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Abstract. We survey algorithms for locating eigenvalues of symmetric matrices taking advantage of the underlying graph.

We present applications in spectral graph theory.
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1. Introduction. Real symmetric matrices and, more generally, complex Hermitian matrices are fun-

damental objects in mathematics in light of their rich theory and of their natural suitability for many

applications. Among their many useful features, we consider spectral properties. Given an n × n complex

matrix A, recall that a complex number λ is an eigenvalue of A associated with an eigenvector v if there is a

nonzero vector v ∈ Cn such that Av = λv; equivalently, λ is an eigenvalue of A if it satisfies the polynomial

equation det(A − λI) = 0. The multiset of solutions of this polynomial equation is called the spectrum

Spec(A) of A, and the multiplicity of λ as an eigenvalue of A is the number of occurrences of λ in Spec(A).

As it turns out, if A is a real symmetric matrix, its spectrum consists of real eigenvalues and there is an

orthogonal basis of Rn whose elements are eigenvectors of A.

In this paper, given a real symmetric matrix A and a real interval I, we are concerned with the problem

of determining the number of eigenvalues of A lying in I (where each eigenvalue is counted according to

its multiplicity). We call this eigenvalue location∗. The eigenvalue location algorithms we survey here are

based on the notion of matrix congruence and on a classical linear algebra result known as Sylvester’s Law

of Inertia. We recall that two matrices A and B are congruent if there exists an invertible matrix P such

that

(1.1) A = PTBP.

The inertia of the matrix A is the triple (n+(A), n−(A), n0(A)) that records the number of positive eigenval-

ues, the number of negative eigenvalues, and the multiplicity of the eigenvalue zero, respectively. We state

Sylvester’s Law of Inertia for easy reference.

Theorem 1.1. Two n × n real symmetric matrices are congruent if and only if they have the same

inertia.

Suppose that, for any real number x ∈ R, we were able to find a diagonal matrix D congruent to

Bx = A − xI. By Theorem 1.1, the number of positive, negative, and zero entries in the diagonal of D is
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the number of eigenvalues greater than, less than and equal to x in A. This would immediately allow us to

determine the number of eigenvalues of A in any given interval. We state this as a corollary for future use.

Corollary 1.2. Let A be a real symmetric matrix. For x ∈ R, define Bx = A + xI. Let n+(Bx),

n−(Bx) and n0(Bx) be the number of positive values, the number of negative values, and the number of zeros

in the diagonal of a diagonal matrix congruent to Bx, respectively. The following hold:

(a) The number of eigenvalues of A (with multiplicity) that are greater than −x is equal to n+(Bx).

(b) The number of eigenvalues of A (with multiplicity) that are less than −x is equal to n−(Bx).

(c) The multiplicity of −x as an eigenvalue of A is equal to n0(Bx).

In particular, the number of eigenvalues (with multiplicity) of A in a real interval (α, β] is n+(B−α) −
n+(B−β).

Similarly, the number of eigenvalues of A in the intervals (α, β) and [α, β] is given by n+(B−α)−n+(B−β)−
n0(B−β) and by n+(B−α) + n0(B−α)− n+(B−β), respectively.

Of course, it is well known that symmetric matrices are diagonalizable, that is, that any symmetric

matrix A may be written as

(1.2) A = Q−1DQ,

where D and Q are real matrices such that D is diagonal and Q−1 = QT . Note that this is a special case

of (1.1). In particular, A and D are similar and therefore share the same spectrum. This implies that, rather

than simply being helpful for locating eigenvalues, the diagonal entries of D are precisely the eigenvalues

of A. However, computing† the decomposition (1.2) is expensive, requiring Ω(n3) operations in the worst

case using classical algorithms, where n is the order of the symmetric matrix. As an aside, we observe

that reducing this problem to matrix multiplication allows the use of faster modern algorithms, such as the

seminal algorithms of Strassen [56] and Coppersmith-Winograd [20], for instance. This is beyond the scope

of this paper, but it is well known that the complexity of matrix multiplication cannot fall below O(n2+o(1))

in the worst case.

In a purely computational perspective, we may view the algorithms surveyed in this paper as algorithms

that sacrifice the precision provided by the decomposition in (1.2) for gain in complexity. Indeed, we consider

eigenvalue location algorithms for which the input is a symmetric matrix A of order n in a particular domain

and a real number x, while the output is a diagonal matrix D congruent to Bx = A + xI. Each algorithm

runs in linear time by exploiting structural properties of the matrices in its domain to perform a sequence

of elementary operations on the rows Ri and columns Ci of Bx:

(1.3) Ri ←− Ri − αRj , Ci ←− Ci − αCj .

Performing the row operation in (1.3) is equivalent to the product Eij(α)Bx, where Eij(α) is the elementary

matrix whose entries coincide with the identity matrix, except for the entry ij, which is equal to −α.

Similarly, performing the column operation in (1.3) is equivalent to the product BxẼij(α), where Ẽij(α)

is the elementary matrix whose entries coincide with the identity matrix, except for the entry ji, which is

equal to −α. Since Eij(α) = Ẽij(α)T is invertible, we conclude that the matrix produced after performing

the operations (1.3) is congruent to the original matrix. As a consequence, if we perform a sequence

†We observe that there is an abuse of terminology, where by computing we mean approximating to a given precision.
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of elementary row and column operations in a way that every row operation is immediately followed by

the corresponding column operation, congruence is preserved. We call such pairs of elementary operations

congruence operations. In the remainder of the paper, we call the diagonal matrix D a diagonalization of

Bx and we say that the algorithm diagonalizes Bx.

However, more than being an efficient tool of approximating eigenvalues, eigenvalue location algorithms

have been quite useful in the solution of problems related to the distribution of eigenvalues in a given graph

class. This will be the focus of our survey. To fulfill this objective, we shall describe the algorithms and

show how they can be a valuable tool in solving theoretical problems in spectral graph theory.

We encode the structure of a symmetric matrix A = [aij ] of order n by considering its underlying graph.

This is the graph G with vertex set V = {v1, . . . , vn} such that vi is adjacent to vj if and only if aij 6= 0.

In other words, the vertices of G correspond to the rows of A and there is an edge {vi, vj} if and only if

the element of A in row i and column j (and hence in row j and column i) is nonzero. Clearly, the matrix

itself may be viewed as a weighted graph, where the support is given by its underlying graph, the diagonal

elements are vertex weights and the nonzero off-diagonal elements are edge weights.

As we shall see, two structural properties will be particularly useful in the design of our algorithms.

One of them is the sparsity of the matrix, by which we mean that the input matrix A has a relatively small

number of nonzero off-diagonal elements. Suppose that it is possible to perform row and column operations,

in an organized way, so as to eliminate all these elements without creating any new nonzero elements (or

creating a very small number of new nonzero elements, which can also be eliminated). We would then have

an algorithm that diagonalizes the original matrix very quickly. As it turns out, this is always possible when

the underlying graph associated with the original matrix is a tree, which has led to the seminal algorithm

in this line of research due to Jacobs and Trevisan [37]. Their algorithm was designed specifically as an

eigenvalue location algorithm for the eigenvalues of the adjacency matrix of trees (and was based on an

earlier algorithm to compute the characteristic polynomial of such matrices [35]), but, as new applications

were considered, the approach was naturally extended to other contexts, see [27] for the Laplacian matrix

and [16] for general symmetric matrices whose underlying graph is a tree.

An early successful attempt to exploit sparsity when the underlying graph is not a forest involved

eigenvalue location for unicyclic graphs [18], that is, for connected graphs that contain a single cycle. A

more general strategy for symmetric matrices whose underlying graph has a treelike structure has been

proposed by Fürer, Hoppen, and Trevisan [30]. It exploits a structural decomposition of graphs known as a

tree decomposition [50], which is associated with a parameter that measures how far a graph G is from a tree

based on this decomposition, the treewidth of G. It so happens that G has treewidth equal to 1 if and only if

it is a forest. The approach in [30] uses tree decompositions to diagonalize matrices whose underlying graph

G has treewidth k with complexity O(k2n), under the assumption that a tree decomposition of G is given

as part of the input. This is a linear-time algorithm for graphs with bounded treewidth, i.e., for families of

graphs whose treewidth is bounded by an absolute constant. For instance, unicyclic graphs have treewidth

2. More generally, all cacti have treewidth at most 2, where a cactus is a graph for which any two cycles

either are disjoint or have a single vertex in common.

The second structural property of the input matrix A that will be exploited by our algorithms is the

occurrence of many rows and columns that are almost equal, in the sense that Ri−Rj (and therefore Ci−Cj)
have a small number of nonzero elements. To illustrate what we mean, assume that A is a (possibly dense)

symmetric matrix such that all off-diagonal component lie in {0, α} for some real number α. Despite being
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a restrictive assumption, it is satisfied by several graph-based matrices, such as the adjacency matrix, the

(combinatorial) Laplacian matrix, and the signless Laplacian matrix, where nonzero off-diagonal entries are

always equal to 1, -1, and 1, respectively. Let G = (V,E) be the underlying graph of A and assume that

vi and vj have the same neighbors in V \ {vi, vj}. Clearly, if we perform the row operation Ri − Rj , all

components in the resulting row vector will be 0 except possibly the components in columns i and j, so

that many components can be eliminated with a single row operation; moreover, if we knew in advance that

Ri and Rj satisfied the above property, there would be no need to actually perform any operation on the

components of Ri −Rj that are different from i and j, we could just replace them by 0.

The property described in the previous paragraph also appears naturally in graph families. Given a

graph G = (V,E) and a vertex v ∈ V , define the (open) neighborhood N(v) of v as the set of vertices of

G that are adjacent to v, that is, w ∈ N(v) if and only if {v, w} ∈ E. The closed neighborhood of v is the

set N [v] = N(v) ∪ {v}. Two vertices u and v are said to be duplicates if N(u) = N(v) and coduplicates

if N [u] = N [v]. A well-known graph class consists of complement reducible graphs (or cographs for short),

which have been studied in various contexts and can be characterized in many different ways, see [22] for more

information. One such characterization is that a graph G is a cograph if and only if every induced subgraph

of G on at least two vertices contains vertices u and v that are duplicates or coduplicates. This makes

them an ideal graph family to apply the strategy described in the previous paragraph. A diagonalization

algorithm based on this approach was introduced in 2018 by Jacobs, Trevisan, and Tura [41]. As was

the case for trees, this approach can be extended to graphs that are described by means of a hierarchical

decomposition known as slick clique decomposition, introduced in [29], which is closely related to the clique

decomposition introduced by Courcelle and Olariu [24] more than two decades ago. As it turns out, a graph

G has slick clique-width 1 if and only if it is a cograph, so that the slick clique-width may be viewed as a

parameter that measures how far a graph G is from a cograph. Fürer and the current authors [29] have used

this decomposition to diagonalize matrices whose underlying graph has slick clique-width k with complexity

O(k2n), which leads to very efficient algorithms for graph families with bounded slick clique-width, such as

distance-hereditary graphs, which have slick clique-width at most 2. As before, complexity considerations

are under the assumption that a slick clique decomposition of the underlying graph of the input matrix is

part of the input.

This survey has been organized in three parts. The first part describes the algorithms that have been

designed to take advantage of sparsity, starting with the algorithm for trees in Section 2 and extending it to

general graphs through tree decompositions in Section 3. Even though our focus is on eigenvalue location,

the algorithms find a diagonal matrix that is congruent to any given symmetric matrix whose underlying

graph has the required structure, and this has other applications. Among other things, congruence may

be used to compute the determinant and to classify Gram matrices associated with a quadratic form on a

finite-dimensional vector space. The second part is concerned with algorithms that exploit the presence of

similar rows and columns, namely the algorithm for cographs (Section 4) and its generalization to general

graphs through clique decompositions (Section 5). The third part describes applications of these algorithms

to the solution of problems in spectral graph theory.

Part I - Sparse graphs
Let A be a symmetric matrix of order n. To find a diagonal matrix D that is congruent to A, we may

use a procedure that resembles the Gaussian elimination introduced in a first course in linear algebra, by

which we eliminate the off-diagonal elements one row at a time using elementary operations. The idea is to
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simply choose a nonzero diagonal element ajj and use it to eliminate all the other nonzero elements on its

column and row. For instance, the elements aij and aji are eliminated if we perform the following congruence

operations:

Ri ← Ri −
aij
ajj

Rj Ci ← Ci −−
aij
ajj

Cj ,

leading to

(1.4)
i

j

(
aii aij
aij ajj

)
−→ i

j

(
aii − a2ij/ajj 0

0 ajj

)
.

Of course, to complete the diagonalization, we would need to explain what to do when the diagonal

element is zero, but there are nonzero elements on its row and column. Note that, in Gaussian elimination,

we are allowed to interchange rows to get a nonzero element to act as a pivot, but here any row operation is

immediately followed by the corresponding column operation, so that diagonal elements can only be replaced

by other diagonal elements when rows (and therefore columns) are interchanged. At this point, we simply

mention that this can be dealt with.

If A is sparse, we would also like to implement this process in an efficient way, that is, in a way that

requires a small number of field operations. This can be done if we are able to avoid fill-in, by which

we mean the set of matrix positions that were initially 0, but became nonzero at some point during the

computation. The idea is to define a convenient ordering of the rows (and therefore of the columns) so that

the first row in the order is the first to be diagonalized, and so on, while at the same time minimizing fill-in.

In the context of Gaussian elimination, such an ordering is known as a pivoting scheme (or an elimination

ordering), and we also use this terminology here. A possible problem with using a pre-defined pivoting

scheme is that accidental cancelations may occur in the diagonal (an accidental cancelation happens when

a nonzero element becomes zero because of an operation aimed at canceling a different element in the same

row or column). Even though they may seem to be helpful at first sight, accidental cancelations can mess up

the pivoting scheme, as the unexpected zero could be the element needed to eliminate nonzero elements in its

row and column, as mentioned in the previous paragraph. In this part of the survey, we will present instances

for which it is possible to design fast algorithms that exploit a convenient pivoting scheme, while successfully

dealing with accidental cancelations. The first section is concerned with an algorithm for matrices whose

underlying graph is a tree. The next section extends this to matrices with arbitrary underlying graph, but

which is efficient when the underlying graph has a tree decomposition of small width.

2. Locating eigenvalues on trees. Let A be an arbitrary symmetric matrix of order n whose un-

derlying graph is a tree, that is, a connected and acyclic graph. We shall describe a linear-time algorithm

that finds a diagonal matrix D that is congruent to A using the strategy described above. It uses a piv-

oting scheme based on the following structural characterization of trees, whose simple proof is included for

completeness.

Lemma 2.1. A graph G = (V,E) is a tree if and only if there is a vertex-ordering v1, . . . , vn such that,

for any i < n, vi has a unique neighbor in {vi+1, . . . , vn}. Moreover, if G is a tree and v ∈ V , there exists

such a vertex-ordering for which vn = v.

Proof. First assume that T is a tree on n ≥ 1 vertices. We proceed by induction on n. If n ∈ {1, 2}, any

ordering of the vertex set satisfies the desired property. Assuming that, for some fixed n ≥ 2, the result holds

for any tree on n vertices, let T be a tree with n+ 1 vertices. It is well known that T has a leaf w (actually,

we may further choose w 6= v, where v is any fixed vertex, as any tree with at least two vertices contains at
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least two leaves). Consider the tree T ′ = T − w. By induction, it contains an ordering v′1, . . . , v
′
n = v as in

the statement of the theorem. By setting v1 = w and vi = v′i−1 for i ∈ {2, . . . , n+ 1}, we obtain the desired

ordering for T .

Conversely, assume that G = (V,E) has an ordering v1, . . . , vn of the elements of V such that, for any

i < n, vi has a unique neighbor in {vi+1, . . . , vn}. By induction, we show that Ti = G[{vn−i+1, . . . , vn}] is a

tree for every i ∈ {1, . . . , n}, and hence, G = Tn is a tree. This is obvious for i = 1 and assume that it holds

for some i such that 1 ≤ i < n. By hypothesis, Ti+1 is obtained from the tree Ti by the addition of a vertex

vn−i with exactly one neighbor in Ti, so that Ti+1 is clearly acyclic and connected.

A concept that will be particularly useful is that of a rooted tree, that is a tree T = (V,E) for which one

of the vertices r is distinguished as the root. Each neighbor of r is regarded as a child of r, and r is called

its parent. For each child c of r, all of its neighbors, except the parent, become its children. This process

continues until all vertices except r have parents. A vertex that does not have children is called a leaf of the

rooted tree. The descendants of a vertex in a rooted tree are defined as follows. If v is a leaf, then it has no

descendants. Otherwise, the descendants of v are its children, together with their descendants. With this,

given a rooted tree T and vertex v, we define the subtree Tv rooted at v as the subtree of T induced by v

and all of its descendants. Moreover, the depth of a vertex in a rooted tree is its distance to the root, while

the depth of a rooted tree is the maximum depth of a vertex.

We come back to an arbitrary symmetric matrix A of order n whose underlying graph is a tree T .

Assume that T is rooted at any vertex v and consider a vertex-ordering v1, . . . , vn = v as in Lemma 2.1. It is

easy to see that any vertex vi must appear after all of its descendants, which is equivalent to saying that all

vertices appear after all their children. This is called a bottom-up ordering of the rooted tree. An example

is depicted in Fig. 1.

10

9 8

4 5 7 6 3

1 2

Figure 1. A tree T whose vertices are ordered bottom-up.

To diagonalize A, the aim is to perform congruence operations in a way that eliminates the off-diagonal

elements of A without any fill-in. The intuition behind it is straightforward, and we further simplify the

discussion by assuming first that A does not have any zeros in the diagonal and that no accidental cancelations

occur. We start the process with a leaf vj of T . The only nonzero off-diagonal element on its row and column

is the element aij = aji associated with the parent vi of vj . These elements are eliminated when we perform

Ri ← Ri −
aij
ajj

Rj Ci ← Ci −
aij
ajj

Cj ,

which affects the matrix as in (1.4). Note that the only additional position modified by these operations is the

position ii, which was already nonzero by assumption. At this point, we may view row j as diagonalized and

we repeat the process for the remaining rows and columns, until we get a diagonal matrix. The assumption

that the diagonal of A is fully nonzero implies that there was no fill-in. If we only assume that the diagonal
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elements are nonzero when we use them to diagonalize their row/column (but could be initially 0), the fill-in

might not be empty, but would have cardinality less than n.

2.1. The algorithm. To formalize this idea, and deal with the case when zeros appear in the diagonal,

we say a vertex v has been processed if the submatrix corresponding to v and its descendants is diagonal.

Before any operations are performed, set A0 = A and observe that the leaves of T are the only vertices

of T that count as processed, as they have no descendants. At some point in the diagonalization process,

let k be the least index such that vk has not been processed and let Ak−1 be the matrix obtained from A

while processing vertices v1, . . . , vk−1. We wish to process vk. The submatrix of Ak−1 induced by vk and its

descendants j1, . . . , j` is as in 

dj1 0 0 · · · 0 αj1k
0 dj2 0 · · · 0 αj2k
0 0 dj3 · · · 0 αj3k
...

...
...

... · · ·
...

