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Abstract We propose a two-fold empirical study applying the concept of realized semi-
covariances as introduced by Bollerslev et al. (2020): in the first part of the paper we aim
to estimate and forecast the realized volatility of an equally weighted portfolio formed
by Brazilian B3 asset returns, whereas in the second part we search and find an optimum
portfolio for these returns. In both parts we use high frequency data of ten assets from
different segments and among the most negotiated in B3 financial market from July
2018 to January 2021. In addition, we investigate whether a Markov Switching strategy
fits well to our volatility modeling approach considering that our observed data starts
some time before the Covid-19 pandemic and spans well into the pandemic period. Ma-
chine Learning Regularization (LASSO) methods are employed to select covariates and
potentially improve volatility estimation and forecasting. In the portfolio optimization
analysis we see that under higher frequency rebalancing periods, minimum variance
portfolios using the negative semicovariance matrices present better performances in
terms of risk-adjusted returns compared to those that use the standard realized covari-
ance matrices. In general we see that the realized semicovariances bring improvements
to the solutions of our two problems.
Keywords: High-frequency data; Volatility forecasting; Realized semicovariances; Port-
folio optimization; Markov switching; LASSO; Economic performance.
JEL Code: C32, C53, G11, C58.

1. Introduction

Realized variance, the most commonly used realized measure, is con-
structed by summing up squared intra-daily returns. There is an extensive
statistical theory for this subject derived in papers by Barndorff-Nielsen and
Shephard (2002), Meddahi (2002), Andersen et al. (2003), and Mykland and
Zhang (2009), among others.

This paper aims to explore the empirical contribution of realized semi-
covariance measures (described in Bollerslev et al. (2020)) in the Brazilian
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financial market for two problems: i) realized volatility (RV) estimation and
forecasting, and ii) portfolio optimization (PO). Our contribution is on the
empirical side, showing that these measures can help achieve better results
in both statistical (for RV) and economic (for PO) terms. Regarding RV,
our most complex approach uses a Markov-Switching Semi-Covariance Het-
erogenous Autorregressive (MS-SCHAR) model, where a LASSO regular-
ization is applied to select relevant variables (in a pre/in-pandemic data split).
We use the popular HAR model of Corsi (2009) as the benchmark for com-
parison. In terms of portfolio optimization, our benchmark is the minimum
variance optimal portfolio obtained with the traditional realized covariance
matrix as a risk measure.

In the context of realized measures, Hansen et al. (2012) introduce the Re-
alized GARCH, a GARCH model that incorporates realized measures as co-
variates. Patton and Sheppard (2015), through an empirical framework, show
that future volatility is more strongly related to the volatility of past negative
returns than to that of positive returns and that the impact of a price jump
on volatility depends on the sign of the jump, with negative (positive) jumps
leading to higher (lower) future volatility.

According to Bollerslev et al. (2020), in the multivariate context, a rapidly-
growing recent literature has forcefully advocated for the use of high-frequency
intra-daily data to more reliably estimate lower-frequency return covariance
matrices as in Andersen et al. (2003); Barndorff-Nielsen and Shephard (2004);
Barndorff-Nielsen et al. (2011).

Noureldin et al. (2012) propose the HEAVY models, a new class of mul-
tivariate volatility models that utilizes high-frequency data. Their empirical
results suggest that the HEAVY model outperforms the multivariate GARCH
model in an out-of-sample analysis, with the gains being particularly signif-
icant at shorter forecast horizons. Borges et al. (2015) show that covariance
matrices based on higher frequency data lead to better performance indica-
tors for a Brazilian stock portfolio. Aït-Sahalia and Xiu (2016) analyze that
the crisis period of 2007-2010 did indeed result in an increase in quadratic
variation in all the assets considered by them; however, it did not cause a
significant change in the breakdown between their respective Brownian and
jump contributions, with both moving consistently with one another. Boller-
slev et al. (2018) depict through an empirical framework the relationship be-
tween volume, volatility, and public news announcements.

Under the assumption that investors care more about loss than gain, Barndorff-
Nielsen et al. (2010) introduce the realized semivariance, a measure of risk
that takes the return sign into account, and motivate Bollerslev et al. (2020) to
propose a decomposition of the realized covariance matrix into three realized
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semicovariance matrix components dictated by the signs of the underlying
high-frequency returns. According to the authors, the realized semicovari-
ance matrices may be seen as a high-frequency multivariate extension of the
semivariances originally proposed in Markowitz (1952); Mao (1970); Hogan
and Warren (1972); Fishburn (1977).

Using high-frequency data for a large cross-section of U.S. equities, Boller-
slev et al. (2020) find that models that incorporate the realized semicovariance
measures have superior forecast performance than models that employ the re-
alized semivariance measures or just the realized covariance matrix.

