

6 a 10 de novembro

Evento	Salão UFRGS 2023: SIC - XXXV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2023
Local	Campus Centro - UFRGS
Título	Técnicas iterativas para soluções de sistemas lineares
Autor	PEDRO AUGUSTO BINELO ANTUNES
Orientador	LILIANE BASSO BARICHELLO

Sistemas de equações lineares surgem nas mais diversas aplicações, como por exemplo no tratamento numérico de equações diferenciais. A investigação de técnicas de soluções eficientes para tais sistemas é de grande relevância. Em muitos casos a matriz de coeficientes do sistema é esparsa, e nessas situações utilizar uma técnica de fatoração da matriz pode alterar toda a sua forma, perdendo a estrutura esparsa e eficiência computacional. Neste contexto, as técnicas iterativas ganham sua importância, tirando proveito da estrutura esparsa da matriz de coeficientes. Os métodos iterativos tem como objetivo produzir, a partir de um chute inicial $x^{(0)}$, uma sequência de vetores x^(k) tais que se aproximem da solução do sistema de equações lineares. Neste trabalho estudamos os métodos iterativos clássicos, de Jacobi e Gauss-Seidel, investigando os critérios de convergência dos mesmos. A implementação e testes numéricos foram realizados utilizando o software SciLab, onde analisamos convergência, número de iterações e comportamento das soluções. Também avaliamos o condicionamento das matrizes testadas. Utilizamos em testes a Matriz de Hilbert, conhecida por ser mal-condicionada. Mesmo em caso de mal condicionamento, de ordem 10⁵, os resultados obtidos foram satisfatórios. Como continuidade pretendemos estudar esquemas iterativos fundamentados em subespaços de Krylov para aplicação em simulações de transporte de partículas.