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ABSTRACT

The dimensions of planar transistors were reduced until detrimental effects caused by
the miniaturization of the transistor became significant. To address this issue, the
microelectronics industry has changed the structure of the transistor from a planar to a multi-
gate structure. A Monte Carlo device simulator is an efficient tool to predict and investigate the
performance and reliability of transistors. This simulator employs a semiclassical theoretical
model to describe the transport of charge carriers. Nevertheless, quantum corrections can be
included in this simulator to take into consideration the impact of quantum effects on the
electrical behavior of nanoscale transistors. This work proposes a quantum-corrected Monte
Carlo device simulator for n-type FinFETs and n-type nanowire transistors. The quantum
correction employed here is the Effective Potential approach, where the size of the electrons is
no longer disregarded. Thus, space quantization effects such as quantum confinement can be
modeled in the device simulator. We have developed a Schrdédinger-Poisson solver and an
Effective Potential-Poisson solver to extract the unique parameter of the Effective Potential of
the transistors of interest. For the n-type FInFET, the Effective Potential parameter is equal to
0.45 nm, while for the n-type nanowire transistor, the Effective Potential parameter is equal to
0.4 nm. Comparing the results of these solvers, we can evaluate that the Effective Potential is a
suitable quantum correction to simulate quantum confinement in three-dimensional devices.
We have included the Effective Potential as a quantum correction to the Monte Carlo device
simulator n-type FINFETSs and n-type nanowire transistors. The n-type FINFET was simulated
using semiclassical and quantum-corrected simulators. The results of both simulators were
contrasted, and it was shown that the quantum-corrected simulator models volume inversion
and the reduction of the electron density in the channel, which both are effects of quantum
confinement. The nanowire transistor of interest was simulated using the quantum-corrected
simulator, the transfer characteristic curve was compared to experimental results,
demonstrating that our quantum-corrected simulator results agree very well with the

experimental measurements.

Keywords: Monte Carlo device simulator. Quantum corrections. Effective Potential.

FinFET. Nanowire transistor.



RESUMO

As dimensfes dos transistores planares foram reduzidas até que efeitos indesejaveis
causados pela miniaturizagdo do transistor tornaram-se significativos. Para contornar esse
problema, a indUstria microeletrénica mudou a estrutura do transistor de uma estrutura planar
para uma estrutura multiportas. Um simulador de dispositivos Monte Carlo é uma ferramenta
eficiente para prever e investigar o desempenho e a confiabilidade de transistores. Este
simulador utiliza um modelo tedrico semiclassico para descrever o transporte de portadores de
carga. No entanto, corre¢cdes quanticas podem ser incluidas nesse simulador para considerar o
impacto dos efeitos quanticos no comportamento elétrico de transistores em escala
nanométrica. Neste trabalho, propomos um simulador de dispositivo Monte Carlo com correcédo
quéntica para FinFETS tipo-n e transistores nanofios tipo-n. A corre¢do quantica empregada
aqui é o Potencial Efetivo, onde o tamanho dos elétrons ndo é mais desconsiderado. Assim,
efeitos de quantizacdo espacial, como o confinamento quantico, podem ser modelados no
simulador do dispositivo. Desenvolvemos um Schrédinger-Poisson solver e um Potencial
Efetivo-Poisson solver para extrair o unico parametro do Potencial Efetivo de ambos os
transistores de interesse. Para o FinFET tipo-n, o parametro do Potencial Efetivo € igual a 0,45
nm, enquanto para o transistor de nanofios tipo-n, o parametro do Potencial Efetivo é igual a
0,4 nm. Comparando os resultados desses solvers, podemos avaliar que o Potencial Efetivo é
uma correcdo quantica adequada para simular o confinamento quantico em dispositivos
tridimensionais. Incluimos o Potencial Efetivo como correcdo quéntica nos simuladores de
dispositivo Monte Carlo dos transistores FinFET e nanofio tipo-n. O transistor FInFET tipo-n
foi simulado usando o simulador semiclassicos e o simulador com correcdo quantica. Os
resultados de ambos os simuladores foram contrastados, mostrando que o simulador com
correcdo quantica modela volume inversion e a reducdo da densidade eletrénica no canal, os
quais sdo efeitos do confinamento quantico. O transistor de nanofio de interesse foi simulado
usando o simulador com corregdo quéntica. A curva transferéncia desse transistor foi
comparada com os resultados experimentais, demonstrando que os resultados do nosso

simulador com corregdo quéntica concordam muito bem com as medidas experimentais.

Palavras-chave: Simulador de dispositivos Monte Carlo. Corre¢es quéanticas.

Potencial Efetivo. FInFET. Transistores de nanofio.
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1 INTRODUCTION

For the last six decades, the microelectronic industry has been following Moore’s law
(MOORE, 1965), which is based on doubling the number of transistors in Integrated Circuits
(IC) about every two years to reduce the cost of chips while increasing their processing power.
The rise in number of transistors per chip was possible by scaling down their dimensions
following the scaling rules of MOSFET (DENNARD, 1974). However, it was observed that
planar MOSFET with small channel lengths presents irregular electrical behavior in contrast to
the electrical behavior of the long-channel ones (KHANNA, 2016). The impact of the small
size of the transistor dimensions on the electrical behavior of the transistors is called short-
channel effects. It was observed that changing the planar structure of the MOSFET to a three-
dimensional one reduces the impact of short-channel effects (MENDIRATTA; TRIPATHI,
2020). Because of that, the microelectronic industry has been fabricating 3D MOSFET
transistors (BOHR; MISTRY, 2011).

MOSFETSs only perform well if some metrics that characterize their performance match
the industry requirements (LUNDSTROM, 2016). Considering that, investigating the influence
of physical parameters — the materials employed, the doping density, and the oxide thickness —
on the transistor performance is relevant. The reliability of the transistor is another aspect that
must be investigated. As the size of transistors reached the nanometer scale, the variability of
their electrical properties became more relevant (VASILESKA; ASHRAF, 2015). This
deviation of the electrical properties from the nominal values is caused by the imperfections
inherent to the semiconductor fabrication process. For instance, random dopant fluctuation
(RDF) and trap activity are factors responsible for reliability issues in transistors. The RDF is
responsible for threshold voltage and drain current variations among devices fabricated on the
same chip (VASILESKA; ASHRAF, 2015). Trap activity results in the bias temperature
instability effect (BTI) which is responsible for reliability issues concerning the deterioration
of the transistor current (GRASSER, 2014).

Device simulators can be an alternative methodology to electrically characterize
transistors (VASILESKA; GOODNICK; KLIMECK, 2010). They can be classified in terms of
the model used to represent the transport of carriers. Regarding the semiclassical description of
the transport of carriers, the most relevant are the Drift-Diffusion, the Hydrodynamic, and the
Monte Carlo simulators (VASILESKA; GOODNICK; KLIMECK, 2010). In the Drift-

Diffusion and Hydrodynamic simulations, assumptions are made to describe the carrier
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distribution function and solve the Boltzmann transport equation (BTE). Thus, the transport of
carriers is modeled using analytical equations, while in the Monte Carlo model, no assumptions
are made to describe the carriers’ distribution function and the Boltzmann transport equation is
solved by treating the carriers as particles and simulating their transport (JACOBONI, 1989).
The Drift-Diffusion and hydrodynamic models fail to represent a couple of physical
phenomena, for instance, velocity overshoot and ballistic transport (VASILESKA;
GOODNICK; KLIMECK, 2010). Because of that, the Monte Carlo device simulator is more
accurate than the Drift-Diffusion and hydrodynamic models. Monte Carlo device simulators
can be employed to investigate the reliability and performance of planar transistors
(ROSSETTO, 2018), (ROSSETTO; CAMARGO; BOTH; VASILESKA; WIRTH, 2020),
(CAMARGO, 2016), (CAMARGO; ROSSETTO; VASILESKA; WIRTH, 2020) and tri-gate
transistors (FURTADO; CAMARGO; VASILESKA; WIRTH, 2021), (FURTADO;
CAMARGO; VASILESKA; WIRTH, 2022), (FURTADO; CAMARGO; VASILESKA,;
WIRTH, 2022).

In devices whose dimensions are on the nanometer scale, quantum effects are relevant.
For instance, in n-type FiInFET and n-type nanowire transistors, electrons are confined in two
directions (COLINGE, 2008). The quantum confinement changes the density of states, thus
reducing the electron density (HAN; WANG, 2013). Besides, the inversion layer is placed a
few nanometers away from the Si/SiO; interface, resulting in the phenomenon called volume
inversion (COLINGE; GREER, 2016). Therefore, quantum confinement impacts the electrical
properties of these transistors. Hence, this quantum effect must be considered to adequately
model the device's physics. In a Monte Carlo device simulator, the carriers are treated as
semiclassical particles. However, a quantum correction can be incorporated into this simulator
to take into consideration the role of quantum effects in the electrical behavior of FInFET and
nanowire devices.

The Effective Potential approach is a quantum correction that was proposed by Ferry
(2000). It accounts for the wave-like behavior of electrons by describing the electrons as non-
zero-size particles, whose size is given by a Gaussian wave packet. The size of electrons is
characterized by the standard deviation of the Gaussian wave packet, which in this work is
referred to as the smoothing parameter of the Effective Potential. The mathematical expression
of the Effective Potential incorporates the electron size. Hence, in the quantum-corrected Monte
Carlo device simulator, the electrons can still be treated as zero-size particles that are exposed
to the Effective Potential. Because of that, the Effective Potential approach can be

straightforwardly employed as a quantum correction in Monte Carlo simulators. Previous works
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have successfully incorporated the Effective Potential into the Monte Carlo simulators of planar
silicon on insulator (SOI) devices (RAMEY; FERRY, 2002), (VASILESKA,; 2002).

The goal of this work is to incorporate the Effective Potential approach as a quantum
correction to the Monte Carlo device simulator of n-type FinFETs and n-type nanowire
transistors. The semiclassical Monte Carlo device simulator of n-type FINFET was developed
by Furtado (2021), and the Monte Carlo device simulator of n-type nanowire transistors was
concluded in this work. The smoothing parameters of the Effective Potential of these two
devices were obtained by adjusting them until the electron linear density calculated using the
Effective Potential agreed with the one calculated by the Schrdodinger equation. Thus, to include
the Effective Potential as a quantum correction to the Monte Carlo device simulators of n-type
FinFETs and n-type nanowire transistors, firstly, a 2D Schrddinger-Poisson solver and a 2D
Effective Potential-Poisson solver for the cross-section of these two devices were developed.
Therefore, in this work, six simulators were developed, namely: 2D Schrédinger-Poisson
solvers and 2D Effective Potential-Poisson solvers for the cross-section of n-type FInFETs and
n-type nanowire transistors, and a 3D quantum-corrected Monte Carlo device simulator of n-
type FinFETs and a 3D quantum-corrected Monte Carlo device simulator of n-type nanowire
transistors.

The organization of this work proceeds as follows: the Monte Carlo device simulator is
explained in Chapter 2, where the two important modules of the Monte Carlo device simulator
are explained in detail. In Chapter 0, the Effective Potential approach and the methodology used
to implement the effective potential in the Monte Carlo device simulator are presented. In
Chapter 4, the method used to obtain the smoothing parameter of the Effective Potential is
explained. In Chapter 5, the quantum-corrected Monte Carlo device simulator is explained. In
Chapter 6, the simulation results of the n-type FINFET employing the quantum-corrected and
the semiclassical Monte Carlo device simulators are demonstrated and compared. In Chapter 7,
the nanowire transistor is investigated using the quantum-corrected device simulator, and the
characteristic curve obtained by the simulations is compared with experimental data. Finally,

in Chapter 8, the conclusions of this work and suggestions for future work are presented.
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2 MONTE CARLO DEVICE SIMULATOR

A Monte Carlo device simulator consists of a Monte Carlo transport simulator coupled
to a Poisson’s equation solver. In the Monte Carlo device simulator, the transport of carriers is
simulated using a semiclassical theoretical model. The electric field responsible for accelerating
the carriers in the Monte Carlo transport simulation is calculated by a Poisson’s equation solver,
while the charge density used to calculate the Hartree potential in this solver comes from the
Monte Carlo transport simulator. Thus, the Monte Carlo transport simulator and Poisson’s
equation are solved self consistently.

Within the Monte Carlo device simulator, there are three types of charged particles,
namely: dopant ions, electrons, and holes. The dopants are fixed particles; therefore, their
density is constant over the entire simulation. The second type is the charge carriers responsible
for carrying the current, which in n-type MOSFETSs are the electrons. They can be located at
any position in the device and their dynamics are simulated in the Monte Carlo transport
simulation. To solve Poisson’s equation, their density is calculated based on their distribution
over the semiconductor. Taking into account that MOSFETS are unipolar devices, the third type
of particle is the charged particle that does not carry current in the device, in n-type devices
these particles are holes; thus, their transport is disregarded, and their density is calculated using
the Hartree potential and assuming quasi-equilibrium condition.

In this Chapter, firstly, the Monte Carlo transport simulation is explained in Section 2.1.
Then, in Section 2.2, the 3D Poisson’s equation solver is described. In Section 2.3, the boundary
conditions for the transport simulation and for Poisson’s equation are presented. Finally, in
Section 2.4, the flowchart of the device simulator is presented and the considerations that are
necessary to couple the Monte Carlo transport simulator with Poisson’s equation solver are

discussed.

2.1 Monte Carlo Transport Simulation

The drift current in n-type MOSFETS is a result of the oriented movement of electrons
due to an external electric field. Considering that describing the transport of electrons in a
semiconductor device using quantum mechanics is too time and memory-consuming
(VASILESKA; GOODNICK; KLIMECK, 2010), an alternative to that is using a semiclassical

theoretical model to describe their transport. The semiclassical model generalizes the theory
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employed to describe the transport of free electrons to describe the transport of electrons in a
periodic potential. In this case, the electrons represent Bloch wave packets instead of plane
waves.

Instead of tracking the state of each electron, in the semiclassical model, the goal is to
find the electron distribution function f(r,k,t), which gives the probability of finding an
electron in a position r in real space, in the k state in reciprocal space at the time t. The
Boltzmann Transport Equation (BTE) describes the semiclassical transport of electrons,
expressing the variations the electron distribution function is subjected to. The BTE is shown
in equation (2.1) (JACOBONI; LUGLLI, 1989).

%+1‘~-vrf+k'-ka= gmt (2.1)

The first term on the left side of equation (2.1) describes the temporal variation of the
distribution function, which is equal to zero in steady-state conditions (HAMAGUCHI, 2001).
The second term in the left side of equation (2.1) (r - V..f) is called diffusion term of the BTE.
This term comes from the variation of the distribution function in the real space and is caused
by temperature or charge carrier density gradients. The third term in the left side of equation
(2.1) (k- V. f) is the drift term of the BTE. It represents the variation of the distribution function
in reciprocal space caused by an external electromagnetic field (VASILESKA; GOODNICK;
KLIMECK, 2010). The term on the right side of equation (2.1) is the scattering term of the
BTE. While moving in a semiconductor, electrons are subjected to interactions that are referred
to as scatterings. The probability per unit of time that an electron in the state k transitions to the
state k' due to a scattering event is given by the transition rate S(k k'), while S(k’, k)
represents the transition rate out of K’ to the state k. The scattering term is the difference
between electrons scattered in and out of the state k and is expressed as (JACOBONI, 2010):
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j[f(k’)S(k', K(1-f(K) - fFR)S(k K)(1 - f(k))] dk’ (2.2)

The scatterings are treated as time-dependent perturbations; thus, Fermi’s golden rule is
employed to calculate the transition rates.

In summary, the BTE is an integro-differential equation and the electron’s distribution
function can be changed by an electromagnetic field, scattering events, and gradients of
temperature and charge carrier density. Although approximations can be employed to
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analytically solve the BTE, one can solve the BTE directly by simulating the electron
movement.

The BTE can be directly solved using a Monte Carlo (MC) transport simulator
(JACOBONI; LUGLI, 1989). In a Monte Carlo transport simulation, the dynamic of electrons
is described as periods of free-flight — where the electrons are accelerated by the electric field
—that are terminated by instantaneous scattering events. During the free-flight time, the electron
wavevector is modified only by the electric field. In n-type channel transistors, the electric fields
are the driving forces for the transport of electrons in the conduction band (KANO, 1998). In
the Monte Carlo transport simulation, electrons are point-like particles that represent Bloch
wave packets. Classical equations are employed to describe their dynamics; thus, the position
and the momentum of the electrons are well-defined (VASILESKA; GOODNICK; KLIMECK,
2010). Scattering is treated as a perturbation that changes the trajectory of the electron and may
change its energy. The scattering events may be caused by phonons, other carriers, and crystal
defects (LUNDSTROM, 2000). The stochastic behavior of scattering events is simulated by
generating random numbers that represent the scattering probability density, which is given by
the scattering rates (JACOBONI; LUGLI, 1989).

In a Monte Carlo transport simulation, the time is discretized, while the real space and
the reciprocal space are continuous. This means that the dynamic of electrons is evaluated at
discrete periods of time called observation time or time step, while electrons can move
everywhere in the semiconductor. The total simulation time depends on the time needed to
reach a steady state, which is usually about a few picoseconds. At the end of the simulation,
average values of interest can be estimated (VASILESKA; GOODNICK; KLIMECK, 2010).
The Monte Carlo method can be employed to simulate the transport of a unique electron or the
movement of an ensemble of electrons. To simulate n-type MOSFETS, the transport of an
ensemble of electrons must be simulated.