Çelik and Ergin (2014), using ISE-30 index futures data, find the supe-
riority of high frequency based volatility forecasting models over traditional
GARCH models. Given the different nature of volatility in emerging mar-
kets, as outlined in Aggarwal et al. (1999), and the challenges imposed on
such markets due to idiosyncratic factors, studied by Bekaert and Harvey
(2003), such as segmentation, capital flows, political risk, among others, re-
alized semicovariance measures might bring extra relevant information to the
game, particularly to improve the capability of realized volatility predicting
and portfolio optimization in the Brazilian stock market.

Set against this background and given the importance of the covariance
matrix of asset returns for portfolio management, based on Bollerslev et al.
(2020), we attack a two-fold problem via realized semicovariance measures:
Realized Volatility Forecasting and Portfolio Optimization. Our dataset is
composed of the most traded assets (spread a priori over 6 different sectors)
in the B3 Brazilian stock market from July 2018 to January 2021. Further-
more, since our data includes the Covid-19 pandemic, we also consider a
Markov Switching modeling approach 1. Machine Learning Regularization
(LASSO) methods are employed to select covariates and potentially improve
volatility estimation and forecasting. Our main findings suggest that i) the
realized semicovariances help to better explain and forecast the realized port-
folio returns variance; ii) under different regimes, the relation among these
realized measures can change; iii) using LASSO, we see that including all
realized semicovariances within a HAR Model can lead to model “overfit-
ting”; and iv) under higher frequency rebalancing periods, using the realized
semicovariances brings improvements to the minimum variance portfolio per-
formance.

We must stress that there are many other possible approaches to be taken
for forecasting realized volatility and finding optimal portfolios. Under the
popularity of various recent machine learning methods, Kristjanpoller et al.

1For alternative approaches under stress market periods, see, for instance, Emre Alper et al.
(2012), which use MIDAS modeling.
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(2014) and Kim and Won (2018), for instance, employ hybrid Neural Network
GARCH models for volatility forecasting. Nevertheless, their datasets are at
a lower daily frequency, whereas ours are high frequency data. We empha-
size that our goal is limited to evaluating the contribution of semicovariance
realized measures, hence we try to isolate this contribution by comparing our
proposal to similar models that do not use these measures.

Beyond this introduction, this work has six more sections. In section 2,
we describe the variance components of asset returns in the univariate and
multivariate contexts. In section 3, we describe the statistical models used in
the present work to analyze the relationship between the portfolio realized
variance and its components, whereas in section 4, we apply these models to
evaluate how much the realized semicovariances help to explain and predict
an equally weighted stock portfolio variance in the Brazilian financial mar-
ket. We present the portfolio optimization theoretical framework in section 5.
Section 6 brings the application of the realized measures presented in Boller-
slev et al. (2020) to evaluate if their use brings improvements in the economic
performance for stock portfolios. Finally, we make concluding remarks in
section 7.

2. Realized Volatility Measures

Building upon the work of Barndorff-Nielsen et al. (2010), Bollerslev
et al. (2020) expanded their research into the multivariate context. Let XXX t =
(X1,t , . . . ,Xd,t)

⊤ denote a d-dimensional log-price process, sampled on a reg-
ular time grid 0 = t0 < t1 < · · · < tn = T over a fixed time span T > 0. We
denote the ith return as ∆∆∆iXXX = XXX ti −XXX ti−1 . The realized covariance matrix is
defined as:

R̂C =
n

∑
i=1

(∆∆∆iXXX)(∆∆∆iXXX)⊤. (1)

We use [·]+ = max{x,0} and [·]− = min{x,0} to denote the component-
wise positive and negative elements of the real vector x. The correspond-
ing “positive”, “negative”, and “mixed” realized semicovariance matrices are
simply defined as:

R̂SCpositive =
n

∑
i=1

[∆∆∆iXXX ]+([∆∆∆iXXX ]+)⊤,

R̂SCnegative =
n

∑
i=1

[∆∆∆iXXX ]−([∆∆∆iXXX ]−)⊤,

R̂SCmixed =
n

∑
i=1

(
[∆∆∆iXXX ]+([∆∆∆iXXX ]−)⊤+[∆∆∆iXXX ]−([∆∆∆iXXX ]+)⊤

)
.

(2)
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Note that R̂C = R̂SCpositive + R̂SCnegative + R̂SCmixed . Also, R̂SCpositive and
R̂SCnegative are defined as sums of vector outer-products and are thus posi-
tive semidefinite, whereas R̂SCmixed is indefinite.

Motivated by empirical observations from the returns of each of the 30
Dow Jones Industrial Average (DJIA) stocks on two different days, Bollerslev
et al. (2020) noted that estimates of R̂SCpositive and R̂SCnegative can diverge
in response to the content of the news or event. The theoretical framework
that illustrates the distinction between the information carried by the positive
semicovariance and the negative semicovariance matrices can be found in
Bollerslev et al. (2020).

