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Abstract: Ascorbate peroxidases (APX) are class I members of the Peroxidase-Catalase superfamily,
a large group of evolutionarily related but rather divergent enzymes. Through mining in public
databases, unusual subsets of APX homologs were identified, disclosing the existence of two yet
uncharacterized families of peroxidases named ascorbate peroxidase-related (APX-R) and ascorbate
peroxidase-like (APX-L). As APX, APX-R harbor all catalytic residues required for peroxidatic activity.
Nevertheless, proteins of this family do not contain residues known to be critical for ascorbate
binding and therefore cannot use it as an electron donor. On the other hand, APX-L proteins not only
lack ascorbate-binding residues, but also every other residue known to be essential for peroxidase
activity. Through a molecular phylogenetic analysis performed with sequences derived from basal
Archaeplastida, the present study discloses the existence of hybrid proteins, which combine features
of these three families. The results here presented show that the prevalence of hybrid proteins varies
among distinct groups of organisms, accounting for up to 33% of total APX homologs in species of
green algae. The analysis of this heterogeneous group of proteins sheds light on the origin of APX-R
and APX-L and suggests the occurrence of a process characterized by the progressive deterioration
of ascorbate-binding and catalytic sites towards neofunctionalization.

Keywords: ascorbate peroxidase—APX; APX-R; APX-L; catalytic sites; substrate; protein divergence

1. Introduction

Ascorbate peroxidases (APX) (EC 1.11.1.11) are heme b enzymes that catalyze the
reduction of hydrogen peroxide (H2O2) into water in oxygenic photosynthetic organisms, in
a process dependent on ascorbate [1]. Based on its peculiar chemical structure, ascorbate is
considered to be a successful antioxidant from an evolutionary perspective, acting together
with glutathione to ensure efficient detoxification of hydrogen peroxide in photosynthetic
organisms, and further allowing the establishment and rise of the APX family [2]. APX are
usually codified by small gene families, leading to the occurrence of distinguished isoforms
targeted to the cytosol, plastids, mitochondrion, and peroxisomes, which differ not only on
subcellular localization, but also in substrate affinity, dimer formation, and in the presence
of transmembrane domains [1,3–5].

As for other heme-containing enzymes, the catalytic mechanism of ascorbate peroxi-
dases involves the formation of an iron-oxidized reactive intermediate known as compound
I and its subsequent reduction by the substrate, in this particular case ascorbate, in two
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sequential electron transfer steps [6,7]. The catalytic mechanism, crystal structure, and
ascorbate binding of APX were extensively studied in the past 30 years [8–14]. Through
crystallographic information and site-directed mutagenesis, it was possible to dissect
the main residues implicated in APX activity, which are allocated in two structural do-
mains surrounding the heme [15]. The C-terminal domain contains the proximal histidine
(His163—numbered following Pisum sativum APx1 sequence), which is hydrogen-bonded
to the heme moiety. The N-terminal domain harbors the distal histidine (His42) and an
arginine (Arg38) that are crucial for the heterolytic cleavage of H2O2, as well as a trypto-
phan residue (Trp41) implicated in heme binding and coordination [15–19]. The interaction
of APX with ascorbate is dependent on an arginine located nearby the proximal histidine
(Arg172), since mutations in this residue were sufficient to abolish APX activity towards
this substrate [11–13,20]. Nevertheless, N-terminal lysine (Lys30) and cysteine (Cys32) also
seem to contribute to ascorbate binding, but to a much lesser extent [11,12].

