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We investigate the two-gluon-exchange model of the Pomeron using nonperturbative gluon propagators
characterized by a dynamical mass scale. We present the results for an analysis of the available pp
differential cross section data at TeVenergies which accounts for dynamical gluon masses obtained from a
nonlinear version of the Schwinger-Dyson equations. We show that our two-gluon exchange model gives
an excellent description of the LHC data, provided we demand the Reggeization of the scattering amplitude
and make a suitable choice for the convolution of proton wave functions.
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I. INTRODUCTION

It remains a challenge for elementary particle physics to
understand the QCD nature of the Pomeron, a colorless state
having the quantum numbers of the vacuum. It has been
known for a long time that the behavior of the hadronic cross
sections at high energies in the soft regime is well described
in the framework of Regge theory, in which the behavior of
the scattering amplitude is driven by singularities of the
amplitude in the complex plane of angular momentum j. In
the simplest scenario the scattering amplitude is dominated
by an isolated pole at j ¼ αPðtÞ, resulting in an amplitude
Aðs; tÞ ∝ sαPðtÞ, where αPðtÞ is the Pomeron pole trajectory.
The ultimate goal is to incorporate QCD concepts into the
Pomeron construction in order to reproduce at least some of
the phenomenological features of the soft Pomeron.
Various attempts using QCD ideas have been made to

study the soft Pomeron and, since the work of Low and
Nussinov [1,2], it has been realized that the lowest-order
QCD construction possessing the correct Pomeron quan-
tum numbers (C ¼ þ1, color singlet) is the two-gluon
exchange. The first perturbative calculations using such a

model, although not successful in describing the scattering
data available at the time, were instructive in highlighting
some phenomenological possibilities [3–5]. In these cal-
culations, the scattering amplitude was written as

Aðs; tÞ ¼ is
8

9
n2pα2s ½T1 − T2�; ð1Þ

where T1 (T2) represent the contribution when both gluons
attach to the same quark (to different quarks) within the
proton. Here np ¼ 3 is the number of quarks in the proton,
and αs is the canonical strong coupling. Among the main
results of these calculations, we have a total cross section
that is constant in s [3,4] as well as an amplitude that
decreases much more rapidly with increasing jtj than that
generated by single-Pomeron exchange [5]. Most impor-
tantly, the perturbative calculation of the elastic hadron-
hadron scattering amplitude through a two-gluon exchange
is invariably accompanied by a singularity at −t ¼ 0. Since
the origin of this singularity is the pole in the gluon
propagator at q2 ¼ 0, Landshoff and Nachtmann (LN)
suggested that the gluon propagator is intrinsically modi-
fied in the infrared region [6]. They noticed that the
singularity present in the two-gluon exchange calculation
of the hadron-hadron scattering is eliminated if the gluon
propagator is finite at q2 ¼ 0. In the LN model, the
Pomeron exchange corresponds to the two-gluon exchange.
These two gluons couple predominantly to the same quark
in the hadron, and this exchange behaves like a C ¼ þ1
photon-exchange diagram with an amplitude

iβ20ðūγμuÞðūγμuÞ; ð2Þ
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where β0 represents the strength of the Pomeron coupling
to quarks, being given by

β20 ¼
1

36π2

Z
d2k½g2Dðk2Þ�2: ð3Þ

It is worth remarking on the fact that the convergence of
the integral in Eq. (3) requires a nonperturbative gluon
propagator, i.e., a propagator in which the infrared pole at
q2 ¼ 0 is removed by some nonperturbative mechanism.
Very soon after the introduction of these ideas, several
phenomenological consequences have been discussed in
the literature [7–9]. For example, using nonperturbative
gluon propagators in LN-type models, it was possible to
describe low-energy data on J=Ψ-nucleon total cross
section, to compute an estimate for the differential cross
section of the process γγ → J=ΨJ=Ψ, and to compute
the elastic differential cross section for pp scattering
at