3. Volatility forecasting

Various models have been developed to forecast the realized variance of
a portfolio, and we discuss some of these below. The realized variance of a
portfolio with weights www can be expressed as

R̂V
port

= www⊤R̂Cwww, (3)

where R̂C is defined in (1). Since R̂C = R̂SCpositive + R̂SCnegative + R̂SCmixed ,
we have

R̂V
port

= www⊤R̂Cwww

= www⊤R̂SCpositivewww+www⊤R̂SCnegativewww+www⊤R̂SCmixedwww

= P̂port + N̂ port + M̂port .

(4)

A widely-used model for forecasting realized variance is the HAR model
of Corsi (2009). It is defined by

R̂V
port
t+1|t = α0 +αdR̂V

port
t +αwR̂V

port
t−1:t−4 +αmR̂V

port
t−5:t−21, (5)

where R̂V
port
t−l:t−k =

1
k−l+1 ∑

k
s=l R̂V

port
t−s . As in Bollerslev et al. (2020), we con-

sider it as our benchmark model for evaluating forecast performance.
Alongside the HAR model, we borrow the concept from Patton and Shep-

pard (2015) and consider a HAR extension, the Semivariance HAR (SHAR),
which adds semivariances to the set of explanatory variables:

P̂SV =
n

∑
i=1

[www⊤[∆∆∆iXXX ]+]2

N̂SV =
n

∑
i=1

[www⊤[∆∆∆iXXX ]−]2,
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where www represents the portfolio weights, ∆∆∆iXXX = XXX ti −XXX ti−1 is the i-th intra-
daily return of a d-dimensional log-price process XXX t , and [·]+ =max{x,0} and
[·]− =min{x,0} represent the component-wise positive and negative elements
of the real vector x. The forecasting scheme results in

R̂V
port
t+1|t = α0 +αd,pP̂SV t +αd,nN̂SV t +αwR̂V

port
t−1:t−4 +αmR̂V

port
t−5:t−21. (6)

This model allows us to examine whether semivariances provide addi-
tional information when forecasting the portfolio realized variance.

Among the HAR extensions, following Bollerslev et al. (2020), we con-
sider another model, the SemiCovariance HAR (SCHAR). This model in-
cludes the semicovariance components shown in (4). The one-step-ahead fore-
cast for the portfolio realized variance is

R̂V
port
t+1|t = α0 +αd,pP̂port

t +αw,pP̂port
t−1:t−4 +αm,pP̂port

t−5:t−21

+αd,nN̂ port
t +αw,nN̂ port

t−1:t−4 +αm,nN̂ port
t−5:t−21

+αd,mM̂port
t +αw,mM̂port

t−1:t−4 +αm,mM̂port
t−5:t−21.

(7)

In order to select the best predictors while avoiding “overfitting”, we ap-
ply the Least Absolute Shrinkage and Selection Operator (LASSO) proposed
by Tibshirani (1996) to (7), resulting in what we refer to as SCHAR-lasso-in.

Our LASSO estimator, considering α0 as pre-estimated and R̂V
port
t cor-

rected by its mean, is given by the solution of

α̂αα = arg min

[
RSS(α1, . . . ,α9)+λ

9

∑
j=1

|α j|

]
, (8)

where ααα = (α1,...,α9) = (αd,p, . . . ,αm.m), RSS(α1,...,α9) = ∑
T
t=22(R̂V

port
t −

α1P̂port
t−1 −·· ·−α9M̂port

t−6:t−22)
2.

The tuning parameter λ is typically chosen using data-driven techniques,
such as cross-validation. In this work, we use a 10-fold cross-validation method.
Alternatively, information criteria can also be used to select this parameter.

As the final model specification, we introduce a two-regime Markov-
Switching (MS) SCHAR model. The state variable St in this model is an un-
observable Markov chain. The estimation process is based on the Kim filter,
as described in the work of Kim and Nelson (1999). Given that the probabil-
ity distribution of the realized volatility deviates substantially from the nor-
mal distribution, we estimate the coefficients using the quasi-maximum like-
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Table 1
Portfolio’s stocks

Company’s Name Ticker Symbol Sector

Ambev S.A. ABEV3 Consumer Staples
B3 B3SA3 Financials
Bradesco S.A. BBDC4 Financials
Intermedica S.A. GNDI3 Health Care
Itaú S.A. ITUB4 Financials
JBS S.A. JBSS3 Consumer Staples
Magazine Luiza S.A. MGLU3 Consumer Discretionary/IT
Petrobras S.A. PETR4 Oil & Gas
Suzano S.A. SUZB3 Industrials
Vale S.A. VALE3 Industrial Materials

Stocks included in the portfolio. IT stands for Information Technology.

lihood estimation method, which was introduced by Lindsay (1988). Mathe-
matically, this is expressed as:

ℓ=
T

∑
t=1

log

(
1

∑
St=0

f
(

R̂V
port
t |St ,ψt−1

)
Pr[St |ψt−1]

)
. (9)

where

f
(

R̂V
port
t |St ,ψt−1

)
= 1√

2πσ2
St

e
− (

R̂V port
t −α0,St −αd,p,St P̂port

t−1 −···−αm,m,St M̂port
t−6:t−22)

2

2σ2
St .

