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Abstract
In this work, a study is carried out on the solution of large linear systems of algebraic
equations relevant to establish a general solution, based on a spectral formulation, to the dis-
crete ordinates approximation of the two-dimensional particle transport equation in Cartesian
geometry. The number of discrete ordinates (discrete directions of the particles) is determined
by the order of the quadrature scheme on the unity sphere used to approximate the integral
term of the linear Boltzmann equation (also called the transport equation). A nodal technique
is applied to the discrete ordinates approximation of this equation, yielding to a system of
first order ordinary differential equations for average unknowns along the directions x and
y. The developed formulation is explicit for the spatial variables. The order of the linear
system is defined by the number of discrete directions as well as the number of the spatial
nodes. High-quality solutions are expected as both, the number of discrete directions and
the refinement of the spatial mesh, increase. Here, the performance of direct and iterative
methods, for the solution of the linear systems, are discussed, along with domain decompo-
sition techniques and parallel implementation. Alternative arrangements in the configuration
of the equations allowed solutions to higher order systems. A dependence on the type of
the quadrature scheme as well as the class of problems to be solved (neutron or radiation
problems, for instance) directly affect the final choice of the numerical algorithm.

Keywords Boltzmann equation · Particle transport · Linear systems · Iterative methods ·
Domain decomposition

Mathematics Subject Classification 65F05 · 65F10 · 65M70 · 82D75 · 82A25

B Liliane B. Barichello
lbaric@ufrgs.br

Rudnei D. da Cunha
rudnei.cunha@ufrgs.br

1 Instituto de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves
9500, Porto Alegre, RS 91500-900, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-023-02327-5&domain=pdf
http://orcid.org/0000-0003-2519-086X
http://orcid.org/0000-0003-3057-7882


200 Page 2 of 12 L. B. Barichello, R. D. da Cunha

1 Introduction

The Boltzmann equation (Cercignani 1988) is a fundamental mathematical model in the
study and simulation of phenomena involving the transport of neutral particles, as is the
case in optical tomography modeling, dose planning in radiotherapy, estimation of radiation
sources, nuclear reactors shielding, and others. The complexity of its integrodifferential form
reinforces the development of deterministicmethods that can provide high-quality weak form
solutions. In this context, the discretization of the spatial and angular variables of the equation
is present in purely numerical or even analytical solution techniques.

The discrete ordinates method is well known and used in established codes (Lewis
and Miller 1984) to treat angular variables. In the case of problems in two-dimensional
Cartesian geometry, the object of this work, the discrete ordinatesmethod reduces the integro-
differential equation to a system of first-order partial differential equations. The discrete
directions are chosen according to a quadrature scheme that approximates the integral term
of the equation. In the case of spatial variables, the so-called nodal methods (Badruzaman
1985) reduce the complexity of the model, following the idea of finite volume schemes, and
are known to have better performance in coarser meshes. The connection between spatial
and angular grids is usually made in the literature through sweep schemes (Lewis and Miller
1984) that demand high computational time.

Recently, in this framework, the Analytical Discrete Ordinates-Nodal (ADO-Nodal)
methodwas proposed for solving the discrete ordinates approximation of the two-dimensional
linear Boltzmann (transport) equation (Barichello et al. 2011, 2017). The discrete ordinates
equations are transversally integrated over a region (node) of the domain, yielding one-
dimensional equations for average angular fluxes or intensities, in x and y-directions. The
ADO method (Barichello and Siewert 1999) is then applied to the one-dimensional equa-
tions, with approximations for the unknowns (transverse leakage terms) on the contours of
the regions, to derive explicit solutions for the spatial variables.

Due to the analytical characteristic of the ADO-Nodal method, as first proposed
(Barichello et al. 2011), the integration procedure to generate the nodal equations was defined
for the whole interval of the x and y variables definition, respectively. No division of the
domain into nodes was carried out. More recently, the idea of local solutions was consid-
ered for the treatment of heterogeneous media problems (Barichello et al. 2017) where the
physical domain is constituted by different materials.

Among the good features of this methodology, which is a spectral technique, one may
cite: the solution of the transverse integrated one-dimensional equations, either in x and y-
directions are explicitly written in terms of the spatial variables along with the fact that the
associated eigenvalue problem is of reduced order, to only half of the number of discrete
directions. With these features, the methodology applied to a wide class of neutron and
radiation transport problems has advantages in providing fast and accurate solutions. In these
problems, enhanced performance has been noted in coarser meshes comparedwith analogous
methodologies.