The next sections explain the Monte Carlo transport simulator. The free-flight period is
described in Section 2.1.1, while the dispersion relation of silicon’s conduction band is
explained in Section 2.1.2. In Section 2.1.3, the scattering mechanisms, the scattering rates, and
the scattering table — which is a lookup table where the scattering rates are stored and accessed
to select the scattering mechanism responsible for ending the free-flight period of the carriers —
are explained. The generation of the free-flight time and the scattering event simulation are
explained, respectively, in Sections 2.1.4 and 2.1.5. The flowchart of the Ensemble Monte Carlo

transport simulation is described in Section 2.1.6.
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2.1.1 Simulation of the Free-Flight Movement

The electron’s dynamics during the free-flight period is described by semiclassical
physics. In this approach, the electron is treated as a wave packet of Bloch wavefunctions, and
its transport is modeled as the propagation of a Bloch wave packet.

The wavevector of the electron in a crystal (K) is related to the free-electron momentum
(p) as (VASILESKA; GOODNICK; KLIMECK, 2010)

k= (2.3)

S e

The Bloch wave packet (electron) behaves as a classical particle with momentum #k.

Thus, the force, which is the variation of momentum with respect to time, is expressed as

_ d(hK)

T (2.4)

F

where the force F is the electrostatic force, which is defined as F = gE, in which E is the electric
field and q is the elementary charge.
The group velocity of Bloch wave packet is given by (HAMAGUCH]I, 2001).

1 0E(K)
-~ 2.5
Voh ok (2)
where E (k) is the dispersion relation of the conduction band when describing the transport of
electrons.

The acceleration of the Bloch electron is given by (HAMAGUCHI, 2001).

_d (10E(K)\ _102E(k) (dky 1 92E(K) /_ dk
a‘&(% ok >_E ok? (E) ~h? oK (hE) (2:6)
Substituting equation (2.4) into equation (2.6) results in
2
_ 1 9°EK) 2.7
h? ok2

Using an analogy with Newton’s second law (F = ma), the effective mass is given by
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ZEK)\
Merp = h? ( T ) (2.8)
Thus, the acceleration can be rewritten as
i (2.9)
a = .
Mery

Hence, employing the effective mass approximation, the transport of electrons can be
evaluated using the classical equations that describe the dynamics of macroscopic particles
(VASILESKA; GOODNICK; KLIMECK, 2010). Therefore, to calculate the position of the i-

th electron at a time t, the following equations are employed:
xi(t) = x;(t — 1) + v At
yi(t) =yt — 1) + vyAt (2.10)
z;(t) = z;(t — 1) + v,At

where vy, v, and v, are, respectively, the components of the electron’s velocity along the x, y
and z directions. In the device referential, the x-direction corresponds to the device’s length
direction, the y direction corresponds to the device’s height direction, and the z direction
corresponds to the device’s width direction.

To calculate the change in the electrons wavevector caused by the electric field, equation
(2.4), which relates the time variation of the electrons wavevector (k) with the external electric
field (E), must be evaluated. The new wavevector of the electron at a discrete time t is calculated
using equation (2.11) (VASILESKA; GOODNICK; KLIMECK, 2010).

E
ky(t) = ky(t—1) + T2 p

h
qE
ky(t) =k, (t—1) +Tym (2.11)
E
k,(t) = k,(t — 1) + qtht

In summary, equation (2.10) and equation (2.11) are employed to evaluate the trajectory

of electrons during the free-flight period. Note that the dispersion relation of the conduction
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band is needed to calculate the energy, the velocity (equation (2.5)), and, consequently, the
position of electrons (equation (2.10)).

2.1.2 Effective Mass Approximation

In n-type silicon FINFET and nanowire transistors, the electrons are accelerated in the
conduction band. The velocity of the Bloch wave packet is given by the gradient of the silicon
conduction band. Therefore, when it comes to simulating the transport of electrons using the
semiclassical model, to evaluate the velocity, energy, and position of electrons, the conduction
band information is necessary. Besides, to calculate the scattering probabilities (discussed in
Section 2.1.3), the density of states in energy is necessary. The velocity and density of states
can be estimated by calculating the silicon full-band structure. Considering that the full-band
structure calculation is a very time and memory-consuming method, an alternative method is
describing the dispersion relation of the conduction band using an analytical expression in terms
of the effective mass. Although the effective mass approach is an approximation, the silicon
conduction band around the minima is adequately described by this approach (RODRIGUEZ-
BOLIVAR, 2005; DEWEY; OSMAN, 1993). Thus, in this work, the dispersion relation of the
silicon conduction band is described by the effective mass approximation.

The conduction-band minimum of silicon is located at the symmetry point A, which is
15% distant from the X point along the family <100> (GONZALEZ, 2001). Since this family
has six equivalent directions, the silicon conduction band has six equivalent valleys. Due to the
degeneracy, the conduction band can be described using a three-valley-pair model. In terms of
the constant energy surfaces, the dispersion relation of the silicon conduction band is ellipsoidal
(JACOBONI, 2010). Thus, the dispersion relation along the (100) direction can be expressed

as

Ry R Rk

E(K) = (2.12)
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where m,.” is the effective mass in x direction of the v-th valley pair, m,," is the effective mass
in y direction of the v-th valley pair, m," is the effective mass in z direction of the v-th valley
pair. The effective mass parallel to the ellipsoidal longest axis is m;, and the effective mass in
the cross-section perpendicular to the longest axis is m;. For silicon, m; is equal to 0.92m, and
m,; is 0.19m,, where m,, is the mass of the free electron. Thus, the effective mass of the valley

pair along the (100) direction is m, = m;, m,, = m, and m, = m,. The effective mass of the
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valley pair along the (010) direction is m,, = m;, m, = m, and m, = m;. And for the valley
pair along the (001) direction m, = m;, m, = m, and m, = m,.

Therefore, there is a dispersion relation to each valley pair when describing the
conduction band using the three-valley-pair model. This complicates the transport simulation.
For instance, if the electric field is applied along the (100) direction, in two valley pairs the
electrons will be accelerated in a direction perpendicular to the longest axis of the ellipsoidal,
whereas in one valley pair the movement will be parallel to the longest axis. An alternative to
that is employing the Herring-Vogt transformation (HERRING; VOGT, 1956) which
transforms the ellipsoidal constant energy surfaces into spherical constant energy surfaces. This
is achieved by changing the wavevector using (JACOBONI, 2010):

# my
ki =k |— (2.13)

i

Thus, by employing the Herring-Vogt transformations, the resulting dispersion relation

h2k*?

E(l) = 2my

(2.14)

Distant from the conduction minimum, the energy is a nonparabolic function of the
wavevector. Considering that, the relation dispersion can be represented as (VASILESKA,
GOODNICK; KLIMECK, 2010)

Zk*Z

2m,

E(k)(1 + aE(k)) = (2.15)
where a is the nonparabolicity factor of the conduction band of silicon (VASILESKA;
GOODNICK; KLIMECK, 2010).

The number of states in a spherical shell of radius k and thickness dk is expressed by
equation (2.16). It is equal to the density of states in the reciprocal space (V./(2m)3) multiplied
by the volume of the spherical shell in the reciprocal space, including spin degeneracy
(VASILESKA; GOODNICK; KLIMECK, 2010).

Ve

g(k)dk = 2 7

Amk®dk (2.16)
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where V. is the crystal volume. Equation (2.16) in the new k-space is given by

k2 dk* (2.17)

. .,V m?ml
gUydi” = — |——
0

The density of states in energy is obtained by changing the variables from k* to E.

3/2 2
g(E)dE = %2 ‘/mtml‘/;(:)(l + aE(9) (1 4 2aE(K)) (2.18)

2.1.3 Scattering and Scattering Rates

In the Monte Carlo transport simulation, the electron free-flight period is interrupted by
scattering events which can modify the energy and momentum of electrons, deviating its
trajectory (VASILESKA; GOODNICK, 2006). A scattering event represents an interaction
between an electron and a scattering center. While electrons are moving in silicon, they can
interact with defects, other charge carriers, and lattice vibrations (phonons) (VASILESKA;
GOODNICK, 2006). Figure 2.1 shows the scattering mechanisms considered in our device

simulator of n-type silicon devices.

Figure 2.1: Diagram of the relevant scattering mechanisms in silicon devices.
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Source: Elaborated by the author.

As shown in Figure 2.1, the carrier-carrier and carrier-dopant scattering represent the
electrostatic interaction that electrons face while moving in silicon. Additionally, electrons can

interact with acoustic and optical phonons. Phonons are quantum particles that carry vibrational
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energy generated by the vibrational movement of atoms with respect to their equilibrium
position in the crystal lattice (SOLYOM, 2007). The periodic potential of the crystal suffers
variations due to the displacement of atoms from their equilibrium position. The electron-
phonon scattering is described by this perturbation in the crystal potential. In terms of their
vibrational mode, phonons can be acoustic when atoms move in phase, and optical when two
adjacent atoms move out of phase (ASCHROFT, 1976). The displacement of each neighboring
atom caused by optical phonon contributes directly to the lattice distortion since they move in
opposite directions. However, in the acoustic phonon, neighboring atoms are dislocated from
their equilibrium position in the same directions; hence, the strain created by the acoustic mode
distorts the crystal lattice (VASILESKA; GOODNICK; KLIMECK, 2010; LUNDSTROM,
2000).

In the Monte Carlo transport simulation, a scattering can be modeled in the real space
or the reciprocal space. For the device simulator, to simulate the transport of electrons in silicon,
the Coulomb interactions are treated in real space. The Coulomb interaction between carrier-
carrier and carrier-dopant is considered by the electrostatic force calculated from the Hartree
potential, which is obtained by solving Poisson’s equation.

The acoustic and optical phonon scatterings are described in the reciprocal space. Within
this description, the scattering events are described, employing quantum mechanics, as time-
independent perturbations. In the time-independent perturbation theory, when an electron
transitions from a Bloch state to another one due to a perturbation, the total Hamiltonian of the

system is described as
Hr = H, + Hcrystal + Hi, (2.19)

Thus, the total Hamiltonian of a perturbed system is a sum of the Hamiltonian of the
electron in the unperturbed crystal (H,), the Hamiltonian of the crystal (Hcys:q) and the
Hamiltonian of the i-th perturbation (H;) — which is the potential that describes the interaction
between the electron and the particle that induces the scattering (phonon, defect, carrier). The
first two are the unperturbed Hamiltonian, which eigenstates are k and c.

Scattering mechanisms can be classified by the final energy state of the electron after a
scattering event. When the energy of an electron changes after a scattering event, the scattering
is said to be inelastic. On the other hand, when the energy remains the same, the scattering is
said to be elastic. The scattering mechanisms can also be divided into intravalley and

intervalley. When the first occurs, the initial and final state are in the same valley, whereas in
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intervalley transitions the initial and final state are in different valleys (VASILESKA;
GOODNICK; KLIMECK, 2010).

For each scattering mechanism, there is a transition rate, which is the probability per
unit of time that an electron in a state |k, c) transitions to an empty state |K’, ¢) after being
scattered by the scattering process. The transition rate from a state |Kk,c) to a final state
|K’, ¢') can be evaluated by using Fermi’s Golden rule. Equation (2.20) expresses the transition
rate of the ith scattering process out of state |K, c) to a final state |k’, ¢y (JACOBONI, 2010).

2
Si(k ¢ K, c) = 7” (K, c'|Hilk, c)|?S6(E(K', ") — E(Kk, ¢)) (2.20)

In equation (2.20), (K',c'|H{|Kk,c) is the matrix element of the i-th scattering
mechanism, E (K, ¢) is the energy of the unperturbed state |k, c) and E (K, ¢) is the energy of
the perturbed state |K’, ¢').

The scattering rate out of the state k of the i-th scattering mechanism is obtained by
summing the transition rate equation (2.20) over the available states Kk’ in the final valley. It is

given by

g(k"dk'

(k) = S;(kcK,c) (2.21)

Where g(k")dk' is the number of available states in a sphere of radius &’ and thickness
dk’and g(k') is the density of states (see equation (2.17)).
The variable &’ in equation (2.21) can be changed to E (k") using equation (2.18). The

scattering rate out of the state E of the ith mechanism is given by equation (2.22).

g(ENAE'

= (2.22)

I;(E) = Si(k ¢ k', c)

In the transport simulation of electrons in silicon, the acoustic phonon scattering is

modeled as elastic and intravalley scattering. By assuming that the acoustic phonon scattering

is elastic, the phonon population is estimated using equipartition approximation. Besides, the

absorption and emission acoustic phonon scattering results in the same final state; thus, there is

no difference between them. The acoustic phonon scattering rate is given by equation (2.23)
(VASILESKA; GOODNICK; KLIMECK, 2010).
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Where = is the acoustic deformation potential, u is the sound velocity, py; is the silicon
density, kj is the Boltzmann constant and T is the temperature.

The optical phonon scattering is inelastic, resulting in the emission or absorption of an
optical phonon, and it can be intervalley and intravalley. To simulate intervalley scattering, the
six degenerated valleys of the silicon conduction band along (100) directions must be
considered. A scattering that causes a transition between valleys along the same orientation is
called g-process scattering, while a scattering that causes a transition between valleys along
distinct orientation is called f-process (VASILESKA; GOODNICK; KLIMECK, 2010). Thus,
for the g-process, the number of final valleys for electrons to scatter into is equal to 1, whereas
for the f-process, the number of final valleys for electrons to scatter into is equal to 4. To
calculate the scattering rate of these two processes, the number of available final valleys is taken
into account. Therefore, the f-process is more likely to occur. The optical phonon scattering rate
is given by (VASILESKA; GOODNICK; KLIMECK, 2010):

w(D.K)?

siwop

_ 1] 232 /m2m;JE(K)(1 + aE (K'))

NE)=Z [n(wop) + % t5 A2R3 (1+2aE@EY)  (2.24)

Where D.K is the coupling constant of the optical phonon scattering, Z in the number of
available final valleys (which is equal to 4 for f-process and 1 for g-process), and w,,, is the
optical phonon frequency, and n(wop) is the phonon population, which is calculated using
Bose—Einstein distribution function. The top sign in equation (2.24) corresponds to the phonon
absorption process, while the bottom one corresponds to the phonon emission process. To

assure energy conservation, the energy term in equation (2.24) is given by
E(K) = E(K) * hw,y (2.25)

Where hw,, is the optical phonon energy, and the top sign corresponds to the phonon

absorption process, while the bottom one corresponds to the emission process.
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2.1.4 Generation of the Free-Flight Time

The free-flight time is assigned to each electron based on the density probability of an
electron being scattered around a time t and t + dt after having a free-flight period equal to t.
To obtain this density probability, first, the total scattering rate out of E in at the time t (['(E(t)))

must be calculated. The total scattering rate is given by

Ny
r(E®) = ) HED) (2.26)
j

Where Ns is the number of scattering mechanisms, and I (E(t)) is the total scattering rate of

the j-th mechanism at the time t, which can be calculated using equation (2.22).
The total scattering rate is the probability per unit of time that an electron will transit
out of the state E. Thus, T'(E(t))dt is the probability that a scattering event will occur in an

interval of time dt around t, whereas the probability that an electron that suffered a scattering at
t = 0 is not scattered during an interval of time t is exp (— fotl“(E(t))dt’). Therefore, the

probability that an electron that suffered a scattering at t = 0 and had a free-flight time equal
to t will suffer a new scattering event between t and t + dt is (LUNDSTROM, 2000)

P(t)dt = T(E())exp [— f tF(E(t))dt’] dt (2.27)
0

The probability that an electron has a free-flight time t,. is given by integrating P(t)dt

from zero to ¢,.

tr
r=[ P (228)
0

Solving equation (2.28) after substituting equation (2.27) on equation (2.28) leads to
equation (2.29).

tr
r=1—exp [—f F(E(t))dt’] (2.29)
0

Equation (2.29) can be rewritten by substituting the term 1 — r for r, since they have
the same probability distribution, thus are statistically the same (YORSTON, 1986). Assuming
this, equation (2.29) results in equation (2.30).
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tr

In(r) =f T(E(t))dt’ (2.30)
0

Equation (2.30) can be solved to obtain the free-flight time t,. after each scattering event.
However, equation (2.30) is too time-consuming to be solved analytically. Therefore, the self-
scattering approximation is used to keep I'(E(t)) constant. In this approximation, a fictitious
scattering called self-scattering is included in the simulation, which has no impact on the
trajectory and energy of the electron. The only consequence of adding the self-scattering is
keeping the total scattering rate constant. This is made by calculating the maximum value that
the total scattering can assume (Ij). Thus, the scattering rate of the fictious scattering
mechanism I, (E) is given by (VASILESKA; GOODNICK; KLIMECK, 2010)

Tserr (E) = Iy — T'(E) (2.31)

Using the self-scattering approximation, the total scattering rate is constant and equal to
Ip. Thus, the integral of equation (2.30) can be easily solved, and the free-flight time can be

written as
1
t, = ——=In(r) (2.32)
Iy

The free-flight time (t,) is calculated using the expression given by equation (2.32). A
random number (rand0) that varies from 0 to 1 is generated in the Monte Carlo code to represent

r, which is the probability of a scattering occurring after some time t,. .

