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ABSTRACT

Modern computing architectures frequently rely on Simultaneous Multithreading (SMT)

processors to boost computational throughput and handle parallel applications efficiently.

However, the potential of SMT can be compromised by functional unit contention when

parallel threads execute similar instructions on the same core. Addressing this issue, this

thesis introduces an Instruction-Aware Mapping (IAM) tool that mitigates functional unit

contention and enhances resource utilization. Distinct from current solutions, IAM uses a

dynamic, transparent mapping strategy that assigns threads to SMT cores based on their

real-time instruction profiles, eliminating the need to alter the application source code.

The performance of the IAM tool was evaluated using the well-known NAS Parallel

Benchmarks (NPB) and Standard Performance Evaluation Corporation (SPEC) bench-

marks, as well as SMT-Bench, a microbenchmark developed for SMT performance anal-

ysis. These evaluations, conducted on Advanced Micro Devices (AMD) and Intel pro-

cessors, show an average geometric mean performance increase of 9.8% compared to the

Linux operating system scheduler, performing well against round-robin and random map-

ping methods. IAM’s effectiveness is instruction-specific, offering marked performance

improvements for compute-centric operations, such as integer, floating-point, and branch

instructions. At the same time, its influence is more moderate for memory-bound instruc-

tions, particularly load operations. These insights emphasize the importance of dynamic,

instruction-specific strategies that can cater to the distinct characteristics of workloads in

enhancing SMT performance. This research provides insights that can inspire more in-

depth studies into adaptive methods for SMT optimization.

Keywords: SMT processors. Performance degradation. Resource sharing. Functional

unit contention.





Mapeamento Instruction-Aware (IAM): Uma Ferramenta para Mitigar a

Contenção nas Unidades Funcionais de Processadores SMT

RESUMO

As arquiteturas de computação recorrem a processadores Simultaneous Multithreading

(SMT) para melhorar o throughput computacional e gerenciar aplicações paralelas. No

entanto, a efetividade do SMT pode ser comprometida pela disputa de unidades funcionais

quando threads paralelas executam instruções similares no mesmo núcleo. Em resposta

a isso, esta tese introduz a ferramenta Instruction-Aware Mapping (IAM), que mitiga a

disputa de unidades funcionais e otimiza a utilização de recursos. Ao contrário de outras

soluções, a IAM utiliza uma estratégia de mapeamento dinâmica e transparente que atri-

bui threads aos núcleos SMT com base em seus perfis de instrução em tempo real, sem

necessidade de alterar o código-fonte da aplicação. A performance da ferramenta IAM foi

testada usando os benchmarks NAS Parallel Benchmarks (NPB) e Standard Performance

Evaluation Corporation (SPEC), além do SMT-Bench, um microbenchmark focado na

análise de desempenho SMT. Essas avaliações, conduzidas em processadores Advanced

Micro Devices (AMD) e Intel, mostram um aumento na média geométrica de desempenho

de 9,8% em relação ao scheduler do sistema operacional Linux, com desempenho com-

parável às implementações round-robin e a outras estratégias de mapeamento. A eficácia

da IAM é centrada na especificidade da instrução, mostrando melhorias no desempenho

para operações como instruções de inteiro, de ponto flutuante e de desvio, enquanto seu

impacto é mais moderado para instruções relacionadas à memória, como operações de

carga. Essas descobertas ressaltam a importância de estratégias dinâmicas e adaptativas

que levem em conta a natureza das instruções na otimização do desempenho SMT. Este

estudo proporciona uma base para pesquisas adicionais sobre métodos adaptativos em

SMT.

Palavras-chave: Processadores SMT. Degradação de desempenho. Compartilhamento

de recursos. Contenção nas unidades funcionais.
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1 INTRODUCTION

The proliferation of multicore systems and Simultaneous Multithreading (SMT)

has been instrumental in shaping advancements in various fields. The evolution of com-

puter architectures has augmented computational power significantly, facilitating the reso-

lution of increasingly complex issues within modern application domains such as artificial

intelligence, data science, big data, bioinformatics, quantum computing, cybersecurity,

and large language models (BAKITA et al., 2021; XU et al., 2021; NARAYANAN et al.,

2021; KASNECI et al., 2023).

In the current technological environment, many applications operate within shared

computing platforms. The scalability of underlying architectures, therefore, becomes

paramount. The advent of multicore systems promotes the parallel execution of multiple

applications within a shared computational setting, bolstering scalability, resource utiliza-

tion, and cost efficiency (LIU; CHEN, 2018; TAN; NADEAU; GAO, 2019; ROLOFF et

al., 2019; TSAI; HSU; LIN, 2020). However, sharing computational resources introduces

additional challenges, especially when considering the diverse needs of modern appli-

cations. This necessitates effective resource management to avert performance degrada-

tion as the number of simultaneously running applications escalates (ZHANG; CHENG;

BOUTABA, 2018; WANG et al., 2019).

This management of scalability is intrinsically tied to the concept of utilization.

The transition to multicore and SMT architectures aims to optimize resource utilization,

enhancing overall system performance. However, these systems could face suboptimal

usage without careful management and intelligent task allocation, potentially leading to

significant resource underutilization and performance bottlenecks (PATTERSON, 2018;

ASANOVIC et al., 2018; DALLY, 2019; GUPTA; PATRA, 2021; VENKATESH; PA-

TRA, 2022).

Though a holistic approach to resource management across multicore and SMT ar-

chitectures is essential, this work focuses on thread mapping concerning functional units.

Consequently, we will not delve deeply into data mapping techniques, instead focusing

on understanding and addressing contention issues linked to functional units.

Furthermore, such environments often grapple with functional unit contention

issues. SMT facilitates concurrent issuing of instructions from multiple independent

threads to numerous functional units, markedly amplifying resource utilization and overall

performance (KALLA et al., 2010; LORENZON; FILHO, 2019; TULLSEN; EGGERS;
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LEVY, 1995; WANG et al., 2020; FELIU et al., 2023). SMT’s primary goal of enhancing

hardware resource utilization could paradoxically lead to performance degradation due

to contention for shared resources. This problem is especially pronounced in the context

of functional units which handle data operations. These units could become bottlenecks

when multiple threads vie for their use concurrently, leading to resource competition.

Addressing these challenges mandates the implementation of effective thread-to-

core mapping strategies. Ideally, threads heavily utilizing the same functional units should

be distributed to different cores, thereby minimizing contention and optimizing core re-

source usage. However, determining the optimal mapping can be intricate and compu-

tationally demanding, necessitating a nuanced understanding of application behavior and

the underlying architecture. This complexity underscores the urgency of developing au-

tomated thread-mapping techniques.

Previous research has identified communication and cache memory contention on

SMT processors as significant performance bottlenecks (CRUZ et al., 2014; FELIU et al.,

2016; AKTURK; OZTURK, 2019; SERPA et al., 2019; GOMEZ et al., 2020; ZHOU;

HU; XIONG, 2020; CHALL; PAUL, 2021; PAN; ZHAI, 2021; WANG; YIN; LI, 2021;

RODRIGUEZ; ABELLA; CANAL, 2022; LIN et al., 2022; GAO et al., 2023; YIN; LI,

2023; LIU et al., 2023). Strategies to alleviate such bottlenecks have been proposed

and validated by researchers, primarily focusing on multiple single-thread multiprogram

workloads, thereby achieving measurable performance improvements. These studies em-

phasize the need to tackle functional unit contention, particularly when considering par-

allel processing applications. Functional unit contention occurs when threads from the

same or different applications issue similar types of instructions (like arithmetic, memory

access, or floating-point operations) that utilize the same functional units.

1.1 Motivation

Hence, devising novel thread mapping methodologies that account for functional

unit contention is vital to drive SMT performance towards new horizons of performance

and efficacy. However, such a task presents challenges due to performance degradation

issues. To analyze the performance degradation in SMT-based systems, we employed a

microbenchmark, described in Chapter 4, and examined three different scenarios:

Scenario A: A single thread runs on each core. This scenario avoids interference

from co-runners, thus making all functional units in a core fully accessible to the thread.
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However, this scenario only runs half the number of threads compared to the following

two scenarios, thus reducing the overall system throughput.

Scenario B: Two threads run on the same core, executing the same type of in-

structions and thus stressing the same functional units.

Scenario C: Two threads run on the same core, but unlike the previous scenario,

each thread executes different types of instructions, thus stressing different functional

units.

Figure 1.1 presents the performance degradation resulting from resource con-

tention on the different functional units when SMT is enabled. Scenario A serves as

a baseline for this comparison. We considered the slowest thread (i.e., the last one to

complete execution in cases of imbalance) in each scenario. It is also noteworthy that

scenarios B and C always execute twice the number of threads compared to scenario A.

Despite its longer total execution time, scenario B performs twice as much computation

as scenario A. However, even though scenario C runs twice the number of threads as sce-

nario A, their execution times are very similar. The geometric mean for scenarios B and

C were 187.2% and 102.7%, respectively, implying that the overhead of running threads

stressing the same functional units is almost double the execution time. Finally, scenario

C is the best scenario, wherein multiple applications stressing different units are allocated

on the same core, increasing throughput while maintaining an execution time compared

to when only one thread operates per core.
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Figure 1.1 – Execution time for the different scenarios normalized to scenario A (100% on the

figure).

From these results, we make the following observations:
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• The type of operations carried out by each thread on a core directly impacts the

core’s performance and the overall efficacy of the application.

• While scenario A provides the best single-core performance, it only permits one

thread per core, which is suboptimal in SMT-based systems (or any other type of

multithreaded cores).

• Scenario C presents the most efficient thread-to-core mapping, with minimal per-

thread performance loss and full utilization of all available virtual cores, thereby

tapping into the full computing power.

• Scenario B experiences a performance degradation of up to 120%, which is unac-

ceptable for performance-intensive applications. This underscores the importance

of considering the workload characterization regarding the instruction type each

thread executes when applying thread mapping in SMT-based processors.

Thus, the endeavor should be to develop a thread-to-core mapping close to sce-

nario C to minimize functional unit contention and enhance performance. The present

research seeks to contribute significantly by introducing a novel tool designed to map

multiple parallel applications onto SMT processors.

1.2 Hypotheses and Objectives

As SMT processors advance modern computing, they face the challenge of func-

tional unit contention. This arises when parallel threads with similar instructions compete

for the same core resources. Recognizing the need to optimize SMT performance, we

present the following hypotheses:

• Studying thread execution behavior and their associated instruction mix on a core

can provide insights into potential contention for functional units.

• Mapping threads to cores considering the instruction mix, may reduce functional

unit contention and improve overall system performance.

Given these hypotheses, the primary objective of this thesis is to develop mech-

anisms to mitigate the functional unit contention in computing platforms. We aim to

achieve this objective through the following steps:
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• We propose an Instruction-Aware Mapping (IAM) tool that can efficiently map

threads to cores considering their instruction mixes. This tool minimizes contention

and maximizes system performance in multicore and SMT environments.

• To evaluate the effectiveness of the IAM tool, we utilize different benchmarks and

computing systems for our experimental studies.

• We also compare IAM against other existing strategies for thread-to-core mapping,

demonstrating its unique strengths and potential for improving system performance

in various computing scenarios.

Please note that while the broader field of SMT optimization often involves con-

siderations such as memory or cache, this thesis aims explicitly to alleviate contention at

the level of functional units. Consequently, our objectives and hypotheses are confined to

this more narrow scope.

1.3 Contributions of this Thesis

This thesis proposes a novel solution to the abovementioned issues - the Instruction-

Aware Mapping (IAM) tool. IAM is an online tool that leverages instruction-level infor-

mation to optimize the mapping of multiple parallel applications onto cores. The core of

the IAM tool lies in its ability to understand the workload functional unit characteristics in

real time. It dynamically reads hardware performance counters to assess the instructions

usage patterns, such as the number of floating-point, integer, branches, loads, and stores

operations. This information enables IAM to map threads stressing identical functional

units onto different cores intelligently.

The IAM tool aims to optimize the thread-to-core mapping so that functional units

are utilized to their maximum potential without causing contention. It is achieved by min-

imizing the number of threads that simultaneously issue similar instructions to the same

functional unit. By doing so, IAM improves the overall performance of SMT processors

and ensures efficient usage of computational resources.

The contributions of this research are as follows:

• We develop and introduce SMT-Bench, a microbenchmark designed for strain-

specific functional units. This benchmark allows us to evaluate the impact of re-

source sharing empirically. It provides crucial insights into SMT processors’ per-

formance and behavior under various workloads. We complement this with as-
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sessments using two widely recognized benchmarks, the NAS Parallel Benchmarks

(NPB) and Standard Performance Evaluation Corporation (SPEC), offering a more

comprehensive performance analysis across diverse workloads.

• We propose a dynamic, real-time, instruction-aware tool for mapping threads of

multiple parallel applications onto cores, the IAM tool (SERPA et al., 2022). The

tool leverages the distinctive instruction patterns of these applications, enabling an

adaptive mapping strategy that responds to changing workload characteristics as

they unfold.

1.4 Limitations and Challenges

While our research aims to bring substantial advancements in thread-to-core map-

ping for SMT processors, we acknowledge that our tool has inherent limitations and chal-

lenges.

The IAM tool heavily depends on the precision and comprehensiveness of topol-

ogy and instruction-level information. Any inaccuracies in the gathered data may directly

impact the efficiency of our thread-to-core mapping tool, leading to suboptimal usage of

functional units. Furthermore, as the tool operates in an online environment, it may be

susceptible to the dynamic nature of workloads, which can fluctuate in intensity and type

over time. Efficiently managing these variations is a significant challenge in terms of

overhead and hardware counters limitations.

We also acknowledge the limitations of our microbenchmark, SMT-Bench. While

it is designed to stress specific functional units and provide valuable insights into the

behavior of SMT processors, its representativeness of all potential workloads could be

limited.

1.5 Document Organization

The structure of this thesis is as follows. Chapter 2 provides an in-depth overview

of the background related to this research field. In Chapter 3, we survey relevant literature,

highlighting significant studies and their relevance to our work. Chapter 4 delves into the

specifics of the architecture that underpins our research, detailing the influence of resource

sharing and the methodologies employed in evaluating these impacts. In Chapter 5, we
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present our innovative tool for the online mapping of multiple parallel applications on

SMT processors. We delve into the underlying mechanisms and the methodology.

Following this, Chapter 6 delves into the design of our experimental study and

presents our findings. We conducted experiments on Intel and AMD processors using

SMT-Bench, NPB and SPEC benchmarks. The intent was to offer a robust and compre-

hensive evaluation of our tool. In these experiments, we compared our tool’s performance

against the default Linux scheduler, a round-robin mapping, and a random approach. The

results significantly underscore the enhancements our tool provides over the comparative

methods.

Chapter 7 draws together the key insights garnered from this thesis, discussing our

findings and outlining potential directions for future research.

In addition to the main chapters, this thesis also includes two appendices. Ap-

pendix A houses the complete experimental results, providing a more exhaustive under-

standing of our tool’s performance under various conditions. Lastly, Appendix B contains

a comprehensive summary of this thesis in Portuguese, adhering to the requirement set by

the PPGC Graduate Program in Computing.
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2 BACKGROUND

A constant push for improved performance and efficiency drives modern comput-

ing. This has catalyzed the development of complex computing architectures and tech-

nologies. This chapter introduces these key concepts and shines a light on their complex-

ities.

We focus on multicore architectures, an essential facet of contemporary comput-

ing. This discussion elucidates the transformative effect of having multiple cores within

a single processing unit, enabling parallel processing and significantly augmenting com-

puting speed and power.

The conversation then moves to SMT, which boosts processor efficiency. This

approach allows multiple independent threads of execution to use the resources provided

by today’s processor architectures more effectively. SMT does introduce challenges and

complexities, notably in terms of functional units and resource contention, topics we delve

into at length.

Subsequently, we dissect the concept of functional units, highlighting their role

and the persistent resource contention issue. This exploration underlines how these units

can become bottlenecks, mainly when multiple threads compete for the same resources.

The later part of this chapter shifts the spotlight to thread-to-core mapping strate-

gies. This discussion emphasizes the importance of effective mapping in leveraging the

full potential of multicore and multithreaded architectures, underlining these strategies’

role in optimizing core utilization and efficiently managing threads.

To conclude, we highlight the criticality of hardware performance counters and

tools essential in performance measurement and diagnosis. We delve into their role in

offering real-time insights into processor operations, identifying performance bottlenecks,

and assisting in developing and optimizing resource management strategies.

By shedding light on these fundamental concepts, this chapter lays the ground-

work for upcoming discussions on the intricacies of functional unit contention and explo-

ration of our proposed solution. This journey is designed to give the reader a profound

understanding of the modern computing landscape and potential solutions to resource

contention.
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2.1 Modern Computing

Modern computing is a cornerstone in the structure of computer science, enabling

the design and use of increasingly powerful computational technologies designed to tackle

complex, computationally intensive problems (DONGARRA et al., 2005). The trans-

formative power of modern computing architectures has been showcased across various

fields, including climate modeling, genetic sequencing, computational fluid dynamics,

and large-scale data analytics, where traditional computing devices would struggle to pro-

cess the enormous computational requirements within reasonable time frames.

Modern computing has experienced a significant paradigm shift with the advent of

multicore processors and SMT technology. This transformation has been driven by the in-

creasing difficulty of enhancing performance using single-core processors, thus spotlight-

ing parallelism as the primary avenue for improving computational performance (HILL;

MARTY, 2008; PADUA, 2011).

In this context, multicore systems consist of multiple physical processors, each

incorporating various independent cores capable of executing instructions (BAUMANN et

al., 2009). On the other hand, SMT is a technology that allows the simultaneous execution

of multiple threads on a single core. Such architectures significantly boost computational

performance.

However, these architectural advancements introduce new sets of challenges. One

of the most prominent is the management of contention for functional units. Functional

units are the components within a Central Processing Unit (CPU) core responsible for per-

forming operations as per computer instructions. The efficiency and effective utilization

of these units critically influence overall computational performance. In multicore and

SMT environments, contention for these units can escalate into a severe performance bot-

tleneck as multiple threads vie for limited execution resources, leading to potential under-

utilization and degradation of system performance (HENNESSY; PATTERSON, 2011).