The scheme does not use sweeping. Linear systems have to be solved to fully establish the
general solutions. Considering a significant number of discrete directions in the simulations is
theoretically recognized as an error control requirement between the discrete ordinate solution
and the exact solution (Madsen 1971). Furthermore, from a physical perspective, problems
in highly anisotropic scattering media (Barichello et al. 2022), for example, also impose such
conditionwhichmeans a choice of high-order quadrature schemes to approximate the integral
term of the equation. This is a main factor that directly impacts the linear systems order.
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Fig. 1 Typical configuration of a
rectangular domain D for the
benchmark problem

In this work, we present and discuss different approaches to solving the linear system
associated with the ADO-Nodal formulation. We analyze the performance of the schemes
applied to problems in different areas of particle transport, such as neutrons and radiation,
as well as the influence of using different schemes for representing discrete ordinates.

The paper is organized as follows. In Sect. 2, we describe an earlier study for a neutron
transport problem on a single domain (without domain decomposition), where the linear
system that arises from the ADO formulation was solved using iterative methods. Section3
describes a more recent study where a radiative heat transfer problem with high anisotropy
degree was solved using the ADO method with domain decomposition, and the difficulties
that arose while solving the linear system. We conclude in Sect. 4 with some remarks on our
experiences and how we intend to address the difficulties so far encountered.

2 First large systems of linear equations: iterative solution

In da Cunha et al. (2015), we presented how the system of linear equations that arise in the
ADO-Nodal method could be solved efficiently using iterative methods. There, the ADO
method was applied to the solution of the time-independent neutron transport equation (1),
which considers the distribution of the particles in a non-multiplicative homogeneous media
on a rectangular domain D, defined by [0, a]×[0, b], with one group of energy and isotropic
scattering. A typical configuration studied is a fixed-source problem (see Fig. 1) used as a
benchmark in nuclear reactors shielding, where the source Q is defined in a smaller rectangle,
defined by [0, as] × [0, bs], embedded in D.

Following (Lewis and Miller 1984), the angular flux of neutrons �(x, y,�m) satisfies:

μm
∂

∂x
�(x, y,�m) + ηm

∂

∂ y
�(x, y,�m) + σt�(x, y,�m)

= Q(x, y) + σs

M∑

k=1

wk�(x, y,�k),m = 1, . . . , M (1)

where wm are the weights associated to the �m = (μm, ηm) directions of the particles, σt
and σs are, respectively, the total and scattering macroscopic cross-sections (parameters that
indicate probabilities of absorption and scattering in the particle collision events) and Q(x, y)
is the isotropic neutron source term. The number of discrete ordinates directions M depends
on the choice of the quadrature scheme. In that work, we considered the product quadrature
proposed by Longoni and Haghighat (see Longoni and Haghighat 2001), whose technique
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Fig. 2 Structure of a matrix of order n = 6720 and its eigenvalue distribution when solving the benchmark
problem (σt = 1, σs = 0.5)

is developed using the same arrangement of directions as the classical Level symmetric
quadrature (Lewis and Miller 1984) but allowing higher orders. This scheme is defined as
the product of one-dimensional Legendre and Chebyshev quadratures with orders N1 and
N2, respectively; here M = N1(N2 + 2)/2 with N1 = N2.

Following the transverse integrations in the x and y variables, we arrived at two sys-
tems of one-dimensional equations, depending on x and on y, respectively. The general
(homogeneous plus particular) solution of the problem, is written in terms of eigenvalues
and elementary solutions. To fully describe this solution, in da Cunha et al. (2015), a total
of 8M coefficients have to be determined; these are obtained by solving a system of n linear
equations Ax = b. These equations are written down according to the equations for the
general solution, boundary conditions, interface conditions and unknown angular fluxes on
the contours; these fluxes were approximated by constants. For details on the general deriva-
tion of the ADO formulation for two-dimensional neutron transport problems, see Barichello
et al. (2017).

The largest system studied in da Cunha et al. (2015) has n = 6720 equations. It is sparse
and nonsymmetric. Solving it by traditional, direct methods like a LU factorization, may
become unfeasible depending on the available computation resources, due to the amount of
memory required to hold the factors caused by excessive fill-in. The coefficient matrix of the
system for n = 6720 and σt = 1, σs = 0.5 has the structure and eigenvalues λ as shown
in Fig. 2 (other tests were made with σt = 1 and different values of σs and are reported
in da Cunha et al. 2015). It is readily noticeable that the eigenvalues are distributed in the
complex plane in twomain clusters, with some outlying eigenvalues (both real and complex).
Krylov subspace methods like GMRES and other iterative methods are known to diverge in
this case (see (Saad 2003, p. 339)).

