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Abstract
Weextend de concept of Compton scattering to the case of plasmons. This concept was originally
applied to electrons in vacuum.Here, we consider electrons in a plasma, and study the scattering
properties of photon-plasmon interactions.We show that a number n of plasmonswith frequency
ω;ωp is scattered by an electron, for an incident photonwith frequency pw w¢  , whereωp is the
plasma frequency.We describe the general case of arbitrary n and assume that Compton scattering of
plasmons is intrinsically a nonlinear process. Our theoreticalmodel is based onVolkov solutions of
theKlein–Gordon equation describing the state of relativistic electrons, when the spin is ignored.We
derive the corresponding scattering probability, as well as the recoil formula associatedwith
arbitraryfinal electron states. This process can be relevant to intense laser-plasma interactions.

1. Introduction

Compton scattering is a basic elementary process of radiation interactions withmatter. First discovered in 1923,
using a theoretical interpretation of x-ray experiments [1], it played an important historical role in the
understanding of the photon concept and in the establishment of themodern quantum theory of light [2–4]. In
its original version, it explains the increase of wavelength upon scattering of light by an electron, as stated by the
famousCompton recoil formula. But, the inverse process, where the photonwavelength decreases, and
emission of high frequency photons results from scattering of low energy ones (such as those associatedwith the
cosmicmicrowave background) on energetic electrons is also possible [5]. This inverse process can be very
important for the understanding of high-energy astrophysics [6, 7]. A further extension of theCompton
scattering concept is the nonlinear scattering regime [8–10], which is relevant to intense laser-plasma
interactions in the very high intensity limit [11–13]. Strong evidence of nonlinear Compton scattering is
expectedwith the newPeta-Watt laser systems [14].

Here, we extend de concept of Compton scattering to the case of plasmons. It is well-known that this concept
was originally applied to photons interactingwith electrons in vacuum.Here, we consider the interaction of
photonswith electrons in a plasma, and study the scattering properties of this interaction.We show that a
number of plasmons is scattered by an electron, for an incident photonwith frequency w¢. For thermal
electrons, this number is of the order of the ratio between the photon frequency and the plasma frequency,
n pw w¢ . For this reason, Compton scattering of photons is intrinsically a nonlinear process.
Our theoreticalmodel is based on the use of Volkov solutions [15]. Originally, these solutionswere derived

for electrons in the presence of an electromagnetic wave in vacuum. In recent years, theVolkov solutionswere
extended to the case of electrons in a plasma [16–18]where, not only the dispersion properties of the
electromagnetic waves have to be taken into account, butmore importantly, electrostatic waves can also be
considered. Herewe use theKlein–Gordon equation describing the behaviour of relativistic electron states,
when the spin is ignored.We derive the corresponding scattering probability and the recoil formula describing
thefinal electron state, associatedwithCompton scatteringwith emission of n� 1 plasmons. This process can
be relevant to intense laser-plasma interactions.
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2. Volkov solutions

We start with theKlein–Gordon equation describing thewavefunctionψ of a spinless electron in the presence of
twowaves, one electromagnetic (representing a laser pulse) and the other electrostatic (representing an electron
plasma oscillation).We use

[( ) ] ( )i k a k 0, 1C C
2 2 y¶ + - =m m

where aμ≡ (U, a), and∂μ≡ (∂t/c,−∇). Here, kC=mc/ÿ is the Comptonwavenumber and the normalized
scalar and vector potentials are

( )U
eV

mc

e

mc
a

A
, . 2

2
= =

whereV andA are the usual electromagnetic potentials, and−e andm the electron charge andmass.We use the
metric signature (+,− ,− ,− ) and adopt the Lorentz gauge. Therefore
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This is the starting point of ourmodel, where spin effects are ignored. In order to account for spin, wewould
need to the replace the aboveKlein–Gordon equation (1) by the quadratic Dirac equation, which takes the form

[( ) ( ¯̄ · ¯̄ · ) ] ( )i k a k i ke b 0, 5C C C
2 2 2a y¶ + + + S - =m m

whereψ is now a 4-spinor, ¯̄a is the usual Diracmatrix, and ¯̄ ( )( ¯̄ ¯̄ )i 2 a aS = - ´ . Here, we notice the
appearance of new terms, containing the normalized electric andmagnetic fields e=−∂ta/c−∇U and
b=∇× a. These new terms can describe spin coupling as well as electron-positron effects. A similar, although
formallymore complicated, calculation could be donewith this equation.Here, we consider the case of isotropic
plasmas andmoderately high laser field configurations, where these affects can usually be ignored and the use of
equation (1) is justified.