ffiffiffi
s

p ¼ 53 GeV.
After precise measurements of elastic pp scattering at

LHC have been released, an LN-inspired approach based
on the refined Gribov-Zwanziger framework and massive
Cornwall-type gluon propagator was used in the calculation
of the differential cross section at

ffiffiffi
s

p ¼ 7, 8, and 13 TeV
[10]. Surprisingly, the calculation is in complete disagree-
ment with the experimental data, providing a reasonable
description of dσ=dt again only at low energies, namelyffiffiffi
s

p ¼ 53 TeV. It is important to be absolutely clear that the
contribution of the Pomeron component to χ2 is completely
dominant in the LHC regime [11,12]. In other words, at
TeVenergies the Reggeon (non-Pomeron) contributions are
negligible, and it seems very plausible that any Pomeron-
type model should therefore work precisely at the LHC
energies. Hence there is every reason to believe that the
LHC energy regime sets up the stage for carrying out a
systematic study of the LN Pomeron.
In this paper we show that an LN-type model can, in fact,

describe the LHC data with great accuracy, provided
we make an appropriate choice for the convolution of
proton wave functions and demand the Reggeization of the
scattering amplitude.

II. THE MODEL

One of the remarkable features of non-Abelian gauge
theories is the Reggeization of elementary particles
[13–15], particularly in the case of QCD. Gluon
Reggeization turns out to be of central importance at high
energies since only cross sections for processes involving
the exchange of gluons in the t-channel do not fade away as
s increases; in each fixed order of perturbation Reggeized
gluons completely dominate the amplitudes for such
processes. Furthermore, the gluon Reggeization plays a
central role in the derivation of the BFKL equation [16].
This equation describes the leading logarithmic evolution
of gluon ladders in ln s, in which the vertical lines are

Reggeized gluons. This means that these gluonic lines are
not composed of bare gluons whose propagators (in the
Feynman gauge) are given by

Dμνðq2Þ ¼ −i
gμν
q2

; ð4Þ

but rather composed of gluons whose propagator is

Dμνðŝ; q2Þ ¼ −i
gμν
q2

�
ŝ
k2

�
ϵGðq2Þ

; ð5Þ

where k2 is a typical transverse momentum, ŝ is the square
of the total center-of-mass of the particles which exchange
the Reggeized gluon, and αGðq2Þ ¼ 1þ ϵGðq2Þ is the
Regge trajectory of the gluon. Thus in the case of color-
octet exchange, in the limit s ≫ jtj, the BFKL equation
exhibits a pole solution, corresponding to a single
Reggeized gluon propagating in the t-channel. Similarly,
in the case of a color-singlet exchange, a gluon ladder
configuration corresponds to a bound state of gluons,
namely the BFKL Pomeron.
More generally, if the amplitude Aðs; tÞ for a process

involving the exchange in the t-channel of the quantum
numbers of a particle of mass M and spin j behaves
asymptotically as Aðs; tÞ ∝ sαðtÞ, it is said that we are
treating with a “Reggeized” particle, where αðtÞ is the
trajectory of the particle; in particular, the particle lies
on the trajectory, i.e. αðM2Þ ¼ j. Following this line of
thought, one might then be led to consider changes of the
form s → sαðtÞ as a phenomenological procedure for the
Reggeization of scattering amplitudes. In our case, a simple
change s → sαPðtÞ in the amplitude (1) would, on this
analogy, lead us to expect a Reggeized version of the
LN amplitude. Thus, by considering the LN-Pomeron
Reggeization, one verifies that the scattering amplitude (1)
may be rewritten as

Aðs; tÞ ¼ isαPðtÞ
1

s̃0

8

9
n2p½T̃1 − T̃2�; ð6Þ

with

T̃1 ¼
Z

s

0

d2kᾱ
�
q
2
þ k

�
D
�
q
2
þ k

�
ᾱ

�
q
2
− k

�

×D

�
q
2
− k

�
½Gpðq; 0Þ�2; ð7Þ

T̃2 ¼
Z

s

0

d2kᾱ

�
q
2
þ k

�
D

�
q
2
þ k

�
ᾱ

�
q
2
− k

�
D

�
q
2
− k

�

×Gp

�
q; k −

q
2

��
2Gpðq; 0Þ −Gp

�
q; k −

q
2

��
:

