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Density anomaly in water-alcohol mixtures: Minimum model for structure makers and breakers
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We modeled the change in the temperature of maximum density (TMD) of a waterlike solvent when small
amounts of solute are added to the mixture. The solvent is modeled as a two length scales potential, which is
known to exhibit waterlike characteristic anomalies, while the solute is chosen to have an attractive interaction
with the solvent which is tuned from small to large attractive potential. We show that if the solute exhibits high
attraction with the solvent it behaves as a structure maker and the TMD increases with the addition of solute,
while if the solute shows a low attraction with the solvent the TMD decreases, with the solute behaving as a
structure breaker.
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I. INTRODUCTION

There are a variety of thermodynamic, dynamic, and struc-
tural properties in which water behaves differently when
compared with other materials. For certain pressure and
temperature ranges, the density of water increases with
temperature, exhibiting a temperature of maximum density
(TMD); the isothermal compressibility [1] and the heat ca-
pacity [2] increase as the temperature is decreased and the
diffusion coefficient of supercooled water increases with pres-
sure at constant temperature [3–5]. Even though the molecule
was widely studied, some thermodynamic, dynamic, and
structural anomalous behavior of water are still not completely
understood.

In the 1970s, core-softened (CS) potentials were intro-
duced [6]. They exhibit a hard core and an attenuated region,
like a ramp or a step, and display a region of pressure and
temperature with an anomalous behavior in density [7], diffu-
sion, and isothermal compressibility [8,9]. The anomalies in
these simple models originate from the competition between
two length scales [8,10,11] which resemble the water-water
interactions. The shoulder, which is the shorter scale, repre-
sents the nonbonding hydrogen interactions and the longer
scale, the well, represents the bonding interactions between
different water molecules. The first is more relevant at high
pressures and the latter at lower temperatures. Although atom-
istic models to describe water are widely available [12–17],
CS potentials are simpler and they can be useful in the under-
standing of the fundamental mechanism behind water or of
waterlike behavior.

Water can also exhibit an unusual behavior when mixed
with other substances. The excess volume of water with
alcohols [18–20], with alkanolamines [21,22], or with hy-
drophilic ionic liquids is negative while the excess volume
of water with hydrophobic ionic liquids is positive [21,22].
The excess enthalpy of water with methanol [23,24] and

*marcia.barbosa@ufrgs.br

ethanol [24–26] for most temperatures is negative, but
it is positive for larger alcohols [27]. The excess spe-
cific heat is positive for water with ethanol [26] and tert-
butanol [28,29].

The addition of small amounts of solute also impacts the
water TMD. Materials which increase the temperature of max-
imum density of water when mixed with water such as iso-
propanol, tert-butanol, sec-butanol, 2-butanol [30], and ethyl
and n-propyl alcohols [31] are called “structure-makers”. So-
lutes which decrease the TMD are called “structure-breakers”,
such as ethylene glycol, glycerin, and phenol [30]. The latter
tend to weaken the hydrogen bond structure and less temper-
ature is necessary to reach the minimum volume, while the
former strengthen the network.

In order to understand the mechanism behind the behav-
ior of structure makers and breakers a number of effective
models were developed. For instance, a lattice model shows
that the addition of a hard sphere solute in a waterlike
solvent, disrupts the water hydrogen bonds, decreasing the
TMD [32]. If the solute-solvent becomes attractive, be-
yond a threshold attraction, the solute becomes structure
maker [33].

Here we propose that the minimum ingredient for a struc-
ture maker is a solute-solvent threshold attraction. We test
this hypothesis by computing the TMD using both a one-
dimensional exact solution and three-dimensional Molecular
Dynamics simulations which employ a simple model: a mix-
ture of a two length scale solvent and a solute which exhibits a
short range attractive interaction with the solvent. The solute
itself is also a simple monomer, in contrast with more sophis-
ticated alcohol models [34,35]. The two dimensional system,
even though theoretically interesting, will not be analyzed
here since we are looking for an explanation of a phenomena
that appears in three dimensions.