We consider twowaves, an electrostatic wavewith frequency andwavevector (ω, k), and an electromagnetic
wave ( )k,w¢ ¢ , such that  pw w w¢ > , whereωp is the electron plasma frequency. Thesewaves are described by
the 4-potential [ ( ) ( )]a U a,t tº ¢m , such thatU(r, t)=U0f (τ) and ( ) ( )t fa r a, 0 t= ¢ ¢ , using the time variables
τ= t− (k · r)/ω and ( · )t k rt w¢ = - ¢ ¢. Here,U0 and a0 are constant amplitudes, and f (τ) and ( )f t¢ ¢ are
arbitrary oscillating functions to be specified. Following the standardVolkov approach [3, 15], we solve
equation (4) using a solution of the form

( ) ( ) ( )t er, , , 6iy t t= F ¢q

where

( · ) ( )
 

p x t p r
1 1

. 7e eq = - = - -m
m

Here, we have used the 4-momentum pμ= (òe/c,pe), where òe andpe are the electron energy andmomentum.
Replacing this in equation (4), and using the effectivemass-gap equation

( ) ( ) c p m c a1 , 8e e
2 2 2 2= + + á ñ

where 〈a2〉 represents the time-average over one cycle 2p w¢, after following a straightforward calculation, we
arrive at an evolution equation for the reducedwavefunction ( ),t tF ¢ , of the form

( ) ( ) ( ) ( )ig ig F2 , 2 , , 0. 9t t
t

t t
t

t t¢
¶F
¶

+ ¢ ¢
¶F
¶ ¢

+ ¢ F =

In this equationwe have introduced new functions, defined by
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The quantity ( )g ,t t¢ ¢ is determined by an expression identical to (10), but whereω and k are replaced by w¢ and
k¢. Here, we also have used: a a a2 2 2d = - á ñ. This allows us tomake implicit use of the concept of electron

effectivemass in an electromagnetic wave, defined as m m a1 2= + á ñ* , which is relevant to classical and
quantumprocesses in laser-plasma interactions [19, 20]. In terms of this effectivemass, equation (8) simply
reads  p c m ce e

2 2 2 2 4= +
*

.
It should be noticed that equation (9) is valid under the assumption that the fast time-scales of the electron

wavefunction are concentrated in the phase function θ, defined by equation (7). This is strictly valid for photon
energies well below the electron rest energy, ÿω=m*c

2. The exact expression of equation (10)would contain
second derivative terms in∂2Φ/∂τ2, 2 2t¶ F ¶ ¢ and 2 t t¶ F ¶ ¶ ¢, which are neglected.We assume, due to this
time-scale argument, that theywill not change themain qualitative features of the present results. For amore
complete analysis of second derivative terms see [17, 21].We now search for split solutions of the form

( ) ( ) ( ) ( )L T, , 12t t t tF ¢ = ¢

where τ and t¢ are the temporal variables associatedwith longitudinal and transverse field oscillations.
Separation of variables then leads to two similar equations, of the form

( ) ( ) ( ) ( ) ( )ig
dL

d
G L ig

dT

d
G T2 , , 2 , . 13t t

t
t t t

t
t¢ = ¢ ¢ = ¢ ¢

with the new functions

( ) ( )G c k U ck U2 , 14C C e
2 2 2t w= +

and

( ) ( · ) ( )


G c k a
c k

p a2 . 15C
C

e
2 2 2

2

t d¢ ¢ = - -

Notice that, by definition, the electrostatic potentialU only depends on τ, and the electromagnetic potential a
only depends on t¢. In these equations, we have used the obvious relation ( ) ( ) ( )F G G,t t t t¢ = + ¢ ¢ . Although
the separation of variables in equations (13) is not complete, their formal solution is straightforward, and can be
stated as
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where L0 andT0 are constants. From the above results, we are then able to obtain the electronwavefunction
solution, which takes the form

( ) ( )( )t e er, , 18i iS
0

,y y= q t t ¢

whereψ0= L0T0, and
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3. Recoil formula

These solutions can be used to describe Compton scattering processes in the nonlinear regime, as shownnext. In
order to understand their physicalmeaning, we introduce a simplifying assumption, by assumingwaveswith
moderate amplitudes, such that we can neglect the nonlinear term inG(τ). This corresponds to
|U|= ωe/ckC∼ 1.We also assume an intense laser field such that the quadratic term in δa2 in ( )G t¢ ¢ can
eventually be dominant. Furthermore, we consider sinusoidal potential oscillations, such that

( ) ( )U U cos0t wt= and ( ) ( )a a cos0t w t¢ = ¢ ¢ . Further assuming that ( )g ,t t¢ and ( )g ,t t¢ ¢ are of orderωe, we
can reduce equation (19) to the following simple expression