2.1.5 Simulation of a Scattering Event

Since each scattering mechanism has a different impact on the electron trajectory, as the
free-flight ends, the next step is selecting the scattering mechanism that will scatter the electron,
so the final state can be updated. To define which scattering mechanism is responsible for
ending the free-flight period, a random number is generated randl, which represents the total
scattering rate.

In the simulation, the scattering rate of all mechanisms (including the self-scattering) as
a function of the electron energy is calculated for an extended range of energy, Then, the

scattering rates are normalized by this maximum value. Afterward, the cumulative scattering
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rates are saved in a table, called the scattering table. In the scattering table, each line represents
an energy level, and, in each row, the cumulative scattering rate is saved. For instance, in the
first row, the normalized scattering rate of the first scattering mechanism is saved, in the second
row the sum of the normalized scattering rate of the first scattering mechanism and the
normalized scattering rate of the second scattering mechanism is saved. This goes on until the
Ns-th row. In the (Ng + 1)-th row the complementary of the sum of the normalized scattering
rates of the N, scattering mechanism, which represents the self-scattering rate, is saved.

The method used to select the scattering mechanism responsible for ending the free-
flight time of an electron is based on generating a random number evenly distributed between
0 and 1. The mechanism that will scatter the electron that has an energy E is stochastically
chosen by comparing the generated random number with the probabilities on the scattering
table for that specific electron energy, E. The selection process consists of finding the line in
the scattering table that represents the electron energy, then, comparing the random number
generated with the cumulative scattering rates that are stored in the following columns. If the
random number is smaller than the value in the first column, the first mechanism is chosen. If
the random number is greater than that, then, it is compared with the value on the second
column. If the random number is smaller than the second column value, the second mechanism
is chosen. If the random number is greater than the second column value, the analysis goes on
until a mechanism is selected. The energy and the wavevector of the electron are updated in
accordance with the selected scattering mechanism. The flowchart of the scattering mechanism
selection process is shown is shown in Figure 2.3.

Figure 2.2: Flowchart of the scattering mechanism selection.
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2.1.6 Ensemble Monte Carlo Transport Simulation

The flowchart of an Ensemble Monte Carlo (EMC) transport simulation is shown in
Figure 2.3. The simulation consists of initializing the conditions of the simulation, then creating
the scattering tables, and initializing the electrons. Finally, the transport of the ensemble is
simulated in a loop, where the free-flight period and scattering events take place. The simulation
ends when the last time is reached.

Initialization of parameters

As the simulation starts, values are assigned to the variables that describe the conditions
of the simulation — for example, temperature, maximum simulation time, materials properties,
and observation time. These parameters are read in an input file; therefore, they can be easily

modified by the user.

Figure 2.3: Flowchart of the Monte Carlo transport simulator.
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Scattering tables
Next, the total scattering rate of all mechanisms is calculated as a function of the

electron energy. Then the scattering rates are stored in the scattering table.

Initialization of electrons

After the scattering tables are generated, the electron initialization is performed. Each
electron is initialized with energy, wavevector, and initial free-flight time.

The initial energy of the ensemble is given by the Boltzmann distribution. To randomize

the initial energy of the electron, the initial energy is calculated by
3
Eip = —EkBTln(randZ) (2.33)

where rand2 is a random number uniformly distributed between 0 and 1.
The dispersion relation of the conduction band relates the initial energy of the electron
with the magnitude of the initial wavevector. The orientation of the wavevector is randomly

assigned to the electrons, following equations (2.34).

¢ = 2n(rand3)
(2.34)
cosd =1 —2(rand4)

In equation (2.34), rand3 and rand4 are random numbers uniformly distributed between
0 and 1, ¢ is the azimuthal angle that can vary from 0 to 2r, and 6 is the polar angle which can

vary from 0 to m. Then, the components k,, k,, and k, of the wavevector can be calculated.

Transport loop

In the transport loop, the trajectory of electrons is evolved until the final time is reached.
Figure 2.4 represents the time evolution of an EMC simulation. The evolution of the trajectory
of the i-th electron is represented by the i-th solid line. As mentioned in Section 2.1.1, the time
evolution of the electron transport is divided into small intervals of time (observation time)
where the movement of electrons is updated. In Figure 2.4, the red squares represent a scattering
event, while the dotted vertical lines represent an observation time. As can be seen in Figure
2.4, the scattering event may coincide with an observation time, may occur before an
observation time, may not occur between two consecutive observation times, besides, more

than one scattering may occur during a unique observation time.
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Figure 2.4 Transport evolution in a Ensemble Monte Carlo simulation. The movement of electrons is
evaluated at observation times At, the j-th observation time is represented by the j-th vertical line. The
red squares represent random scattering events. The i-th horizontal lines represent the evolution of the
trajectory of the i-th electron.
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Source: Obtained from Vasileska and Goodnick (2006).

To simulate all these possibilities, the variables At (an observation time) and dte (the
time until the next scattering event) are employed in the code. At an observation time, the time
until the next scattering event (dte) of each electron is compared with the observation time.
There are two possibilities, dte may be greater than At or smaller than At.

dte is larger than At: the electron is not scattered during At. The electron is accelerated
by the electric field, changing the wavevector of the electron. The new wavevector is calculated,
and the energy of the electron is calculated using the dispersion relation of the conduction band.
The trajectory of the electron is updated, then the code tracks the next electron.

dte is smaller than At: a scattering event occurs before the next observation time. The
electron is accelerated by the electric field in an interval of time equal to dte and then it is
scattered by the chosen mechanism. The type of scattering that will deviate the trajectory of the
i-th electron is chosen based on its energy at dte. The energy and the wavevector of the electron
are updated based on the scattering mechanism chosen, and a new free-flight time is assigned
to the electron. The new free-flight time is compared with the time left until the next observation
time.

e the new free-flight time is smaller than the time left until the next observation time: another
scattering event occurs before the next observation time. The electron is accelerated by the
electric field in an interval of time equal to the new free-flight time, and the energy and
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wavevector are updated. Then a scattering event is simulated again, the electron is scattered
by the chosen mechanism, then energy and the wavevector of the electron are updated and
a new free-flight time is assigned to the electron.

e the new free-flight time is greater than the time left until the next observation time: the
electron is not scattered. The electron is accelerated by the electric field during the time left
until the next At, and its wavevector and energy are updated. Then, the code tracks the next

electron.

2.2 3D Poisson’s Equation Solver

The electrostatic potential, or Hartree potential, in a MOSFET is controlled by the bias
applied to its terminals and is related to the charge density in the device. The electrostatic
potential is calculated by solving Poisson’s equation, which comes from Gauss’s law and is

expressed in equation (2.35) as a Partial Differential Equation.

V- (s(x, y,2)VV(x,y, Z)) =—p(x,y,2), (2.35)

where V (x, y, z) is the three-dimensional Hartree potential, p(x, y, z) is the charge density, and
e(x,y,z) is the material permittivity at the coordinates x,y and z. Note that & spatially varies
due to the presence of different materials in MOSFET structures.

Poisson’s equation must be discretized and linearized to be numerically solved
(VASILESKA; GOODNICK; KLIMECK, 2010; JACOBONI, 2010). Thus, the first step is
describing the device as a set of small three-dimensional cells that form a mesh. The position
of each mesh node is fixed, and the mesh spacing, which is the distance between two
consecutive mesh nodes, can be uniform or nonuniform in all three dimensions. Thus, the mesh
nodes of the device are the discrete points where Poisson’s equation is solved. The mesh point
i,j,k, where Poisson’s equation is solved, and its neighborhood is represented using a seven-
point stencil represented in Figure 2.5.

Poisson’s equation showed in equation (2.35) can be rewritten as

9 aV( )+a aV( )+c') aV( ) | =p( ) 2.36
F sax X,¥,Z 3y eay X,¥,Z Ep SOZ xv,z) | =plxyz (2.36)
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Figure 2.5: Diagram of the seven-point stencil employed to discretize the 3D Poisson’s equation. The
potential at the mesh point i, j, k (represented as a black circle) is calculated taking into account its six
closest neighbors (represented as red circles).
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Source: Elaborated by the author.

To calculate equation (2.36) at the mesh point i, j, k, the left-hand side of equation (2.36)
is discretized using the central finite difference method. Applying the central difference method
to discretize the first term of the left-hand side of equation (2.36), which is the derivative with

respect to the x-direction, results in

G )
i siV(x 2.2) | = 0x/i+1/2,jk 0x/i-1/2,jk (2.37)
ox\ ox 7 0.5(X; + X;_1)

The second derivative of the potential with respect to x at the point i, j, k is the discrete
derivative of the first derivative. In equation (2.37), X; is the mesh spacing along the x-direction
of the point i, j, k. The index of the first derivatives in the numerator of equation (2.37) indicates
that they are evaluated at the midpoints of the grid along the x-direction. This means that the
pointi + 1/2,j, k is the midpoint between i, j, k and its neighbor at the right side along the x-
direction i + 1, j, k, while the pointi — 1/2, j, k is the midpoint between i, j, k and its neighbor
at the left side along the x-directioni — 1, j, k.

The discrete first derivative of the potential evaluated at the midpoints of the mesh along

the x-direction is

i+1/2,j,k '

ox X;
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(0_V> Vijk = Vicgjk 239
0x/i-1/2,jk Xi—q '

where Vi, jx and V;_q ;. are respectively the potential at the point i +1,j,k and i — 1,j, k.

Note that these two points are the neighbors of the point i, j, k along the x-direction.

Figure 2.6: The grid used to calculate the permittivity in green. The midpoints are at the center of the
face of the green grid.

(i'lrjrk). ° (l,],k}
(i-1,j,k-1) (i,j,k-1)
L 4 . ¢
(-Litkig L JENUEEY
C-. o
(i-1,j-1,k-1) (i,j-1,k-1)

Source: Elaborated by the author.

To calculate ¢ at the midpoints, in equation (2.37), a different grid is used, which is
shown in Figure 2.6. The mesh points of this new grid are represented by green circles. In this
new representation, the point i, j, k (where the Poisson’s equation is solved) is at the center of
the cube. The midpoints (where ¢ is evaluated) coincide with the center faces of the cell. Thus,
the permittivity at the midpoints is defined as

_Eijk T Eijr—1t E i1k T Eijo1k-1 240
Eiv1/2,jk = 2 (2.40)

Eiajk-1 Y&k T Eicrjo1k-1F Eim1j-1k 2 41
Ei1/2,jk = 2 (2.41)

Substituting equations (2.38), (2.39), (2.40) and (2.41) into equation (2.37) results in
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igi _ Eijk + & jk-1 T Ej—1k T Si,j—1,k-1(Vi+1,j,k - Vi,j,k) _
Ox O0Ox Z(Xl + Xi—l)Xi

(2.42)
Eim1jk-1 T Eim1j o1 jo1—1 T €i-1jo1 (Vijie = Vierjk)
2(X; + Xi—1)Xiq

The same discretization process is followed to discretize the second and third term of
the right-hand side of Poisson’s equation (equation (2.36)), which are the derivatives with

respect to the y- and z-direction, respectively. This results in

igi iy et gt iy (Vijrake — Vijx)
dy dy 2(Y; +Y1)Y;
(2.43)
€i-1j-1k-1 T € j-1k-1 + & jore T Eim1jm1k(Vijke — Vij-1k)
2+ Y)Y

0 0 Ei-jktéjktEjiet &i-1,j-1k(Vijiear = Vijik) _
9z 0z 2(Zy + Zy_1)Zy

! (2.44)

Ei1jk—1+ Eijk—1 T €1 jm1k-1 T & j—1k-1(Vijk — Vijr-1)
2(Zyc + Zy—1)Zi—a

Substituting equations (2.42), (2.43), and (2.44) into the left-hand side of Poisson’s
equation (equation (2.36)) and rearranging the expressions that multiply the potential terms to

describe them as coefficients, results in

V- (eVW(x,y,2) =
BijwVijk-1+CijiVij—1k + DijiVie1,jk  EijixVijk + FijiVisrjk + (2.45)

GijkVijrie + HijiVijk+1

Where
B .. = Ei—1,jk-1 T Eijk—1 T E-1j-1k-1 T Ej-1,k-1
Ljk —
2(Z + Zx-1)2Zr-1
co = Ei—1,j—1k-1 T & j-1k-1 T € j—1,k T Ei-1,j-1,k (2.46)
i,jk — .
20, + Y)Y
_ &ic1jk-1 T &1kt Eimrj-1k-1t Eim1 -1k
Dijr =

2(X; + Xi—1)Xi—1
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Eijk T Eijk-1TEj-1k t & j-1k-1
2(X; + Xi—1)X;

Fijr =

Ei—1jk T Eijk T & jrk—17T Ei-1jk-1
205+ %),

Gijr =

Ei—1jk t Eijk T Ej-1kt Ei-1j-1k
2(Zy + Zyg—1)Zy

Hijx =

Eijx = —Bijx—Cijx —Dijx —Fijx — Gijr —Hijk

In addition to discretizing the left-hand side of Poisson’s equation, we must linearize
the right-hand side of Poisson’s equation. In semiconductors, the charge density is a sum of the
charge carrier densities and the dopant density, considering that all atoms are ionized.

p=—q(p—n—Ny+Np) (2.47)

where p and n are respectively the hole and electron densities, and N, and N, are the dopant
densities of the acceptor and donor atoms.

Assuming a semiclassical description, where the electron and hole densities are
described using the Boltzmann approximation, in thermal equilibrium, the holes and electrons

densities are given by

n = n;ex vxy2)
- l p kBT
(2.48)
o exp [~ VY2
p L p kBT

where n; is the intrinsic carrier density.
Considering a small update § in the known Hartree potential (V°!4), the new potential

(V") can be described as
ynew = yold t § (2.49)
Assuming this, Poisson’s equation for V™% is given by
V- (eVVmeV) = pnew (2.50)

Substituting equation (2.49) in equation (2.50) results in
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V- (evVold) + V- (eV8) = pmew (2.51)
In which
Vnew q new
pmeY = —q| n;exp (— iT > —n; exp( T ) —Ny(x,y,2) + Np(x,y, Z)) (2.52)

The charge density p™¢"can be approximated using the first and second term of Taylor

series expansion around 170X

new old apnew
p =p”" + VW | ot (2.53)
where
old quld q old
p%% =—q|n;exp|— T —n; exp T — Ny(x,y,z) + Np(x,y,2) (2.54)
B B
and
apnew q2
OVTeW | o1d - kB_T (nold + pold) (2.55)

In which n°d and p°! are the charge carrier densities related to the potential V°'. Substituting

equation (2.55) into equation (2.53) results in

2
pnew — pold +kz_T (nold +pold)5 (2.56)

Substituting equation (2.56) into equation (2.51) and rearranging the terms results in
q2
V- (eV6) — T (nold 4 pold)§ = pold —y . (evy©ld) (2.57)
B

Equation (2.57) is the final expression used to calculate the Hartree potential in the
Poisson solver. The Laplacian terms are expressed in their discrete form (equation (2.45)). The

right-hand side of equation (2.57) is called force function and is expressed as

f — pold -V (vaold) (258)



36

In which V - (eVV°!9) is given by

old\ — old old old old
V- (eVW) = B; V%1 + CijacVi %k + Dij V2 ik + EijiVioe +

ld ld d (2.59)
(o) [0 [0
FijrVivijn ¥ GijeVijvie ¥ HijrVijk+1

The left-hand side of equation (2.57) is related to &. The first term of the left-hand side
(V- (Vo)) is calculated using the discrete representation of the Laplacian, which is expressed
as
V- (eV8) = By ji6ijk-1+ Cijibij-1k + Dijxbi-1,jk + Eijbijr + (2.60)
Fijibis1jk + GijSijrir + Hijrbijrs1 .
To consider the second term of the left-hand side of equation (2.57), the
coefficient E; ; is rewritten as

2
q
Eijx =—Bijkx — Cijk —Dijx —Fijx — Gijx— Hijrx— T (nold 4 potd) (2.61)

Equation (2.57) represents a Ax = b problem, in which A represents the coefficients of
the discretization, b represents the force function and x is §.

In our Monte Carlo device simulator, the Poisson solver uses an iterative method called
strongly implicit procedure (SIP) (STONE, 1968) to solve Poisson’s equation. The Hartree
potential that accelerates the electrons during the next observation time in the Monte Carlo
transport simulation is obtained at the end of the previous observation times (using the charge
distribution calculated after the transport simulation). Thus, during an observation time, the
potential profile is frozen.

The inputs of the Poisson solver are the potential profile of the previous observation
time (V7°!4) and the charge density that is calculated at the end of the transport simulation (p°4).
At the end of an iteration of the Poisson solver, the convergence is checked. If the § is small
enough, the iteration process is ended, and the potential profile of the next observation time is
obtained. Otherwise, a new iteration starts, where 1724 = V™% |n the Poisson solver iteration,
the charge density is not updated. Therefore, p°@ is kept as the charge density that was
calculated at the end of the transport simulation.