Because the regimes St are unobservable, to evaluate the log-likelihood in (9),
we need to calculate the weights Pr[St |ψt−1] for St = 0 and St = 1 (the two
states). We carry out this step using the Kim filter, as explained in Kim and
Nelson (1999).

4. Empirical exercise 1

In this section, we forecast the realized volatility of an equally weighted
stock portfolio using the models described in Section 3. Our portfolio consists
of 10 stocks from the BOVESPA index, as shown in Table 1. These stocks
were chosen for their high trading volumes and to ensure heterogeneity across
different sectors of the economy.

Our sample period spans from July 2018 to January 2021, a total of 624
trading days.
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Table 2
Descriptive statistics for intra-daily returns

Statistic N Mean St. Dev. Min Max

ABEV3 51,486 0.00000 0.003 −0.105 0.098
B3SA3 51,486 0.00003 0.003 −0.195 0.171
BBDC4 51,486 0.00001 0.003 −0.118 0.151
GNDI3 51,486 0.00004 0.004 −0.226 0.179
ITUB4 51,486 0.00001 0.003 −0.107 0.124
JBSS3 51,486 0.00003 0.004 −0.235 0.185
MGLU3 51,486 0.00004 0.004 −0.262 0.197
PETR4 51,486 0.00002 0.004 −0.245 0.170
SUZB3 51,486 0.00001 0.003 −0.122 0.098
VALE3 51,486 0.00002 0.003 −0.181 0.233

Descriptive statistics for intra-daily returns.

Table 3
Descriptive statistics for portfolio realized measures

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

R̂V
port

624 0.0002 0.0005 0.00002 0.0001 0.0001 0.005
P̂port 624 0.0001 0.0003 0.00002 0.0001 0.0001 0.003
N̂ port 624 0.0001 0.0003 0.00001 0.0001 0.0001 0.004
M̂port 624 −0.0001 0.0001 −0.001 −0.0001 −0.00005 −0.00002

We construct the realized measures using 5-minute intra-daily returns2,
excluding the overnight returns. Table 2 presents basic summary statistics
for the intra-daily returns of the stocks, while Table 3 provides descriptive
statistics for R̂V

port
,P̂port ,N̂ port ,M̂port .

4.1 In-sample analysis

To conduct the in-sample analysis, we first estimate three variations of
HAR Models discussed previously: the HAR, SHAR, and SCHAR.

Table 4 presents the estimation results for each of these models. We ob-
serve that all coefficients are statistically significant at the 5% level in the
first model. In the second model, we find that the daily positive semivari-
ance (P̂SV t−1) and both weekly and monthly realized covariances (R̂V

port
t−2:t−5,

R̂V
port
t−6:t−22) are the main contributors to the realized portfolio variance (R̂V t ).

2The dataset can be obtained from https://github.com/rricco/realvol/tree/master/data
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Lastly, in the third model, we note that all coefficients except the monthly
negative semicovariance and monthly positive semicovariance (N̂ port

t−6:t−22 and
P̂port

t−6:t−22), are statistically significant at the 5% level. This contrasts with the
analysis in Bollerslev et al. (2020), where all negative semicovariances are
significant at the 5% level. Looking at the information criteria, both AIC and
BIC measures suggest that the inclusion of realized semivariance and realized
semicovariance components improves the explanation of the realized portfo-
lio variance. In particular, SCHAR is identified as the best model according
to these criteria.

Additionally, Table 5 displays the coefficients selected by the Least Abso-
lute Shrinkage and Selection Operator (LASSO) from the SCHAR Model. As
shown, the shrinkage method identifies four covariates (P̂port

t−1 , P̂port
t−2:t−5, M̂port

t−1 ,
M̂port

t−6:t−22) as the best predictors of the portfolio realized variance.

4.2 In-sample analysis under different regimes

Our sample spans from 2 July 2018 to 8 January 2021, a period that in-
cludes the COVID-19 pandemic, which significantly increased financial mar-
ket volatility. To account for this, we divide our dataset into a pre-pandemic
period (from 2 July 2018 to 28 February 2020) with 388 observations, and
a post-pandemic period (from 2 March 2020 to 8 January 2021) with 214
observations. We then apply the Least Absolute Shrinkage and Selection Op-
erator (LASSO) to the SCHAR Model for each sub-period. The results for
each period are presented in Table 6.