The remainder of the paper is structured as follows. In
Sec. II, the one dimensional model and the analytic solution
are presented. In Sec. III, the three dimensional system is
presented and analyzed by Molecular Dynamics simulations.
Our concluding remarks are in Sec. IV.
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II. ONE DIMENSIONAL SYSTEM

A. Model and analytic method

The system is composed of a solvent, called A, and a solute
denoted by B. NA and NB represent the number of particles of
each type and we denote N as the total number of particles.
The quantities NAA, NAB and NBB represent the number of first-
neighbor interactions of types AA, AB and BB respectively.
The interaction potential between a particle of type i and a
particle of type j is represented by Vi j (r). For simplicity, we
assume A and B have the same mass m.

In one dimension, the partition function in the Isothermal-
Isobaric Ensemble for this system is [36] (for details see
Appendix A):

Y (β, P, N ) = 1

�N

NA!NB!ϕNAA
AA ϕ

NAB
AB ϕ

NBB
BB

NAA!NBB!
[(NAB

2

)
!
]2 , (1)

with

� ≡
(

βh2

2πm

)1/2

,

ϕi j ≡
∫ ∞

0
e−β[Vi j (r)+Pr]dr,

where β = 1/(kBT ) and h is the Planck constant.
The Gibbs free energy for this mixture is (for details see

Appendix B):

g = 1

β
ln � − 1

β
[(1 − x) ln(1 − x) + x ln(x)

− xAA ln(xAA) − xBB ln(xBB)

− xAB ln(xAB/2) + xAA ln(ϕAA)

+ xBB ln(ϕBB) + xAB ln(ϕAB)], (2)

where

xA ≡ NA

N
,

xB ≡ NB

N
,

x ≡ xB = 1 − xA,

xAA = (xA − xB) − 2xAγ +
√

(xA − xB)2 + 4xAxBγ

2(1 − γ )
,

xBB = −(xA − xB) − 2xBγ +
√

(xA − xB)2 + 4xAxBγ

2(1 − γ )
,

xAB = 2(xA − xAA),

γ ≡ ϕAAϕBB

ϕ2
AB

. (3)

The xi j quantities represent a neighbor fraction: a small xAA

value means that few A particles have an A neighbor. Their
derivation is given in Appendix B.

B. Results

In order to test our assumption that a solute-solvent at-
traction leads to an increase in the TMD, we introduce the
following pair potentials:

VAA(r) =

⎧⎪⎪⎨
⎪⎪⎩

0, if r > dAA,

a′
AA, if cAA < r < dAA,

−aAA, if bAA < r < cAA,

∞, if r < bAA;

(4)

ViB(r) =
⎧⎨
⎩

0, if r > ciB,

−aiB, if biB < r < ciB,

∞, if r < biB.

(5)

The chosen solvent-solvent (AA) interaction is a CS potential
followed by an attractive well. This type of two length-scales
potential guarantees the presence of the temperature of maxi-
mum density for the pure solvent system [6,37–42].

The solvent-solute (AB) interaction is a van der Waals
attraction well. This potential captures the potential hydrogen
bond in the solution of water and alcohol. The size of the
solute is larger than the solvent as in the case of the alcohols in
water. Finally, the solute-solute (BB) interaction is simply a re-
pulsive core. Here we are not including the potential hydrogen
bond between two alcohols since we assume it is not related
to the mechanism for the increase of the TMD. We performed
the same simulations with a weakly attractive solute-solute
interaction and verified no difference in the TMD change from
the results presented here.

We consider the following values for the reduced parame-
ters, expressed in terms of the energy a′

AA and length bAA:

a∗
AA = aAA

a′
AA

= 0.5, c∗
AA = cAA

bAA
= 1.7, d∗

AA = dAA

bAA
= 1.8;

b∗
AB = bAB

bAA
= 2.3, c∗

AB = cAB

bAA
= 2.4;

a∗
BB = aBB

a′
AA

= 0, b∗
BB = c∗

BB = cBB

bAA
= 2.4.