The APX family is part of the peroxidase-catalase superfamily (previously known as
non-animal peroxidase superfamily), a group of evolutionarily related enzymes distributed
among bacteria, archaea, algae, fungi, plants, cnidaria, and even ecdysozoa [21,22]. Even
though APX are mostly found in photosynthetic organisms, these enzymes were also
purified from protozoans and even mammals, indicating a broader prevalence for the
APX family which remains to be further analyzed and explored [23,24]. Despite the rather
low sequence homology among superfamily members, proteins that belong to this group
share common features like folding, typical secondary structure, and catalytic domains,
most likely as a consequence of their common origin. The most accepted theory to explain
the superfamily establishment is based on countless rounds of gene duplication and di-
versification from an ancestral prokaryotic peroxidase and is tightly associated with the
endosymbiotic events that led to mitochondria and chloroplast acquisition [25]. Molecular
phylogeny analyses separate the superfamily members into three well-supported classes,
among which over ten families are accommodated [25–27]. Previously, through mining in
public databases, an unusual subset of APX proteins that did not cluster with classic APX
members in phylogenetic analyses were identified. These proteins show several conserved
substitutions when compared to classical APX, which include the substitution of Trp41
by phenylalanine, a change that was reported for other superfamily peroxidases (which
integrate Classes II and III), and, more importantly, the lack of Arg172, suggesting they
should not be able to use ascorbate as a catalytic substrate. After a refined phylogenetic
analysis, the separation of this group of APX homologs into a distinct family of heme
peroxidases could be further confirmed, leading to the description of a new family, which
was named ascorbate peroxidase-related (APX-R) [28]. Members of this family are mostly
predicted to contain a transit peptide to chloroplasts and/or mitochondria import, and to
be encoded by a single-copy gene in most plant genomes. Genomic analyses performed in
land plants showed that genes that encode for APX-R return to single-copy arrangements
even after repeated intra-chromosomic duplications involving these loci, suggesting the
occurrence of gene dosage effect related to members of this family. Genes that encode for
APX-R also display conserved structure (regarding number and size of exons), which differs
significantly from the one described for APX [28]. Functional analysis demonstrated that
APX-R knockdown disturbed the redox metabolism in rice (Oryza sativa), while analyses
conducted in Arabidopsis knockout plants revealed the importance of this peroxidase to
oxidative protection and hormonal steadiness in seeds, as well as unveiled the existence of
a post-translational mechanism to regulate APX-R accumulation during photomorphogen-
esis [28–30]. The enzymatic activity of APX-R was also investigated recently, and in vitro
experiments have now confirmed that APX-R is a functional heme peroxidase which does
not rely on ascorbate to reduce H2O2 [30]. Nevertheless, the natural substrate of APX-R
remains to be determined.

After a comprehensive phylogenetic analysis, APX-R could be further classified as a
class I member of the peroxidase-catalase superfamily, along with APX, catalase-peroxidase
(KATG), cytochrome-c peroxidase (CCP), and APX-CCP families [27]. Moreover, this
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analysis also revealed the existence of another well-supported family composed of a small
subset of proteins currently annotated as APX homologs, which was named ascorbate
peroxidase-like (APX-L). In contrast to what was observed for APX-R, APX-L proteins do
not harbor any of the catalytic residues described as key for H2O2 enzymatic removal, a
feature that was not observed among thousands of members identified for this superfamily.
Arabidopsis APX-L, previously named as TL-29 (for thylakoid lumen 29 kDa protein) or
APx04, was functionally and structurally investigated in the past [31–33]. Purification
of native APX-L from chloroplasts extract showed that this protein accounts for one of
the most abundant proteins in the thylakoid lumen of Arabidopsis, while recombinant
expression showed that APX-L is not able to bind the heme, ascorbate, or catalyze H2O2
removal [32]. Interestingly, analyses conducted in Arabidopsis knockout plants suggest that
APX-L is functional and participates in photosystem protection and seed coat formation.
Mutants exhibit chlorotic phenotype and produce seeds with decreased longevity, but the
mechanisms implicated in such phenotypes remain to be elucidated [33]. Despite the strong
support for their reclassification as new families, APX-R and APX-L have been continuously
addressed as ascorbate peroxidases in the literature, causing the misinterpretation of
experimental data and impairing the discussion over H2O2 scavenging metabolism in
plants. To understand how these three families are distributed among basal organisms in
the plant lineage and to access the origin of the structural and functional diversity among
them, we performed a comprehensive phylogenetic analysis using sequences retrieved
from species of algae and bryophytes. Sequences that compose each cluster proved to
be more heterogeneous than expected, and hybrid proteins, which combine key features
from more than one family, are now described for the first time. The acknowledgment of
this diversity provides the basis to explain the origin of APX-R and APX-L from ancestral
ascorbate peroxidases and sheds light on unnoticed complexity in the hydrogen peroxidase
metabolism of photosynthetic organisms.

