Model Driven Engineering for MPSoC Design Space

Exploration

Marcio F. da S. Oliveira, Eduardo W. Brido, Francisco A. Nascimento, Flavio R. Wagner

Instituto de Informatica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
e-mail: mfsoliveira@inf.ufrgs.br

ABSTRACT

This paper presents a Model Driven Engineering approach for MPSoC Design Space Exploration
(DSE) to deal with the ever-growing challenge of designing complex embedded systems. This
approach allows the designer to automatically select the most adequate modeling solution for appli-
cation, platform, and mapping between application and platform, in an integrated and simultaneous
way and at a very early design stage, before system synthesis and code generation have been per-
formed. The exploration is based on high-level estimates of physical characteristics of each candi-
date solution. In an experimental setting, the DSE tool automatically performs four design activities:
it selects the number of processors, maps tasks to processors, allocates processors to bus seg-
ments, and sets the voltage of each processor. Experimental results, extracted from a DSE scenario
for a real application, show that the proposed estimation and exploration approach may find a suit-
able solution regarding the design requirements and constraints in a very short time, with an accept-
able accuracy, without relying on costly synthesis-and-simulation cycles.

Index Terms: Design space exploration, multi-processor system-on-chip, model driven engineering.

1. INTRODUCTION

With the rising complexity of embedded soft-
ware and the power/thermal constraints, MPSoC
(Multi-Processor System-on-Chip) platforms have
emerged as the only feasible solution to meet the
strong constraints imposed to embedded system
design, such as pressures to reduce the time-to-market
of new products as well as system energy consump-
tion. Dealing with this ever-growing challenge only by
designer’s expertise is not feasible. Observing a design
example where 17 tasks must be allocated to a six-
processor platform with four different voltage settings
for each processor, resulting in a design space with
more than 100,000 alternatives, is enough to realize
that Computer-Aided Design (CAD) tools are imper-
ative to automate one of the most costly design activ-
ities, namely the Design Space Exploration (DSE) of
alternative solutions.

Two approaches have been proposed to cope
with this problem. In first place, meet-in-the-middle
strategies, such as Platform-based Design (PBD) [19],
are used to maximize the reuse of pre-designed com-
ponents and to achieve the best customization of the
design according to system requirements. This influ-
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ences even more the need for automated DSE tools.
Secondly, the new generation of embedded system
design tools relies on the Model Driven Engineering
(MDE) approach [21] to raise the design abstraction
level and to provide mechanisms to improve the
portability, interoperability, maintainability, and
reusability of models. In addition, MDE helps to
abstract platform complexity and to represent differ-
ent concerns of the system [10].

Moving the development focus from imple-
mentation to model suggests the support to a fast
DSE in the early design steps, where the design effort
is now concentrated and modeling decisions can lead
to substantially superior improvements. In this con-
text, this work proposes an MDE approach using a
UML-based estimation tool called SPEU (System
Properties Estimation with UML) [16] and an auto-
matic multi-objective DSE mechanism implemented
by the H-Spex (High-Level Design Space
Exploration) tool. Our MDE approach is supported
by the ModES framework [14], which provides effi-
cient meta-models to capture the system structure and
behavior, representing system concerns in separated
dimensions - application, platform, mapping, and
implementation. Moreover, ModES provides a trans-
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formation engine, which interacts with the H-Spex
tool to allow both the verification of requirements and
the final model generation after the exploration step.
These model transformations are actions performed
on the models, following a set of rules produced by
H-Spex and/or extracted from system requirements
specified in the models. Following the proposed
approach, a designer can automatically select the most
adequate modeling solution for application, platform,
and mapping between application and platform, in an
integrated and simultaneous way and at a very early
design stage, before system synthesis and code gener-
ation have been performed. The exploration is based
on high-level estimates of physical characteristics of
cach candidate solution, performed directly from
high-level UML models.