The approachwe used to solve the system resorted to using the normal equations,ATAx =
ATb, and then computing a simple, fast Jacobi preconditioner J,

J = diag
(
ATA

)−1
(2)

Ji,i = (
(Ai )

TAi
)−1

, 1 ≤ i ≤ n, (3)

where Ai indicates the i th column of A. Applying the preconditioner to the left of both sides
of the normal equations, we write

JATAx = JATb (4)
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Fig. 3 Performance of the iterative solution of two systems of linear equations using the LGMRES method,
one with n = 120,000 and the other with n = 240,000 equations

which can be recast as (
JAT)

Ax = (
JAT)

b (5)

where JAT is the preconditioner applied to Ax = b.
The system (5) was solved using the GMRES (Saad and Schultz 1986), LGMRES

(Baker et al. 2003) and TFQMR (Freund and Szeto 1992) iterative methods implemented on
NUMERICO (Cunha 2015). The package allows for the parallel solution of the system using
MPI (MPI forum, 1993) seamlessly by the user, who does not have to write parallel-specific
code; the user just specifies how the matrix is stored in memory and how it is to be partitioned
across the processors.

The Eq. (1) was later applied to the solution of the same problem but using a nodal
formulation, subdividing the domain into several regions, with the aim of improving the
numerical quality of the solution using the ADO method (Barichello et al. 2017). Typical
results are given in Fig. 3 , where we show the execution times in seconds normalized per
iteration, for systems of order n = 120,000 and 240,000, and the speed-ups (Sp) achieved on
anSGIAltix cluster at theNational SupercomputingCentre/UFRGS, equippedwith 64 blades
each with two dodeca-core 2.3 GHz AMD Opteron processors and 64 GB RAM. The blades
are interconnected by an InfiniBand 4 GB/s network. The program used double precision
floating-point arithmetic and was compiled with optimization turned on using GNU Fortran
v. 4.3.4 and linked with the SGI MPI v. 2.0 library. We used a maximum of 16 processors
and achieved speed-ups of over 12 for LGMRES.

In a later, related work, Moura et al. (2018) investigated how the iterative solution of
systems of linear equations derived from the same ADO-Nodal solution to a similar neutron
transport problem was affected by using other quadrature schemes, namely the Quadran-
gular Legendre–Chebyshev (Longoni and Haghighat 2001) and the Quadruple Range (QR)
quadrature schemes (Abu-Shumays 2001). The results given in Moura et al. (2018) show
that the use of different quadrature schemes for the same problem does not affect adversely
the iterative solution of the systems, though in some cases less iterations are required for
convergence.
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TheADOformulation applied inBarichello et al. (2017) uses domain subdivision, dividing
the region inmeshes. The order of the system of linear equations wasmuch higher (the largest
solved consisting of n = 259,200 equations for a 30 × 30 mesh) and therefore the structure
and eigenvalues of the coefficient matrix changed considerably from that on da Cunha et al.
(2015). However, the same normal equations-Jacobi preconditioner was used and the results
in terms of the number of iterations required for convergence very much similar to those
reported on da Cunha et al. (2015), with LGMRES(30,5) solving the largest system in just
19 iterations.

3 Systems derived from the application of the ADOmethod to a
radiative transfer problem

In another application of the ADOmethod, which was extended to high degree of anisotropy
scattering media, this time to solve a radiative heat transfer problem (see Barichello
et al. 2022), the previous approach failed to provide an appropriate solution, and differ-
ent approaches were taken to obtain the solution of the system of linear equations that arise
in the method.