2. Materials and Methods
2.1. Protein Sequence Retrieval

Publicly available protein sequences used in this study were retrieved from Re-
dOxiBase [34]. For charophytes, the sequences were retrieved from the OneKP data
(http://www.onekp.com/public_data.html, accessed on 1 May 2019) and the complete
predicted proteome of Klebsormidium nitens (http://www.plantmorphogenesis.bio.titech.
ac.jp/~algae_genome_project/klebsormidium/, accessed on 1 May 2019) using blastp
searches (e-value < e−5) with the known Arabidopsis thaliana proteins were used as queries.
Redundant sequences were eliminated using in-house scripts, keeping only the longest
protein sequence. Sequences that were shorter than 50% of the Arabidopsis query were
regarded as incomplete and discarded.

2.2. Sequence Alignment and Phylogenetic Analysis

Sequence alignments were conducted using MUSCLE algorithm [35] with default
parameters available at MEGA 7.0 (Molecular Evolutionary Genetics Analysis) [36]. The
phylogenetic tree was reconstructed using protein sequences of conserved domains by
Bayesian inference using BEAST2.4.5 [37]. The best-fit model of amino acid replacement
was LG with invariable sites and gamma-distributed rates, which was selected after analysis
performed on ProtTest [38]. The Birth and Death Model was selected as tree prior, and
50,000,000 generations were performed with the Markov Chain Monte Carlo algorithm
(MCMC) [39] for the evaluation of posterior distributions. After manual inspection of
the alignment, 348 sequences and 233 sites were used in the analysis. Convergence was
verified with Tracer [40], and the consensus tree was generated using TreeAnnotator,
available at BEAST package. The resulting tree was analyzed and edited using FigTree
v.1.4.3 (http://tree.bio.ed.ac.uk/software/figtree, accessed on 1 February 2020) and iTOL
(https://itol.embl.de/, accessed on 1 August 2020). Figures that show sequence alignments
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were generated using Geneious Prime 2020.1.1 (https://www.geneious.com, accessed on 1
March 2020); for the gene structure figure, GSDS 2.0 was employed [41].

3. Results
3.1. Hybrid Proteins Share Features of Distinct Families

Phylogenetic analysis was carried out with 309 protein sequences from species of
algae and non-vascular plants, in addition to 39 sequences encoding non-plant KATG
and CCP, which were used as outgroups. The dataset included 118 sequences previously
deposited in RedOxiBase, annotated either as APX (which encompass both APX and
misannotated APX-L) or APX-R, and 191 sequences from charophytes derived from 39
assembled transcriptomes and the complete genome of Klebsormidium nitens. From this
analysis, it is possible to distinguish five well-supported main clusters, three of which
correspond to APX (purple), APX-R (orange), and APX-L (cyan) families, in addition to
KATG and CCP (Figure 1). The tree topology agrees with previous studies, showing that
APX family is more closely related to KATG and CCP than to APX-R or APX-L (Figure 1),
although being all part of the same peroxidase class [27]. A detailed analysis of each group
revealed the existence of sequence variants, which are highlighted in Figure 1. These
sequences consist of proteins that present characteristics that are singular of at least two
different families (e.g., the simultaneous occurrence of Phe41, an APX-R/class II/class III
feature, and Arg172, an APX specific residue), which was not observed previously. From
now on, we will refer to these proteins as hybrids.
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posterior probabilities are discriminated according to the figure legend; only values above 0.7 are
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3.2. Hybrid Proteins Are More Prevalent in Species of Green Algae