In an experimental setting that validates our
approach, we consider a platform with up to six
processors, each one with four different voltage set-
tings and mapped to two distinct bus segments. In
this context, H-Spex automatically performs four
design activities: it selects the number of processors,
maps tasks to processors, allocates processors to bus
segments, and sets the voltage of each processor.
Experimental results, extracted from a DSE scenario
for the design of a real application, show that the pro-
posed estimation and exploration approach may find a
suitable solution regarding the design requirements
and constraints in a very short time, with an accept-
able accuracy, without relying on costly synthesis-and-
simulation cycles. Besides, the use of an MDE
approach promotes the reusability of application and
architecture models and allows a designer to perform
carly DSE.

The remaining of this paper is organized as fol-
lows. Section 2 discusses related work on model-based
approaches. Section 3 introduces the basic concepts of
our DSE approach. Section 4 presents the required
infrastructure for DSE, including the MDE infrastruc-
ture and a model-based estimation tool. The DSE
method is presented in Section 5. A real case study,
which illustrates and validates our DSE method, is
described in Section 6. Finally, Section 7 draws main
conclusions and proposes future research directions.

2. RELATED WORK

There are many recent research efforts on
embedded systems design using an MDE approach.
The adoption of model-based design and the inde-
pendent specification of platform/application using
UML have been vastly investigated.

As a complete environment for DSE, the
MILAN [1] / DESERT [15] framework is worth of
mention. The focus of MILAN is on the simulation of
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embedded systems, so that it evaluates pre-selected
candidate solutions. The DESERT tool uses models of
aggregated system sub-components and constraints to
automatically compose the embedded system through
Ordered Binary Decision Diagrams and based on a
complete pre-characterization of components.

The ARTEMIS [18] / SESAME [17] frame-
work provides methods for modeling and simulation
at different abstraction levels, aiming at an automatic
DSE of heterogeneous embedded SoCs for multime-
dia applications. However, this framework does not
use MDE, relying instead on lower level languages
such as C/C++ and a specific API to represent a Kahn
process network. Besides, the designer must specify
separated models for implementation and evaluation.

Metropolis [2] is an infrastructure for elec-
tronic system design, in which tools are integrated
through an API and a common meta-model.
Following the platform-based approach and the Y-
chart methodology, the Metropolis’ infrastructure
captures application, architecture and mapping using
a proposed UML-platform profile [5]. Furthermore,
its infrastructure is general enough to support difter-
ent models of computation (MoCs) and accommo-
date new ones. Non-automatic support for design
space exploration is provided by Metropolis, which
proposes an infrastructure to integrate different
tools. Nevertheless, the current simulation and veri-
fication tools integrated into Metropolis and the
proposed refinement process can be used to perform
some manual architectural explorations (task map-
ping, scheduling, hardware/software partitioning)
and component configurations. Moreover, the
refinement process allows the explicit exploration of
application algorithms, that implement a higher-level
specification.

The DaRT (Data Parallelism to Real Time) [4]
project proposes an MDA (Model-Driven
Architecture) - based approach for SoC design that
has many similarities with our approach in terms of
the use of meta-modeling concepts. The DaRT proj-
ect defines MOE-based meta-models to specify appli-
cation, architecture, and software/hardware associa-
tions and uses transformations between models as
code transformations to optimize an association
model. In doing so, it allows the re-factoring of an
application model in order to better match it with a
given architecture model. In DaRT, no DSE strategy
based on these transformations is implemented, and
the focus is mainly the code generation for simulation
at TLM (Transaction Level Model) and RT (Register
Transfer) levels.

Koski [8] is a UML-based framework to sup-
port MPSoC design. It is a library-based method,
which implements a platform-based design. Koski
provides tools for UML system specification, estima-
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tion, verification, and system implementation on
FPGA. Following the design flow, the application,
architecture and the initial mapping are specified as
UML 2.0 models. A UML interface handles these
models and generates an internal representation,
which is used for architectural exploration. The archi-
tectural exploration is performed in two steps; the first
one is static, fast and less accurate; the second one is
dynamic. At the end of the design flow, the UML
models are used to generate code, and the selected
components from the platform are linked to build the
system.

Compared to our approach, no related work
takes advantage of the MDE notion of transformation
between models to represent, delimitate, and explore
the design space. Furthermore, the proposed DSE
methodology is combined with SPEU, a model-based
estimation tool, allowing a designer and/or the H-
Spex tool to verify possible implementations for a
given application on a specified platform at a high
abstraction level.