0 0 0 · · · dj` αj`k
αj1k αj2k αj3k · · · αj`k akk


.

First assume that all descendants vj of vk for which αkj 6= 0 have diagonal value dj 6= 0. By performing

the congruence operations

Rk ← Rk −
αjk
dj

Rj Ck ← Ck −
αjk
dj

Cj ,

the off-diagonal jk and kj entries of Ak−1 are eliminated as follows

j

k

(
dj αjk
αjk dk

)
−→ j

k

(
dj 0

0 dk − α2
jk/dj

)
.

The net effect for all descendants is

(2.5) dk = dk −
∑
c

α2
ck

dc
,

where c ranges over the descendants of vk
‡. Let Ak be the matrix obtained from Ak−1 after these operations

are performed. Note that no new nonzero entries are created because the children of vk had already been

processed in earlier steps. Moreover, the only entries of Ak−1 that were modified while processing vk are the

entries jk and kj, where vj is a descendant of vk, which became 0, and the entry kk.

On the other hand, suppose that dj = 0 for some descendant vj of vk such that αjk 6= 0, so that (2.5)

is ill-defined. Select one such vertex vj . We examine the submatrix corresponding to vj and any sibling

vi, their parent vk, and their grandparent v`, if present. As vi and vj have already been processed, the

operations

Ri ← Ri −
αik
αjk

Rj Ci ← Ci −
αik
αjk

Cj ,

annihilate the two off-diagonal entries of vi as follows

i

j

k

`


di αik

0 αjk
αik αjk dk α`k

α`k d`

 −→

i

j

k

`


di 0

0 αjk
0 αjk dk α`k

α`k d`

 .

‡Actually, this sum only ranges over the children of vk, but at this point we cannot justify this.
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We repeat this for all siblings of vj . If vk is the root, we ignore the next step. Otherwise, we can remove the

two entries representing the edge between vk and its parent v` with these operations:

R` ← R` −
α`k
αjk

Rj C` ← C` −
α`k
αjk

Cj .

This transforms the submatrix as follows

i

j

k

`


di 0

0 αjk
0 αjk dk α`k

α`k d`

 −→

i

j

k

`


di 0

0 αjk
0 αjk dk 0

0 d`

 .

Next we deal with the 0 in the diagonal. The congruence operations

Rk ← Rk −
dk

2αjk
Rj Ck ← Ck −

dk
2αjk

Cj

lead to
i

j

k

`


di 0

0 αjk
0 αjk dk 0

0 d`

 −→

i

j

k

`


di 0

0 αjk
0 αjk 0 0

0 d`

 .

Then, the operations

Rj ← Rj +
1

αjk
Rk Cj ← Cj +

1

αjk
Ck

produce
i

j

k

`


di 0

0 αjk
0 αjk 0 0

0 d`

 −→

i

j

k

`


di 0

2 αjk
0 αjk 0 0

0 d`

 .

Finally, the operations

Rk ← Rk −
αjk
2
Rj Ck ← Ck −

αjk
2
Cj

produce the diagonalized form

i

j

k

`


di 0

2 αjk
0 αjk 0 0

0 d`

 −→

i

j

k

`


di 0

2 0

0 0 −α2
jk/2 0

0 d`

 .

The elements that changed in the diagonal are

(2.6) dj = 2 and dk = −
α2
jk

2
.

Furthermore, if vk is not the root, the fact that the entries `k and k` have been eliminated may be interpreted

as deleting the edge from vk to its parent in the tree. We note that there cannot be any fill-in outside the

diagonal, which justifies why no entry of the type αjk can become nonzero for a descendant vj of vk that

is not one of its children. It also shows why entries of type αjk, where vj is a child of vk, can become zero.
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Indeed, while processing vj , the diagonal element corresponding to one of its children could be 0, leading to

the deletion of the edge {vj , vk} as above. Finally, it shows that any nonzero entry of type αjk associated

with the unprocessed vertex vk must be equal to the original entry ajk in A, as it can only be modified if it

becomes 0.

This discussion also justifies why we may perform this diagonalization process without operating on the

matrix directly, but instead by operating on its underlying tree T if we assume access to a weighted tree

with vertex and edge weights that record the entries of the original matrix. To keep track of the process,

we need to update diagonal values, which we may interpret as weights associated with the vertices of T . As

it turns out, off-diagonal values are not changed unless they become 0, so that nonzero off-diagonal entries

may be viewed as weights on the edges of T that need not be updated. It is convenient to interpret the

weight becoming 0 as deleting the corresponding edge from the tree, so that the algorithm proceeds on the

remaining forest. Figure 2 shows the pseudocode for this algorithm. We note that, in our description, we

omit any reference to the data structure used to record the entries of the sparse input matrix and instead

assume that we have oracle access to these entries, i.e., we assume that there is an oracle that, given any

pair i, j, outputs the value aij .

Input: Real symmetric matrix A = (aij)

Underlying tree T of A whose vertices v1, . . . , vn are ordered bottom-up

Output: Diagonal matrix D = diag(d1, . . . , dn) congruent to A

Algorithm Diagonalize Tree(A)

initialize di ←− aii, for all i

for k = 1 to n

if vk is a leaf

then continue

else if dc 6= 0 for all children c of vk

then dk ←− dk −
∑ (ack)2

dc
, summing over all children of vk

else

select one child vj of vk for which dj = 0

dk ←− − (ajk)2

2

dj ←− 2

if vk has a parent v`, then delete the edge {vk, v`}.
end loop

Figure 2. Diagonalizing A for a symmetric matrix A with an underlying tree.

As is clear from the pseudocode in Fig. 2, the algorithm Diagonalize Tree does not perform the

congruence operations described in this section, but instead only records changes on the diagonal values di
of A. Because of this, only O(n) space is necessary. It is not hard to see that the algorithm takes O(n)

operations, but we refer the reader to the original paper [37] for details.

In the following, we illustrate how the algorithm works with an example. Before doing this, we remark

that it may be easily adapted to diagonalize Hermitian matrices.

Remark 2.2. A complex matrix H is Hermitian if is satisfies H∗ = H, where H∗ is the conjugate
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transpose of H. The notion of congruence may be extended to Hermitian matrices by saying that H and F

are ∗-congruent if there exists an invertible complex matrix U such that

H = U∗FU.

Sylvester’s Law of Inertia may also be generalized to this context, and two Hermitian matrices are

congruent if and only if they have the same inertia.

It is easy to modify the algorithm in Fig. 2 so that it computes a diagonal matrix congruent to a Hermitian

matrix H whose underlying graph is a tree. Indeed, the only difference in the pseudocode is that the terms

(ack)2 and (ajk)2 are replaced by the products ackack and ajkajk, respectively. To see why this is, first note

that the diagonal of any Hermitian matrix consists of real numbers and that, to preserve congruence, any

row operation of type Rk ← Rk − βRj for β ∈ C is followed by the operation Ck ← Ck − βCj. Indeed, the

row operation is equivalent to the product Ekj(β)H, where Ekj(β) is the elementary matrix whose entries

coincide with the identity matrix, except for the entry kj, which is equal to −β. Similarly, performing the

column operation is equivalent to the product HẼkj(β), where Ẽkj(β) is the elementary matrix whose entries

coincide with the identity matrix, except for the entry jk, which is equal to −β. Since Eij(β) = Ẽij(β)∗ is

invertible, we conclude that the matrix produced after the row and column operations is ∗-congruent to the

original matrix.

Going back to the operations that define the algorithm, note that row and column operations

Rk ← Rk −
αjk
dj

Rj Ck ← Ck −
αjk
dj

Cj ,

lead to the elimination of off-diagonal jk and kj entries of Ak−1 as follows

j

k

(
dj αjk
αjk dk

)
−→ j

k

(
dj 0

0 dk − αjkαjk/dj

)
.

Similarly, in (2.6), the term α2
jk is replaced by αjkαjk if the multiplicative constants used in row op-

erations are replaced by their conjugates in column operations, which are again ∗-congruence-preserving

operations.

L =



1 0 0 −1 0 0 0

0 1 0 −1 0 0 0

0 0 1 0 −1 0 0

−1 −1 0 3 0 −1 0

0 0 −1 0 2 0 −1

0 0 0 −1 0 2 −1

0 0 0 0 −1 −1 2

 2

v7

2

v6

3

v4 1

v3

1

v2

2

v5

1

v1

Figure 3. Initial tree and its Laplacian matrix.

Example 2.3. Consider L the Laplacian matrix of the tree T given in Fig. 3, that is, the matrix for

which each diagonal entry `ii is the degree of vertex i and for which, given i 6= j, `ij = −1 if {i, j} ∈ E(T )

and `ij = 0 otherwise. Vertices are ordered from right to left, and from bottom to top. In particular, the first
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three vertices in this ordering are the leaves of the tree and the root is the leftmost vertex, depicted in red.

The diagonal values di at each step are represented below the corresponding vertex. Let L be the Laplacian

matrix of this tree.

Initialization:

di ← di − 1

leaves are processed 1

1 2

0

0

1 0

Figure 4. Initialization.

Suppose that we wish to determine the number of Laplacian eigenvalues greater than/smaller than/equal

to 1. For this, we apply the algorithm Diagonalize(A) to the matrix A = L − I. On the tree of Fig. 4, we

have the initial diagonal values, given by vertex degrees minus 1. If we represent processed vertices in white,

the tree in Fig. 4 depicts the tree after all leaves are processed, as nothing happens when a leaf is processed.

Processing vertices

v4 and v5 that have

children with zero value
1

1 −1/2

2

0

−1/2
2

Figure 5. Processing vertices having children with 0 value.

After this, vertex v6 became a leaf, and nothing happens when it is processed. The final step processes

the root v7, which has a single child v6, whose value is d6 = 1 6= 0. Hence, d7 = 1− (−1)2

1 = 0. The diagonal

values at the end of the algorithm are represented on the right of Fig. 6. Since there are two negative values,

two positive values and two zeros, Corollary 1.2 implies that L has 2 eigenvalues smaller than 1, 3 eigenvalues

greater than 1, while 1 is an eigenvalue of multiplicity 2. As it turns out, the approximate spectrum is given

by {0, 0.22538, 1, 1, 2.18589, 3.36041, 4.22833}.

Processing v6 (as a leaf)

Processing the root v7:

d7 ← d7− (−1)2

d6
= 1−1 = 0 0

1 −1/2

2

0

−1/2
2

Figure 6. Final values of the diagonalization.
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3. Locating eigenvalues using tree decompositions. The aim here is to describe an algorithm that

extends the approach of the previous section, which applies only to a specific class of matrices, to a general

setting. It relies on the notion of tree decomposition, a well-known structural decomposition of graphs that

has proved to be very useful in the design of algorithms.

3.1. Tree decomposition. The definition of tree decomposition that is popular today is due to Robert-

son and Seymour [50, 51], but notions that are similar or even equivalent have been independently studied

in other contexts, and we refer to [6, 32] for earlier work. The study of tree decompositions and their appli-

cations has become a thriving research area, and our discussion will be restricted to the properties that are

needed for our purposes. Readers who would like to know more are encouraged to read influential survey

papers by Bodlaender [8, 10, 11], and the references therein.

A tree decomposition of a graph G = (V,E) is a tree T with nodes 1, . . . ,m, where each node i is

associated with a set Bi ⊆ V , called a bag, satisfying the following properties:

(1)
⋃m
i=1Bi = V ;

(2) For every edge {v, w} ∈ E, there exists Bi containing v and w;

(3) For any v ∈ V , the subgraph of T induced by the nodes that contain v is connected.

The width of the tree decomposition T is defined as max{|Bi| − 1: i ∈ V } and the treewidth tw(G)

of graph G is the smallest k such that G has a tree decomposition of width k. Figure 7 depicts a tree

decomposition of a graph G. Note that the distinction between the nodes of the tree and the bags associated

with them is important, as different nodes may be associated with equal bags.

5

7

6

4

3

1

2

5

5

67

6

4

3 6

4

2

3

1

Figure 7. A graph G and a tree decomposition T of G with four nodes and width 2. The elements of each bag are depicted

within the corresponding node.

It is known that if G is an n-vertex graph where n ≥ 2, then tw(G) = 1 if and only if G is a forest, and

tw(G) = n − 1 if and only if G is a complete graph. Regarding sparsity, one may easily show that graphs

with small treewidth must be sparse. Precisely, any graph G with n ≥ k+1 vertices and treewidth at most k

has at most kn−
(
k+1

2

)
edges. In general, the tree T with a single node 1 associated with the bag B1 = V (G)

is a tree decomposition of G, so that tw(G) ≤ n− 1. This illustrates an important difference between a tree

decomposition of a graph and other decompositions, such as cotrees of cographs and k-expressions of graphs

(which will also be introduced in this survey): tree decompositions do not determine the graph, i.e., different

graphs may have the same tree decomposition. Indeed, a tree decomposition does not tell us that any edge

actually lies in a graph G, but instead that a pair {v, w} is not an edge of G if there is no bag containing the

pair {v, w}. In other words, if we had an oracle with the ability to answer whether any given pair {v, w} is
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an edge of a graph G, a tree decomposition would restrict the set of pairs that need to be queried in order

to expose the entire graph G. Under this point of view, the tree with a single node and bag B1 = V (G) does

not give any information about the graph.

The above discussion shows that, for any subgraph H of G, we have tw(H) ≤ tw(G). More generally,

we have tw(H) ≤ tw(G) for any minor H of G, that is, for any graph H that may be obtained from G by a

sequence of vertex deletions, edge deletions and edge contractions, in any order. The contraction of an edge

{v, w} consists in replacing vertices v and w by a single vertex x adjacent with all vertices initially adjacent

to v or w. Two useful lower bounds on tw(G) are

(3.7) tw(G) ≥ δ(G) and tw(G) ≥ ω(G)− 1,

where δ(G) and ω(G) denote the minimum degree of G and the size of a maximum clique in G, respectively.

From this, we deduce that tw(G) ≥ k − 1 if G contains a complete graph Kk as a minor. Note that both

bounds in (3.7) imply that the tree decomposition of G in Fig. 7 has minimum width, that is, tw(G) = 2.

The treewidth is a parameter of major interest in algorithm design, particularly in parameterized com-

plexity, given that some NP-hard or even harder problems may often be solved in time O(f(k)nc), where c

is a constant and f is a computable function that depends on the treewidth k of the n-vertex input graph.

Even if f grows fast, for small values of k, such algorithms are often very practical. Readers are referred

to Niedermeier [45] for a general introduction to parameterized complexity. Bodlaender and Koster [12] are

particularly concerned with algorithms that take advantage of bounded treewidth.

Unfortunately, computing the treewidth of a graph G is NP-complete in general [2]; however, Bod-

laender [9] introduced an algorithm that, for any fixed constant k, decides in time f(k)n whether an n-

vertex graph has treewidth at most k, and outputs a tree decomposition if the answer is positive (where

f(k) = kO(k3)). Moreover, for many graph classes, there are polynomial-time algorithms that produce de-

compositions. We refer to [13, 14] for information about upper and lower bounds on the treewidth and

for algorithms that compute tree decompositions. In our discussion, we shall always assume that a tree

decomposition of the graph is given as part of the input.

The algorithm that we will present here uses tree decompositions with a particular structure, which have

been introduced by Kloks [42]. For a graph G, a nice tree decomposition is a rooted tree decomposition T
for which the root has an empty bag and each node i is of one of the following types:

(a) (Leaf) The node i is a leaf of T ;

(b) (Introduce) The node i introduces vertex v, that is, it has a single child j, v /∈ Bj and Bi = Bj∪{v}.
(c) (Forget) The node i forgets vertex v, that is, i has a single child j, v /∈ Bi and Bj = Bi ∪ {v};
(d) (Join) The node i is a join, that is, it has two children j and `, where Bi = Bj = B`.

Combining the fact that the root of a nice tree decomposition has an empty bag with property (3) in the

definition of tree decomposition, we see that every vertex of G must be forgotten exactly once in a nice tree

decomposition. Figure 8 depicts a nice tree decomposition of the graph G of Fig. 7.

The next result states that, despite the additional structure, any graph G that admits a tree decomposi-

tion of width k also admits a nice tree decomposition of width k. We include part of the proof originally given

in [30, Lemma 1] because it tells us how one such tree may be obtained from an arbitrary tree decomposition,

which is quite useful for applications.
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L

L

Figure 8. A nice tree decomposition of the graph G of Fig. 7. The root is on the right, and each node is labeled L (leaf),

I (introduce), J (join), or F (forget).

Lemma 3.1. Let G be a graph of order n with a tree decomposition T of width k with m nodes. Then,

G has a nice tree decomposition of the same width k with fewer than 4n − 1 nodes which can be computed

from T in time O((k log k)m+ kn).

Proof. Let T be a tree decomposition of G with width k with m nodes, and fix an arbitrary node i as

root. As a pre-processing step, we sort the vertices in each bag so that they are in increasing order (according

to some arbitrary pre-determined order). This may be done in time O((k log k)m) using a standard sorting

algorithm such as MergeSort. We modify the tree decomposition in a sequence of depth-first traversals. In

the first traversal, every node whose bag is contained in the bag of its parent is deleted and its children are

connected directly to the parent.

In the second traversal, whenever the bag of a node has fewer elements than the bag of its parent, we

add elements from the parent’s bag until both bags have the same size. At the end of the second traversal,

the bags of all children are at least as large as the bags of their parents, but they are not contained in the

bag of their parent. In the third traversal, each node i with c ≥ 2 children and bag Bi is replaced by a

binary tree with exactly c leaves whose nodes are all assigned the bag Bi. Each child of i in the original tree

becomes the single child of one of the leaves of this binary tree. At this point, all nodes have at most two

children and those with two children are Join nodes. In the fourth traversal, for any node i with a single

child j, if necessary, replace the edge {i, j} by a path such that the bags of the nodes along the path differ

by exactly one vertex in each step. This is done from j to i by a sequence of nodes, starting with a Forget

node, then alternating between Introduce and Forget nodes, and possibly ending with a sequence of Forget

nodes in case the child’s bag is larger than its parent’s. To ensure that property (3) of a tree decomposition

is satisfied, each vertex in the symmetric difference of the original bags Bi and Bj produces a single Forget

or Introduce node.

To finish the construction, if the root i has a nonempty bag Bi, we append a path to the root where

each node is a forget node, until we get an empty bag, which becomes the new root. Note that at most

k + 1 nodes are appended to the path, as |Bi| ≤ k + 1. We call this nice tree decomposition T ′. We claim

that T ′ is a nice tree decomposition of G with the same width as T . It is easy to see that properties (1)

and (3) in the definition of tree decomposition are not violated after each traversal, and that all nodes in

T have one of the types in the definition of nice tree decomposition. Moreover, bag sizes have only been

increased in the second traversal, but the size of a new bag was always bounded by the size of a bag already

in the tree. Finally, we see that T ′ is a decomposition of G, in the sense that property (2) in the definition

of tree decomposition is satisfied. To this end, if two vertices u, v ∈ V (G) lie a bag of T , note that one of
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the bags of the new tree must contain the largest bag originally containing u and v, and therefore it is a tree

decomposition of G.