( ) ( ) ( ) ( ) ( )S , sin sin sin 2 , 20t t b wt b w t b w t¢ = - ¢ ¢ ¢ -  ¢ ¢
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with the three normalized amplitudes
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This leads to the followingfinal expression for the electronwavefunction in the presence of twowaves
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where the phase function resulting from the existence of the twowaves is determined by

( ) ( ) ( )n n n n n n, , 2 . 23sq wt w t¢  = - + ¢ +  ¢ ¢

From this phase function, we can easily realise that new energy andmomentum states of the electron are
possible, when one of the terms contained in the sumof equation (22) becomes equal to a new electron phase
function

( · ) ( )

 t p r

1
, 24e eq¢ = - ¢ - ¢

where the new values of the electron energy andmomentum  e¢ and p e¢ are determined by the identity
( )n n n, ,sq q q¢ = + ¢  . In explicit terms, this phase identity defines the energy andmomentum conservation

relations
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e e

e e
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Such relations set the conditions for the occurrence of Compton scattering processes involving both plasmons
(with frequencyω) and photons (with frequency w¢).When the initial and final electron energy states are nearly
identical  e e~ ¢ , and the plasma is strongly underdense,  pw w¢ , this corresponds to the decay of one photon
(for n n2 1¢ +  = ) into a large number of plasmons n? 1, such that n pw w¢ . Conversely, we can eventually
convert n? 1 plasmons into a single high frequency photon. These are obviously the direct and reverse
nonlinear Compton scattering effects, which are represented schematically in figure 1.Higher order processes,
involvingmore than one photon, are also possible.

From this analysis, we can also retrieve the recoil effect suffered by an electron upon scattering. For this
purpose, we assume an electron nearly at rest, with initialmomentum, pe=m*c, such that it can be neglect. In

this case, we use òe;m*c
2 in thefirst equation (25), with the effectivemassm* =meγ0 and ( )a10 0

2 1 2g = + . In
the expression for the relativistic factor γ0, we have neglected the contributions from the electrostatic wave,
which can easily be includedwhen justified. Using    ne e w w¢ = + ¢ - , we obtain

[ ( )] ( )p c m c n m c . 26
e a a

2 2 2 2 2 4w w¢ = + ¢ - -

This allows us to calculate the electron recoilmomentumusing the second equation (25),  np k ke¢ = - ¢.
We get
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e
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wherej is the angle between themomenta, k and k¢, of the emitted and absorbed quanta of radiation.Wenow
use the photon and plasmon dispersion relations for a relativistic plasma (see, for instance, [22]), assuming that

v c 1the
2 2 , where v T m3the e= * for a thermal energyTe. Equating these two expressions, we obtain

( ) ( )

n
c

v n

n c

v

k
c

n

c

1

2
1

2
1

1 cos , 28

the

p

the

C

2

2

2 2 2

2

0

⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎛
⎝

⎞
⎠

w
w

w

w

g
w w

a w j

¢
- + +

+ -
¢

= -

with the auxiliary function

( ) ( )( ) ( )c

v

1
. 29

the
p p

2 2
0

2 2
0a w

ww
w w g w w g=

¢
- ¢ -

This expression gives the electron recoil under Compton plasmon scattering. It corresponds to the absorption of
one photonwith frequency w¢, and emission of n plasmonswith frequencyω. Amore familiar expression can be
obtained if we neglect the plasma dispersion effects associatedwith the two terms under square brackets in (28)
and take the limit ofα(ω)→ 1.We thenwould get

( ) ( )c

n

c

k a

1 1 cos

1
. 30

C 0
2w w
j

-
¢
=

-

+

4

Phys. Scr. 98 (2023) 065603 J TMendonça and FHaas



This particular case exactlymimics thewell-known formula for nonlinear Compton scattering of photons in
vacuum.An illustration of this recoil formula is shown infigure 2. But, in general, equation (29) should be used.

4. Scattering probability

Let us nowdiscuss the probability for these Compton scattering processes to occur, with energy conversion
between electrostatic and electromagnetic waves. This is dictated by the amplitude ∣ ∣Pn n n n n n, , , ,

2yº¢  ¢  ,
satisfying the conservation relations (25), and defined as

Figure 1. Schematic representation of nonlinear Compton scattering processes, with (i) emission or (ii) absorption of n plasmons,
upon absorption or emission of a single photon.