3. EXPLORATION APPROACH

As most DSE approaches, we follow the Y-
chart [10] to represent the complete design space that
will be explored. Three domains are proposed to rep-
resent the design space — Application, Platform, and
Mapping — for which a designer can explore a large
number of configurations. A fourth domain, the
Implementation one, is proposed to represent the
decision resulting from the DSE process. Figure 1
illustrates these concepts.

In the Application Domain, the designer
expresses the application concepts using a modeling
language, such as UML. A designer may investigate
issues such as the distribution of responsibilities
between classes, the encapsulation of functionality
inside objects, the aggregation of objects inside inde-
pendent threads, and strategies for the interaction
between objects.

Application Platform
Domain Domain

Mapping
i Domain [

Complete Design Space

Implementation
Domain

Figure 1. Design space exploration domains.
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The platform components are represented in
the Platform Domain. In this domain, a designer can
explore different implementations of the same com-
ponent, the allocation of processors, the individual
parameter settings of each selected component, the
communication structure, and others.

The Mapping Domain expresses the mapping
between application and platform concepts. In this
domain, a designer may explore the mapping of tasks
to processors, the mapping of hardware resources to a
communication structure, and the software binding.
The result of the DSE process is expressed in concepts
at the Implementation Domain, which contains the
necessary information to generate/synthesize an
embedded system.

4. DESIGN SPACE EXPLORATION
INFRASTRUCTURE

The pre-condition to implement the automatic
support to design space exploration is the utilization
of appropriate models to represent the problem and
the solution for each activity. The infrastructure,
which allows the interaction between the automatic
exploration tool and the user, is also important. This
infrastructure allows the specification of models,
exploration parameters, and system constraints /
requirements (functional and non-functional require-
ments). It also supports the integration between
exploration activities, including models and sharing of
results.

An important requirement in this infrastructure
is the automatic mechanism for the evaluation of alter-
native solutions, which must be performed at a high-
level of abstraction in order to be effective. If assess-
ing each candidate solution would require its detailed
synthesis and cycle-accurate simulation, design time
would be prohibitive.

Therefore, the proposed work is integrated in
an efficient infrastructure, which provides the
required support for MDE-based design of embedded
systems. Moreover, a model-based estimation tool is
integrated to this infrastructure in order to allow early
and fast evaluation of design alternatives, still at a very
high abstraction level.

A. MDE Infrastructure

Based on the presented DSE concepts, the
ModES (Model-driven Embedded System design)
framework [14] has been implemented to provide an
MDE infrastructure. This infrastructure is composed
by a set of four meta-models, one for each domain:
Internal Application, Internal Platform, Mapping, and
Implementation Meta-model. All concepts in the
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meta-models are specified as UML classes and then
converted into Eclipse /EMF models [6].

The MDE infrastructure provides a Java API,
automatically generated by the EMF tool, to handle
meta-models instances. The models specified by the
designer are loaded into the MDE infrastructure by
means of model-based transformations implemented
as QVT (Query, Views, Transformations) resources,
standardized by OMG [13].

The designer must specify the application mod-
els using any UML 2.0 compliant tool that allows the
generation of the appropriate XMI files. The most
important UML diagrams used in our approach to
specify the system are Use Cases and Sequence, Class,
and Deployment Diagrams. Using the UML profile
for Scheduling, Performance and Time (UML-SPT)
[22], the designer can extend the application model
with constraints or requirements. The structural and
behavioral aspects of the Application Model are cap-
tured into the Internal Application Meta-model
(IAMM) (shown in Figure 2).

Using the Internal Application Meta-model, a
system specification captures the functionality of an
application in terms of a set of modules that are com-
posed of concurrent communicating processes
and/or sub-modules. The module behavior is cap-
tured in terms of actions represented by a Control
Data Flow Graph (CDFG) that captures the data and
control flow between the actions. The Actions were
removed from Figure 2, due to the reduced space.
The CDFG corresponds to the UML actions of the
scenarios (sequence diagrams) that are related to the
process, according to its active object. The adopted
concepts correspond to CSP-like languages, which
are able to express any kind of concurrent, distrib-
uted system.