These parameters were found through numerical testing to
exhibit a TMD for the pure system [43] and for the mixture.
The parameter a∗

AB = aAB
a′

AA
is free, to identify different solute

types: structure maker or structure breaker. The parameters
for the solute-solute interaction reflects the purely repulsive
potential with a∗

BB = 0 and c∗
BB = b∗

BB. Figure 1 illustrates the
interaction potentials AA and iB, where i ∈ {A, B}, in reduced
units.

From Eq. (2) we obtain the free energy and the density pro-
file for different pressures, temperatures, and solute fractions.
The results were also calculated in terms of reduced units of
energy a′

AA and length bAA:

P∗ = P
bAA

a′
AA

,

T ∗ = kBT

a′
AA

,

ρ∗ = ρ bAA. (6)

Figure 2 shows the density versus temperature diagram at
fixed pressure of the one-dimensional system with particles
interacting through the potential shown in Fig. 1. For the pure
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FIG. 1. (a) solvent-solvent, (b) solvent-solute/solute-solute in-
teraction reduced potentials as a function of reduced distance.

system x = 0, the density at low temperatures increases with
the increase of the temperature. This behavior resembles the
observed density of water [44].

0.15 0.2 0.25 0.3 0.35 0.4
0.5

0.55
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0.65
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ρ
∗

x = 0
a∗

AB = 0.7
a∗

AB = 0.9

FIG. 2. Density as a function of temperature at P∗ = 2 for: pure
solvent (black line), a∗

AB = 0.7 (red line) and a∗
AB = 0.9 (blue line) at

x = 0.30. Vertical arrows show how the increase in density changes
the TMD.

In the case of pure water, the TMD is understood as
follows. At low temperatures, the water molecules form a
hydrogen bond network with few nonbonded molecules, cre-
ating an “expanded structure”. As the temperature is increased
at constant pressure, some hydrogen bonds are broken and
the number of nonbonded molecules increases. To keep the
pressure fixed these nonbonded molecules are closer than the
bonded molecules, forming a “compacted structure”, increas-
ing the density. At a certain threshold temperature, the number
of nonbonded molecules is large enough to allow for some of
them to be far apart, decreasing the density with the increase
of the temperature. This threshold defines the TMD.

The idea of liquid water being a mixture of two states,
expanded and compacted structures, is not new [45]. But the
link between them and all the anomalous behavior of water
which led to the hypothesis of two liquid phases for water
[46] is still being explored, both in phenomenological [47]
and more general models [48–51].

Specifically in our one-dimensional pure solvent system,
as in other core softened potentials [8,38,52], the density
anomaly emerges not from bonded and nonbonded molecules
as in water but from the competition between particles ar-
ranging themselves in two length scales: the attractive well
cAA < r < dAA and the repulsive shoulderlike bAA < r < cAA,
as shown in Fig. 1(a). At low temperatures the majority of A
particles are located at the attractive well length scale, forming
the “expanded structure”. As the temperature is increased at
fixed pressure, some particles are at shoulder length scale,
forming the “compacted structure” [38,43]. For temperatures
above a certain threshold, particles can be at distances be-
yond the attractive well length scale r > dAA, decreasing the
density. This two length scales mechanism leads to the tem-
perature of maximum density as illustrated by the x = 0 case
in Fig. 2 [38].

There is a TMD for a range of pressure values. As pressure
is increased, the expanded structures exhibit a lower percent-
age of particles at the attractive length scale that move the
threshold temperature to lower values. Therefore, the increase
of pressure reduces the TMD. In parallel, as the attractive
potential becomes deeper, the percentage of particles at the
attractive scale increases and the TMD increases [53].

A noninteracting or weakly interacting solute disturbs the
expanded structure of the solvent, decreasing the number of
solvent particles at the attractive length scale. Consequently,
the temperature of maximum density is lower when compared
with the pure solvent system as shown by the a∗

AB = 0.7 case
in Fig. 2(a). Similar behavior was observed for a pure hard
sphere solute in a lattice model [32].