In the Monte Carlo device simulator, after the end of the transport simulation, the charge

density is evaluated at each mesh point to solve Poisson’s equation and obtain the potential
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profile of the next observation time. When we are simulating n-type transistors, the density of
holes is calculated at each mesh node using a quasi-equilibrium approximation given by

Vijk
Pijje = NyFi\Ec — E; — Eg — q 5 (2.62)
2 B

where p; ; « is the density of holes at the mesh point i, j, k, Ny, is the effective density of states

of the valence band, and F1 is the Fermi-Dirac integral of order %. E¢, E;, and E, are,
2

respectively, the conduction band, intrinsic Fermi level and the bandgap energy. V; ; , is the
potential at the mesh point i, j, k calculated in the previous observation time.

To determine the density of the dopants and the density of the electrons at each mesh
node, a charge assignment procedure is employed, which will be discussed in the next section.

2.2.1 Charge Assignment

As mentioned in the previous section, to numerically solve Poisson’s equation, the
charge density at each mesh node must be calculated. In n-type MOSFET, the charge density
of holes is given by equation (2.62). The charge of particles that can be distributed anywhere
inside the device (dopants and electrons) must be assigned to the mesh points. Considering that
the dopants are static particles, the procedure to attribute the dopants to the mesh nodes can be
performed only once, whereas the process of assigning the charge of the electrons to the mesh
nodes must be performed after their trajectory is updated. Therefore, after simulating the
dynamics of the electrons in the Monte Carlo transport simulation, their charge must be
assigned to the mesh nodes of the cell they are inside.

The assignment of the charge of an electron to the mesh points consists of, firstly,
finding the mesh cell where the particle is. Secondly, attributing the charge of the particle to
the mesh nodes of the cell in accordance with the rules of assignment of the chosen method. In
this device simulator, the cloud-in-cell (CIC) method is employed to assign the charge of the
particles to the mesh nodes of the cell. The CIC scheme consists of attributing a fraction of the
charge for each of the mesh nodes of the cell in which the particle is. The charge that is assigned
to each node is weighted by the distance between the particle and the node.

Finally, the particle density at the mesh point i, j, k is calculated as
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Q(.Jj, k)

iy - Qi)
ch(i.j. k) quol(i, J, k)

(2.63)
where Q(i, j, k) is the total charge attributed to the mesh point i,j, k and vol(i,j, k) is the

volume associated to the mesh point i, j, k.

2.2.2 Electric Field and Electric Force Calculation

The force responsible for accelerating the electrons in the Monte Carlo transport
simulation comes from the Hartree potential, which is calculated by Poisson’s equation solver.

To calculate the electric field equation (2.64) is employed.
E(x,y,z) = —=VV(x,y,2) (2.64)

To calculate the electric field at the mesh point (i,j, k), equation (2.64) must be
transformed into its discrete form. Using the first order central difference scheme, the discrete
component of the electric field in the x, y, and z directions, are given by equations (2.65), (2.66),

and (2.67), respectively.

. LVGE+1j,k)=V(@ijk) V(Qjk)—V(3i-1jk)
Ex(i,j k) = —5( e + X, (2.65)
L 1—
Ey(i,j, k) = —§< v + v (2.66)
j -1
.. V@A, k+1) =V, ) k) V(Qjk)=V(Qjk—-1)
E,(i,j, k)= _E( Z + 7o, (2.67)

The process to calculate the resulting mesh force that acts upon each electron consists
of finding the mesh cell in which the electron is located, after that, the force that acts on the
electron is calculated by interpolating the forces of all eight mesh points using the same scheme
used to assign the particle charge to the mesh nodes. Thus, in the CIC method, the mesh force
seen by the i-th electron is the sum of the mesh force of the n-th node (F™) weighted by the
distance from the electron to the n-th node (w™) over all the eight nodes of the cell where the

electron is located.
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Fi= ) Frwn (2.68)

2.3 Boundary Conditions

In Monte Carlo device simulators, there are two types of boundary conditions. The
boundary conditions that limit the dynamics of the electrons in the ensemble Monte Carlo
routine, and boundary conditions that represent the terminals of the device in the solution of
Poisson’s equation.

The boundary conditions of the Monte Carlo transport simulation are the physical device
boundaries, for instance, the sides, the bottom, the top, and the interfaces between different
materials. To simulate them properly, each boundary should be modeled to obtain results that
represent their physical nature. Thus, the side and bottom boundaries are treated as a reflecting
boundary condition, when electrons cross these boundaries, they are reflected into the device
with the same velocity. Thus, the magnitude of velocity is not changed, but the direction of the
velocity along the direction normal to the surface is reflected (GROSS, 1999).

The boundary condition for the interface between silicon and silicon dioxide is
considered as surface roughness scattering mechanism. Taking into consideration the wave-like
behavior of electrons, the interaction of electrons with a surface can be explained as a diffraction
phenomenon. The electrons that hit a perfectly smooth surface would always suffer a specular
reflection, while electrons that hit a rough surface would always suffer a diffuse reflection. The
so-called Fuchs’ approach (FUCHS, 1938) consists of describing the interaction between the
surface roughness and the electron as a combination of diffuse and specular scattering. The
probability of specular scattering is given by ps, while the probability of diffuse scattering is 1-
ps. The surface roughness scattering is then implemented in Monte Carlo simulations by
generating a random number that defines whether the probability of scattering is either diffusive
or specular. In the literature, this approach was successfully employed in planar bulk, and SOI
devices, and in both p-type and n-type devices (FISCHETTI; LAUX, 1988), (VASILESKA,
GROSS; FERRY, 2000), (BUFLER; SCHENK; FICHTNER, 2000), (LAUX; FISCHETTI,
1997). Laux and Fischetti (1997) suggested that the specular and diffuse scattering rates could
be adjusted so the current calculated by the Monte Carlo device simulator is equal to the Drift-
Diffusion current at low bias, where the drift-diffusion model is valid. In terms of tri-gate
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transistors, this approach has been employed by (BUFLER; SMITH, 2013) in a FInFET, where
the specular scattering probability was set to 85%, thus the diffuse probability was set to 15%.

During the transport simulation, electrons are allowed to leave the source and drain
contacts, contributing to the current of the respective terminal. The source and drain terminals
are ohmic contacts, because of that, the source and drain contacts and their vicinity must be
charge neutral. After simulating the transport of electrons, a routine checks the charge neutrality
of these regions. In this routine, electrons can be injected or deleted to balance the number of
electrons and dopant ions in these regions. If there are fewer electrons than dopant ions in any
cell in these regions, this routine injects electrons. The energy of the electrons injected is given
by the Boltzmann distribution; hence, their average energy is the thermal energy. The
wavevector of the electrons injected is oriented towards the interior of the surface where they
are injected. The position of the electrons injected is randomly set in the cell where electrons
are missing. This routine also checks if there are more electrons than dopant ions in any cell in
these regions, in this case, the electrons in excess are removed from the simulation. If the
injection and deletion are not adequately performed in this routine, it might impact the
simulation results. Thus, to assure that this routine is performed correctly, the doping density
and the electron density in these regions should be similar.

In terms of Poisson’s equation, the Neumann and Dirichlet are the types of boundary
conditions employed (GROSS, 1999). For the contacts, the Dirichlet condition is applied, in
which the potential is constant and assumes the value of the bias voltage applied to the terminal.
For the other surfaces of the devices, the Neumann condition is employed, in which the

derivative of the potential normal to the surface is zero.

2.4 Monte Carlo Device Simulator Flowchart

The first version of the Monte Carlo device simulator employed in this work was
developed by Gross (1999) during his Ph.D. work at Arizona State University to simulate a
silicon n-type planar transistor. Our research group has been improving this Monte Carlo device
simulator in terms of implementing different transistors structures and including the effects of
relevant physics phenomena to investigate the state-of-art transistors. The first improvement

made by our research group (CAMARGO, 2016) was including the structure of a silicon p-type
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planar transistor. In the second work (ROSSETTO, 2018), a thermal module was incorporated
into the device simulator to consider the impact of self-heating in p-type silicon planar
transistors. Most recently, the subroutines employed to simulate the n-type silicon planar
transistor were improved and the structure of an n-type silicon FinFET transistor was included
(FURTADO, 2021).

The simulator was written in FORTRAN 77 language and is formed by thirteen source
files, where several subroutines and functions are employed to simulate the operation of
transistors. Note that subroutines and functions must be included or modified to implement the
improvements in the simulator.

Figure 2.7 shows the flowchart of our device simulator and each step of the Monte Carlo
device simulation is described below.

Figure 2.7: Flowchart of the Monte Carlo device simulator.
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Source: Elaborated by the author.

1. Initialization
a. Read input files
The initialization of the device simulation starts by reading the files that the final user
can edit. These files contain the parameters that describe the type of simulation and the device.
In terms of the type of simulation, the user can choose the charge assignment method employed
and the type of device (n-type MOSFET, p-type MOSFET, n-type FinFET). In addition, if the

users select a silicon p-type planar transistor, they can choose between including the thermal
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mode or performing an isothermal simulation. Concerning the parameter that defines the device,
the user can define the size of the device, the doping density in each region, the temperature,
the method of initialization of the electrons, the bias applied in each terminal, and the number

of mesh cells in each direction.

b. Scattering tables
Then the second step is calculating the scattering rates for all scattering mechanisms
that are relevant. The scattering rates are stored in the scattering table as a function of the
electron energy. When an electron is scattered, the scattering table is accessed to determine
which scattering mechanism will be responsible for terminating its free flight.

c. Initializing the electrons
After creating the scattering tables, the next step is initializing the electrons. The user
can select whether the initial energy, wavevector, free-flight time, and valley will be attributed
to the electron by reading an input file or by randomly attributing them to the electrons using

the electron initialization routine.

d. Create the mesh
This step concerns discretizing the device by creating the mesh. As it was mentioned,
the number of mesh cells and the size of the device in each direction are read in the input files.
In this process, it is attributed to each mesh node a position and a mesh spacing, which is the

distance between two consecutive mesh nodes.

e. Distributing the dopants

The average number of dopants is calculated in accordance with the dopant density
chosen by the user and the volume of the region that will be doped. Since the number of dopants
in nanoscale devices follows a Poisson distribution function, the number of dopants is
calculated using a Poisson distribution whose average value is the average number of dopants.
After calculating the number of dopants, the dopants are randomly distributed in the
semiconductor. It is also in this step that the charge of the dopants is assigned to the mesh nodes
using the CIC particle charge assignment method. Note that the dopants are static, therefore
their charge assignment to the mesh points is performed only in the initialization. By treating
the dopant ions as particles, the effect of random dopant fluctuation on the transistor’s

properties can be assessed by this device simulator.
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f. Calculates the initial potential assuming charge neutrality
Assuming charge neutrality, the carrier density and the potential are calculated for each

mesh point.

g. Solves Poisson’s equation in equilibrium
Poisson’s equation is solved assuming thermal equilibrium by applying the set bias at
the gate contact, and keeping the other contacts at 0 V. In this step, to calculate the first iteration

of the Poisson solver, the initial guess is the initial potential calculated in step (f).

h. Initializes the electron position based on the charges of each mesh node
The position of the electrons is set in accordance with the charge density at each mesh

node.

i. Checks charge neutrality
In this step, the code checks if it is necessary to add or delete electrons in the vicinity of
the source and drain contacts to guarantee charge neutrality in these regions and properly
describe an ohmic contact.

J. Assign the biases to all the terminals

Now a bias is applied to each terminal (source, drain, and body terminals).

After the (j) step, the initialization process is ended.

2. Solve Poisson

Poisson’s equation is solved.

3. Calculate the Electric Field and Force
After the solution of Poisson’s equation converges, the electric field at each mesh point

and the mesh force that acts on each electron are calculated.

4. Monte Carlo Transport
The transport of the electrons is simulated for a period equal to one observation time.
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5. Charge Assignment
The density of holes is calculated at each mesh node using equation (2.62), while the
charge of electrons is assigned to the mesh nodes of the cell the electron is inside using the CIC

charge assignment method.

6. Checks charge neutrality

In this step, the code checks if it is necessary to add electrons in the vicinity of the source
and drain contacts to guarantee charge neutrality.

Goes back to step (2) until the final time is reached. Note that the transport of the
electrons is simulated in the Monte Carlo transport simulation. At the end of the observation
time, the electric fields that will accelerate the electrons at the next observation time are
calculated in the Poisson solver.

To couple the Monte Carlo transport simulation and Poisson’s solver, some aspects must
be considered. The Hartree potential of the time NAt is calculated by the Poisson solver using
the charge distribution of the time (N — 1)At. Between the interval of time (N + 1)At and
NAt, it is assumed that the Hartree potential is static, and the electrons are accelerated using the
electric field that was calculated at NAt. To find stable results, the appropriate observation time
and the mesh spacing must be chosen. The observation time must be much smaller than the
inverse plasma frequency, which is given by (VASILESKA; GOODNICK; KLIMECK, 2010)

1 |EsiMess (2.69)
wp q*n '

where &g is the permittivity of silicon.

A good spatial resolution of the potential is found when the mesh space can resolve the
charge variations. Thus, the adequate mesh spacing must be smaller than the smallest
wavelength of the charge variation, which is given by the Debye length (VASILESKA,;

GOODNICK; KLIMECK, 2010).
gsikBT
Ap = / o= (2.70)

The observation time and the mesh spacing are also related to each other. If the

observation time is too long, the distance an electron travels in an observation time might be

much bigger than the mesh space; thus, the force that accelerates the electron is obsolete, and
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the assumption that the Hartree potential is static between two consecutive observation times is
no longer valid (GROSS, 1999). To avoid this, the observation time should be short enough
(around 1 fs and 0.01 fs) so that the maximum distance the electron can travel during an
observation time is shorter than the mesh spacing.
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3 QUANTUM CORRECTION

Quantum effects became important as the dimensions of transistors reached the
nanometer scale (HAN; WANG, 2013). In n-type FINFET and nanowire transistors, electrons
are confined in two directions (along the width and height directions of these devices) where a
two-dimensional quantum well is formed (RAMAYYA; KNEZEVIC, 2010). This quantum
well is formed due to the conduction band offset between silicon and silicon dioxide and the
nanometric dimensions of these devices. The electron confinement in FINFET and nanowire
transistors results in the reduction of electron density in their channel. In terms of the transistor’s
electrical properties, this effect decreases the drain current of the device (WU; SU, 2009).
Besides reducing the electron density, the quantum confinement also shifts the distribution of
electrons away from the silicon/silicon dioxide interface, impacting the capacitance and
threshold voltage of the device (LEE, 2006), (KOBAYASHIA; HIRAMOTO, 2008). In
summary, quantum effects can impact the electrical characteristics of transistors, such as
threshold voltage, drain current, and channel capacitance (RAMEY, 2003).

In computational electronics, these quantum effects can be considered by coupling a
Schrodinger-Poisson solver to a Monte Carlo transport simulation or by including a quantum
correction into the Monte Carlo device simulator. The Schrodinger-Poisson solver coupled to
the Monte Carlo transport simulation method is based on solving the 2D Schrédinger-Poisson
equations along the directions where the 2D quantum well is formed and simulating the
transport along the direction in which the electrons are free to move. Thus, the transport is
simulated considering that the potential of the 2D quantum well is fixed along the entire
transport direction (JACOBONI, 1989). Along the channel of a transistor, this potential varies;
thus, the assumption of a fixed potential is not adequate for field effect transistors. In addition,
this method is very time and memory-consuming (JACOBONI, 1989).

The quantum correction method is based on employing a potential that encompasses
these quantum effects (FERRY, 2018; RAMEY, 2003). In this work, the Effective Potential
that was proposed by Ferry (2000) is included in the Monte Carlo device simulator of n-type
tri-gate transistors to consider the quantum behavior of electrons. The only parameter of this
potential is the standard deviation of the Gaussian wake packet, and it physically represents the
effective size of the electron (FERRY, 2018). This parameter can be obtained by adjusting it so
that the line density of the electron calculated using the Effective Potential agrees with the line
density obtained by the solution of the Schrédinger-Poisson equations (YAMAKAWA, 2005).
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The line density is the linear density of electrons that will move from the source to the drain at
a given cross-section. In this way, the Schrodinger and Poisson equations are self-consistently
solved once. To include the Effective Potential model in the device simulation, the Effective
Potential is calculated after solving Poisson’s equation at each observation time. Note that by
using this approach, the computational time of the simulation is not significantly increased, and
the Schrodinger equation solution is employed as a reference (AKIS, MILICIC; FERRY;
VASILESKA, 2001).

3.1 Effective Potential Approach

In quantum physics, the size of electrons is described by their wave function and their
de Broglie wavelength (FERRY, 2018). For long-channel devices, the size of electrons is
negligible in comparison with the device dimensions; therefore, the electrons can be treated as
zero-sized particles (FERRY, 2018). However, the size of electrons in nanoscale devices is no
longer negligible. The Effective Potential approach proposed by Ferry (2000) concerns
identifying the minimum area where an electron can be localized. In this method, the size of
the electron is represented as the magnitude squared of the wavefunction, which is a Gaussian-
wave packet (FERRY, 2018).