Addressing this issue necessitates sophisticated resource management strategies,

such as thread-to-core mapping, which dictate how threads are assigned to cores. An

optimal strategy can significantly improve performance by reducing contention and max-

imizing resource utilization. However, traditional mapping strategies have their limita-

tions and often need to consider the specific characteristics of the functional units and the

unique requirements of the workload (TAM; AZIMI; STUMM, 2007a).
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The IAM tool, which we propose, addresses these challenges directly by adopting

a more dynamic and adaptable approach to thread-to-core mapping. At the heart of this

tool is the idea of utilizing information about the instruction type of the workload and the

contention status of functional units to make informed decisions regarding thread place-

ment. The ultimate objective is optimizing resource utilization and reducing functional

unit contention, enhancing overall system performance and efficiency.

2.1.1 Multicore Architectures

In the digital age, multicore systems have become ubiquitous, from the handheld

smartphones we use daily to the massive servers underpinning the Internet’s infrastruc-

ture. The design principle of incorporating multiple computing cores into a single proces-

sor chip emerged as a strategic solution to the escalating challenges of power consumption

and heat dissipation associated with the relentless pursuit of higher clock speeds (HILL;

MARTY, 2008). As the boundaries of frequency scaling became evident, the focus of the

computing industry inevitably shifted towards multicore architectures as a route to sustain

performance growth.

These systems facilitate the simultaneous execution of multiple threads, paving

the way for greater throughput and, consequently, elevated overall system performance.

However, the transition to multicore architectures has been fraught with hurdles. They

have introduced new complexities in managing contention for shared resources, such as

functional units (HENNESSY; PATTERSON, 2011).

Functional units constitute the operational heart of a CPU core, performing the

actions mandated by instructions. In multicore environments where multiple threads are

executed in parallel, these threads engage in a tug-of-war for the limited functional units.

This contention can trigger performance degradation, forcing threads into a waiting state

due to the limited availability of execution resources. This can create bottlenecks in pro-

cessing, leading to inefficiencies and hampering overall processing throughput (LI et al.,

2010).

Thus, understanding and mitigating resource contention in multicore architectures

is integral to optimizing system performance. As we delve deeper into this chapter, we

will discuss further how the proposed IAM tool addresses these challenges by promoting

more informed and efficient thread-to-core mapping decisions.
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2.1.2 Superscalar Processors

Superscalar processors represent a unique category of CPUs engineered to exe-

cute multiple instructions concurrently, utilizing various functional units. This capacity

for simultaneous execution allows for the processing of non-dependent instructions in

parallel, thus deriving the term superscalar for the architecture. This term is an analogy

to a superhighway, which permits the concurrent passage of multiple vehicles (FLYNN;

AKENINE-MöLLER; STRID, 1995).

In contrast to scalar processors, which are restricted to executing a single instruc-

tion per clock cycle, superscalar architectures break this boundary by handling multi-

ple instructions within the same cycle. Adopting an Instruction-Level Parallelism (ILP)

technique is pivotal to this performance advancement. ILP significantly enhances the ef-

ficiency of instruction processing by identifying multiple independent instructions and

executing them concurrently, in opposition to the sequential approach taken by scalar

processors (HENNESSY; PATTERSON, 2011).

Various strategies empower superscalar processors to achieve such a degree of

parallelism. One involves employing an advanced instruction decoder capable of simul-

taneously analyzing and decoding multiple instructions. Once these instructions are de-

coded, they are distributed to different functional units within the processor, where they

are processed independently and concurrently, capitalizing on the processor’s full capac-

ity (HENNESSY; PATTERSON, 2011).

Another noteworthy technique utilized in superscalar processors is speculative ex-

ecution. This strategy allows the processor to predict and execute the subsequent instruc-

tions in advance. In doing so, it decreases the overall latency of the instruction processing

pipeline, ensuring it remains occupied. If the speculatively executed instructions are un-

necessary, the processor discards the calculated results and proceeds with the following

instructions. This technique further optimizes resource utilization and increases through-

put (HENNESSY; PATTERSON, 2011).

With their impressive computational capabilities, superscalar processors play an

essential role in various applications. They excel in scientific simulations and database

processing, where fast processing of large volumes of data is a primary requirement. Their

usage extends beyond these demanding areas to commonplace devices. Desktop and lap-

top computers and mobile devices like smartphones and tablets often employ superscalar

processors to enhance performance for resource-intensive applications, such as gaming
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and video editing. This wide range of applications reflects the significant role of super-

scalar processors in shaping the contemporary computing landscape.

2.1.3 Simultaneous Multithreading

SMT, also known as hyperthreading in Intel processors’ context, is a common fea-

ture in modern CPU design. It is a product of continuously enhancing resource utilization

and computational throughput. By allowing multiple threads to be active on a single core

concurrently, SMT effectively employs execution resources that might otherwise be idle

with a single thread’s operation (TULLSEN; EGGERS; LEVY, 1995).

SMT’s primary aim is to leverage the number of active threads on a core to in-

crease the overall utilization of the core’s execution resources. It accomplishes this by

integrating multiple instruction streams of a unique thread onto the same processor core.

Through this process, SMT technology cleverly conceals some latency originating from

instruction dependencies and delays in memory access. Figure 2.1 provides a comparative

overview of a superscalar processor and an SMT one. It is clear that while superscalar

processors may have many unused functional units, SMT processors enhance resource

utilization by executing instructions from multiple threads simultaneously.

However, the shift towards SMT comes with its set of challenges. Like multicore

systems, implementing SMT introduces new difficulties, with the contention problem for

functional units standing out significantly. As the number of concurrently active threads

increases, the competition for these limited available units intensifies, potentially leading

to performance bottlenecks. This issue is more pronounced in workloads where threads

are interdependent, resulting in thread-level contention. This significant factor could hin-

der system performance (EGGERS et al., 1997).

Given these challenges, the demand for effective thread-to-core mapping strategies

and intelligent workload management becomes more urgent. By addressing contention

issues, we can fully harness SMT’s potential. The proposed IAM tool, which we will

discuss further in subsequent sections, aims to accomplish just that, signaling a new age

of efficient and dynamic resource management in multicore and SMT environments.
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Figure 2.1 – Comparison between a superscalar and a simultaneous multithreading processor.
The rows of squares represent the issue slots.

2.1.4 Functional Units and Resource Contention

At the crux of a CPU lie the functional units, the primary components tasked with

executing the instructions that collectively form programs. These units encapsulate the

vital parts of a processor, including the Arithmetic Logic Unit (ALU), Floating Point Unit

(FPU), and Load-Store Unit (LSU), among others. From carrying out basic arithmetic and

logical operations (the forte of the ALU) to tackling floating-point computations (the do-

main of the FPU) and handling memory read/write tasks (the responsibility of the LSU),

these units have a wide array of operations under their belt. The synergistic interplay

among these units and their operational efficiency significantly influence the comprehen-

sive performance of a computing system (HENNESSY; PATTERSON, 2011).

In modern multicore processors and SMT processors like the AMD Zen. Func-

tional units are shared resources among the two threads that can run on a core. This

shared nature creates potential contention when multiple threads vie to execute simul-

taneously. Conflict emerges when multiple threads seek simultaneous access to a shared

resource that cannot service all requests simultaneously. In the context of functional units,
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this scenario unfolds when an excessive number of threads demand similar computational

tasks, leading to an overload of a specific functional unit (EGGERS et al., 1997)

Figure 2.2 elucidates the architecture of AMD Zen (CLARK, 2016; SINGH et

al., 2017), a model demonstrating this contention scenario. In the Zen design, cores can

execute two threads, courtesy of SMT (TULLSEN; EGGERS; LEVY, 1995; TULLSEN

et al., 1996; EGGERS et al., 1997). Each core has private Level 1 (L1) and Level 2 (L2)

caches. The L1 caches, divided into data and instruction cache, competitively share 32KB

and 64 KB capacity between the threads on the same core. The L2 cache, L1 inclusive,

reserves 512 KB per core. A Last Level Cache (LLC), shared among all cores, acts as an

exclusive victim cache with 2048 KB allocated per core. The execution engine is split be-

tween integer and floating-point, housing four ALUs, two branch units, one integer mult,

one integer div, and four 128-bit floating-point units divided into Fused Multiply-Add

(FMA), Floating-Point Addition (FADD), and Floating-Point Multiplication (FMUL).
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32KB
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32KB LD/ST BR

INT FP

Core
2-SMT

L2
1024KB

I-L1

32KB

D-L1

32KB LD/ST BR

INT FP

Core
2-SMT

Shared L3
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Figure 2.2 – The AMD Zen architecture.

Several factors, including the processor’s architecture, the workload, and the thread

scheduling policy employed by the operating system or runtime environment, can influ-

ence contention’s severity. Despite some level of contention, the ability to execute mul-

tiple threads in parallel can lead to a higher overall throughput than sequential thread

execution (TULLSEN et al., 1996). However, minimizing contention is a crucial step

toward boosting performance.

Numerous strategies aim to manage contention for functional units, ranging from

the relatively straightforward to the highly sophisticated. A simple method involves bal-

ancing the load across various functional units, which could entail scheduling threads

such that their demands on different functional units are approximately equal. This can

be daunting due to most workloads’ dynamic and unpredictable nature.

A more advanced and informed approach involves designing intelligent schedul-

ing algorithms that consider the system’s current state, the status of functional units, and
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the characteristics of the awaiting threads. This strategy lies at the heart of our proposed

IAM tool.

IAM strives to reduce contention and maximize the utilization of functional units

by making informed scheduling decisions based on the instruction characteristics of the

workload. By predicting the functional units likely to be in high demand based on the

type of instructions in the incoming threads, IAM can map threads to cores to distribute

the load evenly across all functional units.

IAM’s overarching goal is to optimize CPU resource use, mitigate functional unit

contention, and enhance overall computing performance. With the increasing trend to-

wards multicore and SMT-enabled processors, the efficient management of functional unit

contention using methods like IAM becomes paramount for performance optimization.

2.1.5 Resource Utilization in Computing Environments

The contemporary computing landscape is marked by utilizing on-demand re-

sources, often facilitated through virtualization technologies, such as virtual machines

(VMs) or containers. These resources span processing power, storage, networking, and

more, providing flexible, scalable, and cost-effective solutions.

One of the primary advantages of these modern computing paradigms is the ca-

pacity to modulate the amount of computing resources per demand rapidly. This ensures

that an application or service operating on such a platform can handle expanding work-

loads without compromising performance. When the workload diminishes, the resources

can be scaled back, ensuring cost efficiency. Thus, adept usage of scalability is pivotal for

optimizing performance and cost-effectiveness.

However, like in multicore systems and SMT, contention can pose a significant

challenge in these environments. While conflict can arise at various levels, functional unit

contention at the CPU level can persist as an essential concern. Multiple VMs or contain-

ers running on the same physical host may vie for the same functional units, leading to

potential performance degradation. This contention problem could be complex, as users

typically require more visibility or control over the underlying hardware resources.

Efficient resource utilization is critical to addressing contention in these scenar-

ios. Resource utilization concerns maximizing the performance of applications given the

available resources. Concerning functional units, this involves managing the assignment
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of workloads to cores and threads to minimize contention. As discussed earlier, our pro-

posed solution, the IAM tool, could be leveraged to address this issue.

Currently, IAM is tailored for handling functional unit contention at the level of a

single physical machine. However, the foundational principles of IAM could be adapted

to broader contexts. For instance, a service provider could implement similar instruction-

aware scheduling at the VM or container allocation level to reduce functional unit con-

tention across multiple physical hosts. This strategy underscores how IAM’s concepts

could extend beyond single-machine environments, offering a pathway to more efficient

resource utilization in the rapidly evolving landscape of on-demand computing environ-

ments.

2.2 Thread-to-Core Mapping Strategies

The process of thread-to-core mapping forms the bedrock of operating systems

(OS) and the hardware they control. It enables the execution of parallel tasks on a mul-

ticore CPU (TAM et al., 2009). This process entails the assignment of threads to the

system’s available cores. An effective thread-to-core mapping strategy can substantially

impact system performance, especially with thread synchronization, load balancing, and

contention issues.

Classic thread-to-core mapping strategies encompass static and dynamic mapping.

Static mapping involves assigning threads to cores at the start of the program execution

and maintaining this assignment throughout. While simple and predictable, this strategy

needs more adaptability to cope with dynamic changes in workload. Conversely, dynamic

mapping allows the OS to reassign threads based on system workload and performance

metrics. This offers flexibility but incurs overhead due to the continuous monitoring and

reassignment processes (BLAGODUROV et al., 2010).

The mapping of threads to cores directly impacts functional unit contention. A

poorly planned mapping strategy could result in multiple threads vying for the same

functional units, negatively affecting system performance. For example, in SMT sys-

tems, two threads mapped onto a single physical core could contend for shared functional

units. This contention can lead to performance degradation, particularly troublesome for

performance-sensitive applications (SNAVELY; WOLTER; CARRINGTON, 2001).

However, given that hardware configurations can vary significantly, it is crucial

to adapt the IAM tool accordingly. For instance, in systems with heterogeneous cores,
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an optimal mapping strategy might involve assigning threads with instruction mixes de-

manding higher computational resources to more powerful cores. Likewise, in systems

with hardware multithreading, the process might involve cautiously assigning threads to

different hardware threads to minimize contention for shared functional units (DELIM-

ITROU; KOZYRAKIS, 2013; SAEZ et al., 2012).

The design and execution of effective thread-to-core mapping strategies can sig-

nificantly influence the performance of multicore systems. Considering the types of in-

structions processed by each thread and utilizing this information to reduce functional

unit contention—as proposed in the IAM tool—represents a promising approach to this

issue. This strategy highlights the importance of sophisticated mapping techniques in

optimizing performance and reducing contention in modern multicore architectures.

2.2.1 Hardware Performance Counters

Hardware Performance Counters (HWPCs) are inbuilt elements within processors

that facilitate the tracking of system operations (ANDERSON; LAZOWSKA; LEVY,

1989). These counters permit monitoring numerous events, including the total executed

instructions, cache hits and misses, branch predictions, and more. HWPCs are crucial in

interpreting the processor’s performance, identifying potential bottlenecks, and steering

optimizations.

HWPCs offer valuable insights into the activity within the processor’s functional

units. For instance, HWPCs can reveal the frequency of usage of specific functional units,

how often they encounter stalls due to data dependencies or cache misses, and how con-

tention impacts performance. This information allows system architects and software de-

velopers to comprehend how effectively the functional units are used and identify factors

impeding their optimal use (SHEN et al., 2008).

In diagnosing and alleviating functional unit contention, HWPCs are vital. They

can recognize patterns such as increased cache misses or a high frequency of pipeline

stalls, which can pinpoint contention between threads vying for the same functional units.

Such information can steer optimization strategies that reduce contention, enhancing the

system’s overall performance (KAMBADUR et al., 2012).

HWPCs are central to the proposed IAM tool. The IAM tool relies on HWPCs

to gather data on the instruction mix of each thread. This data empowers the tool to

make intelligent decisions regarding thread-to-core mapping to minimize functional unit
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contention. Therefore, HWPCs provide the foundation for the IAM tool, enabling it to en-

hance system performance (MUCCI et al., 1999) effectively. In this context, we utilize the

Performance Application Programming Interface (PAPI) library, which delivers a consis-

tent interface and methodology for collecting performance counter data from a computer

system. PAPI hardware counters are a library feature that provides direct access to the

hardware-level counters in most modern microprocessors. These counters offer insights

into low-level hardware events like cache misses, branch mispredictions, and cycles per

instruction. By leveraging PAPI hardware counters, developers and system architects can

measure these events to collect detailed performance data about their programs or sys-

tems. This data can assist in identifying bottlenecks, optimizing code, or more effectively

balancing system workloads (BROWNE et al., 2000).

Despite their utility, using hardware performance counters presents several chal-

lenges. These challenges include a limited number of available counters, the overhead

associated with performance monitoring, and the complexity of interpreting the data they

provide. Additionally, counter data can be affected by several factors, such as system

noise, resource contention, and scheduling policies, making it difficult to isolate the cause

of performance issues. Consequently, using these counters should be well planned and

supplemented with other system analysis and debugging tools (SHAMEEM; JASON,

2005).

Hardware performance counters are crucial tools for understanding the intricate

operations within processors, identifying performance bottlenecks, and creating optimiza-

tion strategies. Their critical role in diagnosing and mitigating functional unit contention,

providing the data needed to guide optimizations like the IAM tool, is invaluable. How-

ever, the challenges associated with their usage highlight the need for further research and

development in this area.

2.3 Summary

This chapter has meticulously examined functional unit contention in several com-

puting contexts, including multicore systems, SMT, and superscalar processors. We high-

lighted the profound impact of contention in these areas. We underscored the critical role

that intelligent thread-to-core mapping strategies and efficient resource utilization play in

mitigating performance degradation associated with resource contention.



42

Our discussion began with multicore systems, where we demonstrated how con-

tention for functional units might emerge when threads running on separate cores compete

for shared resources. This contention could limit the processing speed and efficiency of

these systems. We then introduced the concept of superscalar processors, an architectural

design that allows for the concurrent execution of multiple instructions. Despite signifi-

cantly augmenting processing power, these systems can also experience contention when

multiple instructions compete for the same functional units.

Next, we turned our attention to SMT, where the contention for functional units

becomes a reality due to the concurrent execution of multiple threads on the same physical

core. However, by intelligently mapping threads to cores or hardware threads, considering

the mix of instructions, minimizing such contention and maximizing system performance

is possible.

We explored various thread-to-core mapping strategies, emphasizing their direct

influence on functional unit contention and the subsequent impact on overall system per-

formance. Our investigation covered static and dynamic mapping strategies, outlining the

strengths and limitations of each approach, and highlighted the need for a strategy that

incorporates both best features.

Finally, we emphasized the critical role of hardware performance counters in di-

agnosing and mitigating functional unit contention. These counters provide valuable in-

sights into the system’s inner workings and form the foundation of the proposed IAM

tool. Despite some challenges associated with their use, hardware performance counters

are invaluable tools in our approach to effectively address functional unit contention.

In the upcoming chapter, we will conduct a comprehensive survey of related work

in this field. We will compare our proposed IAM tool with existing strategies for manag-

ing contention and maximizing performance in multicore, superscalar, and SMT environ-

ments. This comparative analysis will further highlight the unique strengths and potential

of the IAM tool in enhancing performance across various computing systems.