The radiation intensity I (x, y,�i ) is given by the discrete ordinates approximation to the
two-dimensional radiative transfer equation in a rectangular domain (x, y) ∈ [0, a]×[0, b],
for M discrete directions (Barichello et al. 2022):

μi
∂

∂x
I (x, y,�i ) + ηi

∂

∂ y
I (x, y,�i ) + β I (x, y,�i ) = κ Ib(x, y)

+ σs

4π

L∑

l=0

l∑

p=0
(l+p
even)

(2 − δ0,p)C
p
l P

p
l (ξi )

M∑

k=1

wk P
p
l (ξk) cos[p(ϕk − ϕi )]I (x, y,�k), (6)

where 1 ≤ i ≤ M and wk are the weights (normalized to 4π) associated to the angular
directions �i = (μi , ηi , ξi ), defined in accordance with a numerical quadrature scheme.
The coefficients κ and σs are the absorption and scattering coefficients of the medium and
β = κ+σs is the extinction coefficient; Ib(x, y) is the intensity of radiation from a blackbody;
δ0,p is the Kronecker delta and the P p

l ’s are the associated Legendre polynomials of order l
and C p

l = Cl(l − p)!/(l + p)!.
The boundary conditions imposed are

I (x, y,�i ) = εw Ibw(x, y) + ρ

π

∑

n·� j>0

w j I (x, y,� j ) | n · � j |, (7)

for (x, y) in the contour, where εw is the surface emissivity; ρ is the surface reflectivity; �i

(with n · �i < 0, n being the unit outer normal vector at the boundary) denote the incoming
flux directions and � j are the outgoing flux directions (n · � j > 0).

The equations for the nodal scheme were written down according to a subdivision of the
domain (x, y) ∈ [0, a] × [0, b] into a mesh of H×K rectangular regions (nodes) along the
x and y axes, respectively, such that each region r = 1, . . . , R is defined by x ∈ [arh−1, a

r
h]

and y ∈ [brk−1, b
r
k] with 0 ≤ arh−1 < arh ≤ a and 0 ≤ brk−1 < brk ≤ b, where h = 1, . . . , H

and k = 1, . . . , K are the subdivisions in the x and y axes, respectively, as seen in Fig. 4.
The domain regions are listed from left to right and from bottom to top.
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Fig. 4 Domain subdivided into a
mesh of H × K rectangular
regions

Fig. 5 Typical matrix structure of
the system of linear equations,
with the earlier ordering used

Afterwriting the one-dimensional transverse-integrated equations in the x and y directions
for each region r and using constant functions to properly express the radiation intensities in
the contours of a node, we solve two eigenvalue problems to obtain separation constants to
describe the homogeneous solutions and finally obtain the equations describing the general
solutions for the average intensity along the x and y directions in each node. For details on
this derivation, see Barichello et al. (2022).

To compute these average intensities, a system of linear equations needs to be solved to
provide 4M arbitrary coefficients (half coming from the homogeneous solutions and half from
the particular solutions) in each node and, therefore, a system of order n = 4M(HK ) needs
to be solved. This system has its equations derived from auxiliary equations that approximate
unknown intensities in the contours; equations for defining the particular solution (since the
source is unknown as it depends on the intensities in the contours); the boundary conditions;
and the continuity conditions at the interfaces of the regions.

However, there are different ways towrite down the equations of the linear system, accord-
ing to not only how each auxiliary and particular equations and boundary and continuity
equations are considered in each region and along which direction. In previous work (Rui
et al. (2020)), the ordering used led to a system of linear equations that had the structure as
shown in Fig. 5. Being sparse, an iterative solution was attempted, as it had been proved very
efficient. However, possibly due to the nature of the test problem where a pure scattering
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Fig. 6 Typical matrix structure of
the system of linear equations
with the reordering of the
equations

medium is assumed, the iterative methods used before failed to achieve convergence to the
necessary tolerance (a residual less than 10−12).

We, therefore, had to seek an alternative method to solve the system. At first, we used the
DGESVX subroutine fromLAPACK (Anderson et al. 1999), but thememory requirements to
hold the factors from the LU factorization precluded us from using combinations of number
of directions M and mesh sizes H × K that lead to systems of large order n. This was due to
the structure exhibited by the coefficient matrix, which caused an excessive amount of fill-in
on the LU factors.

It is known that matrices that exhibit a diagonal or banded structure (with a bandwidth
that is less than n) will have less fill-in than an equivalent matrix with a different structure.
There are some implementations of LU factorization tailored to diagonal or banded matrices,
one such being the HSL_MA48 subroutine from the HSL Mathematical Software Library
(HSL 2013).

To use this subroutine, we had to rearrange the equations and their coefficients (Rui et al.
2021). We swept the mesh along its lines and then its columns, writing the equations for
the left and right contours of each region (boundary or continuity equations); the set of
linear equations of the particular solution in the x direction; the set of linear equations of
the particular solution in the y direction; and the equations for the bottom and top contours
of each region (boundary or continuity equations). With this reordering, we obtained an
equivalent system of linear equivalents that exhibited the structure shown in Fig. 6.