In a platform-based design environment, a
large number of hardware and software components
are provided and can be reused in the system develop-
ment. To evaluate different solutions at a high abstrac-
tion level and perform DSE, the reused components
must be pre-characterized in terms of performance,
energy, memory footprint, and others.

Y aacleRod y
ModuleDeclaration Jnatarype ’—‘
1
L
T Interconaction ModuleBehavior
Channel Port Signal | |Variable I I
Het Action Process

Figure 2. Internal Application Meta-model (IAMM).
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The software component characterization is
performed after the component code is compiled for
the target architecture, since at this time a simula-
tion/estimation tool can capture architectural infor-
mation with high accuracy. Likewise, hardware com-
ponents are characterized for a specific technology.

In the ModES framework, the information
about the characterization is stored in an instance of
the Internal Platform Meta-model, whose data model
is based on the General Resource Model from UML-
SPT, identifying the services offered by the platform
and the related quality-of-service values. As for appli-
cation models, in order to have a standard representa-
tion, the Platform Meta-Model is translated into an
Internal Platform Meta-Model (IPMM), shown in
Figure 3.

Providing an extensive component repository
requires a significant effort. However, normally a large
amount of system components can be reused from dif-
ferent component providers or as a sub-product from
previous system developments [20].

Therefore, the platform repository creation is
based on the accumulation of components produced
or acquired in previous product developments.
Currently, the platform repository contains informa-
tion on processing units (different versions of a Java
microcontroller [7]), scheduling and timer services, a
real-time communication API [23] implemented on
top of the Java microcontroller, and a math and
image-processing library.

As additional architectural aspects, information
is stored about the supported data types and instruc-
tion set, such as size, number of execution cycles, and
energy consumption for each instruction. Aspects of
program and data memory allocation are also consid-
ered, including dynamic frame allocation, reserved
memory, data type, and method allocation rules.

To add new IP (intellectual property) resources
to the platform repository, the IP provider must
attach this architectural information to his/her IPs.
After the repository is populated with adequate infor-
mation on the platform components, the designer just
needs to map the application into the platform model.
This allows the evaluation of a general application
model (Platform Independent Model — PIM), when

Hardware

|
L [

—

Memory | |Processor HwHw

Platform

Software Interface Cost ‘Energy Performance
[

HwSw | |SwSw

Figure 3. Internal Platform Meta-model (IPMM).
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mapped to a specific platform that corresponds to the
Platform Specific Model (PSM), according to the
MDA [11] approach.

The Mapping Meta-model describes the rules
used to transform instances of the Internal
Application Meta-model and Internal Platform Meta-
Model into an instance of the Implementation Meta-
model, as shown in Figure 4.

In the proposed approach, the Mapping Meta-
model is based on a set of transformations, where each
transformation is composed by a set of rules that limit
the possible mappings between application and plat-
form, thus guiding the H-Spex tool or the designer to
build a candidate Implementation Model. This allows
the evaluation of possible implementations during the
DSE phase. Besides, the task mapping, processor allo-
cation, and software binding can also be expressed as
UML deployment diagrams, reflecting a design
restriction on the DSE process.

A transformation engine can be invoked to tra-
verse the set of transformation rules, in order to select
and apply the ones that are enabled at that moment
and to produce a hardware/software mapped archi-
tecture in the form of an Implementation Model. Our
transformation engine is implemented using MDDi-
QVT (Model Driven Development integration -
Query, View, Transformation) [12], which is an open-
source implementation of the QVT standard. MDDi-
QVT provides a QVT parser, which reads a textual
QVT specification and builds a model conforming to
the QVT meta-model [13], and a QVT compiler that
generates an API in Java from a QVT model, which
can be used to perform transformations between
models. Thus, in order to use the current version of
MDDi-QVT, we generate a textual QVT specification
file from the application, platform, and mapping mod-
els conforming to our meta-models. Then we apply
the QVT parser and compiler to obtain a Java APL.
The H-Spex tool calls this API, which implements the
transformation engine.

The Implementation Meta-model allows the
representation of the models that can implement the
system specification without violating the system
requirements. Figure 5 shows the Implementation
Meta-model class diagram.