43

3 RELATED WORK

Resource contention in SMT processors has long been recognized as a significant

contributor to performance bottlenecks. The literature in this field is rich with varied

strategies and methodologies to overcome these challenges. This chapter aims to com-

prehensively survey these works, encompassing different facets of the problem and the

proposed solutions.

We consider a multifaceted classification for these studies to render a meaningful

exploration of the subject. We delve into the nuances of how these solutions operate,

whether they focus on multithreaded or single-threaded applications, as this distinction

can significantly influence their effectiveness. Recognizing that the context of operation

plays a critical role, we also examine if these methods are designed for real or simulated

environments.

A noteworthy consideration is the requirement for hardware modifications in sev-

eral of these solutions. While some hardware-based approaches offer promising results,

the need for changes poses challenges regarding practicality and feasibility. It becomes

even more complex when these alterations are specific to certain architectures, limiting

the solution’s universality.

We further evaluate the solutions based on their dependency on architecture. While

effective in specific environments, architecture-dependent solutions may need more ver-

satility in diverse architectural landscapes. Thus, architecture-independent solutions that

maintain effectiveness across various platforms hold a distinctive advantage in broad ap-

plication.

In addition, the timing of applying these solutions is another critical factor. We

scrutinize whether these methods are designed for online execution used in real-time dur-

ing process execution for offline execution, implemented when the system is not actively

running tasks.

We organize our discussion into two main sections to provide a comprehensive

understanding. The first section focuses on software-based solutions strategies that re-

quire no hardware modifications and operate primarily through software improvements

or algorithms. The second section is devoted to hardware-based solutions that necessitate

changes or enhancements to the hardware itself. This dichotomy allows us to present a

balanced view of the field, demonstrating the strengths and weaknesses inherent in each

approach.



44

Through this comprehensive exploration, we aim to provide readers with a thor-

ough understanding of the existing landscape of solutions to resource contention in SMT

processors. This understanding can be a foundation for developing new, innovative strate-

gies to enhance SMT processors’ performance and efficiency.

3.1 Software-based approaches

These strategies work at the operating system level or above and do not require

hardware changes. They often involve scheduling algorithms that attempt to optimize the

assignment of threads to cores based on various metrics and considerations.

The study by Bulpin and Pratt (BULPIN; PRATT, 2005) harnesses the power of

performance counters to devise a symbiotic co-scheduling strategy for simultaneous mul-

tithreaded processors. While their work contributes to thread scheduling in multithreaded

environments, it fails to consider the types of instructions executed by threads and how

this diversity influences the usage of different functional units. In our proposed research,

we go beyond this standard approach by implementing an instruction-aware mapping

strategy that actively considers the instruction types of threads. This allows us to effec-

tively address and mitigate functional unit contention, resulting in a more comprehensive

solution for optimizing performance.

Fedorova et al. (FEDOROVA; SELTZER; SMITH, 2007) proposed an operating

system scheduler to ensure performance isolation. In their proposal, threads running in

parallel with similar cache miss rates get equal cache allocations. The shared cache is

allocated based on demand, so if the threads have identical needs, they will have similar

cache allocations.

The work by Tam et al. (TAM; AZIMI; STUMM, 2007b) presents a schedul-

ing scheme that organizes threads based on online-detected data-sharing patterns gleaned

through hardware performance counters. The methodology actively identifies data-sharing

ways and categorizes threads accordingly. Consequently, the scheduler aims to map

threads from the same cluster onto the same processor or processors in proximity to min-

imize remote cache accesses for shared data. However, this approach, while valuable,

is tightly intertwined with memory access patterns and data sharing without considering

the inherent variability in the types of instructions that threads execute and how these in-

structions stress different functional units. The proposed tool in our thesis advances this

premise by focusing on mapping threads based on instruction patterns, thereby addressing
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functional unit contention, a critical aspect that the method by Tam et al. (TAM; AZIMI;

STUMM, 2007b) overlooks. Our tool is intended to balance hardware utilization and

mitigate functional unit contention optimally.

Jiang et al. (JIANG et al., 2008) propose a reuse distance based on a locality

model that proactively predicts scheduled processes’ performance. The prediction is used

in runtime scheduling decisions. They employed the proposed locality model in designing

cache-contention-aware proactive scheduling that assigns processes to the cores according

to the predicted cache-contention sensitivities. However, the predictive model must be

constructed for each application through an offline profiling and learning process.

Tian et al. (TIAN; JIANG; SHEN, 2009) propose an A*-search-based algorithm

to accelerate searching for optimal schedules. They formulated optimal co-scheduling as

a tree-search problem and developed an A*-based algorithm to find the optimal schedule.

The authors reduced constraints on finding optimal scheduling by allowing threads of

different lengths. Further, they designed and evaluated two approximation algorithms,

namely A*-cluster and local-matching. The A*-cluster algorithm is a derivative of the

A*-search-based algorithm that employs online adaptive clustering. It trades accuracy

for scalability. On the other hand, the local-matching algorithm applies graph theory to

find the best schedule at a given time without any provision for the upcoming schedules.

Although optimal scheduling algorithms are costly and inefficient for practical purposes,

they can provide insights to enhance the practical scheduling algorithms and associated

complexities.

Feliu et al. (FELIU et al., 2012) first studied how cache hierarchy contention af-

fects multicore architecture performance. Afterward, Feliu et al. (FELIU et al., 2016)

present a bandwidth-aware scheduler for SMT multicores. They use Instructions Per Cy-

cle (IPC) to estimate progress and bandwidth on LLC and main memory. Their scheduler

improves the performance of SPEC CPU 2006 by up to 6.7% over the Linux scheduler.

However, the authors do not evaluate parallel applications as the NAS benchmark.

Feliu et al. (FELIU et al., 2020) propose a technique that identifies SMT-adverse

applications and schedules them in isolation on a dedicated core, reducing the resource

contention on these specific applications. Other cores will execute three applications

when it happens, which may cause additional contention. It simplifies the probabilistic

model proposed by Eyerman et al. (EYERMAN; EECKHOUT, 2010), which is infeasible

since it would require much more per-core hardware counters than the processors can de-

liver. Feliu et al. mitigate this using per-core Cycles Per Instruction (CPI) stacks available
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in International Business Machines Corporation (IBM) POWER processors. However, it

limits its applicability since most AMD and Intel processors still need this feature. Also,

they proposed strategies to schedule sequential applications, which differ significantly

from those of scheduling multiple parallel applications.

Kundan et al. (KUNDAN; ANAGNOSTOPOULOS, 2021) introduce a priority-

aware scheduling methodology optimized for single-threaded, profile-dependent applica-

tion execution on chip multicore processors. This methodology, tested on a real platform

and designed with no specific architecture dependence, demonstrates an online, oper-

ational mode to respond to the needs of running applications dynamically. It effectively

improves the performance of up to 4 applications, employing a progress-aware scheduling

mechanism that ensures resource availability without causing resource starvation for low-

priority applications. The innovative approach leverages profiling information to manage

and optimize application resource distribution.

Pi et al. (PI; ZHOU; XU, 2022) introduce Holmes, a single-threaded, profile-

dependent approach operating in a user-space environment to diagnose SMT interference

and dynamically adjust CPU scheduling to colocate jobs in multi-tenant systems effi-

ciently. Deployed on a real platform, Holmes employs an online IAM scheduler that, in-

dependently of architecture specifics, uses hardware performance events to measure SMT

interference on memory access and dynamically allocates CPU cores in response. While

Holmes and IAM strive to mitigate interference, they target different types of interference

and employ distinct mechanisms to achieve their goals.

Kundan et al. (KUNDAN et al., 2022) introduce a methodology that leverages a

multithreaded application approach to enhance multiprocessor performance, primarily by

curbing contention for shared resources such as LLC and main memory. This is achieved

via the implementation of performance-aware, contention-minimizing scheduling poli-

cies. The study uses comprehensive, fine-grained application characterization methodolo-

gies, harnessing the power of HWPCs and Cache Monitoring Technology (CMT). These

technologies aid in developing static and dynamic contention-aware scheduling policies.

These policies, which are profile-dependent, base their operational efficacy on the pre-

vailing pressure on the resources. The designed contention-aware policies are meant to

function at the software level, negating architecture dependencies, and require real-time

profile data obtained from the processors’ HWPCs and CMT to make informed scheduling

decisions. Importantly, Kundan et al.’s research employs real platforms for the execution

of the study, eschewing simulated environments, thus bolstering the credibility and appli-
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cability of their results in practical, real-world scenarios. Additionally, the study empha-

sizes an online approach, making it possible to continually adapt and respond to changing

application behavior and system conditions, further enhancing the system’s overall per-

formance.

Zhao et al. (ZHAO et al., 2023) introduce an innovative task-scheduling technique

tailored for single-threaded applications on multi-core systems. This technique is funda-

mentally profile-dependent, utilizing empirical observations as a vital input to maximize

system throughput. Operating at a higher abstraction level, it strategically assigns tasks

to cores, guided by a predictive model derived from profiling data. This online methodol-

ogy ensures real-time responsiveness and adaptability to dynamic workloads. While this

approach has no specific architectural dependence, which underscores its broad applica-

bility, it leverages cache efficiently for performance enhancement. The authors rigorously

validated their system in a simulated environment and on a real-world computing plat-

form, proving its practicality and effectiveness.

Shi et al. (SHI et al., 2023) propose Alioth, a machine learning-based performance

monitoring system designed specifically for multithreaded, multi-tenancy applications in

public cloud environments. The central problem addressed is colocation interference,

where shared resources can lead to considerable application performance degradation.

To address this, they generate a comprehensive dataset from extensive colocation ex-

periments on real platforms and train a machine-learning model to predict performance

degradation. This model, which is profile-dependent, uses denoising auto-encoders to

recover lost data, a domain adaptation neural network for transfer learning, and a SHap-

ley Additive exPlanations (SHAP) explainer to automate feature selection and enhance

interpretability. This approach differs from the IAM as it leverages machine learning

techniques instead of explicit algorithms and rules. The paper promotes an online, dy-

namic mapping strategy, consistently learning from incoming data to enhance predictions.

Although the solution primarily relies on software, it does engage low-level hardware

metrics for feature generation. Lastly, it is noteworthy that the system operates with no

architecture dependence, making it versatile across various hardware configurations.
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3.2 Hardware-based approaches

These techniques require specific hardware features or changes to the hardware

itself. They involve novel processor architectures or leverage particular hardware features,

such as new performance counters.

Snavely et al. (SNAVELY; TULLSEN, 2000) introduced a symbiotic scheduler

called Sample, Optimize, Symbios (SOS) simultaneous multithreaded processor. It iden-

tifies the characteristics of threads that are scheduled through sampling. SOS runs in two

distinct phases: the sample phase and the symbiosis phase. It gathers information about

threads running together in different schedule permutations during the sample phase. Af-

ter this sample phase, SOS picks the schedule that is predicted to be optimal and proceeds

to run this schedule in the symbiosis phase. The performance metrics of a schedule are

gathered through hardware counters. SOS employs many predictors to identify the best

schedule. One interesting result provided by Snavely et al. is that IPC alone is not a

good predictor. Threads with higher IPCs monopolize system resources which can be

detrimental to threads with lower IPCs. The limitation of this work is that it tries many

schedules during the sample phase to predict the best schedule to be executed in the sym-

biosis phase. The sample phase would be much longer for workloads of many threads

exceeding the available hardware resources. In such a scenario, threads can change their

characteristics not reflected during the symbiosis phase. Therefore, the symbiosis phase

would need to be more accurate due to the change in execution characteristics of threads

during the sample phase. A limited number of samples can be used to avoid a more ex-

tended sample phase; however, the probability of missing better schedules is increased in

this case.

Settle et al. (SETTLE et al., 2004) developed a memory monitoring tool provid-

ing statistics in simultaneous multithreaded processors. The authors used the statistics

regarding threads memory accesses to build a scheduler that minimizes capacity and con-

flict misses. L2 cache accesses are monitored for each thread to generate per-thread cache

activity vectors. These vectors indicate the sets that are accessed most of the time. The

intersection of these vectors specifies the sets likely to be conflicting. This information is

then used in scheduling decisions.

Cazorla et al. (CAZORLA et al., 2004) introduced a dynamic resource control

mechanism that uses pending L1 data misses as a classification method. The tool mon-

itors the usage of resources by each thread and tries to allocate resources, avoiding mo-
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nopolization somewhat. It classifies threads based on cache access patterns as fast and

slow. Then, it allocates the resources to these groups accordingly. They simulated it for

multiple single-thread applications and showed a possible hardware implementation of

their policy.

El-Moursy et al.’s work (EL-MOURSY et al., 2006) is an insightful contribution

to the discourse on SMT performance optimization. The authors propose a sophisticated

scheduling algorithm where threads are dispatched to processors contingent on the count

of ready instructions. This approach attempts to distribute threads undergoing incompat-

ible phases across different processors, a strategy aimed at maximizing hardware utiliza-

tion and mitigating performance degradation due to resource contention. Their method-

ology incorporates hardware performance counters to garner requisite data for evaluating

the compatibility of different thread phases. Hardware performance counters provide low-

level insights into processor activities, capturing data points like the number of executed

instructions, cache misses, branch mispredictions, and many other performance-related

statistics. Despite its innovation, the approach by El-Moursy et al. (EL-MOURSY et al.,

2006) also presents limitations that our proposed work addresses. First, it assumes an

intimate knowledge of thread phases, which might not always be accessible, especially

in dynamic, real-time applications. It requires constant monitoring and profiling of the

running threads, which can introduce considerable overhead and potentially offset any

performance gains achieved. Furthermore, their approach needs to explicitly consider the

instruction types executed by each thread and their impact on different functional units,

which is a focal point of our research.

Cruz et al. (CRUZ et al., 2016) propose an extension of the memory management

unit to improve memory accesses’ locality. The authors analyzed the memory access

behavior in hardware, providing information to the operating system to perform an online

mapping.

Akturk et al. (AKTURK; OZTURK, 2019) propose a cache-hierarchy-aware sched-

uler for multiple sequential applications, which balances the number of accesses to the L1

cache, reducing the number of evictions on shared caches which eventually limits the per-

formance. Akturk et al. work are very similar to Settle et al. (SETTLE et al., 2004); the

main differences are that Akturk considers only L1 cache while Settle correlated different

cache levels and metrics with the IPC of several applications.

Aceituno et al. (ACEITUNO et al., 2021) introduces a task model that accounts for

the interference a task can create on other tasks executing on distinct cores due to mem-
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ory contention. This model, rooted in single-threaded operations, calculates interference

independently of specific profiling data, exhibiting a profile-independent nature. Utilizing

a simulation environment, the study circumvents the constraints of hardware architecture

dependence, providing broader applicability. Their proposed online scheduling algorithm

dynamically adapts to system states, providing real-time task-core assignment solutions.

The research further delves into and compares various partitioning algorithms, suggesting

three strategies for practical task-core assignments. The primary objective is to maximize

the count of scheduled tasks and minimize total interference. Compared to the IAM tool,

Aceituno et al. (ACEITUNO et al., 2021) focus on mitigating memory contention. At the

same time, IAM strategically targets functional unit contention, emphasizing instruction-

aware management.

Chen et al. (CHEN; TSAY, 2021) present an online process scheduling algorithm

optimized for heterogeneous multi-core systems characterized by large cores and energy-

efficient small cores. As a critical differentiator, this work focuses on single-threaded,

profile-independent applications, representing a common yet challenging workload type.

The authors identify the limitations of previous heuristic-based algorithms, which primar-

ily aimed to schedule high scaling factor processes on large cores. These approaches often

need to pay more attention to the value of assigning long-running processes to such cores,

a gap the proposed algorithm seeks to fill. This methodology leads to more efficient use

of system resources, transcending the constraints of specific architectural dependencies.

This approach was evaluated using single-threaded applications from SPEC 2006, and the

testing was performed in a simulated environment, making it both versatile and broadly

applicable in various contexts.

Diavastos et al. (DIAVASTOS; CARLSON, 2022) presents a processor reliant on

architecture that aims for heightened efficiency and precision in instruction scheduling

in single-threaded applications. This approach is profile-independent, harnessing real-

time load delay tracking rather than relying on prior profiling or predetermined access

latencies. The system dynamically adapts to ongoing operations, learning from recurring

memory access delays to accurately predict instruction issue times. The results presented

in this paper are derived from a simulation model, offering a theoretical understanding of

the system’s efficacy and scalability.
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3.3 Summary of Related Work

Examining the related work as outlined in Table 3.1, we observe a broad landscape

of methodologies to optimize thread scheduling. Our proposed tool sets itself apart in this

diverse field through several distinguishing characteristics.

Table 3.1 – Comparison of IAM tool with related work.
Proposal Multithreaded application Real platform No architecture dependence Online

(SNAVELY; TULLSEN, 2000)
(SETTLE et al., 2004)
(CAZORLA et al., 2004)
(BULPIN; PRATT, 2005)
(EL-MOURSY et al., 2006)
(FEDOROVA; SELTZER; SMITH, 2007)
(TAM; AZIMI; STUMM, 2007b)
(JIANG et al., 2008)
(TIAN; JIANG; SHEN, 2009)
(EYERMAN; EECKHOUT, 2010)
(FELIU et al., 2012; FELIU et al., 2016)
(CRUZ et al., 2016)
(AKTURK; OZTURK, 2019)
(FELIU et al., 2020)
(KUNDAN; ANAGNOSTOPOULOS, 2021)
(ACEITUNO et al., 2021)
(CHEN; TSAY, 2021)
(PI; ZHOU; XU, 2022)
(KUNDAN et al., 2022)
(DIAVASTOS; CARLSON, 2022)
(ZHAO et al., 2023)
(SHI et al., 2023)

Instruction-Aware

One category of existing works, represented by Settle et al. (SETTLE et al., 2004),

Cazorla et al. (CAZORLA et al., 2004), and El-Moursy et al. (EL-MOURSY et al., 2006),

centers on co-scheduling strategies for multiple sequential applications. The common

drawback here is the necessity for hardware modifications, often impractical or costly.

Our tool, however, avoids this limitation, offering a software-driven approach that does

not require such changes.

Akturk et al. (AKTURK; OZTURK, 2019) put forth methods for calculating inter-

thread contention using specific metrics unavailable in most contemporary processors.