In the case of systems with strong attractive solute-solvent
interaction, the solute molecules, instead of disrupting the hy-
drogen bonds, tend to occupy locations between two solvent
molecules, the interstitial vacancies [54]. Hence, the TMD
increases when compared with the pure system as illustrated
by the a∗

AB = 0.9 case in Fig. 2.
In order to determine the behavior of the TMD for dif-

ferent solute-solvent interaction potentials we calculated the
�T ∗

MD(x), namely

�T ∗
MD(x) = T ∗

MD(x) − T ∗
MD(0), (7)
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FIG. 3. Change in the temperature of maximum density �T ∗
MD as

a function of solute concentration at P∗ = 2 for a∗
AB = 0.9 (orange),

0.8 (blue), 0.7 (red).

which is the difference between the temperature of maximum
density of the system with a certain concentration x of solute
and the TMD of the pure A system. A positive �T ∗

MD(x)
implies that the solute is a structure maker, while a negative
�T ∗

MD(x) means that the solute is a structure breaker.
Figure 3 shows the behavior of �T ∗

MD as a function of
solute concentration x for a∗

AB = 0.7, 0.8, and 0.9 at a pressure
of P∗ = 2. The graph shows that the enhancement of the
solute-solvent attraction leads to an increase of the �T ∗

MD(x)
for a∗

AB > 0.756. This increase in the �T ∗
MD(x) is consis-

tent with observations for lattice models in the case of large
solute-solvent attraction [33] and with experimental results for
structure-maker solutes where �T ∗

MD(x) > 0 [30].
In order to understand the TMD increase for large solute-

solvent attraction we looked at how the solvent and solute are
organized. If the solvent A and the solute B particles do not
correlate but exhibit a random distribution, the probabilities
of having two solvent-solvent AA or solvent-solute AB as first
neighbors are given respectively by

xrandom
AA = N2

A

N2
= (1 − x)2,

xrandom
AB = 2

NANB

N2
= 2x(1 − x). (8)

For the nonrandom system these probabilities are given by
the interaction fraction xAA and xAB: if we randomly pick a
particle of type i, the probability of a particle j being next
to it is Ni j/N ≡ xi j . Therefore, the impact of the fluctuation
effects can be measured by the ratio between the nonrandom
values xAA and xAB, with the random approximations xrandom

AA
and xrandom

AB determined by Eq. (8), leading to

xcorr
AA = xAA

xrandom
AA

= xAA

(1 − x)2
,

xcorr
AB = xAB

xrandom
AB

= xAB

2x(1 − x)
. (9)

For very high temperatures we would expect that xcorr
AA = 1,

xcorr
AB = 1, and xcorr

BB = 1. Figure 4(a) shows xcorr
AB versus tem-
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FIG. 4. (a) Interaction correlations for different AB well depths
as a function of temperature. The plots were made with a concen-
tration x = 0.30 and P∗ = 2 for a∗

AB = 0.9 (orange), 0.8 (blue), 0.7
(red).

perature for the a∗
AB = 0.7, 0.8, and 0.9 cases at fixed pressure

P∗ = 2.0 and solvent concentration x = 0.3. At low temper-
atures and high solute-solvent attraction a∗

AB = 0.8, 0.9, xcorr
AB

shows that the solute is bound to the solvent while for a∗
AB =

0.7 fewer solute molecules are bound to the solvent.
Figure 4(b) indicates that for high solute-solvent attraction

few solute molecules form pairs, while for low attraction a
larger number of them form pairs. Therefore, the unpaired
solute molecules are caged by the solvent. This caged so-
lute forms a structure which needs more temperature to be
disrupted, which increases the TMD. This mechanism of trap-
ping the solute in a solvent shell was observed in atomistic
models for water, where it was identified the solute is confined
in clathrates [55].

Next, we compute how the behavior of �T ∗
MD(x) is im-

pacted by the pressure for both structure breaker and structure
maker solutes. In the pure system and in the presence of the
solute, the TMD decreases with increasing pressure. However,
Fig. 5(a) shows increasing pressure increases �T ∗

MD(x) for
both structure breakers and structure makers.
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FIG. 5. Change in the temperature of maximum density �T ∗
MD

as a function of solute concentration at P∗ = 1.8 (solid line), P∗ =
1.9 (dashed line), and P∗ = 2.0 (dotted line) for (a) a∗

AB = 0.7 and
(b) a∗

AB = 0.8.