Next, we count the number m′ of nodes of T ′. The Leaf nodes have degree 1, the Join nodes have degree

3 (unless one of the Join nodes is the root and has degree 2) and Forget and Introduce nodes have degree 2

(unless one of the Forget nodes is the root and has degree 1). Let m′F , m′I , m
′
J and m′L denote the number

of Forget, Introduce, Join and Leaf nodes in T ′, respectively. Since the sum of degrees is 2m′ − 2, we have

2(m′F +m′I +m′J +m′L)− 2 = 3m′J + 2(m′I +m′F ) +m′L − 1,

which leads to m′J = m′L − 1. Recall that every vertex is forgotten exactly once, so m′F = n. To see that

m′L ≤ n, first note that m′L = 1 if there are no join nodes. Otherwise, the first and the fourth traversals

ensure that there is at least one Forget node on the path between each Leaf node and the first Join node on

its path to the root, so that m′L ≤ m′F ≤ n. It follows that m′J ≤ n − 1. The fourth traversal ensures that

the single child of every Introduce node is a Forget node, so that we also have m′I ≤ m′F ≤ n. Therefore T ′
has at most 4n− 1 nodes.

We omit the part of the proof that deals with the number of operations required for this transformation.

It may be found in [30, Lemma 1].

3.2. The algorithm. We now describe the algorithm based on a tree decomposition of the input graph.

Let A be a symmetric matrix of order n and let G = (V,E) be the underlying graph with vertex set V = [n]

associated with it. Let T be a nice tree decomposition of G with node set [m] and width k. As was the

case for trees, the algorithm works bottom-up in the rooted tree T , performing congruence operations at

each of them. The result at each node i other than the root is a data structure known as a box, which is

transmitted to the node’s parent. A box is a symmetric matrix Ni of order at most 2(k+ 1) that consists of

a pair of matrices (N
(1)
i , N

(2)
i ) whose rows and columns are labeled by elements of [n]. These labels make

the connection between the rows and columns of the boxes with rows and columns of the original matrix.

We may think of the box as a small part of the matrix where the algorithm is operating§. While producing

the box, the algorithm may also produce diagonal elements of a matrix congruent to A. These diagonal

elements are not part of the box transmitted to the node’s parent, but are appended to a global array. At

the end of the algorithm, this global array consists of the n diagonal elements of a diagonal matrix D that

is congruent to A. Figure 9 shows a high-level description of the algorithm, emphasizing that it proceeds

in steps marked by the nodes of the tree decomposition, and that the operations performed at each node

depend on its type.

As was the case for trees, the algorithm performs row and column operations according to a pivoting

scheme. Here, the pivoting scheme is based on the bottom-up ordering of the tree decomposition T as

follows. The first row in the pivoting scheme is the row associated with the vertex forgotten in the first

Forget node in this ordering, the second row is the one associated with the vertex forgotten in the second

Forget node, and so on. The intuition is that the algorithm attempts to diagonalize row v at the node where

v is forgotten. Consider, for instance, the first Forget node i and let v be the vertex of G that is forgotten at

i. Let j be the child of i in the tree. By the structure of a nice tree decomposition, we know that Bi ⊂ Bj
and that {v} = Bj \Bi. Also, our assumption that no vertices have been forgotten up to this point ensures

that any neighbor u of v in G must be an element of Bj , as u and v must both lie in a common bag, and v

§However, as we shall see, the entries of the box are not necessarily a submatrix of the matrix that would be obtained if

the same row and column operations were to be performed in the entire matrix.
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is forgotten before u. In the algorithm, node i receives information about the entries in the neighborhood of

v through the box that was transmitted from j to its parent i¶. The box is then updated with information

about v. If the diagonal entry dv corresponding to v is nonzero, the algorithm uses it to annihilate nonzero

elements in this row/column, and the diagonal element dv is appended to the global array mentioned above‖.

The reason why the algorithm works in this case is that if the same row and column operations had been

performed in the entire matrix, then the row and column associated with v in the resulting matrix would be

diagonalized with diagonal entry dv. On the other hand, if dv = 0, instead of dealing with it immediately,

the row and column associated with v is added to a “temporary buffer,” and information about it remains

in the box transmitted to i’s parent. It will be diagonalized later in the process of producing new boxes.

Input: a nice tree decomposition T of width k

of the underlying graph G associated with A and the nonzero entries of A

Output: diagonal entries in D ∼= A

Diagonalize Treewidth(A)

Order the nodes of T as 1, 2, . . . ,m in post order

for i from 1 to m do

if is-Leaf(i) then (N
(1)
i , N

(2)
i )=LeafBox(Bi)

if is-Introduce(i) then (N
(1)
i , N

(2)
i )=IntroBox(Nj)

if is-Join(Bi) then (N
(1)
i , N

(2)
i )=JoinBox(Bi)

if is-Forget(Bi) then (N
(1)
i , N

(2)
i )=ForgetBox(Bi)

Figure 9. High level description of the algorithm Diagonalize Treewidth.

Our objective is to describe each operation in detail. This requires us to give a more detailed description

of the boxes produced at each node of the tree. An important ingredient to limit fill-in for vertices that have

been added to the temporary buffer because of accidental cancelations is to keep matrices in row echelon

form. A (not necessarily square) matrix A = (aij) is in row echelon form if

(i) All rows having only zero entries are at the bottom;

(ii) The pivot of row i is the element aij 6= 0 with least j, if it exists. If rows i1 < i2 have pivots in

columns j1 and j2, respectively, then j1 < j2.

The following are two examples of matrices in row echelon form:

A =

1 6 2 −3

0 0 2 4

0 0 0 −1

 , B =

3 1

0 4

0 0

 .

Matrix A has pivots 1, 2, and -1 in the first, second, and third rows, respectively. Matrix B has pivots 3

and 4 in the first and second rows, but there is no pivot in the third row.

¶In fact, before the first row is diagonalized, the box contains no actual information about previous operations, but this

recorded information will be crucial in later steps.
‖If we are interested in the diagonal matrix rather than simply on the diagonal elements, we keep track of the pair (v, dv).
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Each box Ni = (N
(1)
i , N

(2)
i ) produced by a node i represents a single matrix as follows:

(3.8) Ni =

N
(0)
i N

(1)
i

N
(1)T
i N

(2)
i

,

where N
(0)
i is a zero matrix of dimension k′i×k′i, N

(2)
i is a symmetric matrix of dimension k′′i ×k′′i and N

(1)
i is

a k′i×k′′i matrix in row echelon form such that every row has a pivot. Moreover, 0 ≤ k′i ≤ k′′i = |Bi| ≤ k+ 1.

We allow k′i or k′′i to be zero, in which case the corresponding matrices N
(0)
i , N

(1)
i or N

(2)
i are empty. Recall

that the rows of Ni (and therefore the columns) are labeled by vertices of G. Let V (Ni) denote the set of

vertices of G associated with the rows of Ni. Using the terminology of the original papers, we say that the

k′i rows in N
(0)
i have type-i and the k′′i rows of N

(2)
i have type-ii. This means that the rows of N

(1)
i have

type-i and the columns of N
(1)
i have type-ii. This is denoted by the partition V (Ni) = V1(Ni) ∪ V2(Ni),

where V1(Ni) and V2(Ni) are the vertices of type-i and type-ii, respectively. It is helpful to be aware that the

vertices of type-ii are precisely the vertices in Bi and that the vertices in V1(Ni) correspond to the rows that

have been added to the “temporary buffer” at Forget nodes in the branch of the tree decomposition rooted

at i and have yet to be fully diagonalized. We also observe that the rows of type-ii are sorted according to

a pre-defined order so that they can be merged quickly.

To conclude this section, we describe each step of the algorithm in detail.

Leaf box. When the node is a leaf corresponding to a bag Bi of size bi, then we apply procedure Leaf

Box of Fig. 10. This procedure simply initializes a box Ni where k′ = 0 and k′′ = bi, where N
(2)
i is the zero

matrix of dimension k′′ × k′′ whose rows and columns are labeled by the elements of Bi.

Input: leaf node i with bag Bi of size bi

Output: a matrix Ni = (N
(1)
i , N

(2)
i )

Leaf Box(i)

Set N
(1)
i = ∅

N
(2)
i is a zero matrix of dimension bi × bi with rows and columns

labeled by the elements of Bi in increasing order.

Figure 10. Procedure Leaf Box.

We remark that it is tempting to immediately put the entry auv at position u, v of N
(2)
i . However, it is

better to incorporate information about auv in the step associated with forgetting u or v to keep the Join

operation simple.

Introduce box. Assume that node i introduces vertex v and let j be its child, so that we have Bi = Bj∪{v}
(v /∈ Bj). The input of Introduce Box is the vertex v that has been introduced and the box Nj transmitted
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by its child. At step i, the box Ni is produced simply by the addition of a new type-ii row/column labeled

by v whose elements are all zero, taking care to insert it in the correct order (in term of the pre-defined

order for type-ii vertices). This is described in Fig. 11.

Input: bag Bi, vertex v and bag Nj = (N
(1)
j , N

(2)
j ) produced by its child

Output: a matrix Ni = (N
(1)
i , N

(2)
i )

Introduce Box(Bi, v,Nj)

N
(1)
i = N

(1)
j , N

(2)
i = N

(2)
j

add zero row and zero column associated with v to N
(2)
i

making sure that type-ii rows remain in increasing order

if N
(1)
i is nonempty, then add zero column to N

(1)
i

preserving the column order of N
(2)
i

Figure 11. Procedure Introduce Box.

Join box. Let i be a node of type join and let Nj and N` be the boxes induced by the pairs transmitted

by its children, where j < ` < i. By the definition of the join operation, we have V2(Nj) = V2(N`) = Bi.

Moreover, a step for proving the correctness of the algorithm is to show that V1(Nj)∩V1(N`) = ∅. The Join

Box operation first creates a matrix N∗i whose rows and columns are labeled by V1(Nj) ∪ V1(N`) ∪ V2(Nj)

with the structure below. Assume that |V1(Nj)| = r, |V1(N`)| = s and |Bi| = t, and define

(3.9) N∗i =

0r×r 0r×s N
(1)
j

0s×r 0s×s N
(1)
`

N
(1)T
j N

(1)T
` N

∗(2)
i

,

where N
∗(2)
i = N

(2)
j + N

(2)
` . The matrices N

(1)
j and N

(1)
` simply appear on top of each other because we

made sure that its columns have the same labeling, which is why we require the labels of type-ii rows to be

in a pre-defined order. Let N
∗(0)
i denote the zero matrix of dimension (r+ s)× (r+ s) on the top left corner.

Note that the matrix

N
∗(1)
i =

N
(1)
j

N
(1)
`

is an (r + s)× t matrix consisting of two matrices in row echelon form on top of each other.

To obtain Ni from N∗i , we perform row operations on N
∗(1)
i . To preserve congruence, each row operation

must be followed by the corresponding column operation in N
∗(1)T
i , but of course we need not actually

perform the operation. The goal is to merge the rows labeled by V1(N`) (the right rows) into the matrix

N
(1)
j labeled by the left rows to produce a single matrix in row echelon form. We do this as follows. While

there is a pivot αc of a right row w that lies in the same column c as the pivot βc of v, where v is a left row

or a different right row, we use v to eliminate the pivot of w by performing the operation

(3.10) Rw ← Rw −
αc
βc
Rv.

After this loop has ended, the matrix N
(1)
i is obtained from N

(1)
j by simply inserting any right rows that

still have a pivot in the correct position, in the sense that the final matrix N
(1)
i is in row echelon form. Each
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row and column keeps its label throughout. If Zi denotes the set of labels of the right rows that became

zero vectors while performing the above calculations, the algorithm appends diagonal elements (0, v) for all

v ∈ Zi to the global array and does not add their rows to N
(1)
i . This produces the box

(3.11) Ni =
0k′×k′ N

(1)
i

N
(1)T
i N

(2)
i

,

where k′ = r+s−|Zi|, k′′ = t and N
(1)
i is a matrix of dimension k′×k′′ in row echelon form and N

(2)
i = N

∗(2)
i .

Since every row of N
(1)
i has a pivot, we have k′ ≤ k′′. This procedure is described in Fig. 12.

Input: bag Bi and boxes Nj , N` produced by the two children of i

Output: a matrix Ni = (N
(1)
i , N

(2)
i ) and a set of diagonal elements

Join Box(Bi, Nj , N`)

define N∗i as in (3.9)

do row operations on N
∗(1)
i as in (3.10) to achieve row echelon form

for each zero row of N
∗(1)
i (labeled by a vertex u), output (0, u)

N
(1)
i is obtained from N

∗(1)
i by removing zero rows and exchanging rows as (3.11)

Figure 12. Procedure JoinBox.

Forget box. The pseudocode for this procedure is depicted in Fig. 13, after we explain how it works.

Assume that node i forgets vertex v and let j be its child, so that Bi = Bj \ {v}. This procedure starts with

Nj and produces a new matrix Ni where the row associated with v becomes of type-i or is diagonalized.

Initially, the matrix is updated to include the entries of the original matrix that involve v and the other

vertices in Bj . This is done by defining a new matrix N∗i from the box Nj , where, for all u ∈ Bj (including

u = v), the entries uv and vu are replaced by N
(2)
j [u, v] + auv, while the other entries remain unchanged.

We observe that the row corresponding to v is type-ii in the box Nj . Thus, after introducing the entries

of M , v is implicitly associated with a row in N
∗(2)
i . For convenience, we exchange rows and columns to look

at N∗i in the following way∗∗:

(3.12) N∗i =

dv xv yv

xTv 0k′×k′ N
∗(1)
i

yTv N
∗(1)T
i N

∗(2)
i

.

Here, the first row and column represent the row and column in N∗i associated with v, while N
∗(1)
i and

N
∗(2)
i determine the entries uw such that u has type-i and w ∈ Bi, and such that u,w ∈ Bi, respectively. In

particular xv and yv are row vectors of size k′j and k′′j − 1, respectively.

Depending on dv and on the vectors xv and yv, we proceed in different ways.

Case 1: xv is empty or xv = [0 · · · 0].

∗∗This is helpful for visualizing the operations, but this step is not crucial in an implementation of this procedure.
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If yv = [0 · · · 0] (or yv is empty), the row of v is already diagonalized, we simply add (v, dv) to Di and

remove the row and column associated with v from N∗i to produce Ni. We refer to this as Subcase 1(a).

If yv 6= [0 · · · 0], there are again two options. In Subcase 1(b), we assume that dv 6= 0 and we use dv to

eliminate the nonzero entries in yv and diagonalize the row corresponding to v. For each element u ∈ Bi
such that the entry αv of yv associated with u is nonzero, we perform

(3.13) Ru ← Ru −
αv
dv
Rv, Cu ← Cu −

αv
dv
Cv.

When all such entries have been eliminated, we append (v, dv) to the global array and we let Ni be the

remaining matrix. Observe that, in this case, N
(1)
i = N

∗(1)
i , only the elements of N

∗(2)
i may be modified to

generate N
(2)
i .

If yv 6= [0 · · · 0] and dv = 0, we are in Subcase 1(c). The aim is to turn v into a row of type-i. To do

this, we need to insert yv into the matrix N
∗(1)
i in a way that the resulting matrix is in row echelon form.

Note that this may be done by only adding multiples of rows of V (N
∗(1)
i ) to the row associated with v. At

each step, if the pivot αj of the (current) row associated with v is in the same position as the pivot βj of

Ru, the row associated with a vertex u already in N
∗(1)
i , we use Ru to eliminate the pivot of Rv:

(3.14) Rv ← Rv −
αj
βj
Ru, Cv ← Cv −

αj
βj
Cu.

This is done until the pivot of the row associated with v may not be canceled by pivots of other rows, in

which case the row associated with v may be inserted in the matrix (to produce the matrix N
(1)
i ), or until

the row associated with v becomes a zero row, in which case (v, 0) is added to Di and the row and column

associated with v are removed from N∗i to produce Ni.

Case 2: xv is nonempty and xv 6= [0 · · · 0].

Let u be the vertex associated with the rightmost nonzero entry of xv. Let αu be this entry. We use this

element to eliminate all the other nonzero entries in xv, from right to left. Let w be the vertex associated

with an entry αw 6= 0. We perform

(3.15) Rw ← Rw −
αw
αu

Ru, Cw ← Cw −
αw
αu

Cu.

A crucial fact is that the choice of u ensures that, even though these operations modify N
∗(1)
i , the new

matrix is still in row echelon form and has the same pivots as N
∗(1)
i . If dv 6= 0, we still use Ru to eliminate

this element:

(3.16) Rv ← Rv −
dv

2αu
Ru, Cv ← Cv −

dv
2αu

Cu.

At this point, the only nonzero entries in the (k′+1)× (k′+1) left upper corner of the matrix obtained after

performing these operations are in positions uv and vu (and are equal to αj). We perform the operations

Ru ← Ru +
1

2
Rv, Cu ← Cu +

1

2
Cv, Rv ← Rv −Ru, Cv ← Cv − Cu.(3.17)

The relevant entries of the matrix are modified as follows:

(3.18)

(
0 αu
αu 0

)
→
(

0 αu
αu αu

)
→
(
−αu 0

0 αu

)
.
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We are now in the position to use the diagonal elements to diagonalize the rows associated with v and u, as

was done in Case 1, when xv = [0, . . . , 0] and dv 6= 0. At the end of the step, we add (v,−αu) and (u, αu) to

Di. No pivots in N
∗(1)
i are modified, except for the pivot of the row associated with u, which is diagonalized

during the step.

Input: bag Bi, a vertex v and matrix Nj transmitted by the child of i

Output: a box Ni = (N
(1)
i , N

(2)
i ) and a set of diagonal elements

Forget Box(Bi, v,Nj)

N
∗(1)
i = N

(1)
j , N

∗(2)
i [u,w] = N

(2)
j [u,w], for all u,w ∈ Bj with v /∈ {u,w}

N
∗(2)
i [u, v] = N

∗(2)
i [v, u] = N

(2)
j [u, v] +muv, for all u ∈ Bj

Perform row/column exchange so that Ni has the form of (3.12)

if xv is empty or 0

then if yv is empty or 0 // Subcase 1(a)

then append (v, dv) to the global array and remove row v from Ni
else if dv 6= 0// Subcase 1(b)

then use dv to diagonalize row/column v as in (3.13)

append (v, dv) to the global array and remove row v from Ni
else // Here dv = 0 // Subcase 1(c)

do congruence operations as in (3.14)

if a zero row is obtained

then append (v, 0) to the global array and remove row v from Ni

else insert row v into N
(1)
i

else // Here xv 6= 0 // Case 2

use congruence operations as in (3.15)-(3.17) to diagonalize rows/columns

u and v append (v, dv), (u, du) to the global array and remove rows v, u from Ni.

Figure 13. Procedure Forget Box.

Figure 13 summarizes the procedure. This concludes the description of the algorithm. In the next

subsection, we illustrate its performance with an example. Before this, we observe that, as was the case for

the algorithm for trees (see Remark 2.2), the algorithm of Fig. 9 may be modified to produce a diagonal

matrix that is ∗-congruent to a Hermitian matrix whose underlying graph has a nice tree decomposition T
of width k. This may be done by keeping all the row operations Ri ← Ri − αRj as they currently are, but

replacing the corresponding column operation by Ci ← Ci − αCj . We omit the details.