The primary focus of their mechanisms lies on inter-thread cache contention, serving

memory-bound applications effectively. Nevertheless, the same approach can yield sub-

optimal outcomes when faced with applications involving heavy usage of floating-point

and integer units. Our methodology addresses this shortfall by considering a more com-

prehensive array of factors in the scheduling process.

Work by Tam et al. (TAM; AZIMI; STUMM, 2007b) and Cruz et al. (CRUZ et

al., 2016) delved into the realm of parallel applications. While valuable, these solutions
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present limitations. Cruz et al.’s method calls for hardware modifications for its imple-

mentation. Tam et al.’s solution is architecture-specific, potentially hampering its perfor-

mance across different architectures. In contrast, our tool demonstrates its versatility as a

hardware-agnostic solution, requiring only a single hardware counter, thus enhancing its

broad adaptability.

Feliu et al.’s work (FELIU et al., 2020) utilized a simplified version of Eyerman

et al. (EYERMAN; EECKHOUT, 2010)’s probabilistic model. Unfortunately, requiring

more per-core hardware counters than processors can supply makes this approach unsuit-

able in practical settings. Furthermore, their mitigation strategy’s reliance on per-core

CPI stacks, exclusive to IBM POWER processors, curtails its applicability to other popu-

lar architectures like AMD and Intel.

Kundan et al. (KUNDAN; ANAGNOSTOPOULOS, 2021) proposed a priority-

based scheduling strategy. Although insightful, it may overlook certain resource con-

tention types. Aceituno et al. (ACEITUNO et al., 2021) offered a hardware-implemented

solution, yielding effective results but requiring hardware modifications that could be pro-

hibitive.

Chen et al. (CHEN; TSAY, 2021) developed a performance prediction model that,

while robust, demands an exhaustive offline profiling stage and may struggle with gener-

alizing to new workloads. Pi et al. (PI; ZHOU; XU, 2022) used reinforcement learning for

thread scheduling in a different approach. Although promising, the method’s considerable

training time, computational overhead, and potential sensitivity to changing workloads

pose challenges.

Several recent solutions, including those by Kundan et al., (KUNDAN et al.,

2022), Diavastos et al. (DIAVASTOS; CARLSON, 2022), and Zhao et al. (ZHAO et al.,

2023), deploy hardware features to estimate resource contention. Despite their potential,

these methods presuppose the availability of specific hardware counters that may not be

universally present across processor types.

The work of Shi et al. (SHI et al., 2023) ventured into AI, employing machine

learning techniques to enhance scheduling decisions. The promise of Artificial Intel-

ligence (AI) in this context is considerable. However, the requirement for large-scale

training data and the model’s black-box nature, which might complicate troubleshooting,

can present practical limitations.

While many existing proposals predominantly focus on single-thread multipro-

gram workloads (AKTURK; OZTURK, 2019; CAZORLA et al., 2004; EL-MOURSY
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et al., 2006; FELIU et al., 2020; JIANG et al., 2008; SETTLE et al., 2004; KUN-

DAN; ANAGNOSTOPOULOS, 2021; ACEITUNO et al., 2021; CHEN; TSAY, 2021;

PI; ZHOU; XU, 2022; KUNDAN et al., 2022; DIAVASTOS; CARLSON, 2022; ZHAO

et al., 2023), our research concentrates on parallel applications, a category more relevant

in the context of cloud providers and data centers.

Numerous proposed mechanisms lean heavily on memory information or call for

hardware modifications (AKTURK; OZTURK, 2019; CAZORLA et al., 2004; SETTLE

et al., 2004; CRUZ et al., 2016; EL-MOURSY et al., 2006; ACEITUNO et al., 2021;

KUNDAN et al., 2022; DIAVASTOS; CARLSON, 2022; ZHAO et al., 2023). Such

requirements may not always be practical or feasible. Our tool offers a comprehensive

strategy to mitigate performance degradation from shared functional units when running

parallel applications.

Several solutions are reliant on specific architectures (FELIU et al., 2020; TAM;

AZIMI; STUMM, 2007b; ACEITUNO et al., 2021; KUNDAN et al., 2022; DIAVAS-

TOS; CARLSON, 2022). In sharp contrast, our instruction-aware tool collects data from

hardware counters commonly available across a multitude of architectures, thereby max-

imizing its versatility and real-world applicability.
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4 METHODOLOGY FOR THREAD MAPPING IN SMT PROCESSORS

This chapter delves into the performance implications of sharing diverse resources

on SMT processors. The overarching objective is to elucidate how resource sharing and

contention can significantly impact overall performance and to present compelling rea-

sons for strategic thread mapping to mitigate such issues.

Following the analysis of functional unit contention, we focus on a specialized

microbenchmark we developed. This microbenchmark is specifically designed to stress

distinct processor functional units. By using this tool, we can demonstrate that the type of

operations performed by each thread has a profound influence on both performance and

contention levels. It offers insight into functional unit utilization and contention dynamics

in an SMT context.

Subsequently, we present compelling evidence to illustrate that mapping threads

which utilize the same resources on a single core can lead to significant contention. Such

contention can effectively diminish performance, potentially negating the benefits offered

by SMT. However, we further argue that intelligent mapping strategies can mitigate these

performance issues.

This chapter underlines the importance of resource-conscious thread mapping on

SMT processors by revealing the intrinsic connection between the type of operations ex-

ecuted by threads, resource sharing, and the resulting contention. Furthermore, it demon-

strates the potential performance gains that can be achieved by effectively managing func-

tional unit contention.

4.1 Experimental Design

This section elucidates the experimental methodology employed to gauge the per-

formance impact of functional unit contention and the effectiveness of our proposed mit-

igation tool.

For the workloads, we utilized SMT-Bench, the Open Multi-Processing (OpenMP)

implementation of the NPB version 3.4 (BAILEY, 2011) and the SPEC OpenMP 2012

benchmark (MÜLLER et al., 2012). These workloads offer diverse computational pro-

files, allowing us to explore the performance implications under various scenarios.

In addition to the performance metrics derived from the workloads, we delved

deeper into processor behavior by gathering data from hardware counters. This was
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achieved using PAPI (TERPSTRA et al., 2010), a powerful tool that provides access to

many processor hardware counters.

The experimental evaluations were performed on two distinct machines. Firstly,

the chiclet machine, a part of the Grid’5000 cluster, was utilized. Each node of this

machine is outfitted with two AMD EPYC 7301 processors. Each processor houses 16

physical cores, allowing running 32 threads concurrently when employing simultaneous

multithreading (TULLSEN; EGGERS; LEVY, 1995). This machine operates under the

Linux kernel, version 4.19. Secondly, the phoenix machine from the GPPD cluster was

also employed for experiments. Each node of this machine is equipped with 2 x Intel

Xeon Gold 5317, which provides 12 cores per processor. This translates to a potential

of executing 48 threads simultaneously when utilizing Hyper-threading technology. This

machine operates under the Linux kernel, version 5.10. More detailed specifications are

included in Table4.1.

Table 4.1 – Execution Environment

Parameter AMD Intel

Microarchitecture Zen Ice Lake
Processor 2 × AMD EPYC 7301 2 × Intel Xeon Gold 5317

2 × 16 cores 2 × 12 cores
2-SMT cores, 64 threads 2-SMT cores, 48 threads

Caches/processor 16 × 32 KByte L1 12 × 48 KByte L1
16 × 512 KByte L2 12 × 1280 KByte L2
64 MByte L3 18 MByte L3

Memory 128 GByte DDR4 128 GByte DDR4
Environment Linux 4.19 Linux 5.10

GNU C Compiler 9.1.0 GNU C Compiler 10.2.1

We always execute two applications for the experiments, each with one thread per

core. As the applications have different execution times, we use as a metric the weighted

speedup calculated as in Equation 4.1, where N is the number of applications and baseline

is the Linux scheduler. We also use the restart when the policy is finished by restarting

the fastest application until the slowest one has finished. We restrict ourselves to two

applications since the processor is 2-SMT. However, our tool is generic and could be

evaluated with many applications and threads per core.

N∑
i=1

ExecutionT imei,Baseline

ExecutionT imei,Comparison

(4.1)

The experimental results were obtained through the geometric mean of 30 ran-

dom executions with exclusive access to the machine. The results compare the weighted
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speedup obtained with our tool to the ones obtained with the Linux scheduler and a

Round-robin mapping. The baseline for the weighted speedup calculation is the Linux

scheduler, which will always have a speedup of 2, despite the number of running applica-

tions by two.

We compare the performance of our proposed tool with three existing thread map-

ping methodologies: the Linux Completely Fair Scheduler (CFS), a Round-Robin (RR)

mapping technique, and a random mapping strategy. These established methods, tested on

AMD and Intel processors, provide a robust comparison platform owing to their distinct

approaches to managing threads and CPU resources.

The CFS is the default scheduling policy used by the Linux kernel (PABLA, 2009).

The underlying principle of CFS is the equitable distribution of CPU resources among all

active threads. This means that a solitary process running on a system will have full access

to the processor’s computational capacity, thus utilizing 100% of the available processing

power. Conversely, if two processes run simultaneously, CFS ensures that each process

receives precisely half, or 50%, of the processor’s physical power. While this strategy

ensures fairness among the tasks being executed on the system, it does not consider other

influential factors like the distinct instruction patterns of different workloads. In con-

trast, our proposed tool incorporates this crucial workload characteristic into scheduling

decisions.

The RR mapping, on the other hand, adopts a straightforward approach to dis-

tribute threads across cores in a circular order starting from the 0th core to the (number of

virtual cores - 1). Notably, in a scenario with two applications, the RR mapping strategy

places threads belonging to the same application onto the same core. This characteristic

of RR mapping presents a stark contrast to our proposed tool, which aims to minimize

contention by strategically distributing threads that stress different functional units across

cores.

Random mapping presents an unstructured approach to thread placement, where

threads are randomly assigned to cores. This strategy allocates threads to any available

core without considering specific workloads or hardware characteristics. While this ap-

proach may sometimes result in efficient allocation due to pure chance, it generally lacks

consistency and predictability in performance. There is no guarantee that threads execut-

ing similar instructions will not contend for the same core resources, which can lead to

severe performance degradation.
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4.1.1 SMT-Bench

The increasingly popular SMT processors have sparked a new wave of interest in

their unique ability to share functional units and caches between threads executing on the

same core. Although this shared utility remains concealed from software-level applica-

tions, the underlying hardware resources are limited. When multiple threads vie for the

same functional unit, the processor’s hardware scheduler is tasked with deciding which

thread’s instructions should be issued and which should be held back. To unravel and

comprehend the intricacies and implications of resource sharing on SMT processors, we

have introduced SMT-Bench, a meticulously assembled kernel designed to exert specific

pressure on different hardware units. The complete source code and the details of SMT-

Bench can be accessed at <https://gitlab.com/msserpa/SMT-bench>.

SMT-Bench harnesses the power of the PAPI (JOHNSON et al., 2012; TERP-

STRA et al., 2010; WEAVER et al., 2012). PAPI is an instrumental tool that facilitates

access to an array of processor hardware counters, which are invaluable for detailed per-

formance analysis. Some of these kernels draw inspiration from the microbenchmarks

proposed by Alves et al. (ALVES et al., 2015).

SMT-Bench is designed to operate with both software and hardware-implemented

mapping policies. These policies aim to alleviate the potential negative impact of resource

sharing, thereby boosting application-level and overall system performance. Achiev-

ing these performance gains requires a critical understanding of the effects of executing

threads comprising similar instructions under various conditions. However, garnering this

insight from existing benchmarks or real-world applications poses a formidable challenge

due to their diverse instruction issues, which exert variable pressure on different functional

units during runtime. This is where our approach, which employs precise measurements

using bespoke microbenchmarks, shines.

SMT-Bench offers a unique solution to the intrinsic complexities of gauging the

effects of threads issuing similar instructions under various conditions. It provides a plat-

form to scrutinize these instruction patterns in isolation, allowing us to discern their per-

formance implications under different mapping strategies. SMT-Bench, therefore, offers

an unprecedented insight into the impact of varying thread behaviors on hardware re-

source contention and overall performance.

As shown in Figure 4.1, SMT-Bench comprises eight kernels, each designed to

represent a different functional unit in an SMT processor. The y-axis in the figure illus-

https://gitlab.com/msserpa/SMT-bench
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Figure 4.1 – Instruction distribution for different applications.

trates the instruction distribution of each kernel. At the same time, the x-axis denotes the

kernels themselves. The stacked bars within the figure visually depict the distribution of

different instruction types.

The kernels include int-add, int-div, and int-mul, which are tai-

lored to stress the integer units. For both floating-point and integer kernels, the iterations

loop was unrolled four times to enhance the stress levels. The load kernel implements a

loop that traverses a linked list, waiting for each load to complete before starting the next,

thereby stressing both the load and store units.

The kernels are designed to simulate various application conditions, ranging from

compute-intensive tasks to memory-bound workloads. Therefore, they enable a com-

prehensive analysis of SMT processor performance under multiple types of applications.

Furthermore, they offer a benchmark for analyzing the effectiveness of tools like IAM for

mitigating the contention of functional units.

For instance, the branch kernel combines if-else, and switches construct to gen-

erate branch behavior. Figure 4.1 shows that it issues a balanced mix of instructions, with

a large proportion of branch instructions (26.8%) and load instructions (45.1%), along

with a substantial number of store instructions (16.9%) and integer instructions (11.3%).

Notably, this kernel does not involve any floating-point operations.

In contrast, the fp-add, fp-div, and fp-mul kernels heavily stress the floating-

point units by executing 32 independent operations inside a loop. These kernels issue min-

imal memory operations, control hazards, and data dependencies, achieving a throughput

that approaches the ideal scenario. Each of these kernels contains a high proportion of

floating-point instructions (84.2%) and a minor fraction of branch (2.6%), load (10.5%),

and store instructions (2.6%). Importantly, they do not execute any integer operations.
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The int-div, int-add and int-mul applications, on the other hand, fo-

cus primarily on integer operations. They comprise a small count of branch instructions

(1.0% of total instructions) but a substantial proportion of load (35.6%), store (32.7%),

and integer instructions (30.7%). These applications do not involve any floating-point

instructions.

Lastly, the load application is highly memory-bound, with a significant percent-

age of load instructions (66.1%) and store instructions (32.3%). It has a lower rate of

branch instructions (1.6%) and does not execute integer or floating-point instructions.

With this diverse suite of kernels, SMT-Bench provides a comprehensive bench-

mark for evaluating the performance of SMT processors under different workloads. This

includes compute-intensive and memory-bound tasks, offering a broad perspective on

performance characteristics. It allows us to analyze and understand the effectiveness of

different strategies, such as the IAM tool, in mitigating contention for functional units in

SMT processors.

4.1.2 NAS Parallel Benchmarks

The NPB is a collection of programs designed to help evaluate the performance

of parallel supercomputers. They are derived from Computational Fluid Dynamics (CFD)

applications and consist of five "kernel" benchmarks and three "pseudo-application" bench-

marks. Here, we provide a detailed breakdown of each benchmark, which we used to

stress test our solution for mitigating functional unit contention. Please refer to Table

4.2 for a comprehensive overview of the NPB, including their names, acronyms, and the

language in which they were written.

• CG (Conjugate Gradient): The Conjugate Gradient benchmark uses a conjugate

gradient method to approximate the smallest eigenvalue of a defined, large and

sparse symmetric matrix. This benchmark is an excellent test for irregular memory

access patterns and long-distance communication between threads, especially those

employing matrix multiplication by a structureless vector. It reflects real-world

scenarios where data is sparse and irregularly distributed.

• EP (Embarrassingly Parallel): The Embarrassingly Parallel benchmark tackles

the problem of generating pairs of Gaussian distributions and tabulating their val-

ues in successive annuli squares. It is unique among the NPB benchmarks, as it
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has virtually no inter-thread communication, focusing exclusively on stressing the

performance of floating-point operations. EP presents the perfect conditions for

benchmarking parallel computation without communication overhead.

• FT (Fourier Transform): The Fourier Transform benchmark solves the problem

of three-dimensional Fourier transformation in a parallel manner using the Fast

Fourier Transform (FFT) algorithm. This benchmark rigorously tests high-distance

communication, mainly exhibiting an all-to-all core communication pattern. This

is crucial in evaluating the performance and efficiency of parallel algorithms that

involve extensive data exchange, such as FFT.

• IS (Integer Sort): The Integer Sort benchmark leverages the Bucket Sort algorithm

to sort a vector of integer numbers. It poses random memory access challenges

and tests integer operations performance and communication. Thus, it reflects the

demands of algorithms that require heavy integer computation and data exchange.

• MG (Multigrid): The Multigrid benchmark solves a simplified multigrid calcula-

tion problem, testing short- and long-distance communications. MG requires highly

structured long-distance communication, making it valuable in understanding the

performance of parallel algorithms with hierarchical or grid-like data structures.

• UA (Unstructured Adaptive Mesh): The Unstructured Adaptive Mesh benchmark

is designed to solve a problem of heat transfer in a cubic domain, discretized us-

ing an unstructured adaptive mesh. This benchmark showcases the adaptability and

performance of parallel computing resources in handling unstructured and dynam-

ically changing computational tasks.

• BT (Block Tridiagonal): The benchmark solves a synthetic CFD problem with

multiple 5x5 tridiagonal block equation systems with non-dominant diagonals. It

represents a more constrained parallelism scenario than other CFD applications

(like LU and SP), which makes it beneficial in testing the system’s performance

under limited parallelism conditions.

• LU (Lower Upper Gauss-Seidel Solver): The Lower Upper Gauss-Seidel Solver

benchmark solves a synthetic CFD problem using a sparse triangular linear equa-

tions system with 5x5 blocks. LU involves global data dependencies and involves

several short communications. The LU benchmark is a good proxy for real-world

CFD applications that involve intricate data dependencies and demand efficient

communication.
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• SP (Scalar Pentadiagonal): The Scalar Pentadiagonal benchmark solves systems

of pentadiagonal scalar equations with non-dominant diagonals. Like LU, SP in-

volves global data dependencies but contrasts with sporadic and more prolonged

communications. It tests the performance of parallel computing systems in manag-

ing complex data dependencies and varied communication patterns.

Table 4.2 – Overview of the OpenMP version of the NPB.