Mapping Transformation Rule
-leftSide -rightSide
Model Side Action
‘Condition

Figure 4. Mapping Meta-model (MMM).
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The Implementation Meta-model can be
described as a list of selected platform components,
application components, and associations between
them. Furthermore, it also represents the design deci-
sions about component configuration, task mapping,
and resource allocation. An instance of the
Implementation Meta-model is used, together with
instances of other proposed meta-models, by a tool that
generates partial embedded software source code,
scripts for a hardware synthesis, and system deployment
scripts. As explained in the next section, other tools,
such as an estimation one, can use an instance of the
Implementation Meta-model in order to estimate the
properties of a candidate implementation model before
the development process is continued.

B. Model-based Estimation Tool

The SPEU tool [16] provides analytical esti-
mates about physical system properties (execution
cycles, energy/power consumption, volume of com-
munication data, and memory footprint). These prop-
erties are directly obtained from instances of the meta-
models, with estimation errors as low as 5%, when the
reuse of repository components is largely employed by
a PBD approach.

The estimation is performed by using the
information extracted from UML application
structure /behavior models and stored in the Internal
Application Meta-model as a CDFG (Control and
Data Flow Graph). To improve the estimation accura-
¢y, the information specified in the Platform Model is
used to compute the costs of pre-designed compo-
nents and added in the final estimation. An ILP
(Integer Linear Programming) formulation is used for
the identification of best-case and worst-case execu-
tion paths on the CDFG. In order to reduce the com-
plexity, each ILP formulation is solved in a hierarchi-
cal fashion, such that each task has one ILP formula-
tion to be solved. This avoids problems for MPSoCs
with a large number of tasks. This estimation tool
allows H-Spex to rapidly evaluate each candidate solu-
tion during the DSE process, without depending on
costly synthesis-and-simulation evaluation cycles.
After that, the estimated properties are used to com-
pute the solution cost in a parameterized multi-objec-
tive function, which is optimized by the exploration
algorithm.

Resource

Hardware alocatedTo  [gon e
storedin

Figure 5. Implementation Meta-model (IMM).
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5. EXPLORATION METHOD

The model-based exploration method is imple-
mented by H-Spex (High-level design SPace
EXploration), a tool for automatic multi-objective
design space exploration. H-Spex is supported by
MoDES, which provides the required MDE infra-
structure. H-Spex is also supported by SPEU (System
Properties Estimation with UML), which provides the
estimation values needed for evaluation of alternative
solutions during design space exploration.

The DSE mechanism of H-Spex adopts a
heuristic approach to investigate the space of possible
architectural solutions, which is currently based on
simulated annealing [9]. The implemented simulated
annealing uses a probabilistic perturbation function,
whose values were experimentally selected. The per-
turbation function is responsible for looking for a
solution that minimizes the communication, energy,
power, performance, memory footprint, or any com-
bination of these properties, under hard real-time
constraints, meeting design restrictions such as the
processing capacity of each processor (which depends
on its frequency/voltage setting). These metrics are
used to calculate the solution cost using an objective
function, which the simulated annealing algorithm
tries to minimize. H-Spex reads the constraints speci-
fied using UML-SPT in the Application Model (and
captured by the Internal Application Model) and
compares them with the results obtained by SPEU,
the model-based estimation tool. At each moment, H-
Spex takes design decisions and incorporates the cor-
responding information in the conditions of the trans-
formation rules of the mapping model. Then, H-Spex
invokes the transformation engine provided by the
MDE infrastructure, so that it produces candidate
Implementation Models, which will be evaluated in
order to select the final solution. Figure 6 shows the
interaction between H-Spex and the infrastructure for
design space exploration.

U.ML. UML Platform
Application Model
Model
2 12

UML Transformation Transformation UML
Meta-model ( ) ( ) Meta-model

Internal
Platform
Model

Internal
Application
Model

Internal
Application
Meta-model

Model-Based
Estimation

Internal Platform

Design Space Meta-model

Exploration

‘ Transformation ’

Yy
Implementation Implementation
Model Meta-model

Figure 6. Tools integration for MDE design space exploration.