To conclude this section, we state a result proved in [30], which establishes the correctness and the

complexity of algorithm Diagonalize Treewidth.

Theorem 3.2. Given a symmetric matrix M of order n and a tree decomposition T of width k for the

underlying graph of M , algorithm Diagonalize Treewidth produces a diagonal matrix D congruent to M

in time O(k|T |+ k2n).
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3.3. Example. We finish this section with an example that illustrates how the algorithm Diagonalize

Treewidth is applied. Consider the matrix

(3.19) M =



1 1 1 0 0 0 0

1 −1 1 0 0 0 0

1 1 1 6 0 −2 0

0 0 6 −5 −3 2 0

0 0 0 −3 −4 −1 2

0 0 −2 2 −1 1 1

0 0 0 0 2 1 −1


.

The underlying graph of M is the graph G of Fig. 7. We wish to apply the algorithm of Fig. 9 to find a

diagonal matrix D that is congruent to M . The nice tree decomposition T of G given in Fig. 8 is part of the

input. For the reader’s convenience, T is depicted in Fig. 14. Its caption explains a way in which the nodes

may ordered to comply with the first step of the algorithm. Node i = 1 is a leaf with bag B1 = {1, 2, 3}.

L

L

Figure 14. A nice tree decomposition of the graph G of Fig. 7. The root is on the right, and each node is labeled according

to its type. The nodes are ordered in post order as follows: nodes 1 to 6 are on the top branch, from left to right. Nodes 7 to

10 are at the bottom branch, also from left to right. Nodes 11 to 13 go from the join node to the root.

It simply produces a zero matrix 03×3 whose rows are labeled by the vertices in B1. Node i = 2 forgets

vertex v = 2. To apply ForgetBox, the first step is to update the entries of the box transmitted by node 1

to produce

N∗2 =

2

1

3


2

−1

1

1

3

1
1 0 0

1 0 0

 L

Note that the vertices corresponding to each row and column are indicated as labels. Moreover, rows

and columns have been reordered so that the row corresponding to the vertex being forgotten at this step

appears first for better visualization. We are in the case where xv is empty and yv = (1, 1) is nonempty.

Since dv = −1 6= 0, we are in Subcase 1(b), and the algorithm performs the operations R1 ←− R1 + R2
∗,

C1 ←− C1 +C2, R3 ←− R3 +R2, C3 ←− C3 +C2 to diagonalize the row and column associated with v = 2.

After these operations, the matrix N∗2 becomes

N∗2 =

2

1

3


2

−1

1

0

3

0
0 1 1

0 1 1

 .
∗As before, we use the notation Rv and Cv to refer to the row and column labeled by vertex v, respectively.
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This step ends with the pair (v, dv) = (2,−1) appended to the global array and a box N2 such that N
(1)
2 is

empty and N
(2)
2 = N2:

N2 =
1

3

[1

1

3

1
1 1

]
.

Node i = 3 introduces vertex v = 4 and produces the following box:

N3 =

1

3

4


1

1

3

1

4

0
1 1 0

0 0 0

 .
Node i = 4 forgets vertex v = 1, and starts with N∗4 given by

N∗4 =

1

3

4


1

2

3

2

4

0
2 1 0

0 0 0


Since xv is empty, yv = (2, 0) and dv = 2 6= 0, the algorithm performs the operations R3 ←− R3 − R1,

C3 ←− C3 − C1 to diagonalize the row and column associated with v = 1. The pair (1, 2) is appended to

the global array, and the following matrix N4 is transmitted to its parent:

N4 =
3

4

[ 3

−1

4

0
0 0

]
.

As before, all rows have type-ii. Node 5 introduces vertex v = 6, producing the box

N5 =

3

4

6


3

−1

4

0

6

0
0 0 0

0 0 0

 .
Node i = 6 forgets vertex v = 3, and starts with the box

N∗6 =

3

4

6


3

0

4

6

6

−2

6 0 0

−2 0 0

 .
Here dv = 0, xv is empty and yv = (6,−2). The algorithm is in Subcase 1(c), and the row corresponding to

v = 3 becomes a type-i row. Since there are no other type-i rows that could require row/column operations

to maintain N
(1)
6 in row echelon form, the box transmitted by node i = 6 is N6 = N∗6 , where v = 3 has

type-i, the other rows have type-ii, N
(1)
6 = [6 − 2] and N

(2)
6 = 02×2.

Node i = 7 is a leaf node starting a new branch of the tree, and node i = 8 forgets vertex v = 7. After

updating the matrix at the beginning of the step, we get

N∗8 =

7

5

6


7

−1

5

2

6

1
2 0 0

1 0 0

 .
L
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Since dv = −1 6= 0 and xv is empty, the algorithm diagonalizes the row and column associated with vertex

v = 7. The operations R5 ←− R5 + 2R7, C5 ←− C5 + 2C7, R6 ←− R6 + R7, and C6 ←− C6 + C7 produce

the pair (7,−1), which is appended to the global array, and the following box:

N8 =
5

6

[5

4

6

1
1 2

]
.

Node i = 9 introduces vertex v = 4 to produce the box

N9 =

4

5

6


4

0

5

0

6

0
0 4 2

0 2 1

 .
F F

Node i = 10 forgets vertex v = 5. The step starts with

N∗10 =

5

4

6


5

0

4

−3

6

1
−3 0 0

1 0 1

 .
F

We have dv = 0, xv empty and yv = (−3, 1). The algorithm is in Subcase 1(c), and the row corresponding to

v = 5 becomes a type-i row. Since there are no other type-i rows that could require row/column operations

to maintain N
(1)
10 in row echelon form, the box transmitted by node i = 10 is N10 = N∗10, where v = 5 has

type-i, the other rows have type-ii, N
(1)
10 = [−3 1] and N

(2)
10 = 02×2.

Node i = 11 is a join node. We start with a matrix N∗11 that merges the two boxes transmitted by its

children, namely with

N∗11 =

3

5

4

6


3

0

5

0

4

6

6

−2

0 0 −3 1

6 −3 0 0

−2 1 0 1

 .

F

F

F

Note that vertices 3 and 5 are type-i vertices coming from the two boxes. To produce a matrix N
(1)
11 in row

echelon form, we perform the congruence operations R5 ←− R5 + 1/2 R3 and C5 ←− C5 + 1/2 C3, so that

N∗11 becomes

3

5

4

6


3

0

5

0

4

6

6

−2

0 0 0 0

6 0 0 0

−2 0 0 1

, so that (5, 0) is appended to the global array and N11 =

3

4

6


3

0

4

6

6

−2

6 0 0

−2 0 1

 .
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Next the algorithm processes node i = 12, which forgets vertex v = 6. It first updates the matrix transmitted

by its child to

N∗12 =

6

3

4


6

2

3

−2

4

2
−2 0 6

2 6 0

 .
F F

Now we have dv = 2 6= 0, xv = [−2] and yv = [2]. ForgetBox is in Case 2. Since xv has a single element, we

use it to eliminate dv by performing R6 ←− R6 + 1/2 R3 and C6 ←− C6 + 1/2 C3, leading to

6

3

4


6

0

3

−2

4

5
−2 0 6

5 6 0

 .
Next the algorithm performs operations to replace the nonzero entries in positions (6, 3) and (3, 6) by nonzero

elements in the diagonal by performing R3 ←− R3+1/2 R6 and C3 ←− C3+1/2 C6, followed by R6 ←− R6−R3

and C6 ←− C6 − C3. This first produces

6

3

4


6

0

3

−2

4

5
−2 −2 17/2

5 17/2 0

, followed by

6

3

4


6

2

3

0

4

−7/2

0 −2 17/2

−7/2 17/2 0

 .
Finally, the algorithm uses the new pivots to diagonalize the rows and columns associated with vertices 3

and 6 by performing R4 ←− R4 + 7/4 R6 and C4 ←− C4 + 7/4 C6, followed by R4 ←− R4 + 17/4 R3 and

C4 ←− C4 + 17/4 C3. We get

6

3

4


6

2

3

0

4

0
0 −2 0

0 0 30

, so that (6, 2) and (3,−2) are appended to the global array and N12 = 4
[ 4

30
]
.

The final node is i = 13, which forgets vertex v = 4. Processing it starts with

N∗13 = 4
[ 4

25
] F F

The algorithm appends (4, 25) to the global array and terminates. It has produced a diagonal matrix with

diagonal entries (2,−1,−2, 25, 0, 2,−1). In particular, the input matrix M has three positive eigenvalues,

three negative eigenvalues, and one eigenvalue equal to 0.

Part II - Dense graphs
In the second part of our survey, we present algorithms that take advantage of a second structural property

that may be exploited to compute a diagonal matrix D that is congruent to an input matrix A in linear

time. The approach here applies to matrices such that the underlying graph of the input matrix is not

necessarily sparse. In particular, the underlying graph could even be the complete graph. The trick is to

find pairs of rows (Ri, Rj) that are very similar, in the sense that the vector Ri − Rj has a very small
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number of nonzero components, so that a single row/column operation eliminates a large number of nonzero

off-diagonal elements. In fact, the algorithms will exploit the fact that we know how to choose rows with

this property in a way that there is no need to actually operate on most of the components of Ri − Rj , it

suffices to replace them by 0.

As was the case in the Part I, we shall consider matrices whose underlying graph belongs to a graph class.

However, differently from sparse graphs, the strategy presented here cannot be extended to arbitrary sym-

metric matrices with such an underlying graph. It applies to matrices such that any off-diagonal component

lie in {0, z} for some real number z. This also means that this approach does not apply to general Hermitian

matrices. It is worth noticing that this class of matrices include most matrices dealt in the spectral graph

theory (such as the adjacency, the Laplacian, etc).

This part consists of two sections. Section 4 considers matrices whose underlying graphs are cographs,

which are graphs with the property that we may always find rows Ri and Rj that are siblings, in the sense

that they are identical except for the entries corresponding to the elements i and j. This makes them

particularly suitable for the approach described in the first paragraph. Section 5 generalizes the algorithm

of Section 4 using a hierarchical decomposition closely related to the clique decomposition of Courcelle and

Olariu [24]. As was the case for the tree decompositions of Part I, this decomposition has a width associated

with it. To get an intuition, we may think that if there is a decomposition of width k, we are always able

to find rows Ri and Rj that are identical except for at most k + 1 entries. This allows us to extend the

approach used for cographs to a situation where computations happen on small boxes.

4. Locating eigenvalues in cographs. We describe here an algorithm that locates eigenvalues of

symmetric matrices whose underlying graph is a cograph, and whose nonzero off-diagonal entries are all

equal to some real value z 6= 0. The original paper, due to Jacobs, Tura and Trevisan [41], is concerned with

the adjacency matrix of a cograph.

4.1. Cographs and cotrees. The class of complement reducible graphs, known as cographs, is the

hereditary class Forb(P4) of all P4-free graphs, that is, the class of graphs that do not contain P4 as an induced

subgraph. Cographs have appeared in various contexts and have been redefined in many different ways. A

more detailed account may be found in Corneil, Lerchs, and Burlingham [22]. One of the many equivalent

definitions is constructive and uses two graph operations: disjoint union and join. The disjoint union of two

graphs G = (V,E) and H = (W,F ), where V ∩W = ∅, is the graph G ∪H with vertex set V ∪W an edge

set E ∪F . The join G⊕H is the graph with vertex set V ∪W and edge set E ∪F ∪{{v, w} : v ∈ V,w ∈W}.

Consider the following graph class C:

(i) K1 ∈ C.
(ii) If G1 and G2 are vertex-disjoint graphs in C, then G1 ∪G2 ∈ C.
(iii) If G1 and G2 lie in C, then G1 ⊕G2 ∈ C.

It is well known that Forb(P4) = C.

Using the recursive construction that produces graphs in C, we may represent every n-vertex cograph

with vertex set V as a rooted tree, known as cotree, whose nodes consist of n leaves corresponding to the

elements of V and of internal nodes that carry either the label “∪” for union or “⊕” for join. Given such

a tree T , we can easily construct the corresponding cograph GT . The construction can be made unique as
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1
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⊕

∪ ∪
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∪ ∪
1 2 3

4 5 6

7 8 9 10

Figure 15. A cograph with 10 vertices and its minimal cotree.

follows. We say that a cotree is in normalized form† if every internal node has at least two children and has

a label that differs from the label of its parent. In other words, the children of nodes labeled ∪ are leaves or

nodes labeled ⊕, while the children of nodes labeled ⊕ are leaves or nodes labeled ∪. As an example, the

cograph on the left of Fig. 15 is represented by the minimal cotree on the right. In this note, we assume

that the cotree representation of a cograph is always in normalized form. We refer to [34, Theorem 4.3] for a

proof that every cograph has a unique minimal cotree. Unlike the tree decomposition of Section 3, a cotree

(and, particularly, the minimal cotree) of a cograph may be computed efficiently, we refer to Corneil, Perl

and Stewart [23] for a linear-time algorithm with this purpose.

Two vertices u and v in a graph G are called siblings if they are either duplicates or coduplicates, that

is if they share the same (open) neighborhood N(u) = N(v) or if they share the same closed neighborhood

N [u] = N [v], respectively. The following is well known, a proof may be found in [34, Lemma 4.2].

Lemma 4.1. Two vertices v and u in a cograph are siblings if and only if they share the same parent

node x in the normalized cotree. Moreover, if x = ∪, they are duplicates. If x = ⊕, they are coduplicates.

One of the consequences of this lemma is that any cograph on n ≥ 2 vertices contains siblings.

Since the class of cographs is hereditary, if G = (V,E) is a cograph and v ∈ V , then G − v is also

a cograph. Depending on the way v is chosen, the normalized cotree associated with G − v can be easily

derived from TG.

Lemma 4.2. Let TG be the normalized cotree of a cograph G = (V,E) with |V | ≥ 2, and let v, u ∈ V be

siblings of greatest depth in TG and let w be their parent. Assume that w has k ≥ 2 children. The following

hold for the normalized cotree TG−v of G− v:

(a) If k > 2, TG−v is obtained by deleting the leaf node corresponding to v from TG.

(b) If k = 2 and w is not the root of TG, TG−v is obtained by deleting the leaf nodes corresponding to v

and w from TG and by adding an edge between the node corresponding to u and the parent of w in

TG.

(c) If k = 2 and w is the root, TG−v whose root is the node corresponding to u.

†A cotree that is in normalized form is often known as a minimal cotree.
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4.2. The algorithm. We assume that a real symmetric matrix A = [aij ] of order n is given and that

its underlying graph is a cograph G. The nonzero off-diagonal elements, which may be viewed as edge

weights, are all equal to some real value z > 0, but the diagonal elements, which may be viewed as vertex

weights, are arbitrary. Further assume that the algorithm is given the normalized cotree representation TG
of G. As was the case for the algorithms of the previous sections, the algorithm runs in linear time and is

based on congruence operations, namely elementary row operations, followed by the same elementary column

operation. It works bottom-up on TG, and at each step it identifies a pair of siblings and diagonalizes the

rows and columns of at least one of them. To conclude the step, it updates the cotree for it to generate the

subgraph obtained by deleting the diagonalized vertex (or vertices).

We start our description by a sample step of the algorithm. Let {vk, v`} be a pair of siblings in G.

Lemma 4.1 tells us they have the same parent w. We assume the diagonal values dk and d` of rows Rk and

R`, respectively, may have been modified in the previous computations, but that all off-diagonal entries in

these rows and columns have the same value as in the input matrix. In particular, all off-diagonal entries are

either 0 or z. The goal is to annihilate off-diagonals in the row and column corresponding to vk, maintaining

congruence to A. Let w be the parent of the siblings in TG. There are two cases.

Case 1: w = ⊕. Since {vk, v`} are coduplicates, rows (columns) ` and k have the same entries, except

possibly in positions ` and k, where the diagonal elements dk, d` appear. Moreover, ak` = a`k = z. The

representation of the rows and columns in the matrix is given below:

a1 a1

...
...

ai ai
...

...

a1 . . . ai . . . d` z . . . an

a1 . . . ai . . . z dk . . . an
...

...

an an


.

Here, ai ∈ R. As the rows Rk and R` have many equal entries, we execute the following operations.

Rk ← Rk −R`, Ck ← Ck − C`.

The effect on rows k and ` is recorded below. Since the matrix is symmetric, there is no need to represent

the columns.

`

·
k

 a1 . . . ai . . . d` z − d` . . . an
· · · · ·
0 . . . 0 . . . z − d` dk + d` − 2z . . . 0

 ,

After this, most of the nonzero elements in row and column k have been removed. The next step is

to diagonalize row k, and to do this, we must eliminate the two entries z − d`. There are three subcases,

depending on whether d` = z and on whether dk + d` = 2z.
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subcase 1a: dk + d` 6= 2z. Then, we may perform the operations

R` ← R` −
z − d`

dk + d` − 2z
Rk, C` ← C` −

z − d`
dk + d` − 2z

Ck

obtaining:

`

·
k

 a1 . . . ai . . . γ . . . 0 . . . an
· · · · ·
0 . . . 0 . . . 0 . . . dk + d` − 2z . . . 0

 ,

where

γ = d` −
(z − d`)2

dk + d` − 2z
=

dkd` − z2

dk + d` − 2z
.

The following assignments are made by the algorithm, reflecting the net result of these operations.

(4.20) dk ← dk + d` − 2z, d` ←
dkd` − z2

dk + d` − 2z
.

As row k has been diagonalized, the value dk becomes permanent and we may remove vk from the

cograph, and hence of the cotree (see Lemma 4.2):

(4.21) TG ← TG − vk.

subcase 1b: dk + d` = 2z and d` = z. In this case, rows k and ` of the matrix look like

`

·
k

 a1 . . . ai . . . z . . . 0 . . . an
· · · · ·
0 . . . 0 . . . 0 . . . 0 . . . 0

 ,

and we are done. We make the assignments

dk ← 0, d` ← z, TG ← TG − vk,

as dk becomes permanent, and vk is removed.

subcase 1c: dk + dj = 2z and d` 6= z. Then, our matrix looks like

`

·
k

 a1 . . . ai . . . d` . . . z − d` . . . an
· · · · ·
0 . . . 0 . . . z − d` . . . 0 . . . 0

 .

Since z − d` 6= 0 is the only nonzero element on row Rk, we may use it to eliminate any element of the

form ai` for i /∈ {k, `} such that ai` 6= 0 (and hence ai` = z) by performing

(4.22) Ri ← Ri − z
z−d`Rk, Ci ← Ci − z

z−d`Ck .

This annihilates most entries in row (and column) `, without changing any other values, yielding

`

·
k

 0 . . . 0 . . . d` . . . z − d` . . . 0

· · · · ·
0 . . . 0 . . . z − d` . . . 0 . . . 0

 .
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The operations

R` ← R` + 1
2Rk, C` ← C` + 1

2Ck,

replace the diagonal d` with the value z, while the operations

Rk ← Rk − (z−d`)
z R`; Ck ← Ck − (z−d`)

z C`,

eliminate the two off-diagonal elements, finally giving

`

·
k

 0 . . . 0 . . . z . . . 0 . . . 0

· · · · ·
0 . . . 0 . . . 0 . . . − (z−d`)2

z . . . 0

 .