The expression of the Effective Potential is obtained by considering the size of electrons
in the calculation of the total potential energy of a system of electrons. Equation (3.1) represents
the total potential of a system of electrons (FERRY, 2018)

% =fV(r)n(r)dr (3.1)

where V (r) is the Hartree potential, and n(r) is the local electron density. If the electrons are
considered point-like particles, their density can be rewritten as the sum of the density of a
point-like particle n;(r) over all Ne electrons (FERRY, 2018). Thus, equation (3.1) can be

rewritten as

Ne

V= f V(r)drz 7, (1) (3.2)

i

Assuming the size of the electrons is zero, the density of the electrons n;(r) can be

expressed using a Dirac-delta function centered at r;.
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N,
V= f V(r)drz S(r—ry) 3.3)
i
Now, taking into account that electrons have a finite size, given by a Gaussian wave-

packet, their density can be expressed using:

Ir—r'?

1
ni(r) = IW exp <— 252 ) 6(1', - ri)dr' (34)

where o is the standard deviation of the Gaussian wave-packet. Substituting equation (3.4) in

equation (3.3) results in

N
_ 1 —r'|2
| :fV(r)erfWexp <_|r201;| )6(r’—ri)dr’ (3.5)

In equation (3.5), the primed and unprimed variables can be interchanged, resulting in

N
_ 1 —1'|?
V= -[ V(l")dl"z f W exp (- %) 6(1‘ - Ti)dl' (36)

Rearranging the terms of equation (3.6) results in

N
= 1 , Ir —r'|2 ,
V= Z J 5(r— rl-)drf—(27wz)3/2 V(rexp (— 557 )dr 3.7)

The integral on the right-hand side of equation (3.7) represents the Effective Potential.
Therefore, the mathematical expression of the Effective Potential is given in equation (3.8)
(FERRY, 2018)

1 ) Ir—r'|? ,
Veff(l') = f WV(I' )exp <— 202 ) dr (38)

Equation (3.8) is the convolution of the classical potential with the Gaussian wave
packet. Note that the Effective Potential is the Hartree potential smoothed by the Gaussian wave
packet.

To compare the classical description with the effective potential description, equation

(3.7) can be rewritten in the same way as equation (3.3):
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N
V= fveff(r)drz S(r—1) (3.9)

Equation (3.3) represents the total potential energy considering a classical description
of the electrons, whereas equation (3.9) represents the total potential energy considering the
wave-like behavior of electrons. The difference between them is that the former employs the
Hartree potential to calculate the total potential energy, and the latter uses the Effective
Potential. By comparing equation (3.3) to equation (3.9), one can conclude that the electron
size is incorporated by the Effective Potential. Therefore, in the device simulation, the electrons
can still be treated as zero-size particles that are exposed to the Effective Potential (FERRY,
2018).

The standard deviation of the Gaussian wave-packet o is called the smoothing parameter
of the Effective Potential and is the unique parameter of the Effective Potential approach.

Equation (3.8) can be rewritten in terms of the coordinates x, y and z:

2 Y 2 ,
Verr(x,y,2) = mﬂf Vix'y',z )eXP< (- xz) _y) G )dX'dY'dZ (3.10)

202 203 202

Note that the potential well that the electrons are subjected to is given by the conduction
band. Thus, the Effective Potential is calculated by convoluting the conduction band with the

Gaussian wave packet.

3.2 Methodology to Speed up the Calculation of the Effective Potential

Considering that Poisson’s equation is solved at the mesh points, the Effective Potential
is calculated only at the mesh nodes as well. The integral of equation (3.10) can be transformed
into a sum of volume integrals over the mesh cells that surround the mesh point i,j, k.

Employing this approximation, the Effective Potential at the point mesh point i, j, k is given by

Xfin Yfin Zfin

Verf = (2n)3/20x0yazz f f fV(x yJ)eXp( - _xl)>

MM Xinit Yinit Zinit (311)

b -») z-z)*
exp (— Tyé) * exp ( ZGZ dzdydx
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where [, m and n indexes refer to the neighboring mesh points that surround the mesh point
L,j,k. And x;,y;, z are the position of the mesh point i, j, k. The triple integral in equation
(3.11) is calculated over the volume of the cell. The indexes fin and init in the limits of the
integrations define the line segment along the direction where the integration is being
calculated.

Figure 3.1: Diagram of the mesh cells that surround the mesh point i, j, k (in red).

Source: Elaborated by the author.

Figure 3.1 represents the mesh point i, j, k (in red), where the Effective Potential is
calculated, and the closest mesh cells that surround it. The [, m, n mesh points are defined as
l=i+1,i+2,..,itN,
m=j+1,j+2,..,jtN, (3.12)
n=k+1,k+2 .., ktN,
Where N,, N, and N, are natural numbers and represent, respectively, the number of cells along
X,y and z directions considered to calculate the Effective Potential at the mesh point i, j, k using
equation (3.11).
Some approximations can be made to obtain a simplified expression for the Effective
Potential given by equation (3.11). First, the variables can be changed to simplify the integrals.

The change of variables employed is shown in equation (3.13).

X—x;=x
y=y =y (3.13)
z—z, =127

Substituting the variables of equation (3.11) by the variables expressed in equation
(3.13) results in
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Xfin—Xi Yfin~Yj Zfin—Zk
V;f]fk = Z f dx’ f dy' f dz'V(x" +x,y +y5,2' +z;) *
LMn xinie—x; Vinit=Yj Zinit—Zk (3.14)
X2 y'2 72
exp| — — —
P 20,2 20,2 20,°

In equation (3.14), the Hartree potential vV(x' + x;,y’ + y;,z' + z,) can be estimated using

the first-order Taylor approximation, resulting in

V(x’ +x,y' +y,z' + Zk) =

(3.15)
V(xi' yj'Zk) + Vx,(xi' yj'Zk)x, + V;(xi'yjrzk)y’ + Vzl(xi' yj'zk)zl
where
Viie =V
V;C'(xi,yj,zk) = —l']’k LIk (316)
Ay
V; -V
W (20 yj, 7)) = ——2% (3.17)
Ay
Viin, =V
T (3.18)
Z

In equations (3.16), (3.17), and (3.18), V; ; x is the Hartree potential at the i, j, kK mesh
point. A, A, and A, are de distance between the mesh point i, j, k and its neighbor along the X,

y and z direction, respectively.
Substituting equations (3.16), (3.17), and (3.18) into equation (3.15), and substituting it
into (3.14) results in
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Pk _
Verr =

1
- - E V..
(2m)*Soy0,0, Lk *

Lmn
Xfin—Xi Vfin~Yj Zfin—Zk
! ! ! ('x,)z (y’)z (Z,)Z
dx dy dz’ exp 557 exp o7 exp 552 +
Xinit—Xi Yinit=Yj Zinit—Zk * Y z
Viin =V
( Ljk Vl,],k) "
Ay
Xfin—Xi Yfin—Yj Zfin—Zk
dx’ dy' a2 x exp (- & O o (L€
X y Z X exp 5.2 exp 2.2 exp 2.2 + (3.19)
Xinit—Xi Yinit—Vj Zinit—Zk * Y z
Vimk = Vijk ,
AJ’
Xfin=Xi Yfin=Yj Zfin—Zk
! A ! ! (x,)z (y’)z (Z,)Z
dx dy dz'y'exp —Zazexp —zazexp —202+
Xinit—Xi Yinit=Yj Zinit—Zk * Y z
Vi:.. —V:.
( i,jn Vl,],k) "
A,
Xfin—Xi Yfin~Yj Zfin—Zk
dx’ dy’ dz' 7' ex _(x')Z _(y')2 —(Z,)Z
Y P\ 7 26,2 )P\ " 26,2 )P\ " 20,2
Xinit—Xi Yinit=Yj Zinit—Zk Y

Rearranging the terms of equation (3.19) so it can be represented as

vk = 1 Vit Viie=Viiol? +
F = 15 (Vijrdjpepmn + Vijk il umn
(ZT[) O-xo-yo-Z Lmn (320)

Vimk = Vijg) L iiimn + Vijn = Vijid i kimn)

where

I

Ljklmn =

Xfin—Xi Yfin=Yj Zfin—Zk

N2 N2 2 (321)
f dx' f dy' f dz' exp <— (ng)z> exp <— (2);)2> exp (— (220)2>
x y z

Xinit —Xi Yinit=Yj Zinit—Zk
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Iil,j,k,l,m,n =
3
<\/§\/E> oo [erf<xfin_xi>_e <xlnlt >H (}’fm )
2 vz V20, \/_O'y
Yinit— YJ>][ <me ) (Zinit_zk>]
erf| ———
< \/_O'z \/EO-Z
I 12 jklmn =
Xfin—Xi Yfin=Yj Zfin—Zk
= f dx' j dy' f dz' x' ex —(x’)z ex —w ex —(Z’)Z
A, Y P\ 26,2) P\ 26,2 )P\ " 20,2
Xinit—Xi Yinit=Yj Zinit—Zk
Iiz, iklmn =
1, (Xinit — %;)? (3:22)
EO’,C exp —sz -
(xfm ) yfm Yj
exp< 20, — ayaz erf \/_Uy
Yinit—Yj Zfin — Zk> <Zinit - Zk>]
erf|——|l|lerfl ——— | —erf| ——
2l () - (2
Ii?,) iklmn =
Xfin—Xi Yfin~Yj Zfin—Zk
i J dx’ _[ dy’ f dz'y'ex —@ ex —ﬂ ex —(Z’)Z
A, Y Y OP\ T 26,2 )P\ T 26,7 ) P\ T 20,2
Xinit—Xi Yinit~Yj Zinit—Zk
I3 jimn = (3.23)

2
1 (Vinie—y;)
A_y O'yZ [exp (— Tyz —
()’fin - )’j)z Xfin — Xi
exp o2 Oy O'Z erf V3o,

y

Xinit — Zfin — Zinit — Zk
erf( V2o >] [erf< V2o, >_erf< V2o )]
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14

ijklmn =

Xfin—Xi Vfin~Yj Zfin—Zk

1 ! 4 r ! (x,)z (y,)z (Z,)Z
A, f dx f dy f dz' z' exp (— 2sz>exp <_W> exp <_Fzz>

Xinit—Xi Yinit=Yj Zinit—Zk

14

Ljiklmn =

1 2[ ( (Zinit_zk)2> (3:24)
ol s G v

2
y4 20_2

2
(zfin — zx) ”[ (xfin_xi>
ex —_—— g,0,—|er _ | —
p( 20,7 )] 2|\ 2o

init — Yfin — YVinit—Yj
( V20, )” ( V20, ) erf( V20, )]

The coefficients I} ;1 mn: 1k imnr 1k imnand I o mn depend only on the mesh

size. Therefore, they can be calculated ahead of time. Thus, to speed up the process, these
coefficients of each mesh point are calculated in the initialization process of the simulation.
To verify the agreement between the integral over the entire space and the sum of
integrals over cells, the convolutions expressed in equations (3.25) and (3.26) were calculated
numerically using MATLAB software and the approximation given by equation (3.20).

1 1 ! (4— ’)2 (4— ’)2 (4— ’)2 ’
C(4,44) = [[[( = x" +12)(=y'+12)(Z'+12) exp (— 2(0_"52) ~ z(o_ysz) 2(022)) d¥dyds  (3.25)

110 (4—x1)? (4-yn)? (4—2z1)* ’
C(444) = [[f(x'y'z") exp (— 2(022) — 2(0.3;2) — 2(022)) dx dy dz (3.26)

In these two convolutions, the standard deviation of the Gaussian function is equal to
0.5 and the convolution was calculated at the point (4,4,4). The results of the convolutions are
shown in Table 3.1. A good agreement was found when the smoothing was performed over the
cells that were in a radius equal to four standard deviations of the Gaussian wave packet. Thus,
the distance between the cells considered to calculate the Effective Potential at the point i,j,k
and the point i,j,k is less than four smoothing parameters (standard deviation of the Gaussian

wave packet).



Table 3.1: Results of the integrals of equations (3.25) and (3.26).

Linear Function Convolution Solved Employing the method of
analytically Equation (3.20)
(—x+12)(—y+12)(—z+ 12) 1.0080x% 103 1.0078x 103

(xyz) 125.9969 125.9729
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4 EXTRACTION OF THE SMOOTHING PARAMETERS OF THE EFFECTIVE
POTENTIAL

As mentioned in Chapter 0, in n-type FINFET and nanowire transistors, the confinement
of electrons occurs along the width and height directions of these devices, near the silicon and
oxide interface where a two-dimensional quantum well is formed (RAMAYYA; KNEZEVIC,
2010). To obtain the smoothing parameter of the Effective Potential for these two transistors, a
2D Effective Potential-Poisson solver and a 2D Schrodinger-Poisson solver for the cross-
section of both devices were developed. The cross-section of the n-type FInNFET and n-type
nanowire transistors are simulated to calculate the line density of electrons using these two
solvers. The smoothing parameter of the Effective Potential for these two transistors is adjusted
until the line density of electrons calculated by the Effective Potential coincides with the one
calculated by the Schrodinger-Poisson solver. In this way, the Schrodinger equation — which is
too time and memory-consuming — needs to be calculated only once. Note that the confinement
occurs along the height and width direction of these devices, because of that, in this chapter,
only this cross-section is relevant. Figure 4.1 and Figure 4.2 show the cross-section of the

Silicon FinFET and the cross-section of the silicon nanowire transistor, respectively.

Figure 4.1 — Cross-section of the FInFET device investigated in this work. The cross-section is along
the height and the width of the transistor. The metal gate is represented in red; the silicon is represented
in blue, and the dielectric is represented in gray. Wy;, and Hy;, represent the fin width and height
respectively

Hfin

3
A 4

Wf in

Source: Elaborated by the author.
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Figure 4.2: Cross-section of the silicon nanowire transistor investigated in this work. The cross-section
is along the height and the width of the transistor. The metal gate is represented in red; the silicon is
represented in blue, and the dielectric and the buried oxide are represented in gray. W;, and

Hpy, represent the fin width and height respectively

Source: Elaborated by the author.

In this chapter, the 2D Schrodinger-Poisson solver is explained in Section 4.1, and the
2D Effective Potential-Poisson solver is explained in Section 4.2. The results obtained by them

are presented in Section 4.3.

4.1 2D Schrodinger-Poisson Solver

In the following sections, the 2D Schrédinger-Poisson solver employed in this work will
be explained. The 2D Schrddinger-Poisson solver was developed by Baikadi (2020) to simulate
devices of AlGaN-GaN and AlIGaN-AIN-GaN. In this work, this solver was modified to
simulate the cross-section of tri-gate devices (n-type silicon FINFET and nanowire transistors).
In section 4.1.1 the Schrbdinger equation solver is explained, then, in Section 4.1.2, the 2D
Poisson’s equation solver is briefly explained. Section 4.1.3 explains how these two equations
are solved self-consistently, and finally, Section 4.1.4 presents the flowchart of the Schrédinger-

Poisson Solver.
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4.1.1 The 2D Schrodinger equation

The Schrodinger equation of interest is given by (ESSENI; PALESTRI; SELMI, 2011)
(Ho + U(x,y, Z))‘P(x, y,z) = E¥(x,y,2) “4.1)

Where H, is the one-electron Hamiltonian of the crystal, and U(x,y,z) is the

confinement potential. The Schrddinger equation of the one-electron Hamiltonian is defined as

Ho(pm,k(x; Y, Z) = Em(k)(pm,k(x! v, Z) (42)

Where ¢,,, x(x,y, z) is a Bloch wavefunction, and E,,, (k) is the energy of the band m,

which is a continuous function of k. The wavefunction of equation (4.1) is defined as (ESSENI;
PALESTRI; SELMI, 2011):

Y(x,y,2) = oni(x, v, 2)P(x,y,2) (4.3)

Where ¥ (x, y, z) is an unknown envelope function. Using equation (4.2) and recalling that the
energy bands are periodic in the reciprocal space, thus E,,(K)@,x(x,y,z)=

En(=iV) @, x(x,y, z), equation (4.1) results in

(Em(=iV) + U(x,¥,2)) @i (%, ¥, DY (x, ¥, 2) = EQpi(x,y, 2)P(x, Y, 2) (44)

Hence, the Schrodinger equation of the envelope function ¥ (x, y, z) is given by

(En(=iV) + UCx,y,2) )9 (x,,2) = Ep(x,y,2) (4.5)

Note that we are interested in the impact of quantum confinement in the conduction
band of silicon; thus, we can change the index in equation (4.5) from m to C. Besides, the
confinement potential in n-type FINFET and nanowire transistors is a 2D potential well along
height of the transistor (y-direction) and along the width of the transistor (z-direction) that is
formed due to the conduction band offset between silicon and silicon dioxide (E:(y, z)).

Considering that, equation (4.5) can be rewritten as

(Ec(=iV) + Ec(v, )Y (x,¥,2) = Ep(x,,2) (4.6)

As it was discussed in Section 2.1.2, the minimum of the silicon conduction band is

located at the symmetry point A. The Schrddinger equation must be solved for the three-
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degenerate valley pairs along the direction (100), (010), and (001), and their degeneracy must
be taken into account. The Hamiltonian of the electrons confined in the v-th valley pair of the
silicon conduction band is obtained by substituting k for —iV in the dispersion relation of the
valley-pair (equation (2.12)) (ESSENI; PALESTRI; SELMI, 2011),( HAMAGUCHI, 2013),
and then substituting it in equation (4.6), which results in

% 02 % 02 n? 9?2
H=- (mev 0x? * 2m,,Y dy? * 2m,” dz?