Mapping Meta-
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The current DSE prototype selects the most
appropriate solution by taking several design deci-
sions: it selects the number of processors in the
MPSoC, partitions tasks between processors, maps
processors to a communication structure (currently,
only a segmented bus), and schedules the voltage level
for each processor. Therefore, H-Spex is automatical-
ly exploring both the Platform and Mapping
Domains. The Application Domain could also be
explored, but this is currently manually performed by
the designer, as described in [16].

The exploration flow is depicted in Figure 7.
Firstly, H-Spex randomly generates an initial solution.
When all design decisions for a candidate solution
were taken, the transformation engine is invoked to
traverse the set of transformation rules of the Mapping
Model, so as to select and apply the ones that are
enabled at that moment, in order to produce a plat-
form-specific model in the form of an Implementation
Model. This model is the input to SPEU, which sup-
ports model evaluation for early and fast DSE.

6. CASE STUDY

A DSE scenario for the design of a real applica-
tion, concerning the automated control of a wheel-
chair with functions such as movement control, colli-
sion avoidance (ultrasound and stereo vision), and
navigation, has been developed. The application
model contains 17 tasks, which have communication
dependences between them. The platform model is
based on a Java microcontroller [7], upon which an
API and operating system components [23] for real-
time behavior and communication support are avail-
able. Figure 8 illustrates the task graph extracted from
the Application Model, which has been specified in
UML and loaded into the Internal Application Meta-
model.

Generate Call MDE Model-based
initial candidate P transformation estimation
solution engine
Y Call optimization Y &
Algorithm
s T
Generqte ‘ CaIIMDE | Model-based
new candidate P transformation TR
solution engine
Y
N
Exit DSE

Figure 7. Exploration algorithm.
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Figure 8. Application model task graph.

To implement the movement control, several
components provided by the platform can be reused,
such as a mathematical library to solve the control
equations, a real-time Java API, and RTOS compo-
nents [23]. Consequently, the platform aspects con-
sidered in the estimation methodology also take into
account costs that are related to the real-time sched-
uler. Table 1 shows some of the available components
of the platform model and corresponding services.

The component Math:API has many services,
as for example sin:Service, cos:Service, atan:Service,
and sqre:Service. All these services are used for the
implementation solutions. The RestoreContext:Service
is a service of the scheduler EDFScheduler:OS, which
restores the processor state and gives control back to
a previous thread. The waitFor NextPeriod:Service
passes the control from a real time thread to the OS at
the end of its execution. The FemtoJavaMCRTC
(Multi-cycle, RealTime Clock) is one of the versions
of a Java microcontroller available in the platform
[23]. It has instructions that are not available in the

Table 1. Part of Platform Model

simplest version of the Java microcontroller, but that
are needed to support the RealtimeThread:APL

Table 2 lists some of the transformation rules of
the mapping model. The transformation rules specity
the possible mappings from elements of the wheel-
chair application model to elements of the FemtoJava
platform, including the actions that will generate ele-
ments in the implementation model.

As specified by the transformation rules, the
modules can be implemented either by a simple
FemtoJava or by a multi-cycle real-time FemtoJava. In
the implementation model, a memory component will
be instantiated for program code and data, and a bus
will be instantiated to connect the processor to the
memory. Other transformation rules state that: a)
processes in the application can make use of the Math
and RTThread APls; b) actions in the thread of the
processes may use services to suspend the execution
(waitFor NextPeriod and waitForCycles services); c)
actions can have access to static and dynamic object
attributes (get/set Static/Dynamic ObjectField servic-
es); d) mathematical operations can be implemented
by the Math API; and e) scheduling of processes and
threads can be implemented by different kinds of
schedulers from a given operating system.

Given the platform, application, and mapping
models, the DSE process takes design decisions about
the partitioning, allocation, and binding of application
clements to platform elements and incorporates the
information on the mapping model.