What is different about this subcase is that both rows k and ` have been diagonalized. We make the

following assignments

dk ← −
(z − d`)2

z
, d` ← z, TG ← TG − vk, TG ← TG − v`,

removing both vertices from TG and making both variables permanent.

Case 2: w = ∪. As v` and vk are duplicates, by Lemma 4.1, rows Rk and R` of A have the same values

except possibly in positions ` and k, where the diagonal elements dk, d` appear. In this case, a`k = ak` = 0.

Similarly to Case 1, the row and column operations

Rk ← Rk −R`, Ck ← Ck − C`,

yield the following transformation:

`

·
k

 a1 . . . ai . . . d` 0 . . . an
· · · · ·
a1 . . . ai . . . 0 dk . . . an

 −→ `

·
k

 a1 . . . ai . . . d` −d` . . . an
· · · · ·
0 . . . 0 . . . −d` dk + d` . . . 0

 .

subcase 2a: dk + d` 6= 0. The algorithm performs the matrix operations

R` ← R` +
d`

dk + d`
Rk, C` ← C` +

d`
dk + d`

Ck,

to diagonalize row k. The net result of these operations is that the following assignments are made.

dk ← dk + d`, d` ← dkd`
dk+d`

, TG ← TG − vk.

subcase 2b: dk + d` = 0 and d` = 0. As in the case subcase 1b, the row and column k of the matrix

is in diagonal form and we assign

dk ← 0, d` ← 0, TG ← TG − vk.

subcase 2c: dk + d` = 0 and d` 6= 0. Since d` 6= 0, we use row and column operations similar to (4.22)

to annihilate most of entries in row ` and column `:
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`

·
k

 0 . . . 0 . . . d` . . . −d` . . . 0

· · · · ·
0 . . . 0 . . . −d` . . . 0 . . . 0

 .

The congruence operations

Rk ← Rk +R`, Ck ← Ck + C`,

complete the diagonalization of rows k and `. The following assignments are made.

dk ← −d`, d` ← d`, TG ← TG − vk, TG ← TG − v`.

Input: matrix A and minimal cotree TG associated with its underlying graph G

A may be given by its diagonal (d′1, d
′
2, . . . , d

′
n), and by its off-diagonal nonzero value z

Output: diagonal matrix D = diag(d1, d2, . . . , dn) congruent to A

Algorithm Diagonalize Cograph(TG, x)

initialize di := d′i, for 1 ≤ i ≤ n
while TG has ≥ 2 leaves

select siblings {vk, v`} of maximum depth with parent w

α← dk β ← d`
if w = ⊕

if α+ β 6= 2z //subcase 1a

dk ← α+ β − 2z, d` ← αβ−z2
α+β−2z, TG = TG − vk

else if β = z //subcase 1b

dk ← 0, d` ← z, TG = TG − vk
else //subcase 1c

dk ← − (z−β)2

z , d` ← z, TG = TG − vk, TG = TG − v`
else if w = ∪

if α+ β 6= 0 //subcase 2a

dk ← α+ β, d` ← αβ
α+β, TG = TG − vk

else if β = 0 //subcase 2b

dk ← 0, d` ← 0, TG = TG − vk
else //subcase 2c

dk ← −β, d` ← β, TG = TG − vk, TG = TG − v`
end loop

Figure 16. Diagonalizing A.

Based on the sample step described above, we provide an algorithm that constructs a diagonal matrix

D, congruent to a real symmetric matrix A such that all off-diagonal entries lie in a set {0, z} for some z ∈ R
and such that the underlying graph is a cograph G. It takes as input the minimal cotree TG, initializing all

entries of D with the respective diagonal element of A.

At the start of each iteration, we have the cotree of the subgraph H of G induced by the rows that have

not yet been diagonalized. A pair of siblings {vk, vj} of H with maximum depth is selected, and either one

or both of the corresponding rows are diagonalized. In the process of doing this, some of the other diagonal

values need to be updated. A crucial fact in establishing the correctness of the algorithm is that, after a row
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is diagonalized, its entries do not participate in later congruence operations, so that we can assume that the

corresponding vertex has been deleted from the graph.

Figure 16 is the pseudocode of the algorithm Diagonalize Cograph. Note that the cotree and the

matrix can be represented with a data structure of size O(n). Since the algorithm does not actually perform

the congruence operations described in this section, but rather only records changes on the diagonal values

di of A, only O(n) space is necessary. The algorithm terminates when all rows and columns have been

diagonalized. Each iteration of Diagonalize Cograph takes constant time, so its running time is O(n).

Example 4.3. We illustrate the application of the algorithm. For small cographs, the algorithm may

be performed by hand, using its cotree. In the remainder of this section, we apply Algorithm Diagonalize

Cograph to the adjacency matrix of the cograph in Fig. 15, so that the diagonal is zero and z = 1. In our

figures, diagonal values di appear under the vertex vi in the cotree. Initially, all di will be x = 0. Figure 17

(left) shows this initialization. At the end of the algorithm, the di values correspond to the diagonal values

of a matrix that is congruent to A(G). Sibling pairs that are being processed appear in red. Dashed edges

indicate vertices about to be removed from the cotree. In the first iteration of the algorithm, it chooses

siblings {vk, v`} of maximum depth, as shown in red in Fig. 17(center). Since dk = α = 0 and d` = β = 0,

subcase 2b occurs and the assignments

dk ← 0 d` ← 0

are made. Figure 17(right) depicts the cotree after vertex vk is removed and v` is relocated (in green)

according to the rules in Lemma 4.2. Additionally, we prepare for the next step, marking siblings to be

processed in red.

⊕

∪ ∪

⊕ ⊕

∪ ∪
0 0 0

0 0 0

0 0 0 0

⊕

∪ ∪

⊕ ⊕

∪ ∪
0 0 0

0 0 0

0 0 0 0

⊕

∪ ∪

⊕ ⊕

∪
0 0 0

0 0 0

0 0 0

0

Figure 17. Initialization (left), First iteration (center), Rearranging the cotree (right).

The two red siblings are processed exactly as the first iteration, so we arrive at the cotree of Fig. 18

(left). We note that after these two steps, two diagonal values equal zero have been found.

⊕

∪ ∪

⊕ ⊕
0 0 0

0 0 0

0

0

0

0

⊕

∪ ∪

⊕
0 0 0

-2 1/2 0

0

1/2

0

-2

⊕

∪ ∪

0 0 0

2/3

-3/2-2

0

1/2

0

-2

Figure 18. Processing siblings of depth 3.
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For the next steps, we can choose any of the two pairs of siblings of maximum depth (depth 3), which

are shown in red in Fig. 18. Both are of type ⊕, so that to process {vk, v`} with dk = α = 0 and d` = β = 0,

subcase 1a is executed and the following assignments are made:

dk ← −2 d` ←
1

2
.

After these two steps, we arrive at the cotree depicted in Fig. 18 (center), with the vertices vk removed and

one vertex v` relocated. We notice that one v` does not move according to the rules in Lemma 4.2. Next,

the only remaining sibling pair {vk, v`} of depth 3 is chosen, illustrated in red in Fig. 18 (center). Since

dk = α = 1
2 and d` = β = 0, subcase 1a is again executed and the assignments

dk ← −
3

2
d` ←

2

3
,

and the updated cotree is depicted in Fig. 18 (right). We now prepare for processing the next round of nodes

that are of depth 2.

⊕

∪

0 0

0

2/3

-3/2-2

0

1/2

0

-2

⊕

0 0

0

7/6

-3/2-2

0

2/7

0

-2

0 0

-12/7

7/6

-3/2-2

0

7/12

0

-2

Figure 19. Processing depth two and depth one vertices.

The leftmost vertices of depth two on the cotree depicted in Fig. 18 (right) have dk = α = 0 and

d` = β = 0, subcase 2b is executed and the assignments dk ← 0 d` ← 0 are made, leaving a permanent

value dk = 0. We apply again the same step with the same values, leaving a cotree in the shape of Fig. 19

(left). We are then ready to process the red sibling pair with dk = α = 2/3 and d` = β = 1/2. The assignments

dk ← 7/6 d` ← 2/7 are made, leaving a permanent value 7/6. The updated cotree after these operations is

in Fig. 19 (center). We finally process the two remaining vertices having dk = α = 0 and d` = β = 2/7, this

is subcase 1a, and the assignments dk ← −12/7 d` ← 7/12.

The diagonal values are represented in Fig. 19 (right). We note there are 4 negative values, 4 zero

values, and 2 positive values, meaning the cograph has 4 negative eigenvalues, 2 positive eigenvalues, and 0

is an eigenvalue of multiplicity 4. For comparison, the actual spectrum of the cograph is the multiset

{1−
√

22,−2,−12, 04, 2, 1 +
√

22}.

5. Locating eigenvalues using clique-width decomposition. In the previous Section 4, we pre-

sented a diagonalization algorithm for symmetric matrices whose underlying graph is a cograph G. Here,

we generalize this approach to arbitrary graphs, using a parse tree representation of G in terms of its slick

clique decomposition.

5.1. Slick clique-width decomposition. Motivated by the tree decompositions discussed in Sec-

tion 3, Courcelle and Olariu [24] aimed to define a hierarchical decomposition that would apply to wider



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 81-139, January 2024.

C. Hoppen, D. Jacobs, and V. Trevisan 114

classes of graphs, including dense graphs, while also being useful for the design of algorithms. This resulted

in a logic-algebraic description of graphs, called a clique decomposition, where each graph is described by an

algebraic expression that is allowed to use a set of basic labels [k] = {1, . . . , k}. The width of the decom-

position is given by the size k of the set of labels used in the decomposition. In this section, we consider

a variant of this decomposition, called a slick clique decomposition, which satisfies the additional property

that subexpressions of the original expression produce induced subgraphs of the original graph. We should

mention that a similar variant of the clique decomposition with this property is the NLC-width, introduced

by Wanke [59].

Let k be a positive integer. A slick expression is an expression formed from atoms i(v) and binary

operations ⊕S,L,R, where L : [k] → [k] and R : [k] → [k] are functions, and S is a binary relation on [k].

Expressions produce a graph according to the following rules:

(a) i(v) creates a vertex v with label i, where i ∈ [k]‡.

(b) Given two graphs G and H whose vertices have labels in [k], the labeled graph G ⊕S,L,R H is

obtained as follows. Starting with the disjoint union of G and H, add edges from every vertex

labeled i in G to every vertex labeled j in H for all (i, j) ∈ S. Afterwards, every label i of the left

component G is replaced by L(i), and every label j of the right component H is replaced by R(j).

The graph constructed by a slick expression is obtained by deleting the labels of the labeled graph produced

by it. The slick clique-width of a graph G, denoted scw(G), is the smallest k such that the graph can be

constructed by a slick expression. Clearly, scw(G) ≤ |V (G)|.

As an example, consider the graph G in Fig. 20 (left). It may be generated by the slick expression below,

which has slick clique-width 2. Here, id denotes the identity map in [2], f1 : 2 → 1 maps all elements to 1,

f2 : 1→ 2 maps all elements to 2, and S = {(1, 1), (1, 2), (2, 1)}.

(5.23)
((

1(a)⊕{(1,2)},id,id 2(b)
)
⊕S,f1,f2

(
1(d)⊕{(1,2)},id,id 2(c)

))
⊕{(1,1)},id,2→1 1(e).

An easy induction shows that a graph G satisfies scw(G) = 1 if and only if G is a cograph (see [34,

Proposition 4.4], e.g.). Since G[a, b, c, e] is isomorphic to P4, the graph G in Fig. 20 is not a cograph, and

therefore scw(G) = 2.

We should mention that the parameters clique-width and slick clique-width are linearly related.

Theorem 5.1. If G is a graph then scw(G) ≤ cw(G) ≤ 2 scw(G).

In fact, the proof of Theorem 5.1 [29, Theorem 1] is constructive and may be viewed as two linear-time

algorithms for translating a k-expression into an equivalent slick k-expression, and for translating a slick k-

expression into an equivalent 2k-expression. Because of this, any clique decomposition in the literature may

be theoretically turned into a slick clique decomposition with the same width. This is convenient because

computing the clique-width is NP-complete for arbitrary graphs [25], and we believe that the same must

be true for the slick clique-width. Moreover, unlike what happens for the treewidth, there is still no known

polynomial algorithm to recognize whether a graph has clique-width bounded by k for any fixed k > 3, but

there are algorithms for k ≤ 3 [21]. In terms of approximation algorithms, for fixed k, Oum and Seymour [48]

introduced an algorithm that either gives a (23k+2−1)-expression for an input n-vertex graph G, or provides

‡In this section, the label of a vertex is not its name, but a value assigned to it. Different vertices may be assigned the same

label.
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e

a c

db

⊕
{(1, 1)}, id, 2 → 1

A

⊕
{(1, 1), (1, 2), (2, 1)}, 1 −→ 2, 2 −→ 1

B
1(e)

⊕{(1, 2)}, id, id

C

⊕
{(1, 2)}, id, id

D

1(a) 2(b) 1(d) 2(c)

Figure 20. A graph G with scw(G) = 2 and its parse tree for the slick expression (5.23).

a witness that G does not have clique-width k + 1 in time O(n9 log n). Thus, as was the case for the tree

decomposition, algorithms based on the (slick) clique-width typically assume that a (slick) decomposition of

the graph is part of the input.

As illustrated in Fig. 20, a slick expression for a graph G of order n may be represented as a binary parse

tree T having 2n − 1 nodes, where the n leaves are associated with the atoms i(v) and the internal nodes

are associated with the binary operations ⊕S,L,R. Moreover, the left child corresponds to the root of the

left component, while the right child corresponds to the root of the right component. Additional similarities

with the cotree representation of cographs are as follows.

The algorithm Diagonalize Cograph of the previous section exploited the fact that in any cograph of

order n ≥ 2, there exist two vertices u and v for which either N(u) = N(v) or N [u] = N [v]. This means

that their corresponding rows and columns in the adjacency matrix can differ by at most two positions. By

subtracting say, the row (column) of u from the row (column) of v, the off-diagonal entries of the row and

column of v are annihilated except possibly for one such entry. A similar property of slick decompositions

that is consistent with our goal of finding vertices whose neighborhoods are very close is that, once two

vertices lie in the same component and have the same label, their adjacency relation to any vertex that is

added to the graph in a later operation is equal. We formalize this below as a remark, pointing out that this

property is crucial to the algorithm.

Remark 5.2. Let TG be a parse tree for a graph G = (V,E) with adjacency matrix A, and let Q be a

node in TG. If two vertices u and v have the same label at Q, then their rows (columns) are the same outside

of the matrix for the subtree rooted at Q, that is, if w ∈ V is not associated with a leaf of this subtree, then

auw = avw = awu = awv.

Another property that is crucial in the cograph algorithm is that subgraphs generated by subexpressions

are induced subgraphs. This is exactly the purpose of using the slick clique decomposition, for which this

property holds. As pointed out in Theorem 5.1, there are linear-time transformations to translate a k-

expression into a slick k-expression, and a slick k-expression into a 2k-expression. Hence, we may assume

that we are given either a clique decomposition or a slick clique decomposition of width k for the graph G

with n vertices.

To take advantage of the similarities between cotrees and the parse tree given by the slick clique-width

decomposition, the algorithm requires several new developments. The new algorithm, for example, does not
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diagonalize a given number of vertices at each node of the parse tree. Instead, it transmits information up

the tree in a compact way, using a data structure we call box, similar to the algorithm of Section 3.

5.2. The algorithm. We present an O(k2n) time diagonalization algorithm for the adjacency matrix

A = (aij), of a graph G having clique-width k. The version stated here is a slight modification of the

algorithm in the original paper [29] (a preliminary version is in [28]), which had complexity O(k3n). As

was the case for cographs, the algorithm is easily extendable to any symmetric matrix M whose underlying

graph is G and whose nonzero off-diagonal entries are all equal to each other. This includes many widely

used graph matrices, such as the adjacency, the Laplacian and the signless Laplacian matrices. We notice

that such matrices can have Ω(n2) nonzero entries, and that the clique-width may be a small constant even

if other parameters, such as the treewidth, are linear in n. In other words, a nice feature of the algorithm of

this section is that the underlying graph may be dense.

input: the parse tree TG of a slick k-expression QG for G, a scalar x

output: diagonal matrix D = diag(d1, . . . , dn) congruent to A(G) + xI

Diagonalize Clique-width(G,x)

Order the vertices of TG as Q1, Q2, . . . , Q2n−1 = QG in post order

for t from 1 to 2n− 1 do

if is-leaf(Qt)

then bQt=LeafBox(Qt, x)

else if Qt = Q`
⊕

S,L,RQr
then bQt = Combine Boxes(bQ` , bQr)

DiagonalizeBox(bQ2n−1
)

Figure 21. High level description of the algorithm Diagonalize Clique-width.

For a given graph G = (V,E) with n = |V | vertices and adjacency matrix A, let QG be a slick expres-

sion that generates G. Given a real number x, we find a diagonal matrix congruent to B = A + xIn. This

may be easily extended to matrices having arbitrary diagonal entries and off-diagonal elements in {0, z} for

some real number z.

The expression QG is associated with a parse tree TG having 2n− 1 nodes, as seen above. It is a rooted

binary tree where the n leaves are labeled by the operators i(v) and the internal nodes contain operations of

type ⊕S,R,L. Additionally, the left child corresponds to the root of the left subgraph, while the right child

corresponds to the root of the right subgraph. The algorithm Diagonalize Clique-width works bottom-up

in the parse tree TG. At each node Q of the tree, the algorithm produces a data structure that we call a k-box

bQ, a 4-tuple [k′, k′′,M,Λ]. Here k′ and k′′ are non-negative integers bounded above by k, M is an m ×m
symmetric matrix, where m ≤ 2k, and Λ is a vector whose m entries are labels in {1, . . . , k}. If node Q is a

leaf, the algorithm initializes a box. If Q is an internal node, it combines the boxes produced by its children

into its own box, transmitting it to its parent. At each node, the algorithm operates on a small O(k)×O(k)

matrix, performing congruence operations. These operations represent operations that would be performed

on the large n × n matrix B in order to diagonalize it, and this small matrix represents a partial view of

the actual n× n matrix. While processing the node, the algorithm may also produce diagonal elements of a

matrix congruent to A. These diagonal elements are appended to a global array as they are produced.

Figure 21 gives a high-level description of the algorithm. We now provide the main ideas of each stage

and refer to [29] and [34] for full details. The goal at each node Qt of TG is to construct, by means of
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congruence operations, a matrix associated with the subgraph G(Qt), which is the subgraph given by the

expression rooted at Qt. This is a diagonal matrix except for at most 2k rows and columns, having the form

of matrix (5.24):

(5.24)



d1 0
. . . 0

0 d`

0

M
(0)
t M

(1)
t

M
(1)T
t M

(2)
t



.