ð8Þ
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Here αPðtÞ ¼ 1þ ϵþ α0Pt is the LN-Pomeron trajectory,

s̃0 ≡ sαPðtÞ−10 (where the mass scale s0 ≡ 1 GeV2 have been
introduced to get the dimension of the total cross section,
σtotðsÞ, right), and Gpðq; kÞ is a convolution of proton wave
functions,

Gpðq; kÞ ¼
Z

d2pdαψ�ðα; pÞψðα; p − k − αqÞ; ð9Þ

where the wave function ψðα; pÞ is the amplitude for the
quark to have transverse momentum p and fraction α of
the longitudinal momentum. In this picture Gpðq; 0Þ is
simply the proton elastic form factor, F1ðq2Þ. We estimate
Gpðq; k − q

2
Þ assuming a proton wave function peaked at

α ¼ 1=3 and using [8]

Gp

�
q; k −

q
2

�
¼ F1

�
q2 þ 9

����k2 − q2

4

����
�
: ð10Þ

The expressions for T̃1 and T̃2 include the nonperturba-
tive QCD information. The nature of the coupling ᾱðq2Þ
and the gluon propagator Dðq2Þ will be discussed in the
next section. Notice that, in contrast to (1), in the expres-
sion (6) we have inserted the couplings into the integrals (7)
and (8). In this form, it is particularly evident that we are
using the prescribed calculational scheme, as dictated by
the Eq. (3): the strength of the Pomeron depends on the
product of the coupling g2ðk2Þ with the propagator Dðk2Þ.
Furthermore, it is the same procedure used in lattice QCD
calculations, where the Pomeron’s strength is proportional
to the integral

R
d2p½g2effðp2ÞDlatðp2Þ�2.

The total cross section σtotðsÞ and the elastic differential
cross section dσ=dt are, in terms of the amplitude (6),
given by

σtotðsÞ ¼
ImAðs; t ¼ 0Þ

s
; ð11Þ

dσ
dt

ðs; tÞ ¼ jAðs; tÞj2
16πs2

: ð12Þ

III. THE NONPERTURBATIVE INPUT

It is a currently accepted scenario that the nonperturba-
tive dynamics of QCD may generate a dynamical mass
mðq2Þ for the gluons [17]. Large-volume lattice QCD
calculations indicate that such an effective momentum-
dependent mass does arise in both SU(2) [18] and SU(3)
[19] simulations. The lattice calculations also reveal a finite
gluon propagator in the infrared region [20]. Moreover,
according to the Schwinger-Dyson equations, which in the
continuum govern the nonperturbative dynamics of the
gluon propagator, a finite gluon propagator corresponds to
a dynamically massive gluon [21].

The phenomenon of dynamical gluon mass generation
is intimately related to the concept of QCD effective
charge [22–24]. A QCD effective charge ᾱðq2Þ is a non-
perturbative generalization of the perturbative running
coupling αsðq2Þ and can be obtained, for example,
within the framework of pinch technique [22,25,26]:
the Schwinger-Dyson solutions for the gluon self-energy
Δ̂ðq2Þ (in the background-field method [27]) are used to
form a renormalization-group invariant quantity defined by

d̂ðq2Þ ¼ g2Δ̂ðq2Þ; ð13Þ

where g is the gauge coupling. From this quantity, the
effective charge may then be defined as

ᾱðq2Þ ¼ ½q2 þm2ðq2Þ�d̂ðq2Þ; ð14Þ

where mðq2Þ is the gluon dynamical mass. The inverse of
d̂ðq2Þ may be written as

d̂−1ðq2Þ ¼ ½q2 þm2ðq2Þ�
ᾱðq2Þ ; ð15Þ

where now

1

ᾱðq2Þ ¼ b0 ln

�
q2 þm2ðq2Þ

Λ2

�
; ð16Þ

where b0 ¼ β0=4π ¼ ð33 − 2nfÞ=12π is simply the first
coefficient of the QCD β function (here nf is the number of
flavors) and Λ is the dimensionful QCD parameter. Note
that if q2 þm2ðq2Þ → p2 in the argument of the logarithm
of (16), we obtain the expression for the leading order (LO)
perturbative QCD coupling, namely