To assess the prevalence of hybrid proteins in different groups of organisms, we
decided to look for variants in APX, APX-L, and APX-R sequences deposited in public
databases. For this purpose, 493 complete protein sequences were retrieved from Re-
dOxiBase and further classified into rhodophytes, chlorophytes, charophytes, bryophytes,
gymnosperms, and angiosperms. In addition, 143 charophytes sequences from our dataset
were also evaluated, adding up to 636 sequences. The presence or absence of key residues
implicated in catalytic activity and ascorbate binding determined their annotation, which
followed the protein signature described for each family [27]. To be considered an APX,
proteins should present the catalytic residues Arg38, Trp41, His42, and His163, in addition
to the ascorbate-binding residue Arg172. For APX-R classification, proteins should include
Arg38, Phe41, His42, and His163, and position 172 should be occupied by any residue
other than arginine. To be classified as APX-L, all the above-mentioned positions should
be occupied by other residues (Figure 2). Proteins were considered hybrids when they
exhibited different arrangements of amino acids in these positions. The occurrence of each
group of proteins in the analyzed classes is summarized in Figure 3, and their prevalence
by species is provided in Table S1.
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residues as APX, APX-R, APX-L, or hybrids. The total number of sequences analyzed is 6, 22, 177,
11, 28, and 389, respectively. Each group of proteins is represented by the following colours: APX,
purple; APX-R, orange; APX-L, cyan; and hybrids are shown in green. * The data presented for
Charophytes include sequences currently annotated in RedOxiBase in addition to 147 assembled
sequences obtained from transcriptomic data, available in Table S3.
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From this analysis, it is possible to infer that the diversification of APX must have
occurred at the basis of Viridiplantae. However, one must consider that the low number of
sequences currently available from rhodophytes could be leading to a biased interpreta-
tion in this subject. In Viridiplantae, hybrid proteins are considerably more prevalent in
organisms belonging to deep-branching clades, accounting for up to 33% of total analyzed
sequences derived from charophytes. While APX-R is present in all the analyzed classes of
Viridiplantae, APX-L could only be detected in charophytes, bryophytes, and angiosperms,
in rates of 3% to 9%. Among the examined groups, gymnosperms are the organisms with
the higher prevalence of APX proteins (93%), followed by angiosperms. All complete
protein sequences deposited in RedOxiBase and classified as APX-R, APX-L, or hybrid are
listed in Table S2. Most of these proteins are predicted to be imported to chloroplasts, but
there are also a few that seem to target other subcellular compartments (Table S2) [42–44].
Although hybrid proteins are more prevalent in basal organisms, which is partly explained
by the late expansion of the APX family in land plants (Table S1), some can be found in
vascular plants. An interesting example is observed in poplar (Populus trichocarpa), in
which a single gene encodes an APX and two hybrid proteins through alternative splicing,
producing a variant that potentially retained the ability to bind ascorbate while deprived
of peroxidatic activity, and a peroxidase devoid of ascorbate binding site (Figure 4). The
production of distinguished APX isoforms through alternative splicing was observed
previously for spinach (Spinacia oleracea), which suggests that this could be a conserved
mechanism of APX regulation [45].
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3.3. Mutations and Small Deletions Led to the Emergence of APX-R and APX-L

A large proportion of the hybrid proteins identified in this study is organized in a
cluster that integrates the well-supported APX group in the phylogenetic analysis, pre-
sented on Figure 1. Despite the overall similarity with APX, these charophyte sequences
contain a phenylalanine at position 41 instead of the APX-conserved tryptophan, which
suggests that this mutation could have been implicated with the first modifications that
accompanied the establishment of APX-R (Figure 5). Similarly, two charophyte sequences
that also integrate the APX group exhibit an arrangement of residues that might help
explaining the evolution of APX-L. These sequences also contain phenylalanine at position
41, while having lost the distal histidine and the ascorbate-binding arginine. These two
types of sequences are here named as proto-APX-R and proto-APX-L, respectively, and
their identification provides evidence for the establishment of APX-R and APX-L families
from ancestral APX diversification.

Antioxidants 2021, 10, x FOR PEER REVIEW 8 of 13 
 

 
Figure 5. Detailed analysis of a clade from the APX cluster. Hybrid sequences derived from Charophytes that exhibit a 
single mutation from tryptophan to phenylalanine at position 41 are addressed as proto-APX-R. The loss of arginine at 
position 172 and the replacement of the distal histidine by an asparagine illustrate the diversification pathway towards 
APX-L establishment, for which reason these sequences are referred to as proto-APX-L. APX group is shown in blue; APX-
R, in orange; and APX-L, in green. All other clades showed in Figure 1 were collapsed for better visualization. Sequence 
logo presented above the alignment shows a consensus sequence of all listed species. 

To analyze the extent of variation found in these distinct groups of proteins, we per-
formed an alignment using representative sequences from chlorophytes and charophytes, 
which is presented in Figure 6. Through this analysis, it is possible to observe that several 
mutations and two small deletions around the proximal histidine are the main cause of 
variation found in these families regarding catalytic and ascorbate-binding residues. This 
analysis also suggests that hybrid proteins accumulated fewer mutations than APX-R and 
APX-L, resembling intermediates among such peroxidase families. 