As was the case for the algorithm of Section 3, M (0) = 0k′×k′ , M
(2) is a k′′ × k′′ symmetric matrix, and

M (1) is a k′ × k′′ matrix with 0 ≤ k′ ≤ k′′ ≤ k in row echelon form, so that the pair (M
(1)
t ,M

(2)
t ) defines

the box produced at node t. Note that k′ can be zero in which case we regard M (0) as empty. To see how

the matrix MQt produced by box bQt fits into the matrix being diagonalized, consider

(5.25)



D 0 0

0

M (0) M (1)

M (1)T M (2)

0

...
0
β1
1

...

β1

k
′′

···

···
···

···

0

...
0
βs1

...

βs
k
′′

0
0 ···

...

0 ···

0 β1
1

...
...

0 βs1

···

···

β1

k
′′

...

βs
k
′′

M ′



.

The matrix in (5.25) shows how the large matrix B has been transformed by the operations performed to

produce the small submatrix MQt . The diagonal matrix D represents all diagonalized elements produced

up to step t in the algorithm. Also, the entries on the rows and columns corresponding to the k′ rows and

columns of M (0) are necessarily 0 outside M , which is precisely the distinction between M (0) and M (2). The

βji are zero-one entries in the partially diagonalized matrix, whose relation with the corresponding entries

in the original matrix B will be explained below. It is important to keep in mind that after node Qt has

been processed, all vertices in the subgraph G(Qt) correspond to rows in D or MQt . Some rows of D may

correspond to vertices outside of G(Qt), which have been diagonalized in earlier steps. The submatrix M ′

in (5.25) contains all undiagonalized rows w 6∈ G(Qt), may include vertices in MQt′ for t′ 6= t, and becomes

empty after the last iteration of the algorithm.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 81-139, January 2024.

C. Hoppen, D. Jacobs, and V. Trevisan 118

We say that the k′ rows in M (0) have type-i, and that the k′′ rows of M (2) have type-ii. Recall that these

rows are indexed by the rows of the original matrix, and each of them has a label in [k] coming from the

slick expression that defines G(Qt). Each row of the original matrix is associated with a single leaf of the

parse tree, so that the sets of type-i and type-ii rows coming from different branches of the tree are always

disjoint. The important information is M = MQt , these labels, and the integers k′ and k′′, which are all

stored in the box bQt = [k′, k′′,M,Λ] mentioned above, whose size is k′ + k′′. To ensure that M (2), whose

rows have type-ii, has order k′′ ≤ k at the end of step t, each label appears in at most one type-ii row. It

is helpful to keep in mind that a row always begins as a type-ii row, then becomes a type-i row, and finally

becomes diagonalized.

input: k-expression Q = i(v), a scalar x

output: [0, 1, [x], [i]]

LeafBox(Q,x)

return: [0, 1, [x], [i]]

Figure 22. Procedure LeafBox.

When the node Qt is a leaf corresponding to a subexpression i(v), BQt = [x]. This means that the box

contains a 1×1 matrix MQt = [x], whose row is labeled i, k′ = 0, and k′′ = 1. Procedure LeafBox of Fig. 22

describes the box corresponding to a leaf.

Now we will describe Combine Boxes, that is, we explain how an internal node produces its box from

the boxes transmitted by its children. For simplicity, when referring to operations, we always mention the

row operations, with the understanding that the corresponding column operations are also performed.

(5.26)



0

∗ ∗ ∗
∗ ∗
∗

∗
∗ ∗
∗ ∗ ∗

M
(2)
`

0 0

0 F

0 0

0 FT

0

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

M
(2)
r


When processing Qt = Q` ⊕S,L,R Qr, the matrix MQt is constructed by first taking the disjoint union

of the matrices transmitted by its children and then updating the entries vw where v and w are type-ii

vertices of different sides. Precisely, if (i, j) ∈ S, v is a type-ii vertex in G(Q`) with label i, and w is a type-ii

vertex in G(Qr) with label j, we place a one in the row (column) of v and column (row) of w. Observe that

the unique label condition imposed on M (2) implies that at most one pair of entries will be modified for
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any element of S. Let F be the block of ones defining these edges. Then node Qt starts with a matrix as

in (5.26).

Next, Qt relabels the rows of MQ` and MQr , using the functions L and R, respectively. Using permu-

tations of rows and columns, it combines the k′` type-i rows from MQ` with the k′r type-i rows of MQr , and

combines the k′′` type-ii rows in MQ` with the k′′r type-ii rows in MQr , so that they are contiguous in MQt .

We observe that the zero pattern outside the matrices MQ` and MQr implies that the type-i rows from

MQ` and MQr are still type-i in (5.26). Additionally, from the fact that the type-i rows of MQ` and MQr

are distinct, we see that the new M (1) of MQt , which is formed by placing M
(1)
` on top of M

(1)
r , is already

in row echelon form. We illustrate in equation (5.27) the transformation of the matrix in (5.26) after we

perform the permutations described above. Hence, these permutations of rows and columns lead to a matrix

MQ in the required form. In this matrix, k′ = k′` + k′r and k′′ = k′′` + k′′r . By construction, we have k′ ≤ k′′,
however we are not guaranteed that k′′ ≤ k.

(5.27) MQt =



0 0

∗ ∗ ∗
∗ ∗

∗
0

0
0

0

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

∗
∗ ∗
∗ ∗ ∗

0 M
(2)
`

F

0

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

FT
M

(2)
r


Next, we explain how to use congruence operations to produce a box from MQt in a way that k′′ ≤ k

while keeping k′ ≤ k′′. As a byproduct, new permanent elements may be added to the diagonal submatrix

D. The matrix MQt is shrunk in two steps:

(i) If two type-ii rows j and j′ have the same label, then congruence operations are performed to turn

one of them, say v = j′, into type-i.

(ii) Congruence operations are performed with the aim of diagonalizing the row corresponding to v, or

of inserting v into MQt in a way that M
(0)
Qt

is the zero matrix and M
(1)
Qt

is in row echelon form and

has a pivot on each row.

Note that, if steps (i) and (ii) are repeatedly applied to pairs of type-ii rows with the same label until there

are no such pairs, we immediately obtain k′′ ≤ k. By ensuring that M
(1)
Qt

remains in row echelon form with

pivots on each row (or becomes empty), we ensure that k′ ≤ k′′.

To achieve (i), fix two type-ii rows j and j′ have the same label. By Remark 5.2, their rows and columns

must agree outside of MQt . Therefore in (5.25), βij = βij′ for all i. Performing the operations
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Rj′ ← Rj′ −Rj , Cj′ ← Cj′ − Cj ,(5.28)

eliminates any nonzero entries of row j′, except possibly for the columns within MQt , and thus transforms

the type-ii row j′ into a type-i row.

Part (ii) is done in the same fashion as procedure ForgetBox of Section 3. We recall some of the reasoning

here. Suppose that v is the row to be inserted. For convenience, after exchanging rows and columns, we

look at MQt in the following way:

(5.29) MQt =

dv xv yv

xTv 0k′×k′ M
(1)
Qt

yTv M
(1)T
Qt

M
(2)
Qt

.

Here, the first row and column represent the row and column in MQt associated with v. In particular, dv

is the diagonal element, while xv is the vector whose elements correspond to the other type-i rows in M
(0)
Qt

.

The vector yv represents the correspondence with the type-ii rows in M
(2)
Qt

.

Depending on the value of dv, on the vectors xv and yv, we proceed in different ways. The preferred out-

come is to diagonalize the row/column associated with v, and this is particularly easy when dv 6= 0. Indeed,

in this case we simply use dv to annihilate all the elements in row/column v, performing the congruence

operations.

In general, we deal with v exactly as in procedure ForgetBox of Fig. 13 in Section 3, and we refer the

reader to the discussion following it for the full description of each case and its motivation. We recall that

the row corresponding to v and an additional type-i row are diagonalized with diagonal entries of opposite

signs if xv 6= 0 (case 2 of Combine Boxes), v is diagonalized with diagonal element dv if xv is empty or zero

and dv 6= 0 (subcases 1a and 1c), or if dv = 0 and xv and yv are both empty or zero (subcase 1a). The only

remaining case is when dv = 0, xv is empty or zero, and yv 6= 0. Then, the algorithm performs steps to

insert yv into the matrix in row echelon form (subcase 1b of Combine Boxes).

This concludes the description of the procedure Combine Boxes, which appears in Fig. 23. Note that

all operations performed in the procedure are congruence operations. To conclude the description of the

algorithm, we can assume that at the root

QG = Q` ⊕L,R,S Qr,

L and R map all vertices to the same label, as labels are no longer needed. After applying Combine Boxes,

we will obtain k′′ = 1 and M (0) is either zero or empty. If it is empty then the 1× 1 matrix M (2) contains

the final diagonal element. Otherwise MQ is a 2× 2 matrix having form(
0 a

a b

)
.

If b 6= 0, it can be made fully diagonal using the congruence operations in (3.14) (where u and v denote the

first and second rows, respectively). If b = 0, it can be made fully diagonal using the congruence operations

in (3.16) and (3.17). This is what we call DiagonalizeBox in the algorithm of Fig. 21.

The correctness of the algorithm is proven in [29], by showing that a series of invariants hold (by

induction) after the execution of each step. Moreover, a bound of O(k2n) for the complexity of the algorithm

is obtained by a clever accounting for the time spent by executing the elementary operations.
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Input: two k-boxes bQ` and bQr
Output: a k-box bQ

Combine Boxes(bQ`,bQr)

form matrix M as in (5.26);

relabel rows with functions L and R;

combine type-i rows (columns), combine type-ii rows (columns);

ensure type-ii rows have distinct labels:

for each pair (v, w) of type-ii rows with equal labels

execute operation as in (5.28);

if xv is empty or 0

then if yv is empty or 0 then //subcase 1a

then add (v, dv) to D

remove row v from M

else if dv = 0 then //subcase 1b

then do row/column operations as in (3.13)

if row v gets a pivot

then insert the row into M (1)

else add 0 to D and remove row from M

else //subcase 1c

use dv to diagonalize row/column v as in (3.14)

add dv do D and remove row v form M

else // Here xv 6= 0. //case 2

let u be the vertex of the rightmost nonzero entry of xv
if xv has other nonzero entries

then eliminate them with the operations (3.15)

if dv 6= 0

then perform the operations (3.16)

perform the operations (3.17)

use dv and du to diagonalize rows/columns v and u as in (3.13)

add dv and du to D and eliminate rows v and u from M.

Figure 23. Procedure Combine Boxes.

Theorem 5.3. [29] Let G be a graph with adjacency matrix A, given by a slick expression QG with parse

tree T , and let x ∈ R. Algorithm Diagonalize Clique-width correctly outputs the diagonal elements of a

diagonal matrix congruent to B = A− xI. Moreover, this is done in O(k2n) operations.

5.3. Example. To see how the algorithm acts on a concrete example, we refer to the graph on the left

of Fig. 20, which may be constructed with the slick 2-expression given by equation (5.23) and whose parse

tree is given in Fig. 20.

We apply the algorithm to the graph defined by this slick 2-expression for x =
1

2
. Since k = 2, the boxes

created by the leaves may be of the following two types:
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1(v) : [k′, k′′,M,Λ] = [0, 1, (1/2) , (1)] , or 2(v) : [0, 1, (1/2) , (2)] ,

This means that k′ = 0 (thus M (0) is empty) and that k′′ = 1 and M (2) = (1/2).

The nodes C and D of the parse tree lead to identical applications of Combine Boxes. This is depicted

below, where the box is obtained from the box of the children as in (5.26). Since the relabeling functions L

and R are equal to the identity and there are no vertices with the same label, the procedure ends and the

nodes transmit the box [
0, 2,

(
1/2 1

1 1/2

)
,

(
1

2

)]
,

to their parent. In the above terminology, this means that M (0) is empty (k′ = 0), k′′ = 2, and M (2) =(
1/2 1

1 1/2

)
and the labels of its rows are 1 and 2, respectively. Up to this point, we did not need to apply

the congruence operations described above to insure type-ii rows have unique labels or to insert type-i rows

into M (0).

Next, we process node B, which receives boxes from nodes C and D. Given that S = {(1, 1), (1, 2), (2, 1)},
L = 1→ 2 and R = 2→ 1, the initial matrix given in (5.26) and the corresponding vector of labels are

M =


1/2 1 1 1

1 1/2 1 0

1 1 1/2 1

1 0 1 1/2

 , Lab =


2

2

1

1

 .

We notice that rows 1 and 2 are type-ii with the same label. We then perform the operations R1 ← R1−R2,

C1 ← C1 − C2, leading to the matrix

M =


−1 1/2 0 1
1/2 1/2 1 0

0 1 1/2 1

1 0 1 1/2

 .

The algorithm then attempts to insert the type-i row into the empty matrix M (0). Here xv is empty,

dv = −1 6= 0, yv =

[
1

2
, 0, 1

]
, leading to Subcase 1c, where dv is used to diagonalize the first row and

column, leading to

M =


−1 0 0 0

0 3/4 1 1/2

0 1 1/2 1

0 1/2 1 3/2

 .

Therefore, our first diagonal value is d1 = −1. We remove this row/column resulting in the matrix

M =

 3/4 1 1/2

1 1/2 1
1/2 1 3/2

 , Lab =

 2

1

1

 .

Now, as rows 2 and 3 have equal labels, we perform R2 ← R2 − R3, C2 ← C2 − C3 to turn row 2 into

type-i, so that the type-ii rows have unique labels. For better visualization, we perform R2 ←→ R1 and
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C2 ←→ C1 and get to the matrix

M =

 0 1/2 −1/2

1/2 3/4 1/2

−1/2 1/2 3/2

 , Lab =

 1

2

1

 .

To insert the new type-i row into a proper box, the algorithm performs Subcase 1b, as dv = 0, xv = ∅ and

yv = [1/2,−1/2]. As the row vector yv is itself a matrix in row echelon form, there is no need to perform any

other operation. Hence, node B transmits to its parent A the box1, 2,

 0 1/2 −1/2
1/2 3/4 1/2
−1/2 1/2 3/2

 ,

 1

2

1


 .

Finally, node A receives the box produced by the leaf 1(v2) : [0, 1, (1/2) , (1)] and the box transmitted by

node B. Procedure Combine Boxes first forms the matrix M using S = {(1, 1)} and the relabeling functions

L = id, R : 2 −→ 1:

M =


1/2 0 0 1

0 0 1/2 −1/2

0 1/2 3/4 1/2

1 −1/2 1/2 3/2

 , Lab =


1

1

1

1

 .

The next step is to regroup the type-i rows and the type typo-ii rows, performing R1 ←→ R2 and C1 ←→ C2,

we arrive at

M =


0 0 1/2 −1/2

0 1/2 0 1
1/2 0 3/4 1/2
−1/2 1 1/2 3/2

 .

As before, to ensure uniqueness of labels in type-ii rows, we perform R2 ←− R2−R3 and C2 ←− C2−C3.

To better visualize the attempt of inserting the new type-i row into the matrix M , we perform R1 ←→ R2

e C1 ←→ C2. The two steps are represented below.

M =


0 −1/2 1/2 −1/2
−1/2 5/4 −3/4 1/2
1/2 −3/4 3/4 1/2
−1/2 1/2 1/2 3/2

 , followed by M =


5/4 −1/2 −3/4 1/2
−1/2 0 1/2 −1/2
−3/4 1/2 3/4 1/2
1/2 −1/2 1/2 3/2

 .

Here, dv = 5/4, xv = [−1/2] e yv = [−3/4, 1/2], implying that we are in Case 2 of the procedure Combine

Boxes. Since xv has no other nonzero entry, we need not eliminate them. As dv = 5/4 6= 0, we execute

the operations described by Combine Boxes to diagonalize both type-i rows/columns simultaneously. First,

we perform R1 ←− R1 +
5

4
R2 and C1 ←− C1 +

5

4
C2. Next, the operations R2 ←− R2 +

1

2
R1, C2 ←−

C2 +
1

2
C1, R1 ←− R1 −R2 and C1 ←− C1 − C2. The two steps produce

M =


0 −1/2 −1/8 −1/8
−1/2 0 1/2 −1/2
−1/8 1/2 3/4 1/2
−1/8 −1/2 1/2 3/2

 , followed by M =


1/2 0 −9/16 7/16

0 −1/2 7/16 −9/16

−9/16 7/16 3/4 1/2
7/16 −9/16 1/2 3/2

 .
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We then can use d2 =
1

2
and d3 = −1

2
to eliminate the off-diagonal values. We obtain two additional

diagonal values: d2 and d3. Removing these rows/columns, the resulting matrix is

M =

(
1/2 1/2

1/2 7/4

)
, Lab =

(
1

1

)
.

Performing the same procedure to guarantee the uniqueness of labels, we fall into Subcase 1c and,

diagonalizing the matrix, we obtain the remaining diagonal values d4 =
5

4
and d5 =

1

2
.

Hence, the diagonal matrix obtained by our algorithm id D =

(
−1,

1

2
,−1

2
,

5

4
,

1

2

)
. This means there

are three eigenvalues greater than −1

2
and two eigenvalues less than −1

2
. The actual spectrum of G is given

(approximately) by the set

Spec(G) = {2.94, 0.62,−0.46,−1.47,−1.62}.

Finally, we discuss some implementation issues of Diagonalize Clique-width by itemizing a few fea-

tures of our algorithm that we added to simplify the description, but are not necessary in an efficient

implementation. It is worth noticing that the whole algorithm is very fast, as there are no large constants

hidden in the O-notation.

(a) Since the matrix in equation (5.24) is not actually computed, one may easily write Diagonalize

Clique-width as a recursive algorithm.

(b) It is not necessary to perform permutations of rows and columns to separate them according to type,

it suffices to keep track of the vertices of each type in matrices MQt .

(c) The requirement that all vertices are relabeled with the same label at the root node is not crucial.

The root could just produce an arbitrary box from the boxes transmitted by its children, and the final

step of the algorithm, DiagonalizeBox, could just diagonalize this box with congruence operations

in any way.

Part III - Applications

6. Recurrence relations. In this section, we explain how the tree algorithm of Fig. 2 behaves when

applied to a pendant path of a tree T . We first notice that, by Corollary 1.2, the diagonalization of M − xI
(where M is a matrix having an underlying tree) tells us how many eigenvalues of M are less than, equal

to and greater than x. Following the application of the algorithm in Fig. 2 from a leaf towards the root, we

see that some recurrence relations appear. These recurrence relations may be studied in a unified way, and

their analytical properties have been used to solve some long standing problems in spectral graph theory.

As a motivation, we observe the numerical values produced by the algorithm of Fig. 2 when applied to a

path Pn in three distinct situations. In all three examples, the root vn of Pn is chosen as one of its endpoints,

and we run the algorithm starting from the other endpoint v1.

(1) Consider an application to M = A−λI, where A is the adjacency matrix of Pn and λ is a fixed real

number. Note that the off-diagonal nonzero entries are equal to 1 and that mii = −λ. Applying the
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algorithm gives z1 = −λ, z2 = −λ− 12

z1
= −λ− 1

z1
and so on. Therefore, we have a recursion

(6.30)

{
z1 = −λ
zj+1 = −λ− 1

zj
, 1 ≤ j ≤ n− 1.