However, only for structure makers �T ∗
MD(x) becomes

positive. This indicates that pressure helps to disrupt the
“expanded structure” in both the pure system and in the
presence of solute. For a∗

AB = 0.8, 0.9 the solute is caged
by the solvent and disrupting this structure requires larger
temperatures, increasing the TMD. This behavior is consistent
with what was observed in recent experiments and atomistic
simulations [55]: a lower pressure shifts the �T ∗

MD(x) curve
downwards.

III. THREE DIMENSIONAL SYSTEM

A. Model and methods

We performed MD simulations with LAMMPS [56] in the
NPT ensemble with the Nosé-Hoover thermostat and barostat.
The simulated system consists of N = 1000 particles, with
NB = xN being the number of solute particles. The two types
of particles were placed in a three-dimensional lattice with
periodic boundary conditions and 106 time steps were run
for the system to reach equilibrium. We then used another

2 × 106 steps for averaging the thermodynamic quantities,
with a δt∗ = 0.005 time step.

We created a continuous potential which resembles the
length scales of the one-dimensional case as described below.
The physical quantities are calculated by molecular dynamics
simulation. All results are displayed in reduced units, where

ε∗
i j = εi j

εAA
,

V ∗
i j = Vi j

εAA
,

P∗ = P
σ 3

AA

εAA
,

T ∗ = kBT

εAA
,

ρ∗ = ρ σ 3
AA.

In the three-dimensional system the solvent-solvent (AA)
interaction is given by a two length scale potential, namely:

VAA(r) = 4εAA

[(σAA

r

)12
−

(σAA

r

)6
]

+
1∑

l=0

ulεAA exp

[
− 1

c2
l

(
r − rl

σAA

)2
]
,

where we used u0 = 5, u1 = −0.75, c0 = 1, c1 = 0.5, r∗
0 =

0.7, and r∗
1 = 2.5. This potential for the solvent interaction

presents two length scales: one attractive at r∗ ≈ 2.5 and one
repulsive shoulderlike at r∗ ≈ 1.2. The pure system exhibits a
TMD [10,53].

The solute-solvent (AB) interaction is a Lennard-Jones well
with σ ∗

AB = 2.5, with ε∗
AB kept a free parameter. Finally, the

solute-solute (BB) interaction is a purely repulsive Weeks-
Chandler-Andersen [57] potential with ε∗

BB = 1.2 and σ ∗
BB =

2.5. These potentials, in units of εAA, versus distance in units
of σAA, are represented in Fig. 6(a). Here we used a cutoff
radius r∗

c = 5 and the figure is plotted for ε∗
AB = 0.8. Note that

we do not adopt the Lorentz-Berthelot approximation, which
seems to be relevant to the increase of �T ∗

MD(x).

B. Results

The one-dimensional case suggests that �T ∗
MD(x) > 0

occurs if the solute-solvent interaction becomes attractive
enough. Now, we check if this is the case in three dimensions
by analyzing the change in TMD as a function of solute con-
centration and interaction strength in the three-dimensional
model. Three different AB attractions, ε∗

AB = 0.8, 1.1, and
1.3, from less to more attractive, respectively, are shown in
Fig. 6(b).

Figure 7(a) illustrates the density versus temperature at
P∗ = 0.13 for ε∗

AB = 0.8 and 1.1 with x = 0.02. The pure case
(x = 0) is also shown. The temperature of maximum density
of the pure solvent system is larger than the TMD for the
ε∗

AB = 0.8 case and lower than the TMD for the more attractive
ε∗

AB = 1.1 system.
Figure 7(b) shows the density versus temperature for ε∗

AB =
1.1 at different solute concentrations, x = 0.02 and x = 0.05,
compared with the pure solvent system x = 0. The TMD of

034601-5



MARCO A. HABITZREUTER AND MARCIA C. BARBOSA PHYSICAL REVIEW E 107, 034601 (2023)

1 2 3 4

0

2

4

r∗

V
∗

(a)

AA
AB
BB

2.5 3 3.5 4 4.5

0

2

4

r∗

V
∗ A
B

(b)

