore co-authorship networks of scientific articles from

all universities and postgraduate programs in Brazil. These enhancements focused on

improving the scalability, usability, and interactive capabilities of the tool. In particular,

we have presented the implementation of a Kubernetes cluster to facilitate the tool’s de-

ployment and scaling, and we have described new features such as time slice filtering,

adapted InterRing visualization, two-dimensional view, node search and focus, sharing

visualizations, a table view, and coloring nodes by centrality measures.

The time slice filtering feature provides users with the ability to explore the net-

work within specific time periods, enabling the examination of temporal trends in co-

authorship networks. The adapted InterRing visualization in VizColab provides a com-

prehensive view of an author’s co-authorship history over time. This adaptation focuses

on the quantity and persistence of collaborations rather than inferring the relative con-

tributions of co-authors. A unique strategy to color the arcs, described in 5.3.1, ensures

clarity and consistency in visualizing co-authors. The addition of two-dimensional and

tabular views provide users with alternative visualization methods that are less resource-

intensive, more easily reproduced in documents and interacted with.

We have also implemented a search and focus feature to facilitate finding specific

nodes within the network, and a sharing feature that allows users to share their visualiza-

tions, including their specific settings and node positions, via a unique URL. The coloring

of nodes by centrality measures allows users to quickly identify key actors within the

network based on different centrality metrics.

The enhancements presented in this article significantly improve the user experi-

ence and expand the utility of the VizColab tool for exploring co-authorship networks.

The tool can be useful for researchers, academic institutions, and funding agencies seek-

ing to understand research collaborations and patterns within the academic community in

Brazil.

For future work, we suggest several possible directions:

• Implement Advanced Filtering Options: Providing users with more advanced

filtering options, such as selecting nodes based on specific attributes or centrality

metrics, would allow for more targeted exploration of the network.

• Implement Additional Centrality Measures: While we have implemented color-
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ing by degree, closeness, betweenness, and eigenvector centralities, there are other

centrality measures, such as harmonic centrality or Katz centrality, that could pro-

vide further insights into the network. Now that the groundwork has been done,

integrating new centralities is straightforward.

• Incorporate Community Detection Algorithms: Community detection algorithms

could be used to identify and visualize clusters of researchers within the network,

highlighting natural research communities or collaborations.

• Improve Camera Rotation Recreation: As noted in section 5.6.4, the current

sharing feature does not recreate camera rotations. Finding a way to record and

replay camera rotations would enhance the accuracy of shared visualizations.

• Explore Relationship Details: Both (HUANG; HUANG, 2006) and (KUROSAWA;

TAKAMA, 2012) provide more detailed information about the articles considered

in the composition of the networks displayed in the tools they developed. Whether

it’s a list of articles in the case of (HUANG; HUANG, 2006), or a list of keywords

used in the case of (KUROSAWA; TAKAMA, 2012). Considering the need for a

deeper understanding of the works carried out together, allowing the exploration of

edges could be interesting. For lower connection densities(2), the feature of per-

forming a ctrl click on an edge to reveal a panel with the list of productions that

compose it could be made available.

• Mixing Data from Multiple Universities: Enhance the ability to combine data

from more than one university in the author graph level, or offer more opportunities

to combine data in different ways in the graphs.

As scientific research becomes increasingly collaborative, tools such as VizColab

that facilitate the exploration and understanding of co-authorship networks will continue

to be of great value to the research community.
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