H-Spex selects the number of processors and
maps tasks to them in order to minimize the overall

Component Service Prog. mem. Data mem. Perf. Energy
(bytes) (bytes) (cycles) (switching activity)

Math:API Sin:Service 14 4 53 73,815
EDFScheduler: OS RestoreContext: Service 4 0 883 8,117.3
Realtime Thread: API waitNextPeriod: Service 243 13 5721 1,254.3
Femtojava MCRTC: Processor int_tf0:Service 2 32 124 187.45
Table 2. Part of Mapping Model
Source IAMM Target IPMM Condition Action
mod: p:Processor, p.name=FemtoJava32 or new Processor( ),
Module m:Memory, p.name=FemtoJavaMCRTC new Memory( ),

b:Bus new Bus()
proc: a:API a.name=Math or new API()
Process a.name=RTTrhead
threadctrl: s:Service s.name=waitNextPeriod or new Service( )
Action s.name=waitForCycles
interaction: s:Service s.name=interactionStatic or new Service( )
Action s.name= interactionDynamic
getObjectField: s:Service s.name=getStaticObjectField or new Service( )
Action s.name=setStaticObjectField or

s.name=setDynamicObijectField

mathoper: s:Service s.name=sqrt or s.name=sin or new Service( )
Action S.name=cos or s.name=s.atan
sched: s:0S s.schedtype=EDFScheduler or new OS()
(O8] s.schedtype=FixedPriority or

s.schedtype=RMScheduler
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communication costs between tasks. Tasks with a
higher communication bandwidth between them tend
thus to be grouped in the same processor, if possible.
The candidate task partitioning can neither violate the
task deadlines nor exceed the processing capacity of
cach node. If necessary, H-Spex adds another proces-
sor to the system. Simultaneously, H-Spex maps
processors to the communication structure, such that
the overall communication cost is again minimized.
Therefore, processors with a higher communication
between them (because of the tasks assigned to each
one) tend to be mapped to the same bus segment. In
order to reduce the energy consumption, H-Spex also
selects the minimal voltage for each processor, but
avoiding task deadline violations. Realistic energy,
voltage, performance, and memory costs for HW and
SW platform components and services (such as task
scheduling), extracted by using the SPEU model-
based estimation tool, have been used to guide the
exploration.

The number of design alternatives in this DSE
scenario is huge, so that the utilization of an automat-
ed DSE approach at very high abstraction level is fully
justified.

Figure 9 shows a chart with the final solution
found by H-Spex for different combinations of opti-
mization objectives. In this chart, the values of solu-
tion properties were normalized with regard to the
worst solution, so that they could be presented in the
same chart. The “x” axis is organized by objective of
optimization - energy, power, memory, energy-power-
cycles-memory (epcm), energy-power-cycles (epc),
and energy-power-memory (epm).

The DSE results for energy optimization pres-
ent a good load distribution between the six proces-
sors. This parallel execution reduces the number of
execution cycles, directly contributing to energy sav-
ings. Because of data and code replication in the vari-
ous processors, the values for memory and power
were not optimized. In order to minimize the power,
H-Spex mapped simple tasks to the same processor
with low voltage settings. Processors with high uti-
lization require higher voltage settings.
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Figure 9. DSE results for different objectives.
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In order to reduce the memory size, H-Spex
mapped tasks that exchange large amounts of data to
the same processor, reducing in this way the data
replication and communication structures (packages
and messages).

In the last three results in Figure 9, the chart
presents DSE results using multi-objective functions.
Due to the hard real-time constraints, H-Spex could
not reduce the cycles by mapping many tasks to the
same processor and thus reducing the communication
cost, because this would cause task deadline violations.
However, by distributing tasks in different processors
and setting low voltages for each processor, the DSE
tool could get better results for power, which domi-
nates the optimization process.

Better optimizations could be achieved if the
Application Domain was also explored by H-Spex.
This exploration could result in reduced values for
execution cycles, for instance by changing the interac-
tion between objects and the interaction of the objects
with the platform services (reducing service calls), or
by looking for a new distribution of responsibilities, in
order to arrange the functionalities in a way to
improve the parallelism.

Figures 10-13 show the property values esti-
mated for 19 candidate solutions found by H-Spex, by
optimizing the objectives energy, cycles, power, and
memory, respectively. In each chart, the Y-axis shows
the property values for the entire system. The X-axis
presents the candidate solutions. The presented
results were obtained after evaluation of 1000 candi-
date solutions. In our experiments, H-Spex takes 1
hour to evaluate each 1000 solutions, using an AMD
Athlon 1.8 GHz with 512 Mbytes of RAM and SPEU
as the estimation tool.