Of course, this recursion is defined only up to the first index j such that zj = 0. We shall also

make this assumption for the sequences below. Moreover, by taking longer paths, we may produce

arbitrarily long (albeit finite) sequences.

(2) Let L(T ) be the Laplacian matrix of a tree T . Recall that this is the matrix for which each

diagonal entry `ii is the degree of vertex i and for which, given i 6= j, `ij = −1 if {i, j} ∈ E(T )

and `ij = 0 otherwise. Let d = 2 − 2
n be the average degree of T . We apply the diagonalization

algorithm to M = L(Pn) − dI. Starting at the end vertex v1, we have a1 = 1 − d = −1 + 2
n ,

a2 = 2− d− (−1)2

a1
= 2

n −
1
a1

and so on. Therefore, we have a recursion

(6.31)

{
a1 = −1 + 2

n

aj+1 = 2
n −

1
aj
, 1 ≤ j ≤ n− 2.

Note that an = 2
n−1− 1

an−1
because vn has degree 1, but we will again be interested on the structure

of the sequence for arbitrarily long paths.

(3) Let L(T ) be the normalized Laplacian matrix of a tree T , that is, the matrix for which all diagonal

elements are equal to 1 and for which, given i 6= j, tij = −1√
didj

if {i, j} ∈ E(T ) and tij = 0 otherwise,

where di and dj denote the degrees of i and j, respectively. For a real value λ ∈ [0, 2], we apply

the algorithm to M = L(Pn) − λI, where n ≥ 3. Here, the nonzero off-diagonal entries mij are

equal to −1√
2

if {i, j} ∩ {1, n} 6= ∅ and to −1√
2·2 = − 1

2 otherwise. Starting at the end vertex v1, we

obtain x1 = 1 − λ, x2 = 1 − λ −
(
−1√

2

)2
1
x1

= 1 − λ − 1
2x1

, x3 = 1 − λ −
(−1

2

)2 1
x2

= 1 − λ − 1
4x2

,

x4 = 1− λ−
(−1

2

)2 1
x3

= 1− λ− 1
4x3

and so on. Therefore, we have a recursion

(6.32)


x1 = 1− λ
x2 = 1− λ− 1

2(1−λ)

xj+1 = 1− λ− 1
4xj

, 2 ≤ j ≤ n− 2.

The final step gives xn = 1− λ− 1
2xn−1

.

As these examples show, applying the tree algorithm on a path produces certain numerical rational

sequences. They all may be seen in a unified elementary form given by

(6.33) xj+1 = ϕ(xj), j ≥ 1

where ϕ(t) = α + γ
t , for t 6= 0, α, γ ∈ R are fixed numbers (γ 6= 0), and x1 is a given initial condition. The

explicit solution is a function j → f(j) such xj = f(j) for j ≥ 1 and has been studied in [47]. The following

result describes the structure of explicit solutions.

Theorem 6.1. [47] Consider the recurrence relation xj+1 = α + γ
xj

, where α, γ ∈ R are fixed numbers

(γ 6= 0) and x1 is a given initial condition. Then the general solution has one of three possible types according

the sign of ∆ = α2 + 4γ:
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Type 1: For ∆ = 0, the solution is

xj = θ

(
1 +

1

(β + j)

)
,

where θ = α
2 and β ∈ R is defined in terms of the initial condition x1 6= θ by the formula β =

−1 + θ
x1−θ . If x1 = θ then xj = θ, ∀j ≥ 1 is the solution.

Type 2: For ∆ > 0, the solution is

xj = θ +
θ′ − θ

β
(
θ
θ′

)j
+ 1

,

where θ = α
2 −

1
2

√
α2 + 4γ, θ′ = α

2 + 1
2

√
α2 + 4γ and β ∈ R is defined in terms of the initial

condition x1 6= θ by the formula β = θ′

θ

(
θ′−θ
x1−θ − 1

)
. If x1 = θ then xj = θ, ∀j ≥ 1 is the solution.

Moreover, the following hold:

(a) If x1 < θ, then xj < θ for all j ≥ 1, xj is an increasing sequence and lim
j→∞

xj = θ.

(b) If θ < x1 < θ′, then θ < xj < θ′ for all j ≥ 1, xj is a decreasing sequence and lim
j→∞

xj = θ.

Type 3: For ∆ < 0, the solution is

xj = ρ (cos(φ)− sin(φ) tan(jφ+ ω)) ,

where ρ =
√
−γ, φ = arctan

(√
−α2−4γ

α

)
if α > 0, φ = arctan

(√
−α2−4γ

α

)
+ π if α < 0 and

ω ∈ [0, 2π) is defined in terms of the initial condition x1 by the formula

ω = −φ+ arctan

(
cot(φ)− x1

ρ
csc(φ)

)
.

If α = 0, then xj =

{
γ
x1
, j = 2k

x1, j = 2k + 1
, j ≥ 1 is the solution of xj+1 = γ

xj
for a given x1 6= 0.

Example 6.2. An H-shape tree, or H-tree for short, is a tree obtained from a path Pm+1, m ≥ 1, of

length m by attaching two paths of length at least 1 to each endpoint of Pm+1. The endpoints of Pm+1 are

called the left and the right endpoints, respectively, and we denote an H-tree by H(`1, `2,m, `3, `4), where

`1 ≤ `2 are the lengths of the paths attached to the left endpoint, and `3 ≤ `4 are the lengths of the paths

attached to the right endpoint.

Consider applying the algorithm of Fig. 2 to the adjacency matrix A of H = H(`1, `2,m, `3, `4) depicted

in Figure 24. It is known (see for example [60]) that the maximum eigenvalue of A is greater than 2. We

will show next that at most one eigenvalue of A is greater than 3√
2
≈ 2.121320343. In order to do that, we

invoke Corollary 1.2 and show that all but possibly one diagonal value of a diagonal matrix congruent to

A− λI are negative, for λ = 3√
2
> 2. We choose as the root v of H the right endpoint of the path Pm+1.

As the algorithm processes the vertices on the pendant paths, the values obtained satisfy the recurrence

relations obtained for paths, that is,

(6.34)

{
z1 = −λ
zi = −λ− 1

zi−1
, i = 2, . . . , `k.

For the first m vertices on the path Pm+1, starting from its left endpoint, we get

(6.35)


b1 = −λ− 1

z`1
− 1

z`2

bi = −λ− 1
bi−1

, i = 2, . . . ,m.
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b1 b2
a(v)bm

zl1

z2

z1

zl2

z2

z1

zl3

z2

z1

zl4

z2

z1

Figure 24. Valued H-tree after application of the algorithm.

The value at the root is

(6.36) a(v) = −λ− 1

z`3
− 1

z`4
− 1

bm
.

In the framework of Theorem 6.1, the recurrence relations (6.34) and (6.35) have α = −λ and γ = −1.

By our choice of λ > 2, ∆ = α2 + 4γ = λ2 − 4 > 0 which is a type 2 recurrence.

For Equation (6.34), we see that zi = θ + θ′−θ
β( θθ′ )

i
+1

, with θ = −λ
2 −

√
λ2−4
2 , θ′ = −γθ = 1

θ . In particular,

when λ = 3/
√

2, we have z1 = −λ = −3/
√

2 < θ = −
√

2. Hence, by Theorem 6.1(a), zi is strictly increasing

and converges to θ = −
√

2. So all zi in Fig. 24 are negative. Moreover, the general solution may be written

as zi = θ + θ′−θ
β( θθ′ )

i
+1

. As β = θ′

θ

(
θ′−θ
z1−θ − 1

)
, substituting the given values, we arrive at β = −1, meaning

that

(6.37) zi = −
√

2
(
2i+1 − 1

)
2i+1 − 2

.

For the recurrence given by (6.35), when the algorithm is applied with λ = 3/
√

2, the value for b1 =

− 3√
2
− 1

z`1
− 1

z`2
satisfies

(6.38) −
√

2 = θ < b1 < θ′ = −
√

2

2
,

for any positive values of `1 and `2. To see why this is true, observe that, as zi < θ, b1 = 3/θ− 1/z`1 − 1/z`2 <
3/θ − 2/θ = θ′. For the other inequality, we see that zi ≥ −3/

√
2; hence ,b1 = −3/

√
2 − 1/z`1 − 1/z`2 >

−3/
√

2 + 2
√

2/3 = −5
√

2/6 = 5θ/6 > θ. By Theorem 6.1(b), this implies that bi → −
√

2, decreasingly and,

consequently, all values of bi are negative.

It follows that all but the last value, given by Equation (6.36), produced by the algorithm Diagonalize(A−
λI) of Fig. 2 are negative. Hence, we conclude that at most one eigenvalue of H is greater than or equal to
3/
√

2.

This example implies that, if the value at root is positive, then a single eigenvalue (necessarily the

maximum eigenvalue, known as index or spectral radius) of an H-tree is larger than 3/
√

2. Characterizing

the graphs whose index is less than 3/
√

2 is a challenging problem that has been studied by many authors

but not yet completely solved (see [60],[19] for a structural characterization). It is related to the celebrated

Hoffman-Smith (HS) limit points that will be discussed in the next section.
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6.1. Applications to limit points. A real number r is said to be a limit point of the spectral radii

of graphs if there exists a sequence {Gk} of graphs such that

ρ(Gi) 6= ρ(Gj), for all i 6= j, and lim
k→∞

ρ(Gk) = r,

where ρ(G) is the spectral radius (or index) of the adjacency matrix of G.

A landmark paper in this area is due to J. Shearer [54], who proved that any real number λ ≥
√

2 +
√

5

is a limit point of the spectral radii of graphs. Precisely, there exists an infinite sequence of graphs Gk, k =

1, 2, . . ., whose spectral radii ρ(G1) < · · · < ρ(Gk) < λ is an increasing sequence and lim
k→∞

ρ(Gk) = λ.

In general, the techniques used to prove that a real number is a limit point are intricate. As an

illustration, we show here that the results in this survey are applicable for finding limit points of spectral

radii of graphs.

Consider the starlike tree T1,n,n illustrated in Figure 25 obtained by connecting an isolated vertex to

endpoints of two copies of Pn and to another isolated vertex.

n n

Figure 25. The tree T1,n,n.

The following result from [19] implies that
√

2 +
√

5 is a limit point with respect to the adjacency matrix.

We reprove it here using our technique.

Theorem 6.3 ([19]).

lim
n→∞

ρ(T1,n,n) =

√
2 +
√

5 ≈ 2.058.

Proof. Consider the tree T1,n,n for n ≥ 3 and let λn = ρ(T1,n,n) denote its spectral radius (with respect

to the adjacency matrix). By a result of [43], 2 < λn <
3√
2
≈ 2.12 for all n ≥ 3.

Let vn denote the unique vertex of degree three of T1,n,n and order the vertices in each branch of T1,n,n

from the leaves towards the root. For each n ≥ 3, the algorithm will be applied to the matrix A(T1,n,n)−λnI.

Note that the diagonalization algorithm is being applied infinitely many times to an infinite sequence of trees.

If we restrict our analysis to the vertices on the branches Pn, we derive the recurrence relations z
(n)
1 = −λn

and z
(n)
i = −λn − 1/z

(n)
i−1. This is exactly the relation discussed in Example 6.2 (see Equation (6.34)).

Since ∆n = (−λn)2 + 4(−1) = λ2
n − 4 > 0, we have a type 2 recurrence with θn = −λn−

√
∆n

2 , θ′n =
−λn+

√
∆n

2 ,

βn =
θ′n
θn

(
θ′n − θn
x

(n)
1 − θn

− 1

)
= −1.

Thus, for all n ≥ 3 and 1 ≤ j ≤ n, we have

z
(n)
j = θn +

√
∆n

1−
(
λn+
√

∆n

λn−
√

∆n

)j .
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Moreover, since z
(n)
1 < θn, part (a) of Theorem 6.1 applies z

(n)
j < θn < 0 for all j and n.

We note that (λn) is an increasing sequence as T1,n,n is a proper subgraph of T1,n+1,n+1, and the index

of a proper subgraph of a connected graph is always less than the index of the graph itself. Hence, as (λn)

is bounded, there is λ0 ∈ R such that limn→∞ λn = λ0. Moreover,

λn +
√

∆n

λn −
√

∆n

=
(λn +

√
∆n)2

λ2
n −∆n

≥ λ2
n

4
≥ λ2

3

4
> 1,

so that limn→∞

(
λn+
√

∆n

λn−
√

∆n

)n
=∞, and therefore, limn→∞ z

(n)
n = limn→∞ θn.

The value assigned by the algorithm to the root is a(vn) = −λn − 1
−λn −

2

z
(n)
n

, and it satisfies a(vn) = 0

because λn is an eigenvalue of T1,n,n. It follows that

−λ0 +
√
λ2

0 − 4

2
= lim
n→∞

θn = lim
n→∞

z(n)
n =

−2λ0

λ2
0 − 1

.

This implies that λ4
0 − 4λ2

0 − 1 = 0, an equation with a single positive solution, namely λ0 =
√

2 +
√

5.

We observe that we may generalize the concept of limit point of graphs for other matrices M associated

with a graph G. We say that a real number γ is an M -limit point of the M -spectral radii of graphs if there

exists a sequence of graphs {Gk | k ∈ N} such that

lim
k→∞

ρM (Gk) = γ,

where ρM (Gi) 6= ρM (Gj), i 6= j and M is a type of matrix associated with a graph, such as the adjacency

matrix, the Laplacian matrix, the signless Laplacian matrix, etc.

Example 6.2, which involves H-shape trees, may also be viewed in connection with limit points, par-

ticularly with Hoffman-Smith (HS) limit points. These are limit points that appear in the context of edge

subdivisions and their effect on the indices of two matrices associated with graphs, namely the adjacency

index ρ(G) and the signless Laplacian index κ(G) = ρ(Q(G)). To be precise, let G = (V,E) be a graph and

let e = {u,w} be one of its edges. We say that G′ = (V ′, E′) is the graph produced by subdividing e if

V ′ = V ∪{ve}, where ve denotes a new vertex, and E′ is obtained from E by replacing e by the edges {u, ve}
and {ve, w}. Let S(G) be the graph obtained from G by subdividing each of its edges exactly once, which

is known as an application of the subdivision operator to G.

Hoffman and Smith [33] showed that, if G is a graph with maximum degree ∆(G) = ∆ and Sn(G) =

(S ◦ · · · ◦ S)(G) is the graph obtained from G by applying the subdivision operator n times, then

lim
n→∞

ρ(Sn(G)) =
∆√

∆− 1
and lim

n→∞
κ(Sn(G)) =

∆2

∆− 1
.

Because of this, the numbers ∆√
∆−1

and ∆2

∆−1 , where ∆ ≥ 2 is a real number, are known as Hoffman-Smith

limit points.

For the adjacency matrix, the graphs whose index does not exceed the HS-limit 2 (HS-limit point for

∆ = 2) are known as Smith graphs. The HS-limit points for ∆ = 3 are 3√
2

for the adjacency matrix and 9
2 for

the signless Laplacian matrix. Recall that, in our discussion in connection with Example 6.2, we noted that,
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for the index of an H-graph not to exceed 3√
2
, which is precisely the HS-limit for the adjacency matrix and

∆ = 3, it suffices to study the sign of the value a(v) assigned to the root v in the application of the algorithm,

as all values assigned to other vertices are necessarily negative. Since S(G) is an H-graph whenever G is

an H-graph, the result of Hoffman and Smith implies that, for any H-graph G, (ρ(Sn(G))) is a sequence

converging to 3√
2
. On the other hand, unlike the trees T1,n,n of Theorem 6.3, Sn(G) is not a subgraph of

Sn+1(G), and therefore the argument in Theorem 6.3 used to justify that the sequence of spectral radii is

monotone increasing does not apply (in fact, one may show that the sequence (ρ(Sn(G))) is not monotone).

A complete characterization of the graphs whose ρ-index is less than 3√
2

or whose κ-index is less than 9
2

is not known. This is in general a hard problem. For the κ index there is some progress in [4]. In particular,

the set of H-trees whose κ-index is less than 9
2 is completely determined using the technique shown in the

example above.

7. Inertia and spectral characterization of cographs. The algorithm presented in Section 4 is

from 2018 and is a generalization of an algorithm given in 2013 for locating eigenvalues in threshold graphs.

This is an important hereditary subclass of cographs, namely the class of {P4, C4, 2K2}-free graphs. It is

shown in [53, Cor. 3.2] that the cotree of a threshold graph is a caterpillar, namely a tree that becomes a

path when its leaves are removed.

It is interesting that in [40], it is shown that threshold graphs do not have eigenvalues in the interval

(-1,0), which is somehow unexpected because the set of eigenvalues of graphs in general is dense in the real

numbers: any nonempty open interval has an eigenvalue of some graph. In fact even more is true: any

nonempty open interval of the real line contains an eigenvalue of a tree. This is a result due to J. Salez [52].

The fact that (-1,0) has no eigenvalue of cographs was proved in [44], and this may be used to characterize

cographs in terms of their spectra, as observed by E. Ghorbani [31]. The remainder of this section is devoted

to prove this characterization, which will done by using the algorithm Diagonalize Cograph. In the process,

we obtain a formula for the inertia of cographs.

Theorem 7.1. A graph G is a cograph if and only if no induced subgraph of G has an eigenvalue in

(−1, 0).

We start with some technical lemmas.

Lemma 7.2. Let G be a cograph with minimal cotree TG. Let {vk, vj} be a sibling pair processed by

Diagonalize Cograph with parent w, for which 0 ≤ dk, dj < 1, where di is the diagonal value of the vertex

vi.

(a) If w = ⊕, then dk becomes permanently negative, and dj is assigned a value in (0, 1).

(b) If w = ∪, then dk becomes permanently non-negative and dj is assigned a value in [0, 1).

Proof. Item (a). By our assumptions, subcase 1a is executed. Hence

dk ← α+ β − 2,

dj ←
αβ − 1

α+ β − 2
,

where α, β are the old values of dk, dj . Clearly dk < 0. Now dj > 0, as both numerator and denominator

are negative. Since (αβ− 1)− (α+ β− 2) = (α− 1)(β− 1) > 0, it follows that dj − 1 = (αβ−1)−(α+β−2)
α+β−2 < 0

or that dj < 1.
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For item (b), we may have dk = dj = 0, and we execute subcase 2b; hence, dk and dj are assigned 0.

In any other case, we execute subcase 2a and then

dk ← α+ β,

dj ←
αβ

α+ β
,

where α, β are the old values of dk, dj . Clearly, dk > 0. As for dj , we observe that dj ≥ 0, since the

denominator is positive and the numerator is non-negative. Since (αβ)− (α+ β) = (α− 1)(β − 1)− 1 < 0,

it follows that dj < 1.

We state a technical lemma with a slight change in the range of the initial values. The proof may be

done in a similar way as the proof of the previous lemma.

Lemma 7.3. Let G be a cograph with minimal cotree TG. Let {vk, vj} be a sibling pair processed by

Diagonalize Cograph with parent w, for which 0 < dk, dj ≤ 1.

(a) If w = ⊕, then dk becomes permanently nonpositive and dj ∈ (0, 1].