We select variables from Table 6 with non-zero coefficients for either of
the two sub-periods (P̂port

t−1 ,P̂port
t−2:t−5, N̂ port

t−1 , N̂ port
t−2:t−5, M̂port

t−1 , and M̂port
t−6:t−22) and

run a Markov Switching model for the full sample. Based on these results, we
next adjust only those coefficients that were statistically significant for both
regimes (P̂port

t−1 and P̂port
t−2:t−5). Table 7 shows the estimates for the MS-SCHAR

Model. Notably, only the first two coefficients (P̂port
t−1 ,P̂port

t−2:t−5) vary according
to the state variable (St ), and all covariate coefficients are statistically signifi-
cant.

Figures 1 and 2 illustrate a prominent regime change from February 2020
to July 2020, coinciding with the global COVID-19 pandemic outbreak. These
figures suggest that the relationship between the portfolio’s realized variance
and its daily positive realized semicovariance component (P̂port

t−1 ) strengthens
in stressed scenarios. This is indicated in Table 7, where the coefficient of
the daily positive semicovariance under regime 1 (P̂port

t−1,1) is greater than the
coefficient of the daily positive semicovariance under regime 0 (P̂port

t−1,0). The
transition probabilities from the Markov Switching Model are available in
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Table 4
HAR estimates

Dependent variable: R̂V
port
t

HAR SHAR SCHAR

R̂V
port
t−1 0.612∗∗∗ (0.040)

P̂SV t−1 6.639∗∗∗ (0.509)

N̂SV t−1 0.601∗∗∗ (0.455)

R̂V
port
t−2:t−5 0.306∗∗∗ (0.047) 0.210∗∗∗ (0.041)

R̂V
port
t−6:t−22 −0.069∗∗ (0.034) −0.096∗∗∗ (0.030)

P̂port
t−1 1.232∗∗∗ (0.093)

P̂port
t−2:t−5 1.726∗∗∗ (0.252)

P̂port
t−6:t−22 −0.561 (0.860)

N̂ port
t−1 −0.509∗∗∗ (0.074)

N̂ port
t−2:t−5 −1.408∗∗∗ (0.212)

N̂ port
t−6:t−22 1.228 (0.772)

M̂port
t−1 −0.937∗∗∗ (0.222)

M̂port
t−2:t−5 −1.249∗∗ (0.573)

M̂port
t−6:t−22 2.655∗∗∗ (0.796)

Observations 602 602 602
R2 0.704 0.763 0.809
Adjusted R2 0.703 0.761 0.807

Residual s.e.
0.0003

(df = 598)
0.0002

(df = 597)
0.0002

(df = 592)

F Statistic
474.398∗∗∗

(df = 3; 598)
479.963∗∗∗

(df = 4; 597)
279.366∗∗∗

(df = 9; 592)

AIC −9972.87 −10103.91 −10225.65
BIC −8240.47 −8367.11 −8466.84
Parameter estimates and their respective standard errors in brackets for each model in (5), (6) and (7), re-
spectively. The first column shows us the covariates used across models. ∗ ∗ ∗, ∗∗ and ∗ represent whether a
coefficient is significant at 1%, 5% or 10% levels, respectively.
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Table 5
SCHAR-lasso-in estimates

Dependent variable: R̂V
port
t

P̂port
t−1 0.9933

P̂port
t−2:t−5 0.370

P̂port
t−6:t−22 0

N̂ port
t−1 0

N̂ port
t−2:t−5 0

N̂ port
t−6:t−22 0

M̂port
t−1 −0.5523

M̂port
t−2:t−5 0

M̂port
t−6:t−22 0.1529

Lasso parameter estimates for model (7). The covariates chosen by lasso are P̂port
t−1 , P̂port

t−2:t−5, M̂port
t−1 , M̂port

t−6:t−22.

Table 6
SCHAR-lasso-in estimates for each sub-period

Dependent variable: R̂V
port
t

SCHAR-lasso-in-pre SCHAR-lasso-in-post

P̂port
t−1 0.3258 0.9780

P̂port
t−2:t−5 0 0.3763

P̂port
t−6:t−22 0 0

N̂ port
t−1 0.4056 0

N̂ port
t−2:t−5 0.1538 0

N̂ port
t−6:t−22 0 0

M̂port
t−1 0 −0.6121

M̂port
t−2:t−5 0 0

M̂port
t−6:t−22 −0.3422 0.2565

Lasso parameter estimates for model (7) for each sub-period. The covariates chosen by lasso for the pre-
pandemic period are P̂port

t−1 , N̂ port
t−1 , N̂ port

t−2:t−5, M̂port
t−6:t−22. On the other hand, the covariates chosen by lasso for the

post-pandemic period are P̂port
t−1 , P̂port

t−2:t−5, M̂port
t−1 , M̂port

t−6:t−22
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Table 7
Switching Markov SCHAR estimates