) + E;(y,2) 4.7)

where m,” is the effective mass along the x-direction of the v-th valley pair, m," is the
effective mass along the y-direction of the v-th valley pair, and m," is the effective mass along
the z-direction of the v-th valley pair. As it was discussed in Section 2.1.2, the effective mass
of the valley pair along the (100) direction is m,, = m;, m, = m, and m, = m,. The effective
mass of the valley pair along the (010) direction is m,, = m;, m, = m, and m, = m,. And for
the valley pair along the (001) direction m, = m;, m, = m, and m,, = m,.

Considering that the potential E;(y, z) is constant along the x-direction, the Hamiltonian

can be expressed as

Where H; is the component of the Hamiltonian that is parallel to the confinement, and
H, is the component of the Hamiltonian that is perpendicular to the confinement. The
perpendicular component is along the length direction of these devices (x-direction). It is
assumed that the electrons are free particles along this direction, hence, their wavefunction
along this direction is a plane wave.

The parallel component of the Hamiltonian is defined as

H, = re 62+}le o° + E-(y,2) 4.9
= 2myY dy? = 2m;¥ 0z ¢, 2 (49)

To obtain the eigenvalues and wavefunctions of the confined electrons, the Schrodinger

equation given by equation (4.10) must be solved.

h? 92 h? 02
— - ny E nyv — En,v nyv 41
<2myv dy? + 2m,Y aZ2>lp 0, 2) + Ec(y, 2¢9™" (y,2) Y™V (y, z) (4.10)
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where Y™V (y, z) is the wavefunction (envelope function) of the n subband of the v valley, and
E™V is the eigenvalue of the n subband of the v valley.

The Schrédinger equation must be discretized to be numerically solved. The control
surface employed to solve the Schrodinger equation is represented by the dashed line square
denoted by Q in Figure 4.3. The indexes j and k represent, respectively, the height and width
direction of the device.

Figure 4.3: Five-point stencil used to discretize the Schrédinger equation. The volume control is
represented by the dashed line square. This volume control is divided into four squares, each with a
surface along the y-direction and z-direction.

(J'llk)

L & @
Q
4 3
(1,k)
(],k'l) ¢ ® ® (J1k+1)
1 2
@ L L ]
(j+1,k)

Source: Adapted from Baikadi (2020).

Baikadi (2020) employed the finite volume method to discretize the Schrodinger

equation. Hence, rewriting the left-hand side of the Schrédinger equation in its integral form

0 (R 0N 0 (R 3N\ .o v
j_£< >_@(—_> ¥ (Y'Z)A+fEc(y,Z)1/J (y,2)dA  (411)

2m,Y @ 2m,Y 0z

Using the Divergence Theorem [ V- FdA = [ F - ds, the first term of equation (4.11)

can be rewritten as
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f O (W 0N 0 (W 0N e o
ox\2m,Y dy) 0y 2m,” 0z vz

(4.12)
h: 9 h? w(y,2) d

f Zmy"@ 2m,” 0z Y0, 2)ds

Substituting equation (4.12) into equation (4.11) results in
f i i "W(y,z)d +fE( W (y,z)dA 413
zmyv ay Zmzvaz l/) y'Z S C y’Z lp y’Z ( . )

Transforming the first integral of equation (4.13) into a sum results in
j h? 9 h? 0 nv(y,7)d
2m,Y dy 2m,¥oz YO z)ds =

(4.14)

h? 9 h? a

— v - agny )

Z T Gy V" O DS~ 5 W (DS,
k=1 y

In equation (4.14), the sum is performed over the four curves that surround the colored

squares in Figure 4.3. S,,; is the length of the i-th surface along the y-direction, and S, is the

length of the i-th surface along the z-direction. Now, writing the derivatives in their discrete

form:

2 2

h* 0
_ nyv — ny =
Zl 2myv aylp (y, Z)Sy,k Zmzv Zl’b (y' Z)Sz,k
1=

_fz_2< 1 <¢}T1k—w}1,;<”>sl+ 1 (lﬁ?;c”l—llj}’k”)S 1)

2 \my 1"\ Vit }’jk T my, Zik = Zjg-1 )
_fl_2< 1 < i~ )5 . ( e ~ Wik )5 2) (4.15)

2 My 2" \ Yisrk — Yk ” Zjk+1 ~ Zjk 7

_h_2< 1 (‘/’ank ‘/)Jnkv>5 - 1 (l/’;k+1 l/’;‘fkv>5 3)

2 \my3Y\ Yjix = Vj-1k ” Zik+1 ~ Zjk 7

(L (w,"zk w,",r>54+ 1 (%31 ¢,’%J)54>

2 my4 Vik —YVji-1k ’ Zik ~ Zjk-1 7

Where

Sy1 =S, =Lk~ Yk (4.16)



Yik —YVji-1k

Sy,3 - Sy,4 - 2
_ _ 'j, k 'j,k—1

Sz,l - 52,4 - 2

Zjk+1 — Zjk

SZ,Z = Sz,3 = 2

The integral in the second term of equation (4.13) is transformed into a sum.

4
| B da = Y B 0,4,
i=1

where A; is the area of the i-th surface.

Writing equation (4.17) in its discrete form results in

4
Z EC(y' Z)lpnlv(x' }’)Az =
i=1

IE J <(}’j+1,k2— Yj,k) (Zj,k _ZZj,k—l) N (Yj+1,k2— Yj,k) (Zj,k+12_ Zj,k) N

(yj,k —2}’j—1,k) (Zj,k+12_ Zj,k) n (}’j,k —2}’j—1,k) (Zj,k _zzj,k—1)>
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(4.17)

(4.18)

Thus, equation (4.15) is the discrete form of the first term of equation (4.13) and

equation (4.18) is the is the discrete form of the second term of equation (4.13). Equation (4.13)

can be rewritten in the discrete form using coefficients
nyv ny n,v ny ny
Al T BixWiie—1  CGaW¥jie + DjeWjiers + Ejxbjii

Where

4, = 1 ( Zjk+1 — Zjk >+ 1 ( Zjk = Zj k-1 )
PR my sV \ 2k — Yi—ik))  Mya’ \2Wjk — Yi-1k)

B, = 1 ( Yisik — Vik >+ 1 ( Vik = YVi-1k >
P my V\2(Zik = Zjk-1))  Mza¥ \2(Zjk — Zjk-1)

Div = 1 ( Yit1,k — Vik >+ 1 < Yik = Yi-1k )
P Y \ 2@ ker — Zik)) | Mas” \2(Zj k1 — Zjk)

(4.19)

(4.20)
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1 Zjk+1 — Zjk 1 Zjk = Zj k-1
Ef-k - v + v
My Y \2(Vjs1k = Yik)) My1V \2Vj+1,6 — Vjk)
Cj,k = Aj,k + Bj,k + Cj,k + Dj,k +

Eé'k <(J/j+1,k - }’j,k) (Zj,k - Zj,k—l) n (yj+1,k - }’j,k) (Zj,k+1 - Zj,k) n

2 2 2 2

Vik — Yj-1k\ (Zjk+1 ~ Zjk Yik — Vj-1k\ (4jk ~ Zjk-1
(i (B (o) (Bt

Equation (4.19) is the discrete form of the left-hand side of the Schrédinger equation.
The right-hand side of the Schrodinger equation can be rewritten as

f E™ Y™ (y,2)dA = EMV A (4.21)

where A’ is the area of the surface control Q.
To solve the discrete form of the Schrédinger equation, equations (4.19) and (4.21) must
be substituted in equation (4.22)

HyY™"(y,z) = EM"Y™(y, 2) (4.22)

To solve the eigenvalue problem of equation (4.22), Baikadi (2020) employed the
Scalable Library for Eigenvalue Problem Computation (SLEPc) eigenvalue solver. The
eigenvector and the eigenvalue of equation (4.22) correspond to the wavefunction and the
energy level of the n subband of the v valley. Equation (4.22) is solved for each valley pair of
silicon’s conduction band.

After solving the Schrddinger equation, the electron line density of the n subband of the

v valley pair is given by
N™Y = j g(E)F(E)dE (4.23)
E‘n,V

Where g(E) is the density of states, F (E) is the Fermi-Dirac distribution. The nanowire
and FInFET devices can be approximate as a quasi 1D system; thus, the density of states of

electrons is given by

A 2my, 1
H(E - E™ 4.24
N ) (28

gip(E) =
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Where H (E — E™") is the Heaviside step function. Substituting equation (4.24) into
equation (4.23) results in

v = Y2z f T L (4.25)
mh JgnvVE —E™ 1 + exp (}ZTETF) '

Substituting the variable E by the variable € = (E — E™V)/kgT in equation (4.25)

results in
- _1
yrv — Y 2mzksT f €2 de (4.26)
h o 1+exp(e—n™)
. nv _ EF_ETl,V
In which n™V = T

Equation (4.26) can be rewritten as

NV = v 2mykgT

h F_y0(m™") (4.27)

where F_; /,(n™") is the Fermi-Dirac integral of order -1/2.

The quantum electron density is given by
ne(y,z) =2 Z N™ [p™¥ (y, 2)|? (4.28)
nv

The number two multiplying the summation takes the degeneracy of the valleys.

4.1.2 The 2D Poisson solver

To solve a 2D Poisson’s equation, the same procedure made to solve a 3D Poisson’s
equation is performed: the 2D Poisson’s equation must be linearized and discretized. The
difference here is that to describe the point j, k and its neighborhood, a five-point stencil is
employed. The five-point stencil is depicted in Figure 4.4.

The 2D Poisson’s equation is given by

V-(eW(y,2))=p (4.29)
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In the 2D Poisson solver, the finite volume method is employed to discretize Poisson’s

equation. Poisson’s equation is represented in its integral form, resulting in
f (e 2von )+ 2Ly, dA—f dA 430
o\ay\fay VP ) Toz\ %9 V7 - f (4:30)

Figure 4.4: Five-point stencil used to discretize the 2D Poisson’s equation. Four control surfaces
surround the control volume (in gray).

(J_llk)
[ ]
& ke S4 & k-1
Q
Sl (Jlk) SZ .
(i k-1) % e (jk+1)
gj—l,k 53 Ej—l,k—l
[ ]
(j+1,k)

Source: Adapted from Baikadi (2020).

Where Q is the control surface colored in gray in Figure 4.4. Using the Divergence

Theorem [ V- FdA = [ F - ds, the integral on the left-hand side of equation is rewritten as

9 9 ds = dA 4.31
fs o5V 0.2 |+ |65V 01) S‘Lp 431)

Where S is the curve normal to the gradient of the potential that surround the control
surface (). Transforming the line integral into a discrete summation over the four curves and

the integral of the surface into a discrete summation over the four surfaces, results in



i(s—lf(y,z) + S—V(y,z))S = ZpA

i=1

where S; and A; are the length and the area of the i-th surface.
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(4.32)

Rewriting the left side of equation (4.32) by substituting the continuous derivatives by

their discrete form, and assuming that the permittivity of each surface is the average between

the permittivity of the nodes of the surface results in

4
Z(e—V(y,z) + s—V(y,z))S =

i=1
(e]k+€] 1k)< k-1 ) y]+1k }’J 1k)+
(Z]k_Z]k 1)
(s] 1k 1+€]k 1)( Viks1 = Vik >(y]+1k }’j—1,k)+
(Z]k+1 X ) 2

(EJ 1k— 1+€J 1k < vk — Vik )(Zj,k+1_zj,k—1)+
(YJ+1k YJ,k) 2

& k-1 T & k) < Vicik = Vik ) (Zj,k+1 - Zj,k—l)

ik — Yji-1,k) 2

While the right side of equation (4.32) is given by

" (Zj,k+1 ; Zj,k—l) (}’j+1,k ;yj—l,k)

(4.33)

(4.34)

where j and k represent, respectively, the height and the width direction of the device.

Rewriting equation (4.32) using the expressions demonstrated in equations (4.33) and (4.34)

results in

) (g + 5-1) 4

V_ _ —
( Jk-1 Ik (Zj,k — Zj’k_1)(zj,k+1 - erk_l)

(51—1 k-1t & k—1)
- . +
( G )(ij+1 Zj,k)(Zj,k+1—Zj,k—1)
R B

Wik = Yi—1) Vjs1e — Vj-1k)

(4.35)
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(g-1 + &)
(Yj+1,k - Yj,k)(y]'+1,k - yj—l,k)

(Visrk — Vik) = Djk

Equation (4.35) can be rewritten as a coefficient expression
AjxVicik + BjrVik-1+ CiVik + DiwVik+1 + EjkVirrk = Pij (4.36)
Where

(gj—l,k—l + 8j—1,k)

A =
T ik = Yi-100) Vjrre — Vi-1x)
_ (g1 + &-14)
Bj,k =
(xj,k - xj,k—l)(xj,k+1 - xj,k—l)
D.. = (-1k-1 + &x1) (4.37)
T O gerr — %) (X w1 — Xj 1)
E (g1 + k)

()’j+1,k - }’j,k)(Yj+1,k - yj—l,k)
Cj,k = _(Aj,k + Bj,k + Dj,k + Ej,k)

Poisson’s equation must be linearized to be solved numerically. Considering that
Poisson’s equation is solved iteratively, the potential of the new iteration (V™¢") can be
described as the sum of the potential of the previous iteration (V°'¢) and a small update (5).

Thus, Poisson’s equation can be rewritten as
V- (evVold) + V- (eV8) = pmew (4.38)

In which p™®" is the charge density in the new iteration. It can be linearly approximated

using Taylor series, resulting in

2
pnew = pold _|_I:L_T (nold + pOld)6 (4.39)

After substituting (4.39) into (4.38) and rearranging the terms, the final differential

equation that needs to be solved is given by
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2
V- (V8) — o (n14 + pOld)5 = pd — V- (7 °l9) (4.40)
B
Equation (4.40) is solved in terms of §. The derivatives terms of equation (4.40) must
be substituted by their discrete form. Besides, the coefficient C; , of V - (V&) must be rewritten

to incorporate the second term on the left-hand side of equation (4.40), resulting in
qZ
Cix=—(Ajr+Bjr+Djp+Eji)— kB_T (nold + pOld) (4.41)

This system of linear equations is solved by employing the Portable, Extensible ToolKkit
for Scientific Computation (PETSc) (BALAY, 2020) package.

4.1.3 Solving Poisson and Schrddinger Equations Self-consistently

The confinement potential in the Hamiltonian comes from the solution of Poisson’s
equation, while the electron density necessary to solve Poisson’s equation comes from the
solution of the Schrodinger equation. Therefore, Poisson’s equation and the Schrddinger
equation must be solved self-consistently until the results converge.

During the Schrodinger-Poisson loop, when the Poisson and Schriédinger equations are
solved self-consistently, the electron density is given by the quantum electron density (equation
(4.28)). Therefore, to solve Schrodinger and Poisson’s equation self-consistently, Poisson’s

equation must be linearized taking into account the quantum electron density.
V- (eVVO) + V- (eV5) = p"eW (4.42)

where V° js the potential of the previous iteration and & is a small update. To linearize
Poisson’s equation (equation (4.42)), we have to take into account the quantum electron density

in p™". Thus, p™®"can be linearly approximated using Taylor series, resulting in

new

dp
aVTleW Vold

pnew = pold 4 (4.43)

Considering that the density of holes is given by the Boltzmann approximation
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new

kgT  gunew yold

ap _ <_pold onnew
oy new yold

) (4.44)

Since the density of electrons is calculated using equation (4.28), the calculation of

anTLEW

aVnew

is not straightforward. The final expression used in the simulator is given in equation

Vold

(4.45). A detailed derivation of this expression can be found in (BAIKADI, 2020).

onnew qngld (4 45)
avnew | o kgT )
Where
,/Zm KgT Nyg+h)—F_ n
ngd = vemzipl Z ~1/2(Moka ) 1/2( old)w)om( y)| (4.46)
In which h is equal to Told
100
Substituting equation (4.46) into equation (4.45) results in
dpnev old old
P Y - o (4.47)
aVmew | o1a kgT = kgT
Now substituting equation (4.47) into equation (4.44) results in
pold ngld
new _ ,old 2 &2 4.48
p P>t +q (kBT+kBT 5 (4.48)

Thus, the final expression of Poisson’s equation coupled to the Schrédinger equation is

given by
pold ngld
. 2 — pold _ . old 4.49
V- (V) —q <k3T+kBT>5 p V- (evyold) (4.49)

To solve it numerically, the derivatives terms of equation (4.49) must be substituted by
their discrete form. Besides that, the coefficient C; , of V- (¢V§) incorporates the second term

on the left-side hand of equation (4.49).
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4.1.4 The Flowchart of a 2D Schrddinger-Poisson Solver

The 2D Schrodinger-Poisson solver employed in this work is written in FORTRAN 90
language. Poisson’s equation is linearized and discretized, forming a system of linear equations,
which is solved by employing the Portable, Extensible Toolkit for Scientific Computation
(PETSc) (BALAY, 2020) package. While the eigenvalue problem that comes from the
discretized Schrddinger equation is solved using the Scalable Library for Eigenvalue Problem
Computation (SLEPc) (ROMAN; CAMPOS; ROMERO; TOMAS, 2015) eigenvalue solver
package.

The flowchart of the Schrdodinger-Poisson solver is presented in Figure 4.5.