ε∗AB = 0.8
ε∗AB = 1.1
ε∗AB = 1.3

FIG. 6. Interaction potential versus distance for the (a) solvent-
solvent (black line), solute-solvent (red line), and solute-solute
(green line) interactions; (b) solvent-solute for ε∗

AB = 0.8 (red line),
ε∗

AB = 1.1 (blue line), and ε∗
AB = 1.3 (yellow line).

the x = 0.02 system is larger than the TMD of the pure sys-
tem, while the TMD of the pure solvent system is higher than
the TMD of the x = 0.05 case. That is, �T ∗

MD(x = 0.05) <

�T ∗
MD(x = 0) < �T ∗

MD(x = 0.02). Analyzing different con-
centrations we observe that if the solvent-solute attraction is
strong enough, ε∗

AB = 1.1 for instance, the addition of a small
amount of the solute leads to an increasing TMD. However,
the addition of a larger quantity of solute, such as x = 0.05,
makes the TMD decrease. For a less attractive solute-solvent
interaction, ε∗

AB = 0.8 for instance, the addition of the solute
only decreases the TMD when compared with the pure solvent
system.

In order to understand how the TMD changes with so-
lute fraction, we plot �T ∗

MD(x) in Fig. 8. We observe that
for more attractive systems, ε∗

AB = 1.1 and 1.3, �T ∗
MD(x) in-

creases with the increase of x at low solute concentrations,
while for a lower attraction between solute and solvent, ε∗

AB =
0.8, �T ∗

MD(x) is negative for all values of x. This result is
consistent with observations for alcohols [30]. In particular,
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ρ
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(b)

x = 0

x = 0.02

x = 0.05

FIG. 7. Density as a function of temperature at P∗ = 0.13 for
(a) pure solvent (black circles), ε∗

AB = 1.1 (blue squares), and ε∗
AB =

0.8 (red triangles), both at x = 0.02; (b) pure solvent (black circles),
ε∗

AB = 1.1 with x = 0.02 (blue squares), and ε∗
AB = 1.1 with x = 0.05

(red triangles). Vertical arrows indicate the TMD. Markers indicate
some of the simulation points. Curves are third degree polynomial
fits.

it indicates that the more attractive solute generates a larger
�T ∗

MD(x) for the same fraction of solute.
Figure 8 suggests that a major factor for structure makers

is the attractive interaction with the solute. In order to under-
stand if the same mechanism of the solute being caged by
solvent, as observed in the one-dimensional case, also appears
in this model, we computed the radial distribution function.

Figure 9(a) shows the solute-solvent gAB(rr∗) for different
levels of solute-solvent attraction ε∗

AB = 0.8, 1.1, and 1.3. The
distribution of particles indicates that, as the solute-solvent in-
teraction becomes more attractive, the first coordination shell
between solute and solvent becomes more populated. In addi-
tion, the graph also shows that the second coordination shell of
solute-solvent molecules is distant from the first coordination
shell by the attractive length scale r∗ ≈ 2.5. This suggests
that each solute is surrounded by the solvent’s “expanded
structure.”
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AB: ε∗
AB = 0.8 (red line with circles), ε∗

AB = 1.1 (blue line with
squares), and ε∗

AB = 1.3 (yellow line with diamonds).

Figure 9(b) shows the solute-solute gBB(r∗) for different
levels of solute-solvent attraction, ε∗

AB = 0.8, 1.1, and 1.3. The
distribution indicates that, as the interaction between solute
and solvent becomes more attractive, less solute pairs are
observed. This result is consistent with the observations of
our one-dimensional model and with the idea that the solute
molecules at low concentrations is caged by bounded water. In
this same figure, the inset shows gAA(r∗) for ε∗

AB = 1.3. The
solvent-solvent Radial Distribution Function (RDF) shows a
two-peak structure at r∗ ≈ 1.3 and r∗ ≈ 2.5, which is a sig-
nature of water’s anomalous behaviors [8,11]. A decrease in
ε∗

AB lowers the first peak and increases the second. Finally, we
analyzed the impact of pressure on the enhancement of the
TMD with the addition of solute. Figure 10(a) illustrates how
the �T ∗

MD(x) versus x is impacted by pressure for ε∗
AB = 0.8.