The structure and sparsity exhibited by the reordered coefficient matrix allowed us to
solve problems on mesh sizes with H = K = 60 and M = 128 number of directions, which
lead to a system of linear equations of order n = 1,843,200 on a computer with an Intel
Core i7 processor at 2.8 GHz and with 16 GB of RAM. Typical CPU times to obtain the
solution using L = 8 and the LQN quadrature, for N = 8 are as follows: 18.59 s for the
10 × 10 mesh, and 1943.74 s for the 40 × 40 mesh. Although we have experimented with
solving the reordered system using ScaLAPACK (Blackford et al. 1997) on a distributed,
shared-memory parallel computer, the results were not ideal, since there is not a specific
routine in that package to deal with a coefficient matrix with the structure of the reordered
system. Thus, we experienced similar limitations as when using LAPACK.

These difficulties motivated the use of non-overlapping domain decomposition using
Schur’s complement formulation (Smith et al. 1996). In general, a system of linear equations
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Fig. 7 a Non-overlapping domain decomposition of a 12 × 12 mesh with internal cells in gray and border
cells in dark gray; b Corresponding block matrix Image presented in Rui (2021) (color figure online)

obtained following this decomposition and formulation may be expressed as
[
AI I AI B

ABI ABB

] [
xI
xB

]
=

[
bI

bB

]
(8)

where “I” and “B” indicate internal or border cells.
In Rui (2021), Rui divided the domain in vertical panels, as in Fig. 7a. Using the reordered

equations and writing them down in terms of the cells belonging to each subdomain leads
to a block matrix shown in Fig. 7b, where Ai

I I is a block matrix that refers to the internal
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cells to subdomain i ;Ai
I B andAi

B I are block matrices that refer to the interfaces between the
internal and border cells of subdomain i ; and Ai

BB is a block matrix that refers to the border
cells of subdomain i .

The main reason for using this formulation is that it offers various sources of paralleliza-
tion. Note that AI I is a block diagonal matrix where each block is Ai

I I ; AI B and ABI are
block column and block row matrices; and ABB is also a block row matrix, the blocks being
related to each subdomain. To solve Eq. (8), one forms a system SxB = g and solve for
the variables on the border cells. The Schur complement matrix S is obtained by comput-

ing expressions involving
(
Ai

I I

)−1
Ai

I B , solving i independent block systems. The system
SxB = g in itself is then solved for xB . Finally, with xB at hand, the variables xiI are obtained
by solving i independent block systems with Ai

I I as their coefficient matrices.
Note that there are two steps which require the solution of systems involving Ai

I I , one
to form the Schur complement matrix S and the other to solve for xiI . Being not dependent
on each other, these may be farmed out to individual processors, this being close to optimal
parallelization. The solution of the system SxB = g can be obtained either sequentially or in
parallel, depending on how large is S.

In her thesis, Rui provided results that show that by a suitable choice of the number of
subdomains, the size of the largest system to be solved with this formulation—SxB = g—is
between 2.5 and 3 times smaller than the reordered system. This provides a gain by itself in
that it will be solved faster (perhaps even more if using parallelism). However, we have yet
to provide a parallel implementation to fully take advantage of this approach, and this is an
ongoing work.

4 Concluding remarks

Solutions of large linear systems of algebraic equations were investigated via direct and
iterative methods. The relevant systems arise when developing spectral solutions for two-
dimensional particle transport problems in applications of neutron transport and radiation
transfer problems. The order of the systems is related to the number of discrete ordinates
associated to the angular discretization and the number of nodes in a domain subdivision.

Iterative methods such as GMRES, Loose GMRES and TFQMR were successful in
neutron applications, for different choices of quadrature schemes. For the radiative trans-
fer problem discussed here, those methods were unable to solve the linear system and the
alternative was to try to obtain its solution via direct methods (LU factorization). Due to its
high sparsity, which lead to unacceptable levels of fill-in the factorization, a reordering of
the equations of the system was necessary to allow an application of a sparse block diagonal
subroutine.

Ongoing research is focused on domain decomposition techniques to allow the solution of
higher order systems due to the high execution times experienced using the latter approach.
Such study seeks to enhance the chance of avoiding as much as possible the use of sweeping
procedures to deal with angular and spatial discretization for these types of problems.
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