Figure 4.5: Flowchart of the Schrédinger-Poisson solver
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Source: Elaborated by the author.
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In this work, the original code (BAIKADI, 2020) was adapted to simulate the devices
of interest: Si n-type FINFET and nanowire transistor. From seventeen subroutines, sixteen were
modified to take into account these new devices. Although Poisson’s equation is solved at the
entire device, the Schrédinger equation is solved only in the confinement region.

The Schrodinger-Poisson solver consists of:
Creating the mesh.

Assigning the dopants to each region of the device.
Initializing the potential based on charge neutrality.

Calculating the coefficients of Poisson’s equation.

o B~ W D P

Solving Poisson’s equation using the initial potential calculated in (3) as the initial guess
and calculating the hole and electron density assuming Boltzmann approximation.
Finally, the program enters the Schrddinger-Poisson loop, which consists of the
following steps:

a. Solving the Schrodinger equation using the conduction band calculated obtained
by the Poisson solver as the confinement potential.

b. Calculating the quantum density of the electron using the eigenvalues and the
wavefunctions.

c. Calculating the coefficients of Poisson’s equation and solving Poisson’s
equation in the Schrodinger domain using the quantum electron density. For the
other regions of the device, the electrostatic potential is not updated.

d. Comparing the potential calculated in the previous iteration and the new
potential calculated in (c). If the difference between them is smaller than
107% Vthe results converged. Otherwise, go to step (a) until the results
converge.

Thus, Schroédinger and Poisson’s equations are self-consistently solved.

4.2 2D Effective Potential-Poisson solver

To obtain the smoothing parameters of the Effective Potential that lead to an electron
line density that most agrees with the one calculated by the Schrédinger-Poisson solver, the
Effective Potential equation was coupled to the Poisson solver that was described in Section
4.1.2.
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The flowchart of the solver is depicted in Figure 4.6. The initialization step creates the
mesh of the device, assigns the dopant’s charge to each mesh node, and initializes the potential
at each mesh node based on the charge neutrality of the device. In addition, the coefficients of

the Effective Potential are also calculated in the initialization.

Figure 4.6: Flowchart of the Effective Potential-Poisson solver.
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Source: Elaborated by the author.

When the initialization ends, the code enters the Effective Potential-Poisson solver loop.
In the first iteration, the first potential guess in the Poisson solver is the initial potential — which
is the potential that assures charge neutrality. The other inputs of the Poisson solver are the
density of dopants and the density of carriers calculated using the initial potential. To solve

Poisson equation, the coefficients of the discrete Poisson’s equations are calculated. The output
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of Poisson solver is the Hartree potential V; ;. Using the updated potential, the conduction band

at the point j, k is calculated using equation (4.50)

; kgT N
Eé'k = x5+ 2= ln( d
q n;

) —qVju — X" (4.50)
where j and k represent the height and width directions of the device. y*¢ is the electron affinity

of silicon, N, is the effective density of states of silicon conduction’s band, and y/* is the

electron affinity at the mesh point j, k. In equation (4.50), the expressmn — ln( ) is equal to

E. — E; (which is the conduction band edge minus the intrinsic Fermi level of silicon).

After that, the Effective Potential is calculated by convoluting the conduction band
(equation (4.50)) with the Gaussian-wave packet using equation (4.51), which is a 2D version
of equation (3.20).

eff 2moy,0, Z (E] “ jlemn (Emk ~ B/ k) jkmn T (Eé.,n - Eé.,k)lj?,)k,m.n) (4.51)

where

. NeNaN e — 2 .
o= () 52 oo o 52

(4.52)
Yinit— y]>]
erf
=
2
1 (}’init—}’j)
I]%k,l,m = A_yayz [exp <_ 20y2 -
, (4.53)
in — Vi 2 Zfin — Z init —
exp _(Yfm 2}’]) s, \/—\/E [erf( fin k) —erf (Zmlt Zk)]
20, 2 V2o, V2o,
B 1 (Zinit—2k)*
ik Lm —A—Zaz exp " 202 )T
(4.54)

in ’ \/7\/— in— Jj init — Jj
o 2 o 252 22
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The corrected electrostatic potential is then calculated using the Effective Potential, as

it is expressed in equation (4.55).

. C keT Nay
Vi =q (—V;}‘f 2+ in (n—c) - Xlrk) (4.55)
L

Finally, the electron and hole density are calculated using equations (4.56) and (4.57).

qVjk
le,k = n; exp (ﬁ) (456)
qVj
Pji =My exp (— kBT) (4.57)

In the next iteration, the electron and hole density calculated using the Effective
Potential, and the Hartree potential calculated at the beginning of the loop will be the inputs of
Poisson’s equation solver. The Effective Potential-Poisson solver loop continues until the
results converge, which is achieved when the difference between the new potential and the old

potential is smaller than the convergence criterion (1076 V).

4.3 Results of the Effective Potential-Poisson Solver and Schridinger-Poisson Solver

The width and the height of the FInFET investigated in this work are 8 nm and 42 nm,
respectively, and the equivalent oxide thickness (EOT) is 1.2 nm. TiN was employed as the
metal gate, assuming a work function equal to 4.6 eV. The doping density is N, = 1 x 10> cm
3, Since the FinFET has two side gates, the total width of the structure is 10.4 nm. Taking into
account the silicon substrate below the Fin and the top gate, the total height of the structure is
57.2 nm. As mentioned before, here the cross-section along the width and height of the device
is being simulated; therefore, the length of the transistors is not considered in this section.

Figure 4.7 shows the classical electron density of electrons in the FINFET device when
the gate bias (Vg) is equal to 1V. As can be observed in Figure 4.7, the inversion layer in the

classical description is formed at the silicon dioxide/silicon interface.
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Figure 4.7: Electron density calculated classically (using only Poisson solver). Vg =1 V.
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Figure 4.8: Electron density calculated using the 2D Effective Potential-Poisson solver. Ve =1 V.
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Figure 4.8 and Figure 4.9 depict the electron density in the FINFET calculated using the

2D Effective-Potential-Poisson solver and the 2D Schrddinger-Poisson solver, respectively

when the gate bias is equal to 1 V. In both figures, one can observe that the electron density is
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setback from the silicon/silicon dioxide interface, demonstrating the impact of the quantum
confinement on the distribution of electrons in the channel. Comparing Figure 4.8 and Figure
4.9, the Effective Potential model can describe the setback of the electrons, effect known as
volume inversion. In addition, comparing the classical (Figure 4.7) with the Effective Potential

(Figure 4.8) results, the electron density calculated using the Effective Potential is smoothed.

Figure 4.9: Electron density calculated using the 2D Schrédinger-Poisson solver. Vg =1 V.
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Besides evaluating the impact of the quantum confinement on the position of electrons
in the channel, we also investigated qualitatively the impact of the quantum confinement on the
electron density. Figure 4.10 depicts the line density of electrons in the FINFET calculated
classically, using the Effective Potential-Poisson solver, and the Schrédinger-Poisson solver
described in this work. For the FInFET of interest, using a smoothing parameter of the Effective
Potential model equal to 0.45 nm generates the line density that best agrees with the

Schrédinger-Poisson results.
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Figure 4.10: Line density of the electrons in the FinFET as a function of the gate bias calculated using
the semiclassical model (blue curve), the Effective Potential solver (red curve), and the Schrédinger-
Poisson solver (black curve).
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The silicon nanowire investigated in this work has a width and height equal to 10 nm,
and an EOT of 1.3nm. The work function of the metal is 4.52 eV. The thickness of the buried
silicon dioxide layer is 150 nm. The doping density is assumed to be N, = 1 x 105 cm?®.

Figure 4.11 shows the line density of electrons in the silicon nanowire transistor
calculated semiclassically, using the Effective Potential-Poisson solver, and using the
Schrddinger-Poisson solver. For the silicon nanowire transistor, the best agreement between the
line density calculated using the Effective Potential-Poisson solver and the Schrddinger-
Poisson solver was obtained by employing a smoothing parameter equal to 0.4 nm. From Figure
4.10 and Figure 4.11, we can also observe that the semiclassical model overestimates the line
density. Thus, the semiclassical model might misrepresent the drain current of these nanoscale

devices.
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Figure 4.11: Line density of the electrons in the nanowire transistor as a function of the gate bias
calculated using the semiclassical model (blue curve), the Effective Potential solver (red curve), and the
Schrédinger-Poisson solver (black curve).
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Figure 4.12: Potential energy calculated classically and by the Effective Potential-Poisson solver.
Using Ve =1 V.
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Figure 4.12 shows the difference between the conduction band of the FInFET device

calculated by the classical and Effective Potential model when the gate bias is equal to 1V. The
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minimum of the classical conduction band occurs at the silicon/silicon dioxide interface.
Because of that, the density of electrons is maximum at this interface. However, the minimum
of the conduction band in the Effective Potential model occurs a few nanometers away from
this interface, resulting in volume inversion. Besides, the minimum of the conduction band in
the Effective Potential model is higher in energy than the minimum of the classical model.
Because of that, the electron density in the Effective Potential model is smoothed in comparison
with the classical electron density.

For these two devices, there is a great agreement between the electron line density
calculated by the Effective Potential and the one calculated by the Schrddinger solver in the
entire range of gate bias simulated. The smoothing parameter of the FinFET device investigated
here is 0.45 nm and the smoothing parameter of the silicon nanowire investigated here is 0.4
nm. These results show that the Effective Potential approach represents the effect of quantum
confinement. Thus, the Effective Potential approach is an adequate quantum correction to the
Monte Carlo device simulator of these tri-gate transistors. When employing the Effective
Potential approach as a quantum correction, the electrons can still be treated as particles that

are subjected to the Effective Potential.
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5 DEVICE SIMULATOR WITH EFFECTIVE POTENTIAL AS QUANTUM
CORRECTION

When employing the Effective Potential in the device simulator as quantum correction,
the electron’s size is incorporated by the Effective Potential. Thus, the electron is modeled as a
zero-size particle that is exposed to the Effective Potential instead of being exposed to the
Hartree potential. The flowchart of the quantum-corrected atomistic device simulator is shown
in Figure 5.1, and the two new routines included in the simulator to perform the quantum

correction are represented by red rectangles.

Figure 5.1: Flowchart of the quantum-corrected MC device simulator.
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One of these routines concerns calculating and storing the coefficients of the Effective
Potential I} i imns 12jkimn Lijkimn @Nd I (described by equations (3.21), (3.22),
(3.23), and (3.24)). Since these coefficients depend only on the distance between the mesh

nodes, they are calculated at the initialization process rather than being calculated at every
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Monte Carlo — Poisson iteration. The other routine concerns calculating the Effective Potential
at each mesh point using equation (3.20). Note that, the Effective Potential is calculated at each
observation time only in the region where the confinement occurs. In n-type FInFET and
nanowire transistors, it occurs in the channel.

As it is depicted in Figure 5.1, the first step of the simulation is the initialization, where
the structure of the transistor is defined, the boundary conditions are set, the mesh is created,
the electrons are initialized, and the dopants are distributed following the doping density of each
region. The doping profile can be uniform or non-uniform, where the dopants are treated as
discrete particles, which leads to a more realistic representation of the device, enabling the
random dopant fluctuation to be investigated. As mentioned above, the coefficients of the
Effective Potential are also calculated in the initialization. So, the difference between the
initialization process of a semiclassical simulator (described in Section 2.4) and the
initialization process of the quantum-corrected simulator presented in this work is the
calculation of the Effective Potential coefficients.

After the initialization process ends, the simulation enters the Monte Carlo — Poisson
iteration loop where the dynamics of all electrons are evaluated at multiples of observation time
until the final simulation time is reached. The first step of this loop iteration is assigning the
charge of electrons to the nearby mesh nodes and then solving Poisson’s equation. After

Poisson’s equation is solved, the conduction band is calculated using equation (5.1).
EcWk = xSt 4+ (B — E) — qVijx — x* (5.1)

Then, the Effective Potential is calculated in the new routine employing the expression

given by equation (3.20). The input of this routine is the conduction band calculated using

equation (5.1), while its output is the Effective Potential Veij'!]';k .
The electric field at each mesh node can be calculated as the gradient of the Effective
Potential, using:

E=VV/" (5.2)

The electrostatic force that acts upon the electrons is calculated by interpolating the
mesh forces of the cell where the electron is located using the CIC method. Note that outside
the quantum confinement regions, the mesh force and the density of holes are calculated using

the Hartree potential calculated by Poisson’s solver.
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Then, the transport of the electrons is simulated using the Monte Carlo transport
simulation method. After simulating the transport of all electrons in the device, the transport
boundary conditions are verified to model the physical boundaries correctly. After that, the
charge neutrality in the vicinity of the drain and source contacts is verified. Electrons can be
added or deleted to balance the charge in these regions, assuring that the source and drain
contacts are being correctly modeled as ohmic contacts. The current that flows through the
channel at the observation time is then calculated.

In summary, in the Monte Carlo — Poisson iteration loop, the input data of the Poisson
solver is the charge density at each mesh node calculated after evaluating the electron's transport
during an observation time. The output of the Poisson solver is the Hartree potential that will
be employed to calculate the Effective Potential, which will accelerate the electrons in the next

observation time. The next iteration is started unless the simulation has reached the final time.
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6 RESULTS OF THE N-TYPE FINFET

The n-type FINFET simulated in this chapter has the same physical parameters as the
one simulated in Section 4.3. Hence, the smoothing parameter of the Effective Potential (o) of
this device is 0.45 nm. Figure 6.1 depicts the 3D schematic of the FInFET investigated. The
width and the height of the FInNFET are 8 nm and 42 nm, respectively, and the EOT is 1.2 nm.
The total height of the structure is 57.2 nm, and the total width is 10.4 nm. The metal gate is
TiN (assuming its work function is 4.6 eV). The source and drain regions were doped with
donor dopants, using a doping density of N, = 5 x 10'? cm™. The length of the channel is 18

nm, and its doping density is N, = 1 x 10> cm™,

Figure 6.1: Schematic of the FinFET investigated in this work. The silicon regions are in blue, the silicon
oxide region in gray, and the gate dielectric in light gray. The gate metal is represented in red. The region
referred to as S represents the source, G represents the gate and D represents the drain. W, and
Hpy, represent the fin width and height respectively, and L represents the channel length.
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The semiclassical device simulator for the FINFET device was developed by Furtado
(2021). To compare the semiclassical model and the quantum-corrected model, we have
simulated the FINFET device using the semiclassical and the quantum-corrected simulators. To
consider the quantum confinement along the device’s height and width, the mesh spacing along
these directions was set to 0.5 nm. Considering that there is no charge confinement along the
length of the device, the mesh spacing employed in this direction was 2 nm. Using these mesh
spacings, the observation time equal to 0.01 fs led to good coupling of the Poisson solver and
the Monte Carlo transport simulation. Following (BUFLER; SMITH, 2013), the specular
scattering probability was set to 85%, thus the diffuse probability was set to 15%. Although the
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quantum confinement is only depicted in the quantum-corrected simulation, the same mesh
spacing and observation time were employed in the classical simulation, so the only difference
between the results is related to the quantum correction.

To estimate the average characteristics of the device, the simulation must first reach a
steady-state condition. After the steady-state condition is achieved, the simulation must be run
for a couple of picoseconds to obtain sufficient data to estimate the average characteristics of
the device. For this transistor, the total time of the simulation was set to 10 ps. The data used to
estimate the average properties of the device was collected from 3 ps to 10 ps.

Figure 6.2 shows the cumulative charge that flows in the source and drain contact as a
function of time. Thus, the curves in Figure 6.2 represent the net charge that enters and exits
the source and drain contact. The drain and the gate biases were equal to 1 V, while the back
and source contact were set to 0 V. The current of the device can be estimated by extrapolating
the slope of these curves. These curves must be parallel to each other, otherwise, the source and
drain contacts are not being modeled correctly.

Figure 6.2: Cumulative charge as a function of the time through the source and drain contact with
Vps=1.0 V, Vgs = 0.8 V, and Ves=0V.
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Ten different samples of the same FINFET were investigated. These ten devices have

the same physical parameters; however, each device presents a distinct spatial distribution of
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dopant and distinct number of dopants. Those devices were investigated using the semiclassical
and the quantum-corrected simulators.

Figure 6.3 and Figure 6.4 show the conduction band profile for a given dopant
distribution along the height and length of the n-FinFET taken at the center of the fin width

obtained, respectively, by the semiclassical and quantum-corrected simulators.

Figure 6.3: Conduction band taken at the middle of the FinFET width calculated using the semiclassical
simulator. Vps=0.2 V, Vgs=0.8V and Vs =0 V.
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Figure 6.4: Conduction band taken at the middle of the FinFET width calculated using the quantum-
corrected simulator. The circle in red indicates the region where the conduction band is smoothed. Vps
=0.2 V, Vs = 0.8V and Vpgs = oV.
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In both simulators, the discrete behavior of dopants can be observed in the source and
doping regions. The conduction band calculated using the quantum-corrected simulator shows
a smoothed profile close to the silicon/silicon dioxide interface (encircled in Figure 6.4) when
compared to the semiclassical conduction band. The smoothed conduction band models the
effect of quantum confinement, because it reduces the electron density and places the inversion
layer a few nanometers away from the silicon/silicon dioxide interface, which leads to volume

inversion.