In all simulated pressures �T ∗
MD(x) < 0, which is consistent

with the single pressure system analyzed in Fig. 8.
Figure 10(b) shows the behavior of �T ∗

MD(x) versus x for
different pressures for ε∗

AB = 1.1. Unlike the one-dimensional
case shown in Fig. 5(b), the �T ∗

MD(x) decreases with the
increase of pressure. In this model, more pressure lowers
the �T ∗

MD(x) curve for any solute-solvent attraction, since
the same effect happens in Fig. 10(a). We also analyzed the
pressure values of P∗ = 0.10, P∗ = 0.25, and P∗ = 0.28, but
there was no TMD for the pure system in these cases, hence
they weren’t included in Fig. 10.

In real water-alcohol mixture the increase of pressure in-
creases �T ∗

MD(x), as shown in recent experiments [55]. Our
model in three dimensions is unable to reproduce this behav-
ior, possibly due to the smoothness of the shoulderlike length
scale.

IV. CONCLUSIONS

In this work try to understand how the mixture of alcohol
in water increases the temperature of maximum density while
the mixture of water with other types of solvents decreases
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FIG. 9. Radial distribution function for ε∗
AB = 0.8 (red line),

ε∗
AB = 1.1 (blue line) and ε∗

AB = 1.3 (yellow line), at P∗ = 0.13,
T ∗ = 0.40 and x = 0.03 for (a) solvent-solute, gAB, and (b) solute-
solute, gBB. The inset in (a) zooms in the r∗ ≈ 2.7 region. The
inset in (b) is the solvent-solvent RDF at P∗ = 0.13, T ∗ = 0.40 and
x = 0.03.

the TMD. Our assumption is that the mechanism behind the
higher TMD is the solute-solvent attraction. In order to test
our hypothesis we analyzed a mixture of two types of parti-
cles. Representing the solvent, we selected a two length scale
potential which, in the absence of solute, presents a TMD line
and other properties of waterlike systems. The solute-solvent
interaction was modeled by an attractive potential. By making
this interaction more attractive we aimed to represent with the
same simple model for both structure breaker and structure
maker systems.

Our results both in one and three dimensions support
our assumption that a more attractive solute-solvent inter-
action leads to �T ∗

MD(x) > 0 while a less attractive shows
�T ∗

MD(x) < 0. Comparing the two cases we observe that for
large solute-solvent attraction the solute appears as isolated
particles surrounded by solvent particles, forming a cage
which is similar to the clathrates observed in water. This
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FIG. 10. Change in the temperature of maximum density,
�T ∗

MD(x), as a function of solute concentration for (a) ε∗
AB = 0.8 and

(b) ε∗
AB = 1.1 for reduced pressures 0.13, 0.15, 0.18, 0.20 and 0.22.

result is consistent with atomistic simulations and experiments
[55]. In three dimensions, the behavior of �T ∗

MD(x) with
pressure is not consistent with the one-dimensional model or
with the experimental results, possibly due to the softness of
our selected three-dimensional potential, which suggest future
investigations.
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APPENDIX A: PARTITION FUNCTION

In order to account for the number of different configu-
rations for two types of particles, A and B, we begin with
a discrete model following the ideas of Ref. [36]. Consider
a line of sites separated by a distance η. Each site could

be occupied by a particle or remain empty. Let NA and NB

represent the number of particles of each type. We denote N
the total number of particles and L the total size of the system.
Consider two neighbor particles of type i and j. The distance
between them can be expressed with an integer k as kη. We
call V k

i j = Vi j (kη) the potential of one over the other. Let νk
i j

be number of first neighbor interactions between particles of
types i and j at a distance kη.

The total number of interactions Ni j between particles of
type i and particles j can be written summing over all dis-
tances kη as

Ni j =
∑

k

νk
i j . (A1)

Since N − 1 ≈ N ,∑
k

(
νk

AA + νk
AB + νk

BB

) = NAA + NAB + NBB ≈ N. (A2)

The length L can also be expressed in terms of νk
i j :∑

k

(
νk

AA + νk
AB + νk

BB

)
kη = L. (A3)

Finally, the number of particles and the number of interactions
is related by ∑

k

(
2νk

ii + νk
i j

) = 2Ni. (A4)

The configurational term (that is, without the momentum)
of the canonical partition function is

Q =
∑
{νk

i j}

NA!NB!∏
k νk

AA!νk
BB!