 
Figure 6. Mutations and two small deletions are involved with APX-R and APX-L establishment. 
Representative sequences of each protein category were retrieved from RedOxiBase, and domains 
that contain relevant residues are shown. Conserved residues are shown in black and others, in light 

Figure 5. Detailed analysis of a clade from the APX cluster. Hybrid sequences derived from Charophytes that exhibit a
single mutation from tryptophan to phenylalanine at position 41 are addressed as proto-APX-R. The loss of arginine at
position 172 and the replacement of the distal histidine by an asparagine illustrate the diversification pathway towards
APX-L establishment, for which reason these sequences are referred to as proto-APX-L. APX group is shown in blue; APX-R,
in orange; and APX-L, in green. All other clades showed in Figure 1 were collapsed for better visualization. Sequence logo
presented above the alignment shows a consensus sequence of all listed species.

To analyze the extent of variation found in these distinct groups of proteins, we per-
formed an alignment using representative sequences from chlorophytes and charophytes,
which is presented in Figure 6. Through this analysis, it is possible to observe that several
mutations and two small deletions around the proximal histidine are the main cause of
variation found in these families regarding catalytic and ascorbate-binding residues. This
analysis also suggests that hybrid proteins accumulated fewer mutations than APX-R and
APX-L, resembling intermediates among such peroxidase families.
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better visualization.

4. Discussion

The structure and function of APX were extensively studied since recombinant protein
expression and site-directed mutagenesis techniques were established. Due to its overall
homology to CCP, APX was expected to display a similar enzymatic activity. However,
because APX catalysis relies on the formation of a porphyrin-based radical, and not on a
protein-based radical (which is the case for CCP), APX quickly became an interesting model
to dissect heme peroxidase catalysis in non-animal organisms [46]. Since the publication
of APX first crystal structure APX, and later of APX-ascorbate complex structure, all
main residues implicated in the enzymatic activity displayed towards this substrate were
identified [15]. Site-directed mutagenesis have later confirmed that two histidines (His42
and His163), an arginine (Arg38), and a tryptophan (Trp41) are essential for APX to
catalyze H2O2 scavenging. Apart from Trp41, which was successfully substituted by
phenylalanine in proteins belonging to the late-emerging classes II and III [47], all other
residues are conserved and proved to be critical for superfamily peroxidases to interact
with the heme moiety and with H2O2. Regarding APX interaction with its substrate,
despite the evidence that Lys30 and Cys32 could be involved, an arginine at position 172
has proved to be the critical residue for APX to bind ascorbate [9,10]. Meanwhile, Cys32
was shown to undergo S-nitrosation, a post-translational modification with a positive effect
on APX activity [48]. While substitutions at Arg172 abolished APX activity towards this
substrate, they did not interfere with APX binding to non-physiological aromatic substrates
in vitro, indicating that APX could also interact with other molecules in vivo through
distinct sites [13,14,49]. Recently, a study demonstrated that cytosolic APX catalyzes the
hydroxylation of 4-coumarate to caffeate in lignin biosynthesis, in a reaction dependent
on ascorbate and molecular oxygen [50]. Through this study, the physiological relevance
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of this distinguished substrate binding site through which APX can interact with other
phenolic compounds was finally confirmed.

Because Arg172 is missing in APX-R, we previously suggested that members of this
family should display peroxidase activity using other substrates than ascorbate, which
was recently confirmed through heterologous expression and enzymatic assays performed
in vitro [30]. Despite differences in substrate, plastidial APX and APX-R exhibit comparable
peroxidase activity. Both peroxidases are able to interact with pyrogallol and guaiacol
in vitro at similar rates, showing the preservation of one substrate binding site. Interestingly,
this is not the case for APX-L. It was previously reported that Arabidopsis APX-L is devoid
of catalytic activity (as a peroxidase) and unable to bind ascorbate or the heme, although
being expressed at high levels and somehow functional, with knockout plants showing
a chlorotic phenotype and producing seeds with reduced longevity [31–33]. In addition,
the authors showed experimental evidence of APX-L association with the photosystem II,
supporting a divergent role for this protein. A large recent study, by using co-fractionation
mass spectrometry, determined protein complexes from several plant species, including
Arabidopsis [51]. Through the data generated in this study, several candidate proteins
that might be interacting with APX-L in this species were identified, among them proteins
directly involved in the photosystem II redox status. Among the candidates with the
highest confidence scores, photosystem II subunits Q and P, and peroxiredoxin Q, are listed
(Table S4). A curious observation is that most APX-L found in the Angiosperms exhibit
conserved leucine and asparagine at positions 41 and 42, while in deep-branching clades
no particular conservation could be observed in these and other positions considered key
for the superfamily.