1

αLOs ðp2Þ ¼ b0 ln

�
p2

Λ2

�
; ð17Þ

thus, in practice, the QCD effective charge can be
directly obtained by saturating the LO perturbative strong
coupling αLOs ðq2Þ, namely

ᾱðq2Þ ¼ αLOs ðq2Þjq2→q2þm2ðq2Þ: ð18Þ

If the Schwinger-Dyson equations preserve the multipli-
cative renormalizability, the same procedure can be used to
build a next-to-leading order effective charge [28].
Functional forms of the gluon dynamical mass mðq2Þ

and of the nonperturbative gluon propagator Dμν were
found by Cornwall using the pinch technique in order to
derive a gauge invariant Schwinger-Dyson equation for the
triple gluon vertex and gluon propagator [22]. Specifically,
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the gluon propagator Dμν ¼ −igμνDðq2Þ obtained from a
gauge-invariant set of diagrams for the Schwinger-Dyson
has the scalar factor given by

D−1ðq2Þ ¼ ½q2 þm2ðq2Þ�bg2 ln
�
q2 þ 4m2ðq2Þ

Λ2

�
ð19Þ

in Euclidean space, with the dynamical gluon mass
given by

m2ðq2Þ ¼ m2
g

2
64ln

�
q2þ4m2

g

Λ2

	

ln
�
4m2

g

Λ2

	
3
75
−12=11

; ð20Þ

where b ¼ b0=4π and m2
g ¼ m2ð0Þ. The Cornwall expres-

sion (20) is a special case of a logarithmic running mass
m2

logðq2Þ, found in a more recent study using a non-linear
version of the Schwinger-Dyson equation for the gluon
self-energy [29], given by

m2
logðq2Þ ¼ m2

g

2
64ln

�
q2þρm2

g

Λ2

	

ln
�
ρm2

g

Λ2

	
3
75
−1−γ1

; ð21Þ

where γ1 ¼ −6ð1þ c2 − c1Þ=5; here c1 and c2 are param-
eters related to the ansatz for the fully dressed three-gluon
vertex employed in numerical analyses of the gluon self-
energy. Their values are constrained by a “mass condition,”
which controls the behavior of m2

logðq2Þ in the ultraviolet
region, namely c1 ∈ ½0.15; 0.4� and c2 ∈ ½−1.07;−0.92�.
The parametersmg and ρ, which control the behavior of the
dynamical mass in the infrared region, are also constrained
by the mass condition to lie in the intervalsmg ∈ ½300; 800�
and ρ ∈ ½1.0; 8.0� MeV [29].
Another possible asymptotic behavior for the dynamical

gluon mass, also obtained at the level of a nonlinear
Schwinger-Dyson equation, is given by the power-law
running mass

m2
plðq2Þ ¼

m4
g

q2 þm2
g

2
64ln

�
q2þρm2

g

Λ2

	

ln
�
ρm2

g

Λ2

	
3
75
γ2−1

; ð22Þ

where γ2 ¼ ð4þ 6c1Þ=5, with the same type of mass
condition now imposing c1 ∈ ½0.7; 1.3�. Here the ρ and
mg parameters are constrained to lie in the same interval
as the logarithmic case, namely ρ ∈ ½1.0; 8.0� and mg ∈
½300; 800� MeV [29]. We fix ρ ¼ 4, γ1 ¼ 0.084, and
γ2 ¼ 2.36 in our analyses since these values are the ones
that give the smallest value of χ2=ν, where ν is the number
of degrees of freedom (DoF).