[( νk
AB
2

)
!
]2

× exp

(
−β

∑
k

νk
AAV k

AA + νk
ABV k

AB + νk
BBV k

BB

)
, (A5)

where the term outside the exponential accounts for the dif-
ferent configurations with the same energy.

We multiply Q by a factor e−βPL and sum over all volumes
to find the partition function in the isothermal-isobaric ensem-
ble. We use Eq. (A3) to replace L and, as typical in statistical
mechanics, approximate the sum by its largest term. To find
the equilibrium values of νk

i j , ln(Y ∗) must be extremized. To
satisfy the constraints defined by Eq. (A4), we introduce the
Lagrange multipliers λ1 and λ2. We use the Stirling approxi-
mation, remove the constants and group in terms of each νk

i j .
Hence, it can be seen that this extremization is satisfied by

νk
AA = exp

[ − β
(
V k

AA + Pkη
) + 2λ1

]
, (A6)

νk
BB = exp

[ − β
(
V k

BB + Pkη
) + 2λ2

]
, (A7)

νk
AB = exp

[ − β
(
V k

AB + Pkη
) + λ1 + λ2

]
. (A8)

Hence we find that

ln Y ∗ = N + ln(NA!) + ln(NB!) − 2λ1NAA

− 2λ2NBB − (λ1 + λ2)NAB.
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We can write NAA as NAA = e2λ1ϕAA, where we define

ϕi j ≡
∑

k

e−β(V k
i j+Pkη). (A9)

Using the analogous relations for NAB and NBB we conclude
that

2λ1 = ln

(
NAA

ϕAA

)
,

2λ2 = ln

(
NBB

ϕBB

)
,

λ1 + λ2 = ln

(
NAB

ϕAB

)
.

Replacing the λ’s in ln Y ∗ with these expressions and expo-
nentiating both sides of the equation leads to the expression
given in Sec. II, with the � term coming from the momentum
integration. In the limit of η → 0, we must replace the sum in
ϕi j by an integral:

ϕi j =
∫ ∞

0
e−β(Vi j (r)+Pr)dr. (A10)

APPENDIX B: EXACT GIBBS FREE ENERGY

The Gibbs free energy is

g(β, P) = − 1

β
lim

N→∞

[
ln Y (β, P, N )

N

]
(B1)

= 1

β
ln � − 1

β
lim

N→∞

×
[
�

N
+ NAA ln ϕAA + NAB ln ϕAB + NBB ln ϕBB

N

]
,

(B2)

where

� ≡ ln

[
NA!NB!

NAA!NBB!
[(NAB

2

)
!
]2

]
. (B3)

In the continuous limit, we can write Eq. (A1) as

Ni j =
∫ ∞

0
νi j (r)dr, (B4)

where the νi j (r) are the terms that can be found from the
minimization process. Replacing this in Eq. (A4) results in
coupled quadratic equations. This can be solved for e2λ1 and
e2λ2 .

From Appendix A, we know that

NAA = e2λ1ϕAA, (B5)

NBB = e2λ2ϕBB. (B6)

Dividing by N and using the expressions found for e2λ1 and
e2λ2 :

xAA = lim
N→∞

NAA

N

= (xA − xB) − 2xAγ +
√

(xA − xB)2 + 4xAxBγ

2(1 − γ )
, (B7)

xBB = lim
N→∞

NBB

N

= −(xA − xB) − 2xBγ +
√

(xA − xB)2 + 4xAxBγ

2(1 − γ )
,

(B8)

xAB = lim
N→∞

NAB

N
= 2(xA − xAA), (B9)

where we used used NAB = 2(NA − NAA) from Eq. (A4) and
γ ≡ ϕAAϕBB/ϕ2

AB. The result of Sec. II is found by replacing
these expressions in Eq. (B2).
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