It is believed that the peroxidase-catalase superfamily, which is composed of 12 fami-
lies of peroxidases accommodated in three classes, is derived from an ancestral peroxidase
that resembled the bifunctional catalase-peroxidase known as KATG and had all conserved
positions in the active center mentioned above [25]. The superfamily emergence is ex-
plained as the result of countless duplication events, and it seems to be tightly associated
with mitochondria and chloroplast acquisitions. Because of this, all superfamily enzymes
share common characteristics, like rather conserved structure and folding, despite diver-
gencies observed in amino acid composition [15]. It is also likely that the accumulation of
spontaneous natural mutations eventually culminated in the establishment of the families
that we encounter nowadays. Additionally, the occurrence of APX-CCP proteins in some
species and the functional diversity observed in such proteins provide strong support
for this model [52,53]. In this scenario, the identification of hybrid proteins is another
outstanding piece of evidence of this evolutionary process. For being more closely related
to bifunctional bacterial KATG and other class I enzymes, APX is shown here to be more an-
cestral than APX-R and APX-L. We hypothesize that the acquisition of new functions must
have been accompanied by the progressive loss of the ancestral and eventually obsolete
ascorbate-binding site in APX-R, and of the catalytic sites in APX-L, which are evidenced
by the identification of proto APX-R, proto APX-L, and hybrids. Besides, other residues
implicated in APX activity regulation (e.g., Cys32) also diverged in members of APX-R and
APX-L families (Figure 6). The analyses carried out in this study indicate that cumulative
mutations and small deletions might have been the main driving force behind APX-R and
APX-L establishment in chlorophyte and charophyte ancestors, respectively. We therefore
propose a model for the emergence of these proteins in autotrophic eukaryotes, which is
presented in Figure 7.

The absence of typical APX-L in chlorophytes indicates that this group of proteins was
established more recently in a Streptophyta ancestor; however, this hypothesis remains to
be confirmed when genomic and transcriptomic data from other species that compose this
group become available. Nevertheless, the amino acid arrangement observed in proto-APX-
R and proto-APX-L, and the number of mutations that were necessary for the establishment
of both families, support an earlier divergence of APX-R. The dissimilar distribution of each
family and hybrid proteins in the analyzed groups also suggests that this process occurred
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under distinct selective pressures in aquatic and terrestrial organisms. Nevertheless, the
maintenance of hybrid proteins must have been advantageous to some plants, as in the case
of poplar. Despite the limited number of sequences from basal organisms, an interesting
observation is that a few algae species contain more than one APX-R encoding gene, in
contrast to what we observed previously for vascular plants, in which in genomes the
duplication of this gene seems to be detrimental [28].
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The functionality of APX-R, APX-L, and hybrid proteins is yet unclear. While it is
now confirmed that APX-R displays significantly modified peroxidase activity, the lack of
information regarding its natural substrate precludes our understanding of the metabolic
pathways in which this enzyme participates. However, the studies made so far indicate
that this peroxidase acts on seed redox and hormonal metabolism, developmental and
stress-induced senescence, and photomorphogenesis [29,30,54], which could indicate start-
ing points for substrate identification. In the case of APX-L, evidence suggest that members
of this family could act as modulating proteins redox status via protein-protein interaction;
therefore, the search for interaction partners in combination with global analyses of tran-
scripts and/or proteins could be a solid strategy for its evaluation. The characterization
of APX-R and APX-L function in vivo will provide the basis for us to understand which
residues are key for their specific functions, and how hybrids behave in this context. Even
though hybrids do not characterize as distinct families, these proteins indicate that there
might be more plasticity in the peroxidase metabolism than previously believed.

5. Conclusions

This work provides new evidence on the origin and evolution of APX, APX-R, and
APX-L families in the plant lineage and reveals the existence of significant diversity in the
complex peroxidase-catalase superfamily, which should be taken into consideration when
assessing heme peroxidases function in photosynthetic organisms.
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