Dependent variable: R̂V
port
t

P̂port
t−1,0 0.5848∗∗∗ (0.0974)

P̂port
t−1,1 1.2234∗∗∗ (0.1730)

P̂port
t−2:t−5,0 1.4123∗∗∗ (0.1213)

P̂port
t−2:t−5,1 2.0681∗∗∗ (0.1719)

N̂ port
t−1 −0.5286∗∗∗ (0.0595)

N̂ port
t−2:t−5 −1.3821∗∗∗ (0.1755)

M̂port
t−1 −0.9829∗∗∗ (0.2029)

M̂port
t−6:t−22 0.6257∗∗∗ (0.1230)

Parameter estimates and their respective standard errors in brackets. ∗∗∗, ∗∗ and ∗ represent whether a coeffi-
cient is significant at t 1%, 5% or 10% levels, respectively.

Table 8
Estimated transition probabilities

to:

0 1

from: 0 0.9908 0.0092
1 0.0931 0.9069

Estimated transition probabilities for St = 0,1.

Table 8. In a first-order Markov chain with two possible states (regimes), the
smoothed probabilities indicate a state (St = 0) characterized by low portfo-
lio volatility and another state (St = 1) marked by high portfolio volatility (a
stressed scenario) due to the COVID-19 pandemic.

4.3 Out-of-sample analysis

Our out-of-sample analysis employs the four models previously described:
HAR, SHAR, SCHAR, and SCHAR-lasso-in. We use the same equally-weighted
portfolio as in the in-sample analysis. We construct rolling out-of-sample one-
step ahead forecasts based on each of these models, re-estimating the model
parameters daily using the most recent 542 observations. 3. Given that Boller-
slev et al. (2020) suggests the SCHAR model may be “over-parameterized”
in their out-of-sample analysis, we also include the SCHAR-lasso-out model,

3The code for running the rolling window analysis is available at https://github.com/rricco/realvol
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Figure 1
Realized variance of the equally-weighted portfolio from Apr/2018 to Jan/2021
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Figure 2
Smoothed probabilities for regime 0 (St = 0) from the Markov Switching

SCHAR model
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Table 9
Performance comparison for portfolio variance forecasts

Model MSE MAE

HAR 1.00∗ 1.00∗
SHAR 1.02∗ 1.17∗

SCHAR 1.38 1.59
SCHAR-lasso-in 1.01∗ 1.19∗

SCHAR-lasso-out 1.02∗ 1.21∗

Mean squared errors (MSE) and mean absolute errors (MAE) for the forecasts relative to the HAR Model. The
values in bold indicate the method with lowest values of MSE and MAE. Cells with ∗ indicate that the method
is included in the MCS constructed based on the Tmax statistic using the squared/absolute errors with 5% of
significance.

which applies LASSO to each rolling window estimation, in addition to the
SCHAR-lasso-in model.

We evaluate the forecast performance of the models using the model con-
fidence set (MCS) procedure introduced by Hansen et al. (2011). The MCS
aims to determine the set of models containing the best performers with a
given probability, based on a loss function such as mean squared error (MSE).
This procedure employs bootstrap implementation to compute the p-values
for all models.

Table 9 presents the forecast accuracy of each model, measured by both
MSE and mean absolute error (MAE). The smallest MSE and MAE are indi-
cated in bold. The cells with ∗ denote the models chosen by the MCS proce-
dure. Interestingly, the simple HAR Model is the most accurate, even though
it explained the dependent variable variance the least in the previous sec-
tion. It is worth noting that the SHAR, SCHAR-lasso-in, and SCHAR-lasso-
out models were included in the MCS procedure. Moreover, considering the
sample size and the portfolio’s dimension are not as large in this work as in
Bollerslev et al. (2020), our results align with theirs because:

• In Bollerslev et al. (2020), the discrepancy in forecast accuracy among
the models is greater for larger dimensional portfolios.

• The authors propose that the SCHAR Model might be “over-parameterized”
and, as such, it could underperform in out-of-sample analysis. How-
ever, when we mitigate the “overfitting” in the SCHAR Model through
the LASSO method, we achieve better results as shown in Table 9.

We also investigate which covariates are chosen in each rolling window
estimation in the SCHAR-lasso-out Model. Figure 3 indicates that the covari-
ate chosen most frequently by LASSO is P̂port

t , selected 60 times out of 60,
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Figure 3
Number of times each covariate is chosen by lasso from SCHAR-lasso-out model
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followed by P̂port
t−1:t−4, chosen 27 times out of 60, and finally M̂port

t , selected 3
times out of 60.