Figure 2. Frequency of n? 1 scattered plasmons, of a photonwith frequency ckCw¢ = , for a0 = 3 (black curve) and a0 = 10 (red
curve), after nonlinear Compton scattering.
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∣ ( )∣ ∣ ( )∣ ∣ ( )∣ ( )P J J J . 31n n n n n n, ,
2 2 2b b b= ¢ ¢  ¢ 

This probability allows us to define the scattering cross-sectionσ, as d d P Fn n n, , 0s W = ¢  , where dΩ is the
element of solid angle, F0= I0/ÿω0 is the incident photon flux, and I a0 0

2µ is the radiation intensity. It is useful
to derive amore explicit expression for the probability, validwhen the plasmawave amplitude is very small,
U0= 1. Using the asymptotic expansion of the Bessel functions for small arguments, assuming that a 10

2 and
n 0¢ = , n″= 1, we can then approximately write
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where a0
2b µ , as defined in equation (21). In this expression, we should use the value ofU0 associatedwith a

state of n plasmons at the frequencyω; ωp. Using the expression for the energy of an electron plasmawavewith
this amplitude, and equating it toÿnω, we get
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This completely determines the probability for theCompton scattering of plasmons, in an underdense plasma,
when no plasmons are present except those resulting directly from the elementary Compton process. This
transition probability is illustrated infigure 3, for two different values of the number of scattered plasmons n.We
notice that the probability strongly decreases and eventually becomes negligible for a large number of plasmons
n? 1, but it takes significant values when this number is small. The observed decrease of the probability when
the laser intensity increases is somewhat surprising, but it results from the structure of theVolkov solutions, and
is an ultimately consequence of the increase of the effective electronmass. Thefirstmaximum, observed in the
figure near a0= 1.4, is shifted towards larger valueswith the photon frequency w¢ decreases.

On the other hand, similarly toCompton scattering of photons in vacuum, the difference between absorbed
and emitted energy quanta of radiation, ( ) nw w¢ - is limited by the kinetic energy of the electrons. For a
thermal plasma, this difference is typically of the order to the electron thermal energy,Te. However, if scattering
is due to supra-thermal electrons (created for instance by the laser pulse itself), thenwe can eventually get
 nw w¢ , or the inverse process of nw w¢, with a small number of n= 1 or 2. This provides a broad range of

physical scenarios where (direct and inverse)Compton scattering of plasmons can eventually occurwith non-
negligible probability.

Finally, replacing equation (33) in (32), we can easily demonstrate that the scattering probability is
proportional to the n-th power of the electron plasma density n0, and of the classical electron radius

r mc2e a= , whereα is the fine structure constant, according to ( ) ∣ ( )∣P n r Jn e
n

,1 0 1
2bµ  . Obviously, this

applies to the photon-plasmon scattering described here. A similar formulationwould be possible for plasmon-

plasmon scattering, andwould then lead to a probability P n re1,1 0
2 3 2µ . For each particle in the plasma, this

probability would be of order re
2, in analogywith the usual Compton scattering of photons in vacuum.

Figure 3.Transition probability a Pn0
2

,1 for plasmon scattering, when the number of plasmons is equal to n = 1 (red curve) and n = 2
(black curve,multiplied by 102), as a function of the laserfield amplitude a0.We have assumedU0 = (ω/ckC) = 1.
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5. Conclusions

In conclusion, we have extended the concept of Compton scattering to the case of plasmons. Our description
was based on theVolkov solutions for electrons in thefield of twowaves, an electromagnetic and an electrostatic
wave in plasmas.Wewere able to derive the electron recoil formula for this newCompton process, as well as the
expressions for the probability to produce n plasmons upon scattering. It should be noticed that, when the
photon frequency is largewith respect to the plasma frequency, and the number n increases, the scattering
probability significantly drops. Conversely, if a large amplitude electron plasmawave already exists in the
medium, the inverse plasmonCompton scatteringwill eventually lead to the emission of high frequency
photons. This could be significant for experiments on intense laser-plasma interactions.

Spin is not present in the famousKlein-Nishina formula for the original Compton scattering of photons, and
is also ignored in the this work. It can nevertheless become important in the presence of intense laser beams. For
spin-dependent Compton scattering see [23] and references therein.

The simple quantummodel considered here can eventually be extended to amore complete quantum
kinetic description of electron plasmawaves [24]. In a recent work, this kinetic approach revealed the existence
ofmulti-plasmon resonances associatedwith electron Landau damping [25]. In contrast here, themulti-
plasmon resonances also involve the presence of electromagnetic waves, which are absent there. In our case,
electrons interact resonantly with photons and plasmons, and not just with plasmons.Moreover, ourmodel
concerns single-particle processes and, for that reason, is completely distinct from stimulated scattering
processes. A quantumkinetic theory could in principle be able to include both single-particle and stimulated
scattering processes in a coherent description, to be considered in the future.

In our view, the proposed concept of Compton scattering of plasmons provides a natural extension of the
celebratedCompton photon scattering, and could contribute to a better understanding of the radiation
processes in plasma physics.
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