Given the running behavior of the dynamical gluon
masses, m2

logðq2Þ and m2
plðq2Þ, the QCD effective charge

ᾱiðq2Þ is written as

ᾱiðq2Þ ¼
1

b0 ln
�
q2þ4m2

i ðq2Þ
Λ2

	 ; ð23Þ

where i ¼ log, pl. Finally, combining all these results,
we found an expression for ᾱiðq2ÞDðq2Þ that guarantees the
convergence of the integrals (7) and (8), namely

1

ᾱiðq2ÞDðq2Þ ¼ b0½q2 þm2
i ðq2Þ� ln

�
q2 þ 4m2

i ðq2Þ
Λ2

�
; ð24Þ

where we have used g2 ¼ 4πᾱiðq2Þ in the expression (19).
One very important point to note is that ᾱlogðq2Þ and
ᾱplðq2Þ tame the Landau pole, i.e., they exhibit infrared
fixed points as q2 → 0. In a mathematical sense, these QCD
effective charges belong to the same class of holomorphic
couplings [30].

IV. RESULTS AND DISCUSSION

The LHC has performed very precise measurements
of diffractive processes that provide a unique constraint on
the behavior of the scattering amplitude at high energies.
These measurements (and more especially total and differ-
ential cross sections from ATLAS and TOTEM experi-
ments) have an accuracy sensitive to nonperturbative
physics, allowing us to study the LN Pomeron in more
detail. However, these experimental results reveal some
tension between the TOTEM and ATLAS measurements.
For example, if we compare the TOTEM result for σpptot atffiffiffi
s

p ¼ 7 TeV, σpptot ¼ 98.58� 2.23 [31], with the most
precise value measured by ATLAS at the same energy,
σpptot ¼ 95.35� 1.36 [32], the difference between the val-
ues, assuming that the uncertainties are uncorrelated,
corresponds to 1.4σ; if we compare the ATLAS result
for the total cross section at

ffiffiffi
s

p ¼ 8 TeV, σpptot ¼ 96.07�
0.92 [33], with the lowest value measured by TOTEM at
the same center-of-mass energy, σpptot ¼ 101.5� 2.1 [34],
we see an even more significant difference: 2.6σ. This
strong disagreement clearly indicates the possibility of
different scenarios for the rise of the total cross section and,
consequently, for the parameters of the LN Pomeron.
Thus, in order to investigate the tension between the

TOTEM and ATLAS results in a quantitative way, we
carry out global fits to pp differential cross section data
considering two distinct ensembles of data with either the
TOTEM or the ATLAS measurements. This “ensemble-
selection” approach is statistically well-founded and has
been used for the first time in the study of cosmic-ray data
discrepancies and their effects on the predictions of pp
total cross sections at high energies [35]. The procedure
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was later used in the study of Tevatron tension between the
CDF and E710/E811 data and its effect on extrema bounds
of the soft Pomeron intercept [36]. As a result, in all the
cases, a very clear distinction among asymptotic values of
σpptot has emerged. As wewill see, the discrepancies between
the TOTEM and ATLAS data result in distinct values for
the LN Pomeron parameters, which in turn also lead to
different asymptotic scenarios for σpptot . It follows that the
two LHC ensembles for data reductions can be defined and
denoted as

Ensemble A: ATLAS data on dσ
dt at 7, 8, and 13 TeV.

Ensemble T: TOTEM data on dσ
dt at 7, 8, and 13 TeV.

Once we have defined our datasets, we turn to the
phenomenology and carry out global fits to the Ensemble A
[32,33,37] and to the Ensemble T [38–40] with jtjmin ≤
jtj ≤ 0.2 GeV2, where the statistic and systematic errors
of the data are added in quadrature. We have adopted
jtjmin ∼ 10jtjint, where jtjint ¼ 0.071=σtot, since in this
region the nuclear scattering dominates [12]. The choice
for the upper limit on jtj interval will be made clearer in the
discussion of the convolution of proton wave functions
which follows. In all the fits to the experimental data we use
a χ2 fitting procedure, where the value of χ2min is distributed
as a χ2 distribution with ν degrees of freedom. The fits are
performed adopting an interval χ2 − χ2min corresponding to
90% confidence level (CL).
As indicated in Sec. I, a good description of the differ-