Figure 4 displays the sample mean estimate for each covariate and its
sample confidence interval using two sample standard deviations in the rolling
window analysis. The sample mean estimate for P̂port

t is 0.8185, for P̂port
t−1:t−4

it is 0.0525, and for M̂port
t it is −0.0595.
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Figure 4
Mean estimate for each covariate (dots on the plot) and its sample confidence

interval using two sample standard deviations (vertical black line)
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5. Portfolio Optimization

The covariance matrix plays a key role in portfolio optimization theory. In
the seminal work by Markowitz (1952), the task becomes either minimizing
the portfolio’s risk (variance) for a fixed mean return or maximizing the mean
return for a fixed risk. Formally, we can derive the optimum portfolio as the
solution to the following problem:

min
www

www⊺Ct|t−1www− 1
λ

www⊺
µt|t−1,

where www is the vector of portfolio weights, Ct|t−1 is the conditional covariance
matrix, µt|t−1 is the vector of the conditional mean, and λ is the investor’s risk
aversion coefficient.

To avoid issues related to estimation errors associated with estimating
conditional return means, we focus on minimum variance portfolios as in
Engle and Sheppard (2008); Borges et al. (2015), among many others. Math-
ematically, our problem becomes the following:

min
www

www⊺Ct|t−1www subject to www⊺1 = 1, (10)

where 1 is the vector of ones.
One of the pioneering works in empirical applications of portfolio alloca-

tion using intra-daily data is the paper by Fleming et al. (2003). The authors
suggest that covariance matrices estimated using intra-daily returns can lead
to gains in portfolio performance compared to those estimated using daily
returns.

Another significant contribution to this topic is the paper by Liu (2009).
The author concludes that the gains generated by intra-daily returns depend
on the rebalancing frequency and the prediction horizon. According to the
author, if an investor rebalances his portfolio monthly with at least the previ-
ous 12 months of data, daily and intra-daily returns yield similar performance
results. However, it is beneficial to use intra-daily data when the portfolio is
rebalanced daily. Hautsch et al. (2013) demonstrate that large-scale portfolio
covariance matrices based on high-frequency data result in significantly lower
portfolio volatility than methods employing daily returns.

In this context, Borges et al. (2015) compare different covariance ma-
trix estimators based on intra-daily or daily data for the Brazilian market.
Their analysis suggests that conditional covariance estimates outperform un-
conditional estimators, and that covariance matrix forecasts based on high-
frequency data yield lower portfolio volatility compared to using daily re-
turns.
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Given this backdrop, we investigate the performance of a Brazilian stock
portfolio consisting of 10 stocks from the Ibovespa index, using the realized
semicovariance measures of Bollerslev et al. (2020) and comparing them to
those obtained using the standard realized covariance matrix.

Our portfolio analyses rely on the realized covariance matrix, the positive
semicovariance matrix, and the negative semicovariance matrix measures de-
fined in (1) and (2) respectively. We estimate the conditional realized measure
(RM) for a single period as

R̂Mt|t−1 =
1
ℓ

ℓ

∑
i=1

RMi,t−1, (11)

where ℓ is the length (in days) of the rebalancing period t −1 and RMi,t−1 is
the realized measure (R̂C, R̂SCpositive, or R̂SCnegative as defined in section 2)
for day i within the rebalancing period t −1.

The data used to run the analyses are the same as those used in section 4.
For each period, we compute R̂Mt|t−1 in (10) to generate the minimum vari-
ance portfolio. Subsequently, we evaluate the portfolio performance on a daily
basis in terms of the Sharpe ratio (Sa), Sortino ratio (So), and turnover (To),
for each realized measure and rebalancing period (daily, weekly, or monthly).
Assuming the risk-free rate as zero, these statistics are calculated as follows:

Sa =
µ̂

σ̂
, So =

µ̂

σ̂−
, To =

1
T

T

∑
t=1

|(wwwt+1 −wwwt)|⊺111,

where T is the length of the out-of-sample period, N is the number of stocks,
wwwt is the (1×N) vector of the portfolio weights at day t, rrrt is the (1×N)
vector of the assets’ returns at day t, 111 is the (1×N) vector of ones, and

µ̂ =
1
T

T

∑
t=1

www⊺
t rrrt

σ̂
2 =

1
T

T

∑
t=1

(www⊺
t rrrt − µ̂)2

σ̂
2
− =

1
T

T

∑
t=1

[(www⊺
t rrrt − µ̂)Iwww⊺

t rrrt<µ̂
]2 (Downside Semivariance).