In order to illustrate the accuracy of the model-
based estimation tool, components responsible for the
wheelchair movement control were implemented on
the target platform using two different solutions.
These solutions differ in the objects' structure (num-
ber of classes, objects, and threads) and behavior
(interaction between application calls to platform
services). These changes were selected to emphasize
the impact of model decisions on the final system
physical properties. The values estimated by the
model-based estimation tool were compared to the
results obtained through cycle-accurate simulation
using the CACO-PS power simulator [3].

Table 3 shows the exact differences between
property values of two alternative solutions, obtained
by CACO-PS in a cycle-accurate simulation, and the
estimated differences, obtained by SPEU. Both per-
formance and energy were estimated in terms of best-
case (BC) and worst-case (WC) executions.

The table shows that the estimated differences
between property values are very close to the exact dif-
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Table 3: Differences between two alternative solutions

Second x First Solution

Property Estimated Exact

Program memory -69.83% -66.98%
BC Data memory -36.47% -36.08%
WC Data memory -36.47% -36.08%
BC Performance -95.42% -93.36%
WC Performance -65.82% -65.32%
BC Energy -99.61% -93.31%
WC Energy -66.57% -65.51%

—e— Energy(mJ)

Figure 10. Energy values for 19 candidate solutions.
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Figure 11. Execution cycles for 19 candidate solutions.
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Figure 12. Memory size for 19 candidate solutions.
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Figure 13. Power values for 19 candidate solutions.

ferences. The time spent to simulate each solution at
cycle-accurate level was approximately 23 minutes,
while the model-based estimation provided by SPEU
spent less then 4 seconds, both times measured with
the same host machine configuration described before.

The results in Table 3 show that the second
alternative solution is better than then first one in all
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system properties according to both the estimated and
exact evaluation methods. Observing the results, we
can conclude that the model-based estimation tool
provides quantitative information about physical sys-
tem properties to support a very fast and reasonably
accurate exploration of the impact of these choices on
the final system implementation.

This case study illustrates a design space explo-
ration scenario for a real application presenting a large
design space. Through the Model Driven Engineering
approach for Multi-objective Design Space Exploration
presented in this work, a designer can specify the sys-
tem using UML models at high abstraction level
(without source coding/generation) and look for the
best alternative to be implemented, early in the devel-
opment process, without relying on costly synthesis-
and-simulation evaluation cycles.

7. CONCLUSIONS AND FUTURE WORK

A Model-Driven Engineering (MDE) approach
for MPSoC design space exploration and the H-Spex
tool, which implements this approach, were present-
ed. This approach adopts a meta-modeling infrastruc-
ture with specific meta-models for the application,
platform, mapping, and implementation domains.
The MDE fundamental notion of transformation
between models is used to represent and delimitate
the design space of possible implementations of the
application on the specified platform. A set of trans-
formation rules defines the possible mappings from
application into platform. By evaluating these rules, an
exploration tool builds a model solution, selecting the
number of processors, mapping application tasks to
the selected processors, mapping processors to a com-
municating structure, and reducing the energy con-
sumption by voltage scaling.

To support this approach, the SPEU tool
implements a UML-based estimation, which allows
the evaluation of models while exploring the design
space, in order to find a model that better fulfills the
application requirements. This high-level estimation
approach allows a fast comparison of the various mod-
els without having to generate executable code, hence
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without any costly hardware and software
synthesis/simulation steps.

Experimental results show that the proposed
estimation and exploration approach may find a suit-
able solution regarding the design requirements and
constraints in a very short time, with an acceptable
accuracy, without relying on costly synthesis-and-sim-
ulation cycles. Besides, the use of UML and MDE
promotes the reusability of application and platform
high-level models.

One of the future directions to be considered is
the meta-modeling improvement, in order to repre-
sent more complex applications, platforms, and map-
pings. We also intend to test different optimization
algorithms in order to improve the design space
search. Moreover, we shall extend the exploration
tool, by adding new architectural exploration activities
and automating the exploration activities in the
Application Domain, as proposed in [16].
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