Figure 6.5 Electron density taken at a cross-section in the channel region calculated using the
semiclassical simulator. Vps=0.2 V, Ves=0.8 V and Vas =0 V.
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Figure 6.6: Electron density taken at a cross-section in the channel region calculated using the quantum-
corrected simulator. Vps=0.2 V, Ves=0.8 Vand Vgs =0 V.
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The electron density along the fin width and height taken at a cross-section in the middle
of the channel obtained by the semiclassical simulator is depicted in Figure 6.5, while the one
obtained by the quantum-corrected simulator is shown in Figure 6.6. The dashed lines represent
the silicon/silicon dioxide interface. In the quantum-corrected simulator (Figure 6.6), the
inversion layer is formed a few nanometers away from the interface, which corroborates that
volume inversion is modeled.

Figure 6.7 shows the average number of diffusive surface roughness scattering events
an electron undergoes while crossing the channel as a function of the gate bias in the
semiclassical and quantum-corrected simulations. The surface roughness scattering mechanism
plays an important role in the semiclassical simulation, while in the quantum-corrected
simulation, the probability of an electron interacting with the interface is reduced. As a result
of volume inversion, the surface roughness scattering is expected to be less relevant in the

quantum-corrected simulation.

Figure 6.7: Average surface roughness scattering events per electron crossing the channel in the
semiclassical simulator (blue curve) and quantum-corrected simulator (red curve) for 10 samples. The
error bars indicate 95% confidence interval. Vps= 0.5V, and Vgs =0 V.
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Figure 6.8 shows the average number of phonon scatterings events an electron
undergoes while crossing the channel as a function of the gate bias in the semiclassical and

guantum-corrected simulations. Phonon scattering is less likely to occur in the quantum-
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corrected simulation in the entire range of gate bias. In the range of gate bias simulated, the
difference between the number of phonon scatterings events per electron in the semiclassical
and quantum-corrected simulation reaches its peak at Vs = 1 V, where the number of phonon
scatterings events per electron in the quantum-corrected simulation is 28.43% smaller than the
number of phonon scatterings events per electron in the semiclassical simulation. The phonon
scattering is less likely to occur in the quantum-corrected simulation because the smoothing of

the Effective Potential reduces the density of states by moving the ground state upwards.

Figure 6.8: Average phonon scattering events per electron crossing the channel in the semiclassical
simulator (blue curve) and quantum-corrected (red) simulators for 10 samples. The error bars indicate
95% confidence interval. Vps=0.5V, and Vs =0 V.
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The average electron’s velocity along the length of the device estimated using the
semiclassical and quantum-corrected simulator are shown in Figure 6.9. The velocity of
electrons in the channel is higher in the quantum-corrected simulation than in the classical
simulation. This result can be due to volume inversion (since the interaction between the
electron and the interface is less likely to occur in the quantum-corrected simulation). The
number of phonon-scattering events an electron undergoes while crossing the channel in the
guantum-corrected simulation is also smaller than the one in the semiclassical simulation, so it

might contribute to this result presented in Figure 6.9.
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Figure 6.9: Average electron velocity along the device length for 10 samples. Curves estimated by the
semiclassical simulator are in blue, while curves estimated by the quantum-corrected simulator are in
red. The error bars indicate 95% confidence interval. Ves=0V, Vps = 0.5V, Vgs = 0.8 V.
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Figure 6.10: Electron density along the device length for 10 samples. Curves estimated by the
semiclassical simulator in blue, while curves estimated by the quantum-corrected simulator are in red.
The error bars indicate 95% confidence interval. Ves=0V, Vps =0.5V, Vs =0.8 V.
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The electron density along the length of the device estimated using the semiclassical
and quantum-corrected simulators are shown in Figure 6.10. Note that in the channel, the
electron density is smaller in the quantum-corrected simulation. This demonstrates that the
Effective Potential is modeling the impact of quantum confinement on the density of states of
electrons in the channel.

The transfer characteristic curves of the n-type FInFET studied in this work estimated
by the semiclassical and quantum-corrected simulators are depicted in Figure 6.11. The
guantum-corrected curve is slightly shifted in comparison to the semiclassical curve. As shown
in Figure 6.11 in the weak inversion, the semiclassical conduction band is nearly flat, thus, the
impact of the correction employed by the Effective Potential is small. In the strong inversion
region of the transfer characteristic curves, the impact of the Effective Potential is considerable. As
the gate bias increases, the conduction band bends, forming a 2D triangular well where the
electrons are confined. Figure 6.11 shows that as the gate bias increases, the difference between

the current obtained by the two simulators becomes more relevant.

Figure 6.11 Transfer characteristic curves estimated by the semiclassical (blue curve) and quantum-
corrected (red) simulator. The curves represent the average value of the 10 samples. The error bars
indicate 95% confidence interval. Ves =0V, Vps= 0.5 V.
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Figure 6.12 shows the output curves estimated by both simulators. The current estimated
by the semiclassical simulator is higher than the one estimated by the gquantum-corrected
simulator. As shown in Figure 6.9, the electron velocity is higher in the quantum-corrected
simulation, which improves the output current. Nevertheless, the electron density calculated by
this simulation is smaller than the one calculated by the semiclassical simulation, having an
opposite effect on the current. The volume inversion reduces the surface roughness scattering
events, resulting in improved electron velocity; however, the other effect of quantum
confinement is the reduction of electron density, which degrades the current. Overall, the

qguantum confinement degrades the current of FInFET.

Figure 6.12 Output curves estimated by the semiclassical (blue) and quantum-corrected (red) simulators.
The curves represent the average value of the 10 samples. The error bars indicate 95% confidence
interval. Ves=0 V, Vgs = 0.8V.
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7 RESULTS OF THE NANOWIRE TRANSISTOR

The n-type nanowire transistor simulated in this chapter has the same physical
parameters as the one simulated in Section 4.3. Hence, the smoothing parameter of the Effective
Potential (o) of this device is 0.4 nm. Figure 7.1 shows the 3D schematic of the n-type nanowire
transistor investigated here. The width and the height are given by a square cross-section of
dimension 10 nm, the buried oxide thickness is 75 nm. The metal gate is TiN (assuming its
work function is 4.52 eV), and this transistor presents an EOT of 1.3 nm. The source and drain
regions were dopped with donor dopants, using a doping density of Ny = 4 x 10*° cm™. The
length of the channel is 40 nm, and the channel is undoped (N, between 1 x 10*>cm and

3 x 10%°cm3).

Figure 7.1: Schematic of the nanowire transistor investigated in this work. The silicon dioxide is
represented in gray, the gate dielectric is represented in gray, the buried oxide is represented in light
gray, and the silicon regions are represented in blue. The gate metal is represented in red. The region
referred to as S represents the source, G represents the gate and D represents the drain. W, and

Hp;, represent the fin width and height respectively, and L represents the channel length.
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Source: Elaborated by the author.

Figure 7.2 presents the transfer characteristic curves of this device at Vp = 0.7 V
obtained experimentally (PAVANELLO, 2023) and estimated by the quantum-corrected Monte
Carlo device simulator presented in this work. The simulation curve is the average of twenty
samples, simulated for 4 ps. For this device, the surface roughness scattering is modeled as 85%
diffusive and 15% specular.
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Figure 7.2: Transfer characteristic curve estimated by the quantum-corrected simulator (red) and
measured experimentally (black). The curves represent the average value of the 20 samples. The error
bars indicate 95% confidence interval. Vs =0V, Vps= 0.7 V.
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Figure 7.3: Transfer characteristic curves in log scale estimated by the quantum-corrected simulator
(red) and measured experimentally (black). The curves represent the average value of the 20 samples.
The error bars indicate 95% confidence interval. Vs =0V, Vps=0.7 V.
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Figure 7.3 shows the transfer characteristic curves in the log scale, in which the
subthreshold region is better observed. There is a great agreement between the experimental
and simulation results for the entire range of gate bias, which demonstrates that the quantum-
corrected Monte Carlo device simulator is an adequate tool to investigate the electrical behavior
and the reliability of this device.

The conduction band along the device length and height taken at the middle of the device
width is shown in Figure 7.4. The Effective Potential smooths the conduction band in the region
close to the silicon/silicon dioxide interface (encircled in Figure 7.4). Note that the discrete

effect of dopant distribution in the source and drain regions is depicted in the conduction band.

Figure 7.4: Conduction band taken at the middle of the nanowire width calculated using the quantum-
corrected simulator. The circles in red indicate the regions where the conduction band is smoothed.
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The effect of quantum confinement on the electron distribution is shown in Figure 7.5
where the electron density along the fin width and height taken at the middle of the channel is
depicted. Figure 7.5 shows that the inversion occurs a few nanometers away from the
silicon/silicon dioxide interfaces (represented by the white dashed lines). Therefore, volume
inversion is also modeled in the nanowire transistor by the Effective Potential.

Figure 7.6 shows the average number of phonon scattering events and surface roughness
scattering events an electron undergoes while crossing the channel as a function of gate bias. It
is shown that at low gate bias, phonon scattering is more likely to occur than surface roughness
scattering. Therefore, in this range, the mobility is limited by phonon scattering mechanisms.
However, at gate biases higher than 0.9 V, the surface roughness scattering becomes more
relevant than phonon scattering. At this range of gate bias, electrons are being pushed towards
all the three silicon/silicon dioxide interfaces by a higher electrostatic force, and because of
that, they interact with the surface more often.
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Figure 7.5: Electron density taken at a cross-section in the channel region calculated by the quantum-
corrected simulator results. Vps=0.7 V, Ves = 0.9 Vand Vegs =0 V.
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Figure 7.6: Phonon scattering events (green) and surface roughness scattering events (magenta) per
electron crossing the channel in the quantum-corrected simulator. The curves represent the average
value of the 20 samples. The error bars indicate 95% confidence interval. Vps=0.7 V, and Ves =0 V.
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7.1 Random Dopant Fluctuation

In the current technology, the channel of tri-gate transistors is said undoped. However,
despite no intentional dopants are introduced, the channel may not be perfectly free of dopants
(intrinsic), due to the fabrication process. Thus, undoped in the context of the studied device
means that the doping density is very small (N, is around 1 x 10> cm= and 3 x 10> cm™®),
while the intrinsic carrier density is around n; = 1.5 x 10*° cm™ at 300 K. The number of
dopants in the channel amongst devices follows a Poisson distribution function
(SRIVASTAVA; SYLVESTER; BLAAUW, 2005). For the nanowire transistor of interest, if
N, = 3 x 105 cm™, the probability of having zero dopant atoms in the channel is 98.81%, the
probability of having one dopant atom in the channel is 1.1857%, and the probability of having
two dopant atoms is 0.0071%. This process variation is called random dopant fluctuation (RDF)
and results in transistors with distinct numbers of dopants; hence, it is a source of device-to-
device variability (GRASSER, 2014), (REIS; CAO; WIRTH, 2015).

As mentioned, in the Monte Carlo device simulator, the dopants are treated as discrete
particles. Therefore, the effect of random dopant fluctuation can be investigated by the device
simulator. In the case of study performed in this work, one dopant atom was inserted in the
channel of the nanowire. The channel length of the nanowire transistor is 40 nm, and length of
the source and drain regions are 34 nm; thus, the total length of the structure is 108 nm. The
dopant was positioned at the center of the width (z = 6.3 nm), at 1.75 nm from the top
silicon/silicon dioxide interface (y = 3.05 nm), and at 11 nm from the beginning of the channel
(x = 45 nm). To reduce the Monte Carlo statistical noise, the same device was simulated with
and without the dopant atom using 200 different Monte Carlo seeds. The simulations were
carried out at 300 K, Ve=Vs =0V, Vp =0.2V, and Ve = 0.5 V for 10 ps. The average current
and its standard error were estimated for both devices. The current of the device without dopants
is 4.0478 + 0.0185pA, while for the device with the dopant atom it is 3.4576 + 0.0169 pA.
The current variation 61 induced by this dopant is 14.58% of the current without any dopant
atom.

Figure 7.7 shows the electron density along the channel for the device without dopants
in the channel and for the device with one dopant in the channel. The dopant is at x = 45 nm.
The impact of the single dopant on the electron density is to significantly reduce the electron
density over a large portion of the channel. The type of dopant in the channel is acceptor, thus,

it electrostatically repels the electrons, which decreases the number of electrons in this region.
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Figure 7.7: Electron density along the channel length of the device without any dopant in the channel
(black curve) and of the device with one dopant in the channel at x = 45 nm (red curve). The channel
length of the nanowire transistor is 40 nm (from x = 34 nm to x = 74 nm).
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Figure 7.8 Average velocity of electrons along the length of the device without any dopant in the channel
(black curve) and of the device with one dopant in the channel at x = 45 nm (red curve). The channel
length of the nanowire transistor is 40 nm (from x = 34 nm to x = 74 nm). The dashed lines represent
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Figure 7.8 depicts the velocity of the electrons along the channel for the device without
dopants in the channel and for the device with one dopant. In the channel region where the
dopant is located, the electron velocity is increased in comparison to the case without dopants.
To support current conservation, the velocity of electrons in this region is higher, compensating
for the smaller number of electrons. Note that in the channel region right after the dopant the
electron velocity is almost flat. Considering that the electron density in the region around the
dopant is smaller than in the rest of the channel, this gradient of electron density might generate

diffusion of electrons that are right after the dopant position.
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8 CONCLUSIONS AND FUTURE WORK

To implement the quantum correction in the Monte Carlo device simulator, firstly, a
Schrédinger-Poisson solver and an Effective Potential-Poisson solver were developed to
simulate the cross-section of silicon n-type FinFET and silicon n-type nanowire transistors.
Then, the smoothing parameter of the Effective Potential of these devices was adjusted until
the electron line density calculated using the Effective Potential-Poisson solver agrees with the
one calculated using the Schrodinger-Poisson solver in a range of gate biases. For the n-type
FinFET of interest, the Effective Potential smoothing parameter is equal to 0.45 nm, while for
the n-type nanowire transistor, it is equal to 0.4 nm.

The Effective Potential was included in the Monte Carlo device simulator as a quantum
correction to simulate the n-type FINFET transistor of interest. The FinFET simulated is
unintentionally doped, with width and height equal to 8 nm and 42 nm, respectively, channel
length of 18 nm, and EOT of 1.2 nm. This transistor was simulated using the semiclassical and
the quantum-corrected simulator. The output and the transfer characteristic curves of this
transistor were estimated using both simulators, and it was demonstrated that the semiclassical
simulator overestimates the on-current. In the quantum-corrected simulator, it was observed
that the channel is formed a few nanometers away from the interface, and it was shown that the
volume inversion reduces the surface roughness scattering events. As a result of that, the
electron’s velocity along the channel is higher in the quantum-corrected simulator than in the
semiclassical simulator. Although the electron’s velocity along the channel is higher in the
guantum-corrected simulator, the electron density in the channel is smaller due to quantum
confinement, which degrades the on-current of the transistor. Overall, the effect of quantum
confinement reduces the on-current in the FinFET transistor. The impact of the quantum-
correction in the subthreshold region is small, because in this region, the transistor is on weak
inversion; therefore, the potential well is not formed yet. As the gate bias increases, the band
bending increases and a 2D quantum well is formed where the electrons are confined.

In terms of the n-type nanowire, an unintentionally doped nanowire with squared cross-
section of 10 nm, EOT of 1.3 nm, and channel length of 40 nm was simulated. The transfer
characteristic curve in the saturation region (Vp = 0.7 V) estimated by the quantum-corrected
simulator was compared with experimental results. There is an excellent agreement between
the simulation and experimental results, even in the subthreshold region. It was shown that the

volume inversion is being modeled by the quantum-corrected simulator. The surface roughness



100

scattering mechanism in this transistor is relevant. Note that in the nanowire transistor there are
four interfaces between silicon and silicon dioxide. In addition to that, the height of the
nanowire transistor is about four times smaller than the height of the FinFET investigated in
this work. Therefore, the interaction between the electrons and the surface is more likely to
occur in the nanowire transistor than in the FINFET investigated. At gate biases smaller than
0.9 V, the phonon scattering events are more likely to occur than surface roughness scattering
events. At gate biases higher than that, the electrons mobility is limited by surface roughness
scattering. In addition, a brief study of the impact of RDF on the on current of the nanowire
transistor was presented.

As future work it is suggested to perform a more extensive study concerning the effect
of RDF on the nanowire transistor, where the position of the dopant atom is changed and the
variation in current is measured as a function of the dopant position. In addition, an excellent
contribution to this work would be perform an investigation of the impact of trap activity on
the nanowire transistor employing the quantum-corrected Monte Carlo device simulator,
employing the same methodology presented in ((ROSSETTO; CAMARGO; BOTH;
VASILESKA; WIRTH, 2020). In terms of new transistors, it would be relevant to include the
nanosheet transistor in the quantum-corrected device simulator, since it is expected to be the
transistor of the next generation (YE; ERNST; KHARE, 2019), (AJAYAN, J. et al., 2021). To
do that, the smoothing parameter of the Effective Potential for this transistor would have to be
obtained. The 2D Schrédinger-Poisson solver and the 2D Effective Potential-Poisson solver
can be easily adapted to simulate the cross-section of nanosheet transistors. In terms of the
quantum-corrected device simulator, the structure of the nanosheet transistors has to be
included and the boundary conditions should be modified to properly describe the interfaces

and surfaces of the nanosheet transistors.
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