6. Empirical Exercise 2

In this section, we compare the out-of-sample portfolio performance us-
ing different realized measures (R̂C, R̂SCpositive, or R̂SCnegative) for the covari-
ance matrix, based on high-frequency data. The portfolios, rebalanced daily,
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Table 10
Minimum variance optimum portfolio performance (daily rebalancing)

Average Standard Sharpe Sortino Turnoverreturn deviation ratio ratio

R̂SCnegative 0.001 0.020 0.045∗ 0.060∗ 1.093
R̂SCpositive 0.0005 0.020 0.024 0.033 1.109
R̂C 0.001 0.019 0.040 0.053 0.829∗

Out-of-sample performance of the minimum variance portfolio using 10 assets traded at B3 stock exchange
based on daily returns. The best results for Sharpe, Sortino and Turnover are with ∗.

Table 11
Minimum variance optimum portfolio performance (weekly rebalancing)

Average Standard Sharpe Sortino Turnoverreturn deviation ratio ratio

R̂SCnegative 0.001 0.019 0.051 0.069 0.164
R̂SCpositive 0.001 0.020 0.063 0.086∗ 0.166
R̂C 0.001 0.018 0.064∗ 0.085 0.112∗

Out-of-sample performance of the minimum variance portfolio using 10 assets traded at B3 stock exchange
based on daily returns. The best results for Sharpe, Sortino and Turnover are with ∗.

weekly, and monthly, are evaluated according to their performance in terms
of the Sharpe ratio, Sortino ratio, and turnover.

Tables 10 to 12 show the performances of the above-mentioned indicators
for daily, weekly, and monthly rebalancing, respectively.

The results in Table 10 indicate that when the investor rebalances the
portfolio daily, the R̂C measure results in a portfolio with a lower standard

Table 12
Minimum variance optimum portfolio performance (monthly rebalancing)

Average Standard Sharpe Sortino Turnoverreturn deviation ratio ratio

R̂SCnegative 0.001 0.019 0.037 0.051 0.030
R̂SCpositive 0.0005 0.020 0.024 0.032 0.029
R̂C 0.001 0.019 0.045∗ 0.060∗ 0.019∗

Out-of-sample performance of the minimum variance portfolio using 10 assets traded at B3 stock exchange
based on daily returns. The best results for Sharpe, Sortino and Turnover are with ∗.
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deviation. However, in terms of risk-adjusted returns, the R̂SCnegative measure
presents the highest Sharpe and Sortino ratios.

Considering transaction costs, the R̂C measure presents the best perfor-
mance (lowest turnover). Table 11 shows the results when the investor rebal-
ances the portfolio weekly. Once again, the R̂C measure presents the lowest
standard deviation. In terms of risk-adjusted returns, the R̂C measure presents
the highest Sharpe ratio, whereas the R̂SCpositive has the highest Sortino ratio.
With respect to transaction costs, the R̂C measure, again, shows the lowest
turnover.

Finally, Table 12 displays the results when the investor rebalances the
portfolio monthly. Similar to the two previous rebalancing periods, the R̂C
measure presents the lowest standard deviation, and in terms of risk-adjusted
returns, the R̂C measure presents the highest Sharpe and Sortino ratios and
the lowest turnover.

These results suggest that the realized components of the covariance ma-
trix align better with higher frequency rebalancing periods in terms of eco-
nomic performance. Following the literature, these results are consistent with
Bollerslev et al. (2020), who find that realized semicovariance matrices (R̂SCpositive,
R̂SCnegative) generally respond to new information faster than the realized
covariance matrix (R̂C). Moreover, this feature helps us justify the higher
turnover presented by the semicovariance measures (R̂SCpositive, R̂SCnegative).

7. Conclusions

The primary aim of this study is to demonstrate how realized semico-
variances, as developed by Bollerslev et al. (2020), can contribute to two
key problems in quantitative finance: volatility forecasting and portfolio opti-
mization. We have a particular interest in addressing these matters within the
context of the Brazilian stock market.

Our volatility forecasting yields some compelling conclusions. In our in-
sample analysis, it is evident that incorporating semicovariance components
into the model improves the goodness of fit for the realized portfolio variance
model. In addition, we illustrate that a Markov Switching Model is applicable
for our designated period of analysis. This finding suggests that the onset of
the Covid-19 pandemic corresponds to a period of elevated volatility. It also
implies that the relationship between the realized portfolio variance and its
semicovariance components can fluctuate under different regimes. Our out-
of-sample analysis reveals that the SCHAR-lasso-in and SCHAR-lasso-out
are included in the Model Confidence Set (MCS), whereas the SCHAR is
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not. This finding indicates that the SCHAR Model could potentially suffer
from “overfitting”.

Lastly, our portfolio optimization analysis reveals that, under higher fre-
quency rebalancing periods, minimum variance portfolios utilizing negative
semicovariance matrices perform better in terms of risk-adjusted returns com-
pared to those that use standard realized covariance matrices. This obser-
vation supports the analysis in Bollerslev et al. (2020), which suggests that
semicovariance components react more quickly to new information.
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