(b) If w = ∪, then dk becomes permanently positive and dj ∈ (0, 1).

Lemma 7.4. Let G be a cograph with minimal cotree TG and let x ∈ {0, 1}. Consider the execution of

Diagonalize Cograph(TG, x).

(a) If x = 0, then all diagonal values of vertices remaining on the cotree are in [0, 1).

(b) If x = 1, then all diagonal values of vertices remaining on the cotree are in (0, 1].

Proof. As both proofs are similar, we prove item (a) and omit the proof of item (b). Initially, all values

on TG are zero. Suppose after m iterations of Diagonalize Cograph, all diagonal values of the cotree are

in [0, 1), and consider iteration m+1 with sibling pair {vk, vj} and parent w. By assumption, 0 ≤ dk, dl < 1.

If w = ⊕, then Lemma 7.2 (a) guarantees the vertex dj remaining on the tree is assigned a value in (0, 1). If

w = ∪, Lemma 7.2 (b) guarantees dj ∈ [0, 1). This means after m+ 1 iterations the desired property holds,

completing the proof by induction.

We recall that when a cograph G is disconnected, then its minimal cotree TG has root of type ∪ and, in

particular, it has t ≥ 0 leaves representing the isolated vertices of G.

Remark 7.5. Observe that if w is an internal node in TG having t children, as the algorithm progresses

bottom-up through the rules of Lemma 4.2, each internal child of w eventually is replaced by a leaf. Thus,

when w is ready to be processed it will have t leaves as children. To simplify our analysis, without loss of

generality, we can assume that all t− 1 sibling pairs are processed consecutively.

Remark 7.6. Consider a node w of type ∪ with ` = s + t children, where s children are internal (of

type ⊕) and t children are leaves. In the execution of Diagonalize Cograph(TG, 0), from Lemmas 7.2 (a)

and 7.4 (a), each ⊕ node will become positive. Thus when w is processed, it will have s leaves with positive

values and t leaves with zero.

Proposition 7.7. Let G be a cograph with minimal cotree TG having t ≥ 0 isolated vertices. Assume TG
has k nodes of type ⊕ denoted by {w1, w2, . . . , wk}, and ` nodes of type ∪ denoted by {wk+1, wk+2, . . . , wk+`}.
Let qi = si+ ti be the number of children of wi, where si is the number internal children and ti is the number

of leaves of wi, i = 1, . . . , k + `. Let U be the set of ∪ nodes that have two or more leaves, that is, those in
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which ti ≥ 2. Then, the number n−(G) of negative eigenvalues of G, and the multiplicity mA(G)(0) of 0 as

an eigenvalue of G, are given by

n−(G) =

k∑
i=1

(qi − 1);(7.39)

mA(G)(0) =
∑
wi∈U

(ti − 1) + δ(t), where δ(t) =

{
1 if t > 0

0 if t = 0
.(7.40)

Proof. To prove equation 7.39, we execute Diagonalize Cograph(TG, 0), and consider any node wi in

TG of type ⊕ with qi = si+ti children, where ti are leaves and si are internal nodes of type ∪. By Remark 7.7,

when wi is eligible to be processed, it will have qi leaves as children and will process qi − 1 sibling pairs. By

Lemma 7.4 (a) all diagonal values on the cotree remain in [0, 1). By Lemma 7.2 (a), each of the qi−1 sibling

pairs will produce a permanent negative value before wi is removed. This shows n−(G) ≥
∑k
i=1(qi − 1).

However, Lemma 7.2 (b) shows that processing a sibling pair with parent ∪ can only produce non-negative

permanent values. Hence the inequality is tight, completing the proof for n−(G).

To prove equation 7.40, let wi be an internal node of type ∪ having qi = si+ti children where si children

are internal nodes and ti are leaves. By Remark 7.6, when wi is ready to be processed, it will have qi = si+ti
leaves, si positive values and ti zeros. For every pair of zero values, we execute subcase 2b of algorithm

Diagonalize Cograph. Each execution of subcase 2b produces a permanent zero value. This shows that

wi contributes with ti−1 zeros to the diagonal matrix, whenever ti > 1. Additionally, we see from the proof

of Lemma 7.2 (b), that the remaining permanent values produced while processing wi are positive. This

shows mG(0) ≥
∑
wi∈U (ti − 1). To obtain the value for mG(0), we first note that, by Lemma 7.2 (a), no

zero can be created when processing a sibling pair whose parent is ⊕. If the cograph is connected, then we

are done as t = 0 and the root is ⊕.

If G is disconnected, then the root of TG has type ∪ with s + t children, with t ≥ 0 leaves and s ≥ 0

internal nodes of type ⊕. We can assume s > 0, for otherwise the graph is a collection of isolated vertices.

We claim that exactly t additional zeros are created. Indeed, when the root is processed, all the t leaves

have value zero and the s internal nodes became leaves with positive values by Lemma 7.2 (a). From

Lemma 7.2 (b), we apply s − 1 times subcase 2a, creating s − 1 permanent positive values and leaving a

positive value in the cotree. Then, t− 1 zero permanent values are created through subcase 2b. The last

iteration, when subcase 2a is applied, creates an additional zero.

Corollary 7.8. The inertia of the n vertex cograph G, having the same parameters of Proposition 7.7,

is given by the triple

(p, q, r),

where q =
∑k
i=1(qi − 1), r =

∑
wi∈U (ti − 1) + δ(t) and p = n− q − r.

Proposition 7.9. Let G be a cograph with minimal cotree TG. Assume TG has k nodes of type ⊕
denoted by {w1, w2, . . . , wk}, and ` nodes of type ∪ denoted by {wk+1, wk+2, . . . , wk+`}. Let qi = si + ti be

the number of children of wi, where si is the number internal nodes and ti is the number of leaves of wi,

i = 1, . . . , k + `. Let J be the set of ⊕ node having two or more leafs, that is, those for which ti ≥ 2. Then
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the number mA(G)(−1,∞) of eigenvalues greater than -1, and the multiplicity of -1 as an eigenvalue of G

are given by

mA(G)(−1,∞) = 1 +

k+∑̀
i=k+1

(qi − 1),(7.41)

mA(G)(−1) =
∑
wi∈J

(ti − 1).(7.42)

Proof. To show equation (7.42), we count the number of zeroes in the diagonal matrix outputted by the

execution of Diagonalize Cograph(TG, 1). Let wi be a node of type ⊕ with qi = si + ti children, ti ≥ 0

leaves and si ≥ 0 internal nodes of type ∪. As in the previous result, when wi is processed, all the si
internal nodes became leaves with positive values smaller than 1, by Lemma 7.3 (b). Whenever ti ≥ 2, we

notice that ti − 1 permanent zero values are produced, as we are in the case subcase 1b of the algorithm.

Moreover, any other pair processed by node wi produces no zero value by Lemma 7.2 (a). This means

that mA(G)(−1) ≥
∑
wi∈J(ti − 1). To see that equality holds, we first notice that, by Lemma 7.4(b), all

values that remain to be processed are in (0, 1]. Since these values will be processed by ∪ nodes, we see by

Lemma 7.3 (b) that no additional zeroes are produced. This proves equation (7.42).

To show equation (7.41), we count the number of positive values in the diagonal matrix outputted by

the execution of Diagonalize Cograph(TG, 1). Consider now a node wi of type ∪ with qi = si + ti children,

where ti are leaves and si are nodes of type ⊕, which eventually become leaves with positive values (by

Lemma 7.4 (b)). Then, all values of the qi leaves are in (0,1], and by Lemma 7.3 (b), qi − 1 positive values

are outputted, and, hence, this shows that mA(G)(−1,∞) ≥
∑k+`
i=k+1(qi − 1).

We claim that the final iteration of the algorithm always outputs an additional positive value. To see

this, let q = s + t ≥ 2 be the number of leaves of the root. We can assume that s > 0 for otherwise G is

either the complete graph (if the root is ⊕) or a collection of isolates (if the root is ∪). Let dj and dk be

the last two values in the cotree. By Lemma 7.4 (b), dj , dk ∈ (0, 1]. If the root is ∪, then the final iteration

executes subcase 2a, which outputs two positive values. One of them is already accounted for in the in the

formula
∑k+`
i=k+1(qi − 1).

If the root is ⊕, since s > 0 we may assume dj ∈ (0, 1) by Lemma 7.3 (b). Now the value dk is in (0, 1),

when t = 0, while dk = 1, when t > 0. In any case, the last iteration executes subcase 1a, which produces

a positive value and a negative value. Therefore we have mA(G)(−1,∞) ≥ 1 +
∑k+`
i=k+1(qi − 1).

To show equality, we observe that, by Lemma 7.3 (a), no positive value is outputted by processing two

siblings of a node ⊕ with values in (0,1].

We remark that the formulas for mA(G)(0) and mA(G)(−1) appear in Bıyıkoğlu, Simić and Stanić [7,

Cor. 3.2]. We presented here an alternate proof using our algorithm.

Proof. (of Theorem 7.1) Let G be a cograph. The number mA(G)(−1, 0) of eigenvalues in (-1,0) is given

by
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mA(G)(−1, 0) = mA(G)(−1,∞)−mA(G)[0,∞)

= mA(G)(−1,∞)− n+(G)−mA(G)(0)

= mA(G)(−1,∞)− (n− n−(G)−mA(G)(0))−mA(G)(0)

= mA(G)(−1,∞)− n+ n−(G).

Now, by equation (7.39) and equation (7.41), it follows that

mA(G)(−1, 0) = 1 +

k+∑̀
i=k+1

(qi − 1)− n+

k∑
i=1

(qi − 1)

= 1 +

k+∑̀
i=1

(qi − 1)− n = 0.

As the number of leaves in the minimal cotree is n = 1 +
∑k+`
i=1 (qi − 1), the last equality follows. This shows

that no cograph has eigenvalue in (-1,0). As cographs are an hereditary class (see Chapter 4) of graphs, any

induced subgraph of G is also a cograph and hence any induced subgraph of G has no eigenvalue in (-1,0).

Conversely, if G is not a cograph, then G has an induced P4 whose eigenvalues are approximately

±1.61803,∓0.61803, hence P4 has an eigenvalue in (-1,0).

8. Other applications. In this section, we describe briefly some applications of the eigenvalue location

algorithms presented in the previous sections.

We first notice that our algorithms can be adapted easily for computing the characteristic polynomial

pA(λ) of a symmetric matrix A. One way of doing this is by carrying out the computations prescribed by

our procedures in a symbolic way. More precisely, as pA(λ) = det(A−λI), if we treat λ as an indeterminate

in our diagonalization of A − λI, each diagonal value will be a rational function of λ. Since the resulting

matrix is diagonal and was obtained from A− λI by a sequence of congruence operations as in (1.3), which

do not affect the determinant, the product of these diagonal elements gives the required determinant.

Example 8.1. As an illustration, we compute the characteristic polynomial of the Laplacian matrix of

the tree given in Fig. 3 or, equivalently, we compute∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ 0 1 0 0 0 0

0 1− λ 1 0 0 0 0

1 1 3− λ 0 0 1 0

0 0 0 1− λ 1 0 0

0 0 0 1 2− λ 0 1

0 0 1 0 0 2− λ 1

0 0 0 0 1 1 2− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The application of the algorithm is depicted in Fig. 26. The initial value di assigned to each vertex appears

on the first tree of Fig. 26. Recall that the algorithm does not process the leaves. The leaves’ parents are

assigned the values b1 := 3− λ− 2
1−λ = λ2−4λ+1

1−λ and b2 := 2− λ− 1
1−λ = λ2−3λ+1

1−λ , respectively. Next, the

algorithm computes the value c1 := 2− λ− 1
b1 = −λ

3−6λ2+8λ−1
λ2−4λ+1 . Finally, it computes the value at the root:
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2− λ

2− λ 3− λ

1− λ

1− λ

2− λ 1− λ

c2

c1 b1

1− λ

1− λ

b2 1− λ

Figure 26. Application of the tree algorithm.

c2 := 2 − λ − 1
b2
− 1

c1
= −λ (−1+λ)(λ4−10λ3+33λ2−38 ,λ+7)

(λ3−6λ2+8λ−1)(λ2−3λ+1) . These final diagonal values are depicted on the

second tree of Fig. 26.

The characteristic polynomial of the graph is given by the product

(1− λ)3 · b1 · b2 · c1 · c2 = λ (1− λ)
2 (
λ4 − 10λ3 + 33λ2 − 38λ+ 7

)
.

Suppose that A is a symmetric matrix of order n to which one of our algorithms apply (and that the

treewidth or clique-width is bounded by an absolute constant if the corresponding algorithm is applied).

We may use our algorithms to compute the characteristic polynomial pA(λ) of A in time O(n2) using

interpolation. We sketch the approach. We first generate n + 1 arbitrary distinct values xj ∈ R, j =

0, . . . , n. For each xj , we apply the algorithm to A− xjI, to obtain a diagonal d = (d1, . . . , dn). Computing

yj =
∏n
i=1 di gives a point (xj , yj) such that pA(xj) = yj . We then apply interpolation to the points

(x0, y0), . . . , (xn, yn), to obtain pA(λ). Each pair (xi, yi) may be computed in time O(n), so that it takes

time O(n2) to generate the set of points. Finally, it is well known that interpolation of such a set of points

can be done in time O(n2) and space O(n). We refer to [39] for details.

The symbolic approach illustrated in Example 8.1 has been useful for matrices whose underlying graphs

have a simple structure. In particular, it has been used for computing characteristic polynomials of trees of

diameter 3 in [57]. It was the main tool for ordering these trees by their algebraic connectivity and by their

Laplacian energy. For a graph G with Laplacian spectrum 0 = µ1 ≤ · · · ≤ µn and average degree d, the

algebraic connectivity is given by µ2 and the Laplacian energy is given by

LE(G) =

n∑
i=1

|µi − d|.

In [26], the computation of characteristic polynomials of trees with small diameter was an important

ingredient in an intricate proof of the following upper bound on the parameter Sk(T ), the sum of the k

largest Laplacian eigenvalues of any n-vertex tree T :

(8.43) Sk(T ) ≤ n− 2 + 2k − 2k − 2

n
.

This bound has led to the proof of the nice conjecture that the star K1,n−1 is the tree with largest Laplacian

energy.

In [27], the bound given by Equation (8.43) was improved further for trees having more than 5 vertices

and diameter greater than 3. This enabled the authors to rank the trees having largest Laplacian energy.
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More precisely, given a positive integer n, they found a class Cn of cardinality approximately
√
n such that

if T ∈ Cn and T ′ /∈ Cn are n-vertex trees, then LE(T ) > LE(T ′).

It is worth noticing that good upper bounds for Sk(T ) may be applied to prove the validity of the

celebrated Brouwer’s conjecture for other classes of graphs. We recall that Brouwer’s conjecture states that

for any graph G and k ∈ {1, . . . , n},

Sk(G) ≤ E(G) +

(
k + 1

2

)
.

Indeed, as an illustration, Wang, Huang, and Liu [58] used inequality (8.43) to prove Brouwer’s conjecture

for unicyclic graphs, for bicyclic graphs (if k 6= 3) and for tricyclic graphs (with some restrictions). In the

papers [27, 58], the authors prove that Brouwer’s conjecture holds for k sufficiently large.

A graph G is said to be M -integral if the spectrum of the matrix M associated with G is composed only

by integers. The eigenvalue location algorithms in this paper have been used to study integral graphs in

several ways. In the original paper for trees [37], the authors studied the A-integrality of caterpillars, that is,

the integrality with respect to the adjacency matrix. Patuzzi et. al [49] used the algorithm as a tool to study

the A-integrality of trees of small diameter and determined infinite families of trees with integral spectral

radius. In [18], Braga et. al introduced a location algorithm for unicyclic graph and, as an application,

studied the A-integrality of closed caterpillars, which are obtained from cycles by attaching pendant paths.

Using the cograph algorithm, Allem and Tura [1] studied the A-integrality of cographs. In a recent paper [3],

Belardo et al. developed an algorithm for locating eigenvalue of signed graphs and found families of integral

signed graphs.

Two nonisomorphic graphs are M -cospectral if the matrices M associated with them have the same

spectrum. Two graphs that are not M -cospectral graphs are said to be M -equienergetic if they have the

same M -energy. The algorithm for locating eigenvalues in threshold graphs, originally developed in [38],

was used in [40] to find families of A-cospectral threshold graphs as well as families of A-equienergetic and

integral threshold graphs

An application of eigenvalue location to the normalized Laplacian matrix of trees was studied in [15].

Among other things, the authors studied the multiplicity of normalized Laplacian eigenvalues of trees with

small diameter. Their main result is the characterization of the trees that have 4 or 5 distinct normalized

Laplacian eigenvalues. They also show that, for fixed diameter, these trees are determined by their normalized

Laplacian spectrum.

The analytical approach made possible via the recurrence relation technique of Section 6 seems to

be a powerful tool to study the spectral radius. A careful analysis of these recurrence relations (with

different initial conditions) has been used to compare spectral radii in classes of trees, enabling one to solve

combinatorial/algebraic problems where traditional techniques had failed.

In [46], for example, it was proved that, for a fixed n, all starlike trees on n vertices have distinct

spectral radii. Moreover, the authors found that the order induced on starlike trees by their spectral radii

coincides with the lexicographic order of their path lengths. In [5], the authors ordered infinite families of

trees by their spectral radius. More precisely, the authors considered trees with spectral radius in the real

interval (2,
√

2 +
√

5) and their ordering with respect to the spectral radius. By doing so, the authors proved

a conjecture about the ordering of trees with smallest spectral radius, open since 2002, and obtained the
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first eight trees of even order with largest spectral radius. It is worth mentioning that the interval under

consideration is very small and traditional tools from numerical analysis have failed.

Eigenvalue location seems also to be useful for studying the eigenvalues distribution of matrices. For the

Laplacian matrix L (of a graph G) and an interval I, let mG(I) be the number of eigenvalues of L which lie

in I. It is well known that mG[0, n] = n, that is, for any Laplacian eigenvalue µ of G, 0 ≤ µ ≤ n. For an

arbitrary n-vertex tree T , it was conjectured in [57] that

(8.44) mT [0, dn) ≤
⌈n

2

⌉
,

where dn = 2− 2/n is the average degree, meaning that at most half of the Laplacian eigenvalues are larger

than its average. A progress toward proving the validity of the conjecture was made in [17], where it was

shown that mT (0, 2] ≤ dn2 e. The recurrence relation given by Equation (6.31), used in an ingenious way,

was the main tool to prove that the conjecture is true in [36]. The conjecture was independently proved by

Sin [55] also using a proof based on the eigenvalue location algorithm.
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[6] U. Bertelè and F. Brioschi. Nonserial Dynamic Programming. Elsevier, 1972.
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[43] M. Lepović and I. Gutman. Some spectral properties of starlike trees. In Bull. Acad. Serbe Sci. Arts, vol. 26. Cl. Sci.

Math. Nat.,Sci. Math. Académie Serbe des Sciences et des Arts, 107–113, 2001.

[44] A. Mohammadian and V. Trevisan. Some spectral properties of cographs. Discret. Math., 339(4):1261–1264, 2016.

[45] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
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