Acronym Name Language

BT Block Tri-diagonal solver Fortran
CG Conjugate Gradient Fortran
EP Embarrassingly Parallel Fortran
FT Discrete 3D fast Fourier Transform Fortran
IS Integer Sort C
LU Lower-Upper Gauss-Seidel solver Fortran
MG Multigrid on a sequence of meshes Fortran
SP Scalar Penta-diagonal solver Fortran
UA Unstructured Adaptive mesh Fortran

4.1.3 SPEC OMP 2012 Benchmark

The Standard Performance Evaluation Corporation’s (SPEC) OMP2012 suite is an

industry-standard collection of benchmarks designed to assess the performance of paral-

lel computing systems using OpenMP, an API supporting multi-platform shared-memory

parallel programming in C, C++, and Fortran. Here, we provide a detailed breakdown

of each benchmark, which we used to evaluate our solution for mitigating functional unit

contention. For further details on the SPEC OMP®2012 benchmarks, including their

identifiers, names, and the programming language used, please consult Table 4.3.

• 350.md (Molecular Dynamics): This benchmark simulates molecular dynamics,

which model particles’ complex interactions and movements under various physi-

cal forces. It is a comprehensive test of a system’s ability to handle computationally

intensive floating-point operations and manage memory access efficiently. By mim-

icking the realistic dynamics of molecular systems, this benchmark offers a solid

evaluation platform for modern systems focusing on scientific and engineering ap-

plications.

• 351.bwaves (Blast Wave Simulation): This benchmark models the propagation of

blast waves in a turbulent medium. It not only stresses the floating-point computa-



63

tional performance of the processor but also presents a considerable challenge to the

cache and memory subsystems. The accuracy and speed of such simulations can be

critical in various research and industry applications, including defense, aerospace,

and energy production.

• 352.nab (Nucleic Acid Builder): This benchmark employs the Nucleic Acid Builder

(NAB) to emulate the behavior of complex molecules. It provides valuable insights

into the system’s performance when running sophisticated molecular dynamics ap-

plications, which are fundamental in pharmaceuticals, bioinformatics, and materials

science.

• 357.bt331 (Block Tri-diagonal solver): Derived from the NAS Parallel Bench-

marks, this benchmark resolves fluid dynamics problems using block tridiagonal

systems. It comprehensively tests a system’s ability to perform floating-point oper-

ations and manage memory access effectively. It demonstrates its potential perfor-

mance in simulations crucial for aeronautical, automotive, and climate research.

• 358.botsalgn (Multiple Sequence Alignment): Part of the Barcelona OpenMP

Tasks Suite (BOTS), this benchmark features a collection of kernels and applica-

tions emphasizing different aspects of task parallelism. Specifically, it includes an

alignment kernel for multiple sequence alignment, an important problem in com-

putational biology.

• 359.botsspar (Sparse Matrix Operation): Also part of the BOTS, this benchmark

focuses on sparse matrix operations, thereby testing the system’s performance when

dealing with irregular memory access patterns. Sparse matrix computations are

commonplace in various scientific, engineering, and information retrieval applica-

tions.

• 360.ilbdc (Incompressible Lattice-Boltzmann Method): This benchmark simu-

lates an incompressible fluid flow around a cylinder using the lattice-Boltzmann

method. It puts the processor’s floating-point computation capabilities to the test,

along with the efficiency of memory subsystems, demonstrating the system’s ability

to run computationally intensive physical simulations.

• 362.fma3d (3D Structure Response Simulation): This benchmark simulates the

response of a 3D structure subject to a dynamic load, providing a rigorous as-

sessment of the system’s floating-point operations and memory access capabilities.

Such simulations are integral to various areas, including civil engineering, mechan-

ical design, and seismic research.
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• 363.swim (Shallow-Water Equations Solver): This benchmark, part of the NAS

Parallel Benchmarks suite, solves a system of shallow-water equations, stressing

the system’s floating-point computational capabilities. The performance on this

benchmark can indicate the system’s ability to handle computational fluid dynam-

ics simulations, which is crucial for meteorological modeling and environmental

studies.

• 367.imagick (Image Manipulation): This benchmark utilizes the ImageMagick

software suite to create, edit, and compose bitmap images. It assesses the system’s

ability to handle memory-intensive operations, testing its overall performance and

efficiency in image-processing tasks. This is a proxy for graphic-intensive applica-

tions, including digital media processing, machine learning, and computer vision.

• 370.mgrid331 (Multigrid): Derived from the NAS Parallel Benchmarks, this bench-

mark tackles elliptic partial differential equations using a multigrid method. It

presents an excellent platform to test the system’s capability for floating-point com-

putation and efficient memory access, which is fundamental for mathematical physics,

climate modeling, and image processing applications.

• 371.applu331 (Lower Upper Gauss-Seidel Solver): This benchmark, part of the

NAS Parallel Benchmarks suite, solves partial differential equations using a fac-

torization method. It provides an exhaustive evaluation of the system’s capability

to perform floating-point operations and handle memory access efficiently. Its per-

formance is crucial for numerical simulations in fluid dynamics, heat transfer, and

electromagnetics.

• 372.smithwa (Smith-Waterman Algorithm): This benchmark models the Smith-

Waterman algorithm, a widely used method for identifying similar regions between

two nucleotide or protein sequences. It challenges the system’s performance in in-

teger operations and irregular memory access, demonstrating its potential in bioin-

formatics applications, such as sequence alignment and genomic data analysis.

• 376.kdtree (Nearest-Neighbor Search using KD-Trees): This benchmark imple-

ments a nearest-neighbor search using KD-Trees, a data structure for organizing

points in a k-dimensional space. It is a valuable test for the system’s ability to handle

memory-intensive operations and efficient integer operations, which are paramount

for computer graphics, machine learning, and spatial database systems applications.
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Our study did not include the SPEC benchmarks md, bt331, mgrid331, and ap-

plu331. We faced issues in successfully compiling md, which rendered it unusable for

this analysis. As for bt331, mgrid331, and applu331, they were excluded because they

are the same as the NPB benchmarks BT, MG, and LU, respectively, which we have al-

ready analyzed. Our goal was to evaluate a diverse set of benchmarks, so including these

would have introduced unnecessary redundancy into our analysis. Additionally, we de-

cided to exclude ilbdc from our analysis. This decision was made due to the excessively

long running times observed for ilbdc, even when using small input sizes. The extended

execution duration of this benchmark was significantly longer compared to all the other

benchmarks used in our study, and it would have disproportionately skewed our perfor-

mance results and analysis. We intended to perform a balanced and comparative study

across various benchmarks, which made excluding ilbdc necessary.

Table 4.3 – Overview of the OpenMP version of the SPEC OMP 2012 Benchmarks.

Acronym Name Language

350.md Molecular Dynamics Fortran
351.bwaves Blast Wave Simulation Fortran
352.nab Nucleic Acid Builder C
357.bt331 Fluid Dynamics Solver Fortran
358.botsalgn Multiple Sequence Alignment (BOTS) C
359.botsspar Sparse Matrix Operation (BOTS) C
360.ilbdc Incompressible Lattice-Boltzmann Method C
362.fma3d 3D Structure Response Simulation Fortran
363.swim Shallow-Water Equations Solver Fortran
367.imagick Image Manipulation C
370.mgrid331 Elliptic PDE Solver Fortran
371.applu331 PDE Solver using ADI Fortran
372.smithwa Smith-Waterman Algorithm C
376.kdtree Nearest-Neighbor Search using KD-Trees C

4.2 Performance Degradation Analysis

We leverage the SMT-Bench through diverse mapping scenarios to comprehen-

sively understand the performance degradation. The contention of different functional

units and their significant influence on application performance can be better illustrated

with the three potential mapping scenarios on SMT-based processors like the AMD Zen

architecture as represented in Figure 4.2:
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(b) Two threads are competing for the same functional units.
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(c) Two threads using different functional units.
Figure 4.2 – Different co-running scenarios analyzed.

Scenario A (Isolated Execution): As depicted in Figure 4.2a, in this scenario,

a single thread is allocated to run on each core. This case eliminates the potential for

interference from co-running threads, rendering all functional units in a core fully ac-

cessible for the lone thread. Despite its advantages in unrestricted access to resources,

this scenario always operates with half the number of threads compared to the other two

scenarios, thus significantly reducing the total system throughput.

Scenario B (Identical Instruction Type Execution): In contrast to Scenario A,

two threads are scheduled to run on the same core in Scenario B, as shown in Figure 4.2b.

Both threads execute the exact instructions, stressing the same functional units. This leads

to direct contention for the same resources, which could influence the performance of both

threads.

Scenario C (Diverse Instruction Type Execution): Similar to Scenario B, Sce-

nario C allocates two threads on the same core. However, unlike Scenario B, each thread
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in Scenario C executes different types of instructions, implying that they stress other func-

tional units as displayed in Figure 4.2c.

In understanding the effects of resource contention on different functional units

when SMT is enabled, as discussed previously in the introduction, although Scenario B

always lags behind Scenario A, it accomplishes double the computation. Interestingly,

despite Scenario C running twice the number of threads as Scenario A, the execution

time remains strikingly similar. Ultimately, Scenario C emerged as the most optimal

scenario, where different applications stressing different units are allocated on the same

core, effectively boosting throughput while maintaining a comparable execution time to a

solitary thread executing per core.

Therefore, our research and analysis suggest that an optimal thread to core map-

ping strategy should be as close as possible to Scenario C. Such a strategy can substan-

tially mitigate functional unit contention, ultimately improving the performance of com-

puting applications.

4.3 Final Remarks

This chapter has comprehensively examined application performance degradation

factors and introduced a microbenchmark tool for evaluating different thread-to-core map-

ping scenarios in the context of SMT-based processors. The importance of understanding

the role of functional unit contention and its impact on performance has been thoroughly

discussed, emphasizing the critical need to devise optimal mapping strategies to minimize

functional unit contention.

The evaluation and analysis demonstrated that performance degradation is signif-

icantly affected by the type of operations performed by threads on a core. For instance,

the performance degradation was up to 120% when the same kind of instructions was

executed in parallel by multiple threads on the same core (Scenario B). In contrast, neg-

ligible degradation occurred when different instructions were run in parallel on the same

core (Scenario C). The single-threaded per-core execution (Scenario A) presented ideal

per-thread performance but at the cost of severely reduced total system throughput.

Scenario C, characterized by the parallel execution of different types of instruc-

tions on the same core, was the most efficient thread-to-core mapping strategy. It effec-

tively utilized the entire computational power on offer, demonstrating a near-zero per-
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thread performance loss while running twice the number of threads compared to Scenario

A.

Based on these observations, it is evident that exploiting parallelism through effi-

cient thread-to-core mapping is paramount in SMT-based processors or any multithreaded

cores. Therefore, we advocate for an approach similar to Scenario C to mitigate functional

unit contention and improve performance.

The insights gleaned from this chapter will significantly contribute to the follow-

ing stages of this research, which include the development of dynamic mapping strategies

to adapt to workload changes during runtime and the designing performance prediction

models for thread-to-core mapping. We aim to continue striving towards improved per-

formance, and this study constitutes a substantial step in that direction.
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5 IAM - INSTRUCTION-AWARE MAPPING

5.1 Proposed Mechanism

Our proposed tool for online mapping operates in five steps, as depicted in Fig-

ure 5.1. The process is initiated with the application’s execution. As the application starts

running, the tool begins by gathering information about the machine’s current topology.

This includes the number of available cores, their arrangement, and the level of SMT each

core supports, among other architectural details.

Figure 5.1 – Steps used to perform the online mapping.

In the third step, the tool leverages the hardware counters provided by the PAPI to

detect the instruction patterns of the applications. This detection process enables the tool

to discern the types of instructions each thread is issuing, which is crucial in optimizing

thread-to-core mapping.

Following the instruction pattern detection, the tool calculates the optimal thread

mapping. This calculation considers the machine’s topology and the previously detected

instruction patterns. The goal here is to minimize functional unit contention by intel-

ligently assigning threads to cores in a manner that accounts for the specific types of

instructions that the threads are executing.

As the application continues its execution, the tool implements the calculated

thread-to-core mapping. This mapping step ensures that each thread runs on the core

that has been determined to be optimal for its specific instruction type.

From the third step onwards, this entire process is repeated online, allowing the

tool to adapt to changes in the application’s behavior or the system’s state. The loop

continues until the application’s execution completes.
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5.2 Implementing the tool

The implementation of our tool is enabled by preloading its library along with the

application binary using the LD_PRELOAD mechanism (CIESLAK, 2015). This allows

our tool to integrate smoothly with the application without requiring any modifications to

the application’s source code. With this non-intrusive approach, our tool can optimize the

performance of a wide range of applications fully automated and transparently. Next, we

detail the steps mentioned above.

5.2.1 Gathering Machine Topology Information

After initializing the application’s execution, our next objective is to accurately

perceive the topology of the machine on which our application runs. This is a nontrivial

task that relies on understanding the particularities of the underlying architecture, taking

into account its many components, such as the total number of processors, individual cores

per processor, and the degree of SMT supported by each core. An essential consideration

in this process is identifying and characterizing the system’s hierarchical organization, the

memory topology, and the shared resources across the system’s processing units.

To achieve this, we leveraged the capabilities of the Hardware Locality (hwloc)

software project (BROQUEDIS et al., 2010). Hwloc is an effective tool for collecting

comprehensive topology-related information about the system. The data it gathers in-

cludes, but is not limited to, information on Non-uniform memory access (NUMA) mem-

ory nodes, sockets, shared caches, individual processing cores, and SMT threads. The

power of hwloc lies in its ability to map the hierarchical architecture of the system and

retrieve essential details regarding its structure. This provides a solid foundation for more

informed scheduling and resource allocation decisions. This mapping also allows our tool

to understand the topology’s granularity, helping in the efficient and optimal mapping of

threads to cores.

The hwloc tool also offers an additional advantage. It provides an interface for

traversing the topology tree, which facilitates our tool’s task of mapping threads to the

resources in a systematic manner. With the help of this tool, we can identify potential

bottlenecks, such as memory node contention, cache misses, or the overuse of a particular

functional unit, and optimize our thread scheduling accordingly.
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Following the successful detection of the machine’s topology, our tool employs

this data to efficiently distribute the threads across the system resources, considering the

intricacies of the architecture.

5.2.2 Detecting the Instruction Pattern

As established in Chapter 4, within an SMT processor, threads mapped to the same

physical core naturally compete for the core’s resources. The severity of this competition

is particularly accentuated when the threads in contention execute similar types of instruc-

tions that place demands on the same functional unit, thereby causing an intensification

in resource contention.

To alleviate this issue, our tool prioritizes detecting the types of instructions each

thread executes. This insight allows our tool to enhance system performance by actively

directing threads likely to stress the same functional unit toward different cores. There-

fore, resource contention is reduced via intelligent thread distribution guided by the in-

struction types detected.

In the third step of our tool, we concentrate on detecting the instruction pattern of

each running application. For this purpose, we use the PAPI (JOHNSON et al., 2012).

PAPI is a versatile tool that provides an interface to numerous processor hardware coun-

ters, including but not limited to the number of executed instructions.

PAPI can segregate instructions into distinct categories: branch, floating-point,

integer, and load and store instructions. The specific events measured by PAPI are exten-

sively listed in Table 5.1.

Table 5.1 – PAPI Events measured.

Papi event Description

PAPI_BR_INS Branch instructions
PAPI_FP_INS Floating point instructions
PAPI_INT_INS Integer instructions
PAPI_LD_INS Load instructions
PAPI_SR_INS Store instructions
PAPI_TOT_INS Total instructions completed

Detecting instruction patterns in our IAM tool is not a singular event but a contin-

uous monitoring activity every second. This frequency was carefully chosen, considering

the balance between the precision of instruction detection and the potential for increased
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computational overhead, as might be seen with more granular intervals facilitated by cer-

tain hardware counters or the PAPI. By opting for a one-second frequency, our tool can

swiftly and efficiently identify changes in application phases or behavior patterns with-

out unnecessarily increasing CPU utilization for the monitoring process, thus potentially

interfering with the applications under observation. Upon detecting a change, the IAM

tool immediately responds with a two-step adaptive process, verifying the change and im-

plementing an optimization strategy tailored to the newly identified application behavior.

The decision to use a one-second monitoring frequency in our IAM tool was guided by

carefully considering the trade-off between accuracy and computational overhead. Hard-

ware counters and the PAPI library offer the capability for exact, granular monitoring.

However, invoking these counters at high frequencies can lead to significant computa-

tional overhead, as the system needs to spend more CPU cycles on monitoring activity.

This can potentially interfere with the observed applications, negatively impacting their

performance and the overall system throughput. This monitoring frequency also ensures

scalability, accommodating potential future incorporation of more complex features and

additional performance counters while maintaining efficiency and responsiveness.

We continuously monitor instruction patterns and ensure our tool attains dynamic

workload behavior. This allows it to adjust thread mapping decisions in response to phase

changes in the applications’ execution, mitigating resource contention and enhancing the

overall system performance.

5.2.3 Calculating the Mapping

To evenly distribute the computational load across the cores and functional units,

we developed a mapping algorithm that uses the instruction pattern data gathered in step

3. This algorithm is designed to respond to the different types of instructions the threads

execute. As highlighted in Chapter 4 and further substantiated by Scenario C (distributing

threads that stress distinct types of functional units), our tool to load balancing is rooted

in the principles of Gauss sum theory. This theory is utilized to balance the number of the

same type of instructions from each thread running on a core, ensuring that the total sum

of a given instruction type is almost identical across all cores.

While the experimental data presented in this thesis underscores the relevance of

floating-point instructions, it is crucial to assert that our algorithm retains an apprecia-

ble degree of versatility, facilitating its adaptability to diverse instruction types. We have
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observed through our assessments that benchmarks, such as the NPB, primarily consist

of floating-point instructions. Our analysis demonstrated that floating-point and integer

instructions represent a significant portion of these benchmark instruction sets. Never-

theless, our tool is engineered to retain its adaptability. The tool can dynamically shift

its focus to integer instructions in scenarios where floating-point instructions are scant or

absent. This inherent adaptability of our algorithm caters to the diverse and dynamic char-

acter of computational workloads, thus enhancing the overall efficacy of our Instruction-

Aware Mapping (IAM) tool. This essential ability to adapt based on instruction charac-

teristics is critical to achieving optimal performance across various applications.