ential cross section at TeV energies requires, besides the
Reggeization of the scattering amplitude, a more sophis-
ticated version of the convolution of proton wave functions.
This is necessary in order to take account of the fact that the
dσ=dt data at LHC show a significant deviation from an
exponential in the small jtj region, as first observed by the
TOTEM Collaboration [39,41,42]. As a result, the value
found for the nuclear slope B (using an exponential fit at
low jtj) can be considered as an average B, since the high
value for χ2=DoF in the TOTEM fit shows the exponential
model as an oversimplified description of the data [42]. To
obtain a better fit, the TOTEM Collaboration has gener-
alized the pure exponential to a cumulant expansion,

dσ
dt

ðtÞ ¼ dσ
dt

����
t¼0

exp

�XNb

n¼1

bntn
�
: ð25Þ

Here the Nb ¼ 1 case corresponds to the pure exponential.
A satisfactory description of the data at

ffiffiffi
s

p ¼ 13 TeV was
achieved in the case Nb ¼ 3, with χ2=DoF ¼ 1.22 and
p − value ¼ 8.0%, using data with jtjmax ¼ 0.15 GeV2,
which corresponds to the largest interval before dσ=dt
accelerates its decrease toward the dip region [40,42]. From
considerations based on this observed low-jtj behavior of
dσ=dt at arbitrarily high energies, we propose the following
convolution of proton wave functions at k2 ¼ 0 (i.e., the
form factor):

Gpðq; 0Þ ¼ F1ðq2Þ ¼ exp

�
−
�XNa

n¼1

anjtjn
��

; ð26Þ

where −t ¼ q2. We investigate three cases for the cumulant
expansion (26), namely Na ¼ 1, 2, and 3. Our philosophy
is to adopt the standard statistical χ2 test in order to evaluate
the relativity plausibility of these cases in light of
LHC data. More specifically, we consider different cumu-
lant cases and the effectiveness of these choices in
describing the dσ=dt datasets. Since the TOTEM cumulant
analysis of the nuclear slope has been performed using
elastic differential cross section data in the interval
0 ≤ jtj ≤ 0.15 GeV2, in our analyses, we fit to the
dσpp=dt data with jtj ≤ 0.2 GeV2, i.e. we place our upper
limit on the jtj interval in a value close to the one adopted
by TOTEM.
We have first observed that the fit in the case Na ¼ 1 is

not supported by either of the two ensembles of data.
However, theNa ¼ 2 case provides a very good description
of the dσ=dt data for both ensembles. Following the
philosophy of using the minimum number of free param-
eters, our model, therefore, adopts the case Na ¼ 2 for the
cumulant expansion. This means that the model has 4 free
parameters: mg, ϵ, a1, and a2. In this case the interval
corresponding to 90% CL is simply χ2 − χ2min ¼ 7.78.
Regarding the other parameters of the model, the slope
of the LN Pomeron trajectory, α0P, is fixed at the value
0.25 GeV−2; this value is in agreement with that
usually obtained for the soft Pomeron in Regge-model
analyses. Furthermore, in all the fits, we fix nf ¼ 3 and
Λ ¼ 284 MeV, since these values are the same ones
adopted in other calculations of strongly interacting proc-
esses [28,43]: our purpose is to keep, whenever possible,
these two parameters fixed at the same values adopted in
other phenomenological analyses in order to focus exclu-
sively on the behavior of the dynamical gluon massmg and,
in this way, to verify if there is any universality in its value.
The values of the parameters of the LN Pomeron in the

case of logarithmic (power-law) dynamical mass, deter-
mined by fits to Ensemble A and Ensemble T, are listed
in Table I (Table II). The curves of the differential cross

TABLE I. The values of the LN Pomeron obtained in fits to
dσpp=dt data using the logarithmic dynamical massmlogðq2Þ [see
Eq. (21)].

Ensemble A Ensemble T

mg (GeV) 0.356� 0.025 0.380� 0.023
ϵ 0.0753� 0.0024 0.0892� 0.0027
a1 (GeV−2) 1.373� 0.017 1.491� 0.019
a2 (GeV−4) 2.50� 0.53 2.77� 0.60

ν 108 328
χ2=ν 0.71 0.67
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sections, compared with the experimental data, are shown
in Figs. 1 (Ensemble A) and 2 (Ensemble T). In these
figures, the solid and dashed curves are the results obtained
using mlogðq2Þ and mplðq2Þ, respectively.
The energy dependence of the total and differential cross

sections is driven by the parameter ϵ, and we notice that for
each given ensemble its value is not sensitive to the type of
dynamical mass used in the fit: for the case of Ensemble A
(Ensemble T), similar values of ϵ, namely ϵ ¼ 0.075
(ϵ ¼ 0.089), are obtained for both power-law- and loga-
rithmic-type masses. As already advanced in the previous
sections, the discrepancy between the values of ϵ obtained
from distinct ensembles leads to different scenarios for the
growth of the total cross section σtotðsÞ. Specifically, the
model predictions for σtotðsÞ at

ffiffiffi
s

p ¼ 13 TeV in the case of
Ensemble A using mlogðq2Þ, Ensemble A using mplðq2Þ,

Ensemble T using mlogðq2Þ, and Ensemble T using
mplðq2Þ, are approximately equal to 104.3, 103.5, 111.3,
and 110.9 mb, respectively. The curves of σtotðsÞ corre-
sponding to these four cases are shown in Fig. 3.

TABLE II. The values of the LN Pomeron obtained in fits to
dσpp=dt data using the power-law dynamical mass mplðq2Þ [see
Eq. (22)].

Ensemble A Ensemble T

mg (GeV) 0.421� 0.030 0.447� 0.026
ϵ 0.0753� 0.0025 0.0892� 0.0027
a1 (GeV−2) 1.517� 0.019 1.689� 0.021
a2 (GeV−4) 2.05� 0.45 1.70� 0.51

ν 108 328
χ2=ν 0.64 0.90

FIG. 1. LN Pomeron model description of the pp elastic
differential cross section data from ATLAS (Ensemble A). The
solid and dashed lines show the results obtained using mlogðq2Þ
and mplðq2Þ, respectively.

FIG. 2. LN Pomeron model description of the pp elastic
differential cross section data from TOTEM (Ensemble T).
The solid and dashed lines show the results obtained using
mlogðq2Þ and mplðq2Þ, respectively.

FIG. 3. LN Pomeron model prediction for the pp total cross
section. The solid, dashed, dash-dotted, and dotted lines are the
predictions obtained from the fit to Ensemble A using mlogðq2Þ,
Ensemble A using mplðq2Þ, Ensemble T using mlogðq2Þ, and
Ensemble T using mplðq2Þ, respectively.
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We illustrate the behavior of the dynamical masses
miðq2Þ (Fig. 4), the QCD effective charges ᾱi (Fig. 5),
and the product ᾱiðq2ÞDðq2Þ (Fig. 6) in order to get a
feeling for the sensitivity of the results on these quantities.
Figures 4–6 have the same legend as Fig. 3.

Interestingly enough, by considering the same type
of dynamical mass, the change from Ensemble A to
Ensemble B leads to an increase of mg of about 7%
and, by considering the same Ensemble, the change from
the logarithmic to power-law mass leads to an increase of
mg of some 18%. The latter would normally be expected
since power-law type masses decrease much faster than
logarithmic ones, and this effect is exactly compensated by
larger values of mg.
Since we know the phenomenological values of the

dynamical gluon mass, we are able to calculate the strength
of the LN Pomeron coupling to quarks, given by the
expression (3). For Ensemble A, in the case of logarithmic
and power-law couplings, we have

β0;ATLAS ¼ 2.33þ0.39
−0.30 GeV−1;

β0;ATLAS ¼ 2.13þ0.33
−0.25 GeV−1;

respectively. On the other hand, for the Ensemble T, in the
case of logarithmic and power-law couplings, we have

β0;TOTEM ¼ 2.04þ0.28
−0.22 GeV−1;

β0;TOTEM ¼ 1.91þ0.22
−0.19 GeV−1;

respectively. The uncertainty in these quantities has been
estimated by varying the gluon mass mg within error while
keeping all other model parameters constant. It is certainly
obvious that this procedure does not determine the formal
uncertainty of β0. However, the values of β0 are actually

FIG. 4. The behavior of the dynamical masses. The solid,
dashed, dash-dotted, and dotted lines are the masses observed
using the parameters obtained from the fit to Ensemble A using
mlogðq2Þ, Ensemble A using mplðq2Þ, Ensemble T using
mlogðq2Þ, and Ensemble T using mplðq2Þ, respectively.

FIG. 5. The behavior of the QCD effective charges. The solid,
dashed, dash-dotted, and dotted lines are the same as in Fig. 4.

FIG. 6. The behavior of the product ᾱiðq2ÞDðq2Þ. The solid,
dashed, dash-dotted, and dotted lines are the same as in Fig. 4.
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more sensitive to the gluon mass mg than to variations of
other parameters of the model. Thus, despite the simplicity
of the procedure, it clearly provides a reasonable estimate of
the uncertainty in β0. It is worth mentioning that the
expressions (19)–(22) are the expressions obtained from
fits of Schwinger-Dyson equations solutions. The systematic
exploration of the QCD Green’s functions through continu-
ous Schwinger function methods has afforded broad access
to the dynamical mechanisms responsible for the nonper-
turbative properties of the theory. On the other hand, to the
best of our knowledge, the most recent QCD-Lattice result
for the Pomeron’s strength was obtained in the quenched
approximation, which amounts to neglecting quark loops.
Moreover, the QCD running coupling was neglected in the
lattice calculation, adopting the approximation geffðpÞ ¼ g.
In this way, we consider the QCD-lattice result using the
formula

R
d2p½g2effðp2ÞDlatðp2Þ�2 only as a helpful guide,

relying more on the intervals β0;ATLAS and β0;TOTEM calcu-
lated via Schwinger-Dyson formalism.
In conclusion, we verified that a two-gluon exchange

model gives a very good description of the dσ=dt data at
TeVenergies, provided we demand the Reggeization of the
elastic scattering amplitude as predicted by QCD, and make
a suitable choice for the convolution of proton wave
functions at k ¼ 0. More precisely, we have evaluated
the relative plausibility of different cumulant expansions
for the form factor and, using two types of QCD effective
charges (couplings), we have described for the first time
high-energy differential cross sections data, in the interval
0 < jtj ≤ 0.2 GeV2, using an LN inspired model.
We plan to extend our analysis to dσ=dt data with

jtj > 0.2 GeV2 since it is generally believed that at large jtj

values the Odderon can play an important role [44]. In
performing calculations in the dip region, it is necessary to
obtain the real part of the scattering amplitude, ReAðs; tÞ.
Thus, it is essential the development of appropriate
dispersion-relation techniques. Further study of the
behavior of other functional forms of the form factor
becomes interesting at this stage of the work. For example,
in Refs. [45,46], experimental data on the nucleon’s
spacelike and timelike form factors were analyzed in
terms of a two-component model for the electromagnetic
form factor. Since electromagnetic and hadronic form
factors have similar structures (both even having zeros in
the same region in the momentum-transfer space [47]), the
study of hadronic form factors inspired by the electro-
magnetic two-component form factor and other electro-
magnetic functional forms becomes a natural extension of
this work. We also are interested in testing the sensitivity
of our results to coupling constants that goes to zero in the
deep infrared as observed by lattice simulations [48]. In
particular, we are interested in the Curci-Ferrari gluon
propagator and the coupling constant obtained from that
approach [49].
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