Figure 5.2 – IAM Mapping Calculation

As demonstrated in Figure 5.2, the inputs to our algorithm include a data struc-

ture that encapsulates the machine’s topology and an array that denotes the quantity of

floating-point instructions executed by each thread in every application. The algorithm

commences by sorting the threads based on the volume of selected instruction types.

It then proceeds to map threads to the same core following a mirrored placement pat-

tern—(0, n), (1, n-1), (2, n-2), etc., until all threads have been assigned to a core.

In the algorithm’s initial loop iterations, the primary focus is on the initial schedul-

ing of threads across different cores. This phase effectively mitigates potential interfer-

ence from co-runners and suppresses the likelihood of resource contention. If any threads

remain to be scheduled after this stage, they are addressed in the subsequent while loop.

The objective is strategically mapping these residual threads to minimize interference and

mitigate contention.

The design of our algorithm promotes a balanced workload distribution across

distinct cores. This is achieved by factoring in each thread’s specific types of instructions.
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As a result, the thread-to-core mapping process becomes dynamic. It ensures an equitable

distribution of threads, optimizing overall performance and hardware resource utilization.

The mapping calculations are conducted at a one-second granularity, mirroring

the hardware counters’ measurement frequency. However, the actual thread migration or

remapping is activated only when more than two threads meet the criteria for migration,

thereby ensuring efficient use of computational resources and limiting unnecessary thread

movements. The primary reason for setting the thread migration criterion at more than two

threads is to balance performance optimization and resource efficiency. Thread migration

in a multi-core system can be a costly operation. This is due to the overhead associated

with moving a thread from one core to another, such as cache invalidation, the creation

of the new execution environment, and the time spent re-establishing data locality, among

other factors.

5.2.4 Mapping Threads

Following the detection of the instruction pattern, the acquisition of the machine’s

topology, and the calculation of the optimal thread mapping, our tool proceeds to actual-

ize the computed mapping for the current application. This operation necessitates certain

support functionalities from the operating system. In the case of Linux, the operating sys-

tem provides the sched_setaffinity system call, which enables setting a thread’s

affinity or binding to a specific core (LOVE, 2003).

It is important to emphasize that our tool does not require any modifications to

the application’s source code. We have developed a tool that employs the LD_PRELOAD

environment variable, a mechanism the Linux dynamic linker provides. By leveraging

this mechanism, our tool can inject a shared library into the application’s address space

during the application’s loading phase. The injected library contains the functionality

required to perform all the steps outlined previously, culminating in the execution of the

sched_setaffinity call.

By invoking the sched_setaffinity call, our tool maps each application

thread to its designated core per the calculated mapping. This mapping operation consid-

ers the machine’s topology and the application’s instruction pattern to optimize the use of

the hardware resources and minimize functional unit contention.

In this way, our tool seamlessly integrates with the application’s normal execution

process, taking care of the entire process from topology detection, instruction pattern
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recognition, and optimal thread mapping calculation to the actual thread-to-core mapping.

This non-intrusive, intuitive approach aids in ensuring that the application can benefit

from optimized thread mapping, resulting in improved performance without necessitating

code-level modifications.

5.3 Closing Remarks

This chapter has elucidated the process and inner workings of our proposed online

mapping tool designed to mitigate functional unit contention in computing applications

running on SMT processors.

We began the chapter by highlighting the inherent problem in SMT processors -

threads mapped to the same core compete for functional units, leading to potential perfor-

mance degradation. The tool we have proposed, IAM, is designed to improve performance

by dynamically mapping threads to cores, considering the instruction types each thread

executes.

We detailed the IAM tool’s five-step process: initiating the application’s execu-

tion, gathering machine topology, detecting instruction patterns, calculating thread-to-

core mapping, and implementing this mapping. These steps are continuously executed in

a loop for the application’s execution, enabling the tool to adapt to changing instruction

patterns or machine states.

Our solution uses tools like hwloc and PAPI to gather information about machine

topology and access hardware counters for instruction pattern detection. Furthermore, we

developed an intelligent mapping algorithm rooted in the Gauss sum theory to balance the

number of similar instruction types across cores.

Importantly, we emphasized that our tool is entirely non-intrusive, requiring no

modifications to the application’s source code. This is achieved through the LD_PRELOAD

mechanism, allowing the tool’s library to be loaded with the application’s binary.

The approach outlined in this chapter has the potential to significantly improve

the performance of parallel applications on SMT processors by intelligently mitigating

functional unit contention.

In conclusion, the concepts and mechanisms introduced in this chapter demon-

strate a significant stride towards optimized utilization of modern computing resources

and offer a promising avenue for future research and development.
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6 EXPERIMENTAL EVALUATION

This chapter delivers an exhaustive performance analysis of our proposed tool

to mitigate functional unit contention. The investigation incorporates a diverse set of

benchmarks that include SMT-Bench, NPB Benchmark, and SPEC Benchmark. These

benchmarks, covering a wide range of workload scenarios, were chosen to ensure that our

experiments encompass the various intricacies within the computing domain.

6.1 Performance Evaluation Using SMT-Bench on AMD Processors

We conducted an exhaustive performance analysis using various application com-

binations from SMT-Bench. The results derived from these experiments offer substantial

insight into the effectiveness of our tool, allowing us to compare it with the ubiquitous

Linux Scheduler (Linux scheduler) and the traditional Round-Robin (Round-robin) map-

ping method. It should be noted that Linux scheduler epitomizes the standard approach to

thread-to-core mapping in contemporary operating systems, whereas Round-robin serves

as a straightforward yet widely adopted scheduling method, providing a baseline for our

comparison.

The accompanying figures illustrate the weighted speedup obtained through a

blend of SMT-Bench applications. The y-axis represents the weighted speedup, while

the x-axis depicts the various application combinations. Each bar on the graph denotes

a distinct thread-to-core mapping technique. On a geometric mean basis, our tool, IAM,

registers a weighted speedup of 2.2, surpassing Linux scheduler’s 2.0 and marking an av-

erage performance improvement of 9.8%. The performance enhancement attributable to

IAM ranges from -5.7% to an impressive 37.4% in comparison to Linux scheduler.

The graphical representation convincingly demonstrates that IAM significantly

improves performance over the other evaluated techniques. Regarding execution time, our

tool outperforms the Linux scheduler scheduler by an average of 9.8%. This increase in

performance is attributable to our tool’s design, which integrates functional units’ usage

patterns to deliver optimized thread-to-core mapping, thereby reducing contention and

enhancing overall application performance.

When contrasted with the Round-robin mapping, our tool exhibits an even more

pronounced average performance improvement of 24.6%. This marked improvement is

a testament to our tool’s capability to outperform non-contention-aware scheduling tech-
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niques like Round-robin significantly. This is primarily due to its careful consideration of

instruction patterns and hardware unit requirements for effective mapping.

These final results highlight the promising capabilities of our tool. This com-

prehensive performance evaluation validates our tool’s effectiveness, providing a strong

foundation for future work. Our tool has proven worth as a highly efficient resource that

can significantly reduce functional unit contention in multi-threaded processing environ-

ments.

6.1.1 Performance Enhancement in Branch-Intensive Applications

The branchmicrobenchmark application, known for its heavy reliance on branch

instructions that make up the majority of its instruction set, provides a pertinent scenario

to evaluate the effectiveness of our tool. In this context, IAM displayed superior efficacy

by delivering a performance improvement of 6.6% compared to the conventional Linux

scheduler scheduler. These results underscore IAM’s unmatched ability to alleviate func-

tional unit contention strategically, thereby enhancing performance strategically.

Figure 6.1 presents the performance outcomes for the branch application oper-

ating as a runner. For example, when coupled with fp-add and fp-mul, IAM sig-

nificantly augmented performance by 16.1% and 16.0%, respectively. These findings

underline IAM’s robust capabilities in managing floating-point operations. Conversely,

when branch co-runs with int-add or int-mul, IAM maintains an enhancement in

performance, although at a marginally lower rate of 3.2%. This consistent performance

improvement across a range of instruction types substantiates the comprehensive effec-

tiveness of IAM.

Interestingly, when load is employed, IAM trails the OS scheduler by 5.7%, hint-

ing at specific scenarios where cache-critical loads might benefit more from the operating

system’s default scheduling strategies. These strategies favor thread placement on the

same core to leverage shared cache levels. While this case emphasizes the need for fur-

ther refinement to bolster performance across all instruction types, it does not overshadow

IAM’s typical advantage over the OS scheduler in most other scenarios.

IAM operates based on an intelligent thread-to-core mapping strategy that metic-

ulously accounts for each thread’s characteristic workload. This approach ensures threads

with similar functional unit demands are assigned to different cores, effectively mitigating

performance bottlenecks that could stem from concurrent access to identical functional
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Figure 6.1 – Weighted speedup (higher values are better) for branch applications co-running with
diverse applications from SMT-Bench.

units. Such strategic separation, managing parallel resource demand efficiently, is critical

to preventing potential performance degradation and amplifying the overall computational

throughput.

The results further affirm the value of IAM, showcasing its potency in mitigat-

ing resource contention issues, thereby boosting system performance, especially in the

realm of SMT-based processors. In conclusion, these performance evaluations affirm that

IAM provides an impactful advancement in resource utilization efficiency for computing

applications, marking a significant milestone in this field.

6.1.2 Performance Enhancement in Floating-Point-Intensive Applications

Our tool, IAM, recorded substantial improvements when applied to scenarios fea-

turing applications primarily engaging the floating-point functional units. A notable ex-

ample is the co-execution of fp-add and fp-mul benchmarks. These applications,

designed to utilize the FADD and FMUL units intensively, displayed heightened per-

formance when scheduled with IAM. Specifically, performance surged by an impres-

sive 21.4% in geometric mean compared to Linux scheduler and even more markedly

by 53.6% compared to the Round-robin scheduler.

These observations underscore the effectiveness of IAM in contexts where ap-

plications necessitate diverse functional units. IAM achieves superior computational

throughput by intelligently mapping threads to cores, minimizing resource contention

and optimizing available functional units.
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Figure 6.2 showcases the performance results of the floating-point applications

functioning as runners. When fp-add serves as the runner, IAM consistently outper-

forms the OS scheduler across all co-runners, with percentage gains ranging from 16.1%

with branch to a striking 37.4% with fp-mul. Similarly, when fp-mul operates as a

runner, IAM continues to outpace the OS scheduler, demonstrating performance increases

ranging from 16.0% with branch to 37.4% with fp-add.
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Figure 6.2 – Weighted speedup (higher values are better) for floating-point applications
co-running with diverse applications from SMT-Bench.

An intriguing exception to this trend arises when fp-add or fp-mul co-run with

load. In these instances, IAM exhibits minor underperformance compared to the OS

scheduler, with performance reductions of 2.4% and 3.7%, respectively. This deviation

echoes the insights gathered from the branch application evaluations. Such scenarios un-

derscore the importance of ongoing refinement of IAM to ensure consistent performance

improvements across the board.

These findings reaffirm IAM’s ability to proficiently manage diverse computa-

tional workloads, fortifying its reputation as a resilient and adaptable tool to mitigate

functional unit contention in SMT-based systems. This, in turn, drives superior system

performance and throughput, confirming IAM’s value as a practical approach for a broad

range of computing applications.
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6.1.3 Performance Enhancement in Integer-Intensive Applications

Evaluating IAM’s performance with integer-based instructions reveals a consistent

trend of IAM surpassing the native operating system scheduler, with only a few excep-

tions.

Figure 6.3 presents the performance results of integer-intensive applications func-

tioning as runners. With int-add as the runner, IAM demonstrates marked superior-

ity over the OS scheduler across most co-runners. Specifically, the percentage perfor-

mance gains of IAM over the OS scheduler span from 26.8% with fp-add to 3.2% with

branch.
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Figure 6.3 – Weighted speedup (higher values are better) for integer applications co-running with
diverse applications from SMT-Bench.

Similarly, for int-mul, IAM outperforms the OS scheduler for most co-runners.

The percentage gains range from 29.2% with fp-add to 3.2% with branch. How-

ever, when int-add and int-mul co-run with int-mul and int-add, respectively,

IAM’s performance mirrors that of the OS scheduler, with a negligible performance gain

of 1.9%. This is because these applications are both integer-based and share specific

functional units. Moreover, when int-add and int-mul co-run with load, IAM un-

derperforms slightly, with performance reductions of 2.6% and 1.7%, respectively. In

summary, for integer-based instructions, IAM predominantly outperforms the native OS

scheduler, solidifying its effectiveness.
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6.1.4 Performance Enhancement in Load-Intensive Applications

The results portray a slightly different narrative when executing the load bench-

mark in conjunction with other applications. load places strain on the load units of the

processor, leading to unique performance outcomes.

Figure 6.4 illustrates the performance results of the load application functioning

as a runner. With load as a runner, IAM’s performance closely aligns with that of the

OS scheduler across various co-runners. For instance, when co-running with fp-add,

and int-mul, IAM’s performance is slightly under the OS scheduler’s, with marginal

decreases of 1.7%, 2.4%, and 1.7%, respectively. However, IAM exceeds the OS sched-

uler’s performance by 3.7% when paired with fp-mul. These percentage differences are

relatively low and within the confidence interval of the measurements, implying that the

observed variations are not statistically significant.
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Figure 6.4 – Weighted speedup (higher values are better) for load applications co-running with
diverse applications from SMT-Bench.

There are instances when the performance of IAM and the OS scheduler are vir-

tually identical, such as when load co-runs with fp-add and int-mul, where the

performance variations are a mere 1.1% and 0.3%, respectively. Moreover, when load

co-runs with branch, IAM’s performance decreases by 5.7%

While IAM optimizes performance for integer, floating-point, and branch instruc-

tion types, it slightly underperforms when handling load instructions. This deviation is

attributed to the inherent characteristics of load instructions and the way IAM manages

these workloads.

Load instructions typically involve substantial memory operations, making them

latency-sensitive and reliant on data availability fetched from the memory hierarchy. This
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fetch operation can be time-consuming and introduce delays in the execution pipeline,

mainly when the required data is not immediately available in the cache. As a result, load

instructions can potentially suffer from stalls, leading to inefficient use of CPU cycles.

In contrast, integer, floating-point, and branch instructions are more compute-

intensive and less likely to be affected by memory latency. These characteristics allow

IAM to predict better and optimize the scheduling of such instructions across threads and

cores.

IAM functions by mapping threads onto the processor based on the instruction

type primarily executed by each thread. This strategy works well for compute-intensive

instructions, as it mitigates contention for the functional units that these instructions rely

on. However, the main performance bottleneck for memory-bound load instructions is

usually the memory system rather than the functional units. Therefore, IAM’s thread

mapping strategy might need to be adjusted to handle this bottleneck and avoid suboptimal

performance effectively.

The latency induced by the memory system during the execution of load instruc-

tions poses a substantial challenge that the current IAM design cannot entirely address.

This suggests a more sophisticated scheduling mechanism considering memory behavior

and instruction types.

6.2 Performance Evaluation Using NPB and SPEC Benchmarks
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Figure 6.5 – NAS and SPEC Benchmarks instruction distribution.

In Chapter 5, we introduced our tool’s third step - determining the instruction

patterns of each application. This critical information guides our decision-making process
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regarding the optimal placement of threads. The instruction distribution for all NAS and

SPEC Benchmark applications is illustrated in Figure 6.5, with the y-axis indicating the

instruction distribution percentage and the x-axis displaying the applications. The bars

represent different instruction types.

Examining the BT application, we observe most instructions as floating-point and

load-based. Given their shared focus on floating-point instructions, co-running applica-

tions such as LU with BT could negatively impact BT’s performance. However, pairing

BT with applications like IS and MG, which primarily deal with integer operations, could

enhance overall system performance.

In the case of CG and UA, most instructions involve loads. UA also features ran-

dom data access. Running these applications could hinder performance for both. Applica-

tions like EP and FT might be better-suited co-runners for CG and UA, as they primarily

concentrate on integer and floating-point operations and execute fewer load instructions.

We extend our analysis to the instruction pattern of SPEC benchmarks, which

include: bwaves, nab, botsalgn, botsspar, ilbdc, fma3d, swim, imagick, smithwa, and

kdtree. bwaves primarily executes floating-point operations and load instructions. If co-

run with nab, which is also heavy on floating-point operations, contention for the floating-

point unit may arise. However, pairing it with botsalgn, integer-operation dominant, could

reduce contention and improve overall performance.

Nab showcases a high volume of branch and floating-point instructions but neg-

ligible store operations. As such, they are paired with an application like ilbdc, which

demonstrates fewer branch operations and a balanced mix of other instruction types. In

contrast, botsalgn mainly executes integer instructions and has fewer load instructions

than most other applications. It performs minimal floating-point operations, making it a

suitable candidate for pairing with floating-point-intensive applications such as bwaves or

nab.

Both botsspar and kdtree present balanced instruction distributions. They might

pair well with applications with heavily skewed instruction types, utilizing computational

resources that the other application does not monopolize. ilbdc, much like bwaves, ex-

ecutes many floating-point and load instructions. Pairing it with nab, another floating-

point-intensive application, might result in performance degradation due to contention for

the floating-point unit.

Applications like fma3d and swim also display balanced instruction distributions.

Co-running them with applications with a strong preference for a particular instruction
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type may yield good performance, as these applications can tap into underutilized com-

putational resources. imagick primarily employs integer and load operations. A pairing

with smithwa, focusing on branch and store operations, may help reduce resource con-

tention.

Finally, smithwa is primarily oriented toward branch and integer instructions. Co-

running it with an application like bwaves, which relies heavily on loads and floating-point

operations, may enhance performance. Such considerations are crucial when designing

and implementing thread scheduling algorithms, enabling optimal hardware utilization

and overall system performance.

Chapter 4 demonstrated the impact of resource sharing using synthetic microbench-

marks under varying scenarios. We established that mapping applications that execute the

same instruction on different cores enhances application and overall system performance.

This section illustrated that real-world benchmarks also present opportunities for perfor-

mance improvement through intelligent mapping. The following section will showcase

the performance enhancements facilitated by our instruction-aware mapping.

6.2.1 Performance Improvements on Intel Processors

When executed on Intel processors, our extensive performance investigation of

three specific applications - swim, botsalgn, and bwaves has yielded valuable insights

into the system’s performance dynamics. Using weighted speedup as our performance

metric, we have precisely quantified the speedup of application performance about a ref-

erence scenario. The results from this analysis can be seen in Figures 6.6, 6.7, and 6.8 for

the swim, botsalgn, and bwaves applications, respectively, illustrating their performance

when co-running with a variety of applications.

In particular, Figure 6.6 demonstrates that the swim application experiences no-

table performance enhancements when co-run with specific applications like botsalgn and

botsspar. The weighted speedup in these instances is impressively high, reaching 4.1 and

6.7, respectively. This indicates beneficial synergies between swim and these applications,

resulting in the Swim application’s efficient usage of the available resources. However,

the speedup decreases below the baseline value of 2 when the swim is co-run with ilbdc

and kdtree, indicating potential performance bottlenecks.

Turning our attention to the botsalgn application, Figure 6.7 displays optimal per-

formance when it is co-run with bwaves and swim, resulting in speedups of 4.0 and 4.0,
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Figure 6.6 – Weighted speedup (higher values are better) for swim application co-running with
diverse applications.

respectively. This substantial speedup implies that botsalgn can leverage the system re-

sources efficiently when paired with these applications. Conversely, when botsalgn is

co-run with ep and ilbdc, the speedup falls below the baseline, suggesting possible per-

formance issues requiring optimization.
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Figure 6.7 – Weighted speedup (higher values are better) for botsalgn application co-running
with diverse applications.

Lastly, as seen in Figure 6.8, the bwaves application exhibits substantial speedups

when co-run with botsalgn and imagick, achieving scores of 4.0 and 4.3, respectively.

This performance boost suggests efficient sharing of system resources between bwaves

and these applications. However, like the other applications, bwaves also shows decreased

speedup values (below 2.0) when co-running with specific applications such as kdtree and

lu, signifying potential resource contention or bottlenecks.
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Figure 6.8 – Weighted speedup (higher values are better) for bwaves application co-running with
diverse applications.

It is essential to discuss further the crucial role that functional units in each proces-

sor core play in these results. Each core contains several functional units, ALUs, FPUs,
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and others. These units can perform tasks in parallel, enhancing the core’s overall perfor-

mance. However, using the same functional units by multiple applications can lead to re-

source sharing and potentially degrade performance, as seen in some instances mentioned

above. Therefore, devising strategies for efficient resource sharing and scheduling of

these functional units is critical to optimizing application performance when co-running

multiple tasks.

6.2.2 Performance Improvements on AMD Processors

Table 6.1 outlines the performance results of Instruction-Aware mapping on the

NPB. As an illustrative example, consider MG as an application and EP as a co-runner;

MG’s performance was elevated by 29.8%. We derived these results from the average

of 30 randomly executed tests under exclusive machine access. Our findings contrast the

performance of our solution with those achieved through Linux scheduler and Round-

robin mapping. The execution time results were normalized to the Linux scheduler; thus,

shorter bars in the figures denote superior performance. We computed the standard devia-

tion using the t-Student distribution with a 95% confidence interval. The input size C was

selected to provide a feasible execution time.

Table 6.1 – Performance Improvement of the Instruction-Aware Mapping on the NPB.
Co-Runner

BT CG EP FT IS LU MG SP UA
BT 23.7% 8.8% 14.9% 13.5% 10.9% 23.9% 21.3% 20.8%
CG 24.4% 17.2% 11.8% 23.7% 23.3% 19.9% 26.8% 25.6%
EP 11.2% 16.4% 3.7% 2.2% 13.1% 29.8% 11.8% 1.9%
FT 14.7% 9.8% 6.1% 13.8% 16.2% 27.4% 17.5% 17.7%
IS 14.6% 19.4% 3.8% 14.2% 10.9% 19.2% 17.4% 14.7%
LU 11.5% 23.1% 5.9% 11.4% 10.3% 17.1% 15.3% 11.9%
MG 20.1% 22.4% 29.8% 24.9% 13.6% 18.7% 23.5% 23.2%
SP 22.3% 26.3% 10.8% 17.9% 14.8% 13.3% 21.2% 21.7%
UA 21.1% 26.2% 11.9% 17.3% 15.2% 11.2% 19.5% 22.2%

The following section presents results classified into four groups based on ap-

plication similarity. The K-means clustering algorithm was used for this classification,

where the inputs were the applications and the quantity of each instruction type. The

Elbow method (KASSAMBARA, 2017) was employed to identify the ideal number of

clusters for our application data. We only highlight the most significant results, as some

are omitted due to their similar behavior to the ones discussed.
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The first group comprises BT and LU, applications that execute many floating-

point instructions. The second group contains MG, an application with the most integer

instructions. The third group includes CG, SP, and UA, applications dominated by load

instructions. Finally, the fourth group contains EP, FT, and IS, which display a balanced

distribution of floating-point, integer, and load instructions.

The weighted speedup obtained with each application, running with different co-

runners, is shown. The geometric mean of the weighted speedup for all co-runners is 2.4,

denoting a 20% performance improvement. When the co-runner is LU, an application that

performs many floating-point and load operations, the performance improves by 10% over

Round-robin. Since the applications share the same functional units, mapping them on the

same or different cores results in almost identical performance improvement. However,

when the co-runner is MG, an application with most integer operations, the performance

is 30% better than the Linux scheduler. It demonstrates that the operation type of each

thread is a crucial factor when mapping multiple parallel applications.

BT and LU instructions are mostly floating-point. Figure 6.9 presents the perfor-

mance results for this group. We expected more considerable improvements when the

applications that stress different functional units are mapped on the same core. When MG

is the LU co-runner, our framework’s performance is 20% and 30% better than the Linux

scheduler and Round-robin. This happens because MG executes integer instructions most
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(b) LU
Figure 6.9 – Weighted speedup (higher values are better) running NAS applications focusing on

floating-point instructions.
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of the time. The opposite occurs when a floating-heavy application is the co-runner of

LU. The contention is not reduced because both applications stress the same units.
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(b) SP
Figure 6.10 – Weighted speedup (higher values are better) running NAS applications focusing on

load instructions.

MG forms the second group and executes integer operations in 50.2% of its in-

structions. The geometric mean speedup for MG is 30% compared with the Linux sched-

uler and 40% compared with Round-robin. The gain is modest for co-runners with the

same units, such as IS. This is because MG and IS execute many integer instructions, so

any mapping still taxes the integer units.

CG, SP, and UA form the third group, where most instructions are loaded. Fig-

ure 6.10 presents the performance results for this group. The geometric mean speedup

is 20% and 30% compared with Linux scheduler and Round-robin, respectively. The

speedup is higher for co-runners that do not share the same type of instruction.

The final group contains EP, FT, and IS, which have a balanced distribution of

floating-point, integer, and load instructions. The geometric mean speedup for EP, FT,

and IS is around 15% when compared with both Linux scheduler and Round-robin. The

speedup is higher when the co-runner has a different dominant instruction type.

Overall, our solution outperforms both Linux scheduler and Round-robin across

all groups. The solution is particularly effective when applications have different domi-

nant instruction types. This suggests that our approach provides an efficient and flexible

way to map multiple applications in multicore processors, improving overall performance.
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6.3 Discussion and Guidelines

Our study reveals crucial aspects of SMT processors’ performance when execut-

ing varying instruction types. It paves the way for further potential enhancements. The

IAM tool we introduced provides a fresh and pragmatic thread scheduling approach that

substantially improves compute-intensive workloads’ efficiency. The tool’s performance,

however, fluctuates across diverse instruction types, highlighting the need for instruction-

specific considerations when developing and implementing SMT schedulers.

Our experimental outcomes illustrate the value of mapping algorithms that ac-

count for the instruction types executed by each thread in augmenting overall perfor-

mance. Our research underscored that performance hinges on the kind of instructions

executed by each concurrently running thread. We categorized the applications into four

groups based on the predominance of a particular instruction type.

Compute-Intensive Instructions: The IAM tool delivers excellent performance

for compute-intensive instruction types such as integer, floating-point, and branch opera-

tions. It employs an innovative method of mapping threads to cores based on instruction

types, thereby mitigating contention for functional units and leading to substantial per-

formance gains. Consequently, for workloads that primarily use these instructions, IAM

emerges as an up-and-coming alternative to conventional operating system schedulers.

Memory-Bound Instructions: For memory-bound instruction types, especially

load and store operations, the performance benefits of IAM are less evident. This variation

underscores the influence of factors beyond functional unit contention, notably memory

latency, in shaping SMT performance. While IAM may not be optimal for these work-

loads in its current version, its instruction-aware scheduling approach offers opportunities

for refinement. Future iterations of IAM could incorporate strategies to anticipate and

alleviate memory latencies, such as dynamic adjustments to the scheduling strategy based

on real-time memory utilization patterns.

Guidelines for SMT Optimization: Our study emphasizes the value of instruction-

specific considerations in optimizing SMT performance. The generalized strategy may

only partially exploit the capabilities of SMT processors. Instead, a more refined approach

accounting for the specific characteristics of the workload could be adopted. Strategies

like IAM reduce functional unit contention and can provide substantial performance ben-

efits for compute-intensive instructions. Factors related to memory latency and cache be-

havior become critical for memory-bound instructions. Continued exploration of instruction-
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specific SMT optimization strategies is warranted, and the potential for tools like IAM to

dynamically adapt to varying workloads should be examined.

Our findings advance our understanding of SMT performance behavior and the

influence of instruction-level characteristics in shaping this behavior. This knowledge is

vital in developing innovative solutions to enhance computational efficiency, especially as

processors continue to evolve and applications become increasingly diverse and complex.

Moreover, our tool is adaptable to any computing environment, enhancing re-

source allocation and facilitating thread mapping based on specific workload character-

istics. It can be beneficial for both infrastructure providers and users. Providers could

implement this mechanism across their computing infrastructure to take advantage of im-

proved mapping. At the same time, users could leverage this mechanism to optimize their

workloads, thus boosting computational efficiency and performance.

6.4 Summary

In this chapter, we presented and examined our experimental results, highlighting

the significant potential of our tool to reduce functional unit contention in SMT-based

systems. We outlined the performance enhancements achieved when different application

combinations from the SMT-Bench, NPB Benchmark, and SPEC Benchmark were exe-

cuted under various scheduling policies. The experiments showcased our tool’s remark-

able ability to surpass both Linux scheduler and Round-robin schedulers, mainly when

applications that stress different functional units are executed simultaneously. These find-

ings reinforce our research’s primary hypothesis: mapping threads to cores according to

their functional unit demands can significantly improve performance in SMT processors.
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7 CONCLUSIONS AND FUTURE DIRECTIONS

In the face of continually evolving and complex multicore processors, the impli-

cations of functional unit contention are expected to amplify. This trend is driven by the

prospective architectures where increasing cores share functional units, exacerbating the

challenge of mitigating resource contention. Consequently, as discussed in this thesis,

devising efficient mapping strategies will be instrumental in optimizing thread alloca-

tion across cores. This will allow for the full utilization of computational capabilities

in forthcoming multicore architectures, despite the complexities associated with resource

sharing.

Our research has pioneered a unique microbenchmark to evaluate the impact of

resource sharing methodically. This tool, which deviates from the traditional focus on

memory contention, considers contention across various functional units, offering a more

nuanced understanding of resource-sharing dynamics in multicore environments.

We have developed an innovative strategy for mapping threads from multiple par-

allel applications onto SMT-based multicore architectures based on different functional

unit contention. This method leverages a granular understanding of functional unit con-

tention to guide thread allocation decisions, optimizing resource utilization and striking a

balance in resource usage.

Our results show considerable performance enhancements, with a geometric mean

increase of 9.8% compared to Linux scheduler. These improvements are primarily cred-

ited to mitigating functional unit contention through strategic thread placement, which

assigns threads stressing the same functional units to distinct cores. Furthermore, we have

introduced a dissimilarity metric indicating a correlation between application similarity

and performance degradation when mapped to the same core.

7.1 Future Directions

In terms of future work, we aspire to expand our investigation into the influence

of functional unit contention across a more comprehensive array of architectures. Our

focus includes state-of-the-art architectures such as Intel Sapphire Rapids and AMD Zen

5 as we strive to deepen our understanding of resource management in multicore proces-

sors. In the process, our objective is to formulate a comprehensive set of guidelines that
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will enable efficient utilization of these and future multicore architectures, allowing us to

harness their vast computational capacities without succumbing to resource contention.

Additionally, we envisage the integration of our tool into the Linux kernel, a logi-

cal progression given the kernel’s role in managing thread placement on processor cores.

Incorporating our tool within the Linux kernel’s context switches will permit real-time

monitoring and management of resource contention. This arrangement could handle re-

source allocation based on the tool’s insights into functional unit contention, thereby di-

minishing performance impacts. This could yield more refined control and enhanced

resource management, culminating in optimized system performance.

By this approach, our tool could continually adapt to the behavior of each appli-

cation executing on the system, adjusting resources as needed to maximize performance.

This would enable the implementation of dynamic, self-adjusting resource management

strategies where the kernel continuously learns from and adapts to the system’s workload.

In summary, these progressive endeavors will lay the foundation for improved re-

source management strategies, ultimately driving more efficient and effective utilization

of multicore processors. These advances could have far-reaching implications across var-

ious domains, including data centers, consumer electronics, and mobile technology.

7.2 Publications

During the development of this thesis, several academic papers were produced,

embodying the depth and breadth of the ongoing research. We first list the ones as the

first author:
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Practice and Experience, 2022, Qualis A2.

• SERPA, M. S.; PAVAN, P. J.; CRUZ, E. H. M.; MACHADO, R. L.; PANETTA, J.;
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APPENDIX A — ADDITIONAL RESULTS

This appendix presents additional results.

A.1 SPEC and NPB Benchmark Results on AMD Processors
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Figure A.1 – Weighted speedup (higher values are better) for ep application co-running with
diverse applications on the AMD Processor.
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Figure A.2 – Weighted speedup (higher values are better) for ft application co-running with
diverse applications on the AMD Processor.
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Figure A.3 – Weighted speedup (higher values are better) for is application co-running with
diverse applications on the AMD Processor.

A.2 SPEC and NPB Benchmark Results on Intel Processors
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Figure A.4 – Weighted speedup (higher values are better) for mg application co-running with
diverse applications on the AMD Processor.
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Figure A.5 – Weighted speedup (higher values are better) for ua application co-running with
diverse applications on the AMD Processor.
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Figure A.6 – Weighted speedup (higher values are better) for bwaves application co-running with
diverse applications on the AMD Processor.
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Figure A.7 – Weighted speedup (higher values are better) for nab application co-running with
diverse applications on the AMD Processor.
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Figure A.8 – Weighted speedup (higher values are better) for botsalgn application co-running
with diverse applications on the AMD Processor.
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Figure A.9 – Weighted speedup (higher values are better) for botsspar application co-running
with diverse applications on the AMD Processor.
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Figure A.10 – Weighted speedup (higher values are better) for fma3d application co-running
with diverse applications on the AMD Processor.
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Figure A.11 – Weighted speedup (higher values are better) for swim application co-running with
diverse applications on the AMD Processor.
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Figure A.12 – Weighted speedup (higher values are better) for imagick application co-running
with diverse applications on the AMD Processor.
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Figure A.13 – Weighted speedup (higher values are better) for smithwa application co-running
with diverse applications on the AMD Processor.

0.0

0.5

1.0

1.5

2.0

2.5

kdtree
bt

kdtree
cg

kdtree
ep

kdtree
ft

kdtree
is

kdtree
lu

kdtree
mg

kdtree
sp

kdtree
ua

kdtree
bwaves

kdtree
nab

kdtree
botsalgn

kdtree
botsspar

kdtree
fma3d

kdtree
swim

kdtree
imagick

kdtree
smithwa

kdtree
Avg.

Applications

W
ei

gh
te

d 
sp

ee
du

p

Linux Default Round−robin Random Instruction−Aware

Figure A.14 – Weighted speedup (higher values are better) for kdtree application co-running
with diverse applications on the AMD Processor.
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Figure A.15 – Weighted speedup (higher values are better) for bt application co-running with
diverse applications on the Intel Processor.
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Figure A.16 – Weighted speedup (higher values are better) for cg application co-running with
diverse applications on the Intel Processor.
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Figure A.17 – Weighted speedup (higher values are better) for ep application co-running with
diverse applications on the Intel Processor.
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Figure A.18 – Weighted speedup (higher values are better) for ft application co-running with
diverse applications on the Intel Processor.
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Figure A.19 – Weighted speedup (higher values are better) for is application co-running with
diverse applications on the Intel Processor.
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Figure A.20 – Weighted speedup (higher values are better) for lu application co-running with
diverse applications on the Intel Processor.
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Figure A.21 – Weighted speedup (higher values are better) for mg application co-running with
diverse applications on the Intel Processor.
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Figure A.22 – Weighted speedup (higher values are better) for sp application co-running with
diverse applications on the Intel Processor.
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Figure A.23 – Weighted speedup (higher values are better) for ua application co-running with
diverse applications on the Intel Processor.
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Figure A.24 – Weighted speedup (higher values are better) for nab application co-running with
diverse applications on the Intel Processor.
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Figure A.25 – Weighted speedup (higher values are better) for botsspar application co-running
with diverse applications on the Intel Processor.
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Figure A.26 – Weighted speedup (higher values are better) for fma3d application co-running
with diverse applications on the Intel Processor.
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Figure A.27 – Weighted speedup (higher values are better) for imagick application co-running
with diverse applications on the Intel Processor.
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Figure A.28 – Weighted speedup (higher values are better) for smithwa application co-running
with diverse applications on the Intel Processor.
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Figure A.29 – Weighted speedup (higher values are better) for kdtree application co-running
with diverse applications on the Intel Processor.
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APPENDIX B — RESUMO EM PORTUGUÊS

This chapter presents a thesis summary in Portuguese, as required by the PPGC

Graduate Program in Computing.

Neste capítulo, é apresentado um resumo desta tese na língua portuguesa, como

requerido pelo Programa de Pós-Graduação em Computação.

B.1 Introdução

A proliferação de sistemas multicore e SMT tem sido fundamental para moldar

os avanços em vários campos. A evolução das arquiteturas de computadores aumentou

significativamente o poder computacional, facilitando a resolução de problemas cada vez

mais complexos em domínios de aplicação modernos, como inteligência artificial, ciência

de dados, big data, bioinformática, computação quântica, segurança cibernética e grandes

modelos de linguagem (BAKITA et al., 2021; XU et al., 2021; NARAYANAN et al.,

2021; KASNECI et al., 2023).

No ambiente tecnológico atual, muitas aplicações operam em plataformas de com-

putação compartilhadas. A escalabilidade das arquiteturas subjacentes, portanto, se torna

primordial. O advento dos sistemas multicore promove a execução paralela de várias

aplicações em um ambiente computacional compartilhado, reforçando a escalabilidade, a

utilização de recursos e a eficiência de custos (LIU; CHEN, 2018; TAN; NADEAU; GAO,

2019; ROLOFF et al., 2019; TSAI; HSU; LIN, 2020). No entanto, o compartilhamento

de recursos computacionais introduz desafios adicionais, exigindo uma gestão eficaz dos

recursos para evitar a degradação do desempenho à medida que o número de aplicações

em execução simultânea aumenta (ZHANG; CHENG; BOUTABA, 2018; WANG et al.,

2019).

Essa gestão de escalabilidade está intrinsecamente ligada ao conceito de utiliza-

ção. A transição para as arquiteturas multicore e SMT visa otimizar a utilização dos

recursos, melhorando o desempenho geral do sistema. No entanto, esses sistemas po-

dem enfrentar um uso subótimo sem uma gestão cuidadosa e uma alocação inteligente

de tarefas, o que pode levar a um subaproveitamento significativo dos recursos e gargalos

de desempenho (PATTERSON, 2018; ASANOVIC et al., 2018; DALLY, 2019; GUPTA;

PATRA, 2021; VENKATESH; PATRA, 2022).
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Embora uma abordagem holística para a gestão de recursos em arquiteturas mul-

ticore e SMT seja essencial, este trabalho concentra-se no mapeamento de threads em

relação às unidades funcionais. Consequentemente, não aprofundaremos técnicas de ma-

peamento de dados, memória, cache e recursos similares, focando em compreender e

resolver problemas de contenção ligados às unidades funcionais.

Além disso, tais ambientes frequentemente lidam com problemas de contenção

de unidades funcionais. O SMT facilita a emissão simultânea de instruções de várias

threads independentes para várias unidades funcionais, amplificando significativamente a

utilização de recursos e o desempenho geral (KALLA et al., 2010; LORENZON; FILHO,

2019; TULLSEN; EGGERS; LEVY, 1995; WANG et al., 2020; FELIU et al., 2023).

O principal objetivo do SMT de melhorar a utilização dos recursos de hardware pode,

paradoxalmente, levar à degradação do desempenho devido à contenção por recursos

compartilhados. Este problema é especialmente pronunciado no contexto das unidades

funcionais que lidam com operações de dados. Essas unidades podem se tornar garga-

los quando várias threads disputam seu uso simultaneamente, levando à competição por

recursos.

Para enfrentar esses desafios, é necessário implementar estratégias eficazes de ma-

peamento de threads para núcleos. Idealmente, as threads que utilizam fortemente as

mesmas unidades funcionais devem ser distribuídas para diferentes núcleos, minimizando

assim a contenção e otimizando o uso dos recursos do núcleo. No entanto, determinar o

mapeamento ótimo pode ser intrincado e computacionalmente exigente, necessitando de

uma compreensão matizada do comportamento da aplicação e da arquitetura subjacente.

Essa complexidade ressalta a urgência do desenvolvimento de técnicas automatizadas de

mapeamento de threads.

Pesquisas anteriores identificaram a comunicação e a contenção da memória cache

em processadores SMT como gargalos de desempenho significativos (CRUZ et al., 2014;

FELIU et al., 2016; AKTURK; OZTURK, 2019; SERPA et al., 2019; GOMEZ et al.,

2020; ZHOU; HU; XIONG, 2020; CHALL; PAUL, 2021; PAN; ZHAI, 2021; WANG;

YIN; LI, 2021; RODRIGUEZ; ABELLA; CANAL, 2022; LIN et al., 2022; GAO et al.,

2023; YIN; LI, 2023; LIU et al., 2023). Estratégias para aliviar tais gargalos foram pro-

postas e validadas por pesquisadores, focando principalmente em várias cargas de tra-

balho multiprograma de thread única, alcançando assim melhorias de desempenho men-

suráveis. Esses estudos enfatizam a necessidade de lidar com a contenção de unidades

funcionais, especialmente ao considerar aplicações de processamento paralelo. A con-
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tenção de unidades funcionais ocorre quando threads da mesma ou de diferentes apli-

cações emitem tipos semelhantes de instruções (como operações aritméticas, acesso à

memória ou operações de ponto flutuante) que utilizam as mesmas unidades funcionais.

• Estudar o comportamento de execução de threads e a mistura de instruções asso-

ciada a um núcleo pode fornecer insights sobre possíveis contendas para unidades

funcionais.

• Ao mapear threads para núcleos, considerando a mistura de instruções, é possível

reduzir a contenção de unidades funcionais e melhorar o desempenho geral do sis-

tema.

Dadas essas hipóteses, o objetivo principal desta tese é desenvolver mecanismos

para mitigar a contenção de unidades funcionais em plataformas de computação. Pre-

tendemos atingir esse objetivo através dos seguintes passos:

• Propomos uma ferramenta de Mapeamento Consciente de Instrução (IAM) que

pode mapear eficientemente threads para núcleos considerando suas misturas de

instruções. Esta ferramenta minimiza a contenção e maximiza o desempenho do

sistema em ambientes multicore e SMT.

• Para avaliar a eficácia da ferramenta IAM, utilizamos diferentes benchmarks e sis-

temas de computação em nossos estudos experimentais.

• Também comparamos o IAM com outras estratégias existentes para mapeamento

de thread para núcleo, demonstrando suas forças únicas e potencial para melhorar

o desempenho do sistema em vários cenários de computação.

Por favor, note que, enquanto o campo mais amplo de otimização de SMT muitas

vezes envolve considerações como memória ou cache, esta tese visa especificamente

aliviar a contenção ao nível das unidades funcionais. Consequentemente, nossos obje-

tivos e hipóteses estão confinados a este escopo mais estreito.

Em conclusão, o objetivo principal desta tese é abordar a questão da contenção de

unidades funcionais e projetar estratégias que melhoram o desempenho geral e levam à

utilização eficiente de recursos. O overhead do nosso mecanismo proposto também será

avaliado para entender seus benefícios e potenciais limitações. Os estudos pretendem

contribuir significativamente para a compreensão da contenção de unidades funcionais e

para o desenvolvimento de estratégias eficazes de mitigação.

Esta tese propõe uma solução inovadora para os problemas mencionados anteri-

ormente - a ferramenta de Mapeamento Consciente de Instrução (IAM). O IAM é uma
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ferramenta online que aproveita as informações a nível de instrução para otimizar o ma-

peamento de múltiplas aplicações paralelas em núcleos. O núcleo da ferramenta IAM

reside em sua capacidade de entender as características das unidades funcionais da carga

de trabalho em tempo real. Ele lê dinamicamente contadores de desempenho de hardware

para avaliar os padrões de uso de instruções, como o número de operações de ponto flu-

tuante, inteiro, ramificações, cargas e armazenamentos. Essa informação permite que o

IAM mapeie de forma inteligente threads que sobrecarregam unidades funcionais idênti-

cas em núcleos diferentes.

A ferramenta IAM visa otimizar o mapeamento de thread para núcleo de forma

que as unidades funcionais sejam utilizadas ao seu máximo potencial sem causar con-

tenção. Isso é conseguido minimizando o número de threads que emitem simultanea-

mente instruções semelhantes à mesma unidade funcional. Ao fazer isso, o IAM melhora

o desempenho geral dos processadores SMT e garante o uso eficiente dos recursos com-

putacionais.

As contribuições desta pesquisa são as seguintes:

• Desenvolvemos e introduzimos o SMT-Bench, um microbenchmark projetado para

sobrecarregar unidades funcionais específicas. Este benchmark nos permite avaliar

empiricamente o impacto do compartilhamento de recursos. Ele fornece insights

cruciais sobre o desempenho e comportamento dos processadores SMT sob várias

cargas de trabalho. Complementamos isso com avaliações usando dois benchmarks

amplamente reconhecidos, o NPB e o SPEC, oferecendo uma análise de desem-

penho mais abrangente em diversas cargas de trabalho.

• Propomos a IAM (SERPA et al., 2022), uma ferramenta dinâmica, em tempo real,

consciente de instruções, para mapear threads de várias aplicações paralelas em nú-

cleos. A ferramenta aproveita os padrões de instrução distintos dessas aplicações,

permitindo uma estratégia de mapeamento adaptativo que responde às característi-

cas da carga de trabalho em mudança à medida que se desdobram.

• Nossos resultados experimentais, derivados de testes realizados em processadores

AMD e Intel, demonstram os aprimoramentos de desempenho alcançáveis através

da nossa ferramenta de Mapeamento Consciente de Instrução. A ferramenta IAM

superou consistentemente o agendador nativo, uma implementação round-robin e

uma abordagem de mapeamento aleatório em todos os testes. Ele rendeu uma mel-

horia média geométrica de desempenho de 9,8% em relação ao agendador nativo

do sistema operacional. Esses resultados sublinham a capacidade da nossa fer-
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ramenta de aumentar significativamente a eficiência e o desempenho dos proces-

sadores SMT.

B.2 Referencial Teórico

Um impulso constante para aprimorar o desempenho e a eficiência impulsiona a

computação moderna. Isso catalisou o desenvolvimento de arquiteturas e tecnologias de

computação complexas. Este capítulo apresenta esses conceitos-chave e lança luz sobre

suas complexidades.

Nos concentramos nas arquiteturas multicore, uma faceta essencial da computação

contemporânea. Esta discussão esclarece o efeito transformador de ter vários núcleos

dentro de uma única unidade de processamento, possibilitando processamento paralelo e

aumentando significativamente a velocidade e a potência de computação.

A conversa passa para SMT, que melhora a eficiência do processador. Esta abor-

dagem permite que múltiplas threads de execução independentes usem mais efetivamente

os recursos fornecidos pelas arquiteturas de processadores de hoje. SMT introduz desafios

e complexidades, notavelmente em termos de unidades funcionais e conflito de recursos,

tópicos nos quais nos aprofundamos em detalhes.

Posteriormente, dissecamos o conceito de unidades funcionais, destacando seu

papel e o persistente problema de conflito de recursos. Esta exploração sublinha como

estas unidades podem se tornar gargalos, principalmente quando várias threads competem

pelos mesmos recursos.

A parte posterior deste capítulo desloca o foco para estratégias de mapeamento de

thread para núcleo. Esta discussão enfatiza a importância de um mapeamento efetivo ao

aproveitar todo o potencial de arquiteturas multicore e multithread, sublinhando o papel

destas estratégias na otimização da utilização do núcleo e no gerenciamento eficiente das

threads.

Para concluir, destacamos a criticidade dos contadores de desempenho de hard-

ware e ferramentas essenciais na medição e diagnóstico de desempenho. Mergulhamos

em seu papel ao oferecer insights em tempo real das operações do processador, identifi-

cando gargalos de desempenho e auxiliando no desenvolvimento e otimização de estraté-

gias de gerenciamento de recursos.

Ao lançar luz sobre esses conceitos fundamentais, este capítulo estabelece as bases

para discussões futuras sobre as intrincadas questões de conflito de unidade funcional e
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exploração de nossa solução proposta. Esta jornada é projetada para dar ao leitor uma

compreensão profunda da paisagem de computação moderna e soluções potenciais para o

conflito de recursos.

B.3 Trabalhos Relacionados

O conflito de recursos em processadores SMT há muito é reconhecido como um

contribuinte significativo para gargalos de desempenho. A literatura neste campo é rica

em estratégias e metodologias variadas para superar esses desafios. Este capítulo tem

como objetivo fazer um levantamento abrangente desses trabalhos, englobando diferentes

aspectos do problema e das soluções propostas.

Consideramos uma classificação multifacetada para esses estudos a fim de re-

alizar uma exploração significativa do assunto. Mergulhamos nas nuances de como essas

soluções operam, se elas se concentram em aplicações multithread ou single-thread, pois

essa distinção pode influenciar significativamente sua eficácia. Reconhecendo que o con-

texto de operação desempenha um papel crítico, também examinamos se esses métodos

são projetados para ambientes reais ou simulados.

Uma consideração notável é a necessidade de modificações de hardware em várias

dessas soluções. Embora algumas abordagens baseadas em hardware ofereçam resultados

promissores, a necessidade de mudanças apresenta desafios em termos de praticidade e

viabilidade. Torna-se ainda mais complexo quando essas alterações são específicas para

certas arquiteturas, limitando a universalidade da solução.

Além disso, avaliamos as soluções com base em sua dependência da arquitetura.

Embora eficazes em ambientes específicos, soluções dependentes de arquitetura podem

necessitar de mais versatilidade em paisagens arquitetônicas diversas. Assim, soluções

independentes de arquitetura que mantêm a eficácia em várias plataformas têm uma van-

tagem distinta em aplicação ampla.

Além disso, o momento de aplicação dessas soluções é outro fator crítico. Es-

crutinamos se esses métodos são projetados para execução online, utilizados em tempo

real durante a execução do processo, ou para execução offline, implementados quando o

sistema não está executando tarefas ativamente.

Organizamos nossa discussão em duas seções principais para fornecer um entendi-

mento abrangente. A primeira seção se concentra em estratégias de soluções baseadas em

software que não requerem modificações de hardware e operam principalmente por meio
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de melhorias de software ou algoritmos. A segunda seção é dedicada a soluções baseadas

em hardware que exigem alterações ou melhorias no próprio hardware. Essa dicotomia

nos permite apresentar uma visão equilibrada do campo, demonstrando as forças e fraque-

zas inerentes a cada abordagem.

Por meio desta exploração abrangente, pretendemos fornecer aos leitores uma

compreensão completa do cenário atual de soluções para conflitos de recursos em pro-

cessadores SMT. Este entendimento pode ser a base para o desenvolvimento de novas

estratégias inovadoras para melhorar o desempenho e a eficiência dos processadores SMT.

B.4 SMT-Bench

Este capítulo aprofunda-se nas implicações de desempenho do compartilhamento

de diversos recursos em processadores SMT. O objetivo principal é elucidar como o com-

partilhamento de recursos e a disputa podem impactar significativamente o desempenho

geral e apresentar razões convincentes para o mapeamento estratégico de threads para

mitigar tais problemas.

Após a análise da disputa da unidade funcional, focamos em um microbench-

mark especializado que desenvolvemos. Este microbenchmark é especificamente proje-

tado para estressar unidades funcionais distintas do processador. Ao usar esta ferramenta,

podemos demonstrar que o tipo de operações realizadas por cada thread tem uma influên-

cia profunda tanto no desempenho quanto nos níveis de disputa. Ele oferece uma visão

sobre a utilização da unidade funcional e a dinâmica da disputa em um contexto SMT.

Posteriormente, apresentamos evidências convincentes para ilustrar que mapear

threads que utilizam os mesmos recursos em um único núcleo pode levar a uma disputa

significativa. Tal disputa pode efetivamente diminuir o desempenho, potencialmente ne-

gando os benefícios oferecidos pelo SMT. No entanto, argumentamos ainda que estraté-

gias inteligentes de mapeamento podem mitigar esses problemas de desempenho.

Este capítulo enfatiza a importância do mapeamento de threads consciente de re-

cursos em processadores SMT, revelando a conexão intrínseca entre o tipo de operações

executadas por threads, o compartilhamento de recursos e a disputa resultante. Além

disso, demonstra os ganhos de desempenho potenciais que podem ser alcançados geren-

ciando efetivamente a disputa da unidade funcional.
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B.5 IAM - Mapeamento Consciente de Instrução

Nossa ferramenta proposta para mapeamento online opera em cinco etapas, con-

forme ilustrado na Figura 5.1. O processo é iniciado com a execução do aplicativo. À

medida que o aplicativo começa a rodar, a ferramenta inicia coletando informações sobre

a topologia atual da máquina. Isso inclui o número de núcleos disponíveis, sua disposição

e o nível de SMT que cada núcleo suporta, entre outros detalhes arquitetônicos.

Na terceira etapa, a ferramenta aproveita os contadores de hardware fornecidos

pelo PAPI para detectar os padrões de instrução dos aplicativos. Este processo de detecção

permite que a ferramenta distinga os tipos de instruções que cada thread está emitindo, o

que é crucial para otimizar o mapeamento de thread para núcleo.

Após a detecção do padrão de instrução, a ferramenta calcula o mapeamento de

threads ideal. Este cálculo leva em consideração a topologia da máquina e os padrões

de instrução detectados anteriormente. O objetivo aqui é minimizar a disputa da unidade

funcional ao atribuir de maneira inteligente threads aos núcleos de uma forma que leve

em conta os tipos específicos de instruções que as threads estão executando.

À medida que o aplicativo continua sua execução, a ferramenta implementa o

mapeamento de thread para núcleo calculado. Esta etapa de mapeamento garante que cada

thread seja executada no núcleo que foi determinado como ótimo para seu tipo específico

de instrução.

A partir da terceira etapa, todo esse processo é repetido online, permitindo que

a ferramenta se adapte a mudanças no comportamento do aplicativo ou no estado do

sistema. O loop continua até a execução do aplicativo ser concluída.

B.6 Resultados Experimentais

Este capítulo apresenta uma análise de desempenho exaustiva de nossa ferramenta

proposta para mitigar a competição de unidades funcionais. A investigação incorpora

um conjunto diversificado de benchmarks que incluem SMT-Bench, NPB Benchmark e

SPEC Benchmark. Esses benchmarks, cobrindo uma ampla gama de cenários de carga

de trabalho, foram escolhidos para garantir que nossos experimentos abrangem as várias

complexidades dentro do domínio da computação.

Nosso estudo revela aspectos cruciais do desempenho de processadores SMT ao

executar diferentes tipos de instruções. Ele abre o caminho para possíveis melhorias
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futuras. A ferramenta IAM que introduzimos fornece uma abordagem de agendamento

de threads nova e pragmática que melhora substancialmente a eficiência de cargas de

trabalho intensivas em computação. No entanto, o desempenho da ferramenta flutua entre

diferentes tipos de instrução, destacando a necessidade de considerações específicas de

instrução ao desenvolver e implementar escalonadores SMT.

Nossos resultados experimentais ilustram o valor dos algoritmos de mapeamento

que levam em conta os tipos de instrução executados por cada thread para aumentar o

desempenho geral. A ferramenta IAM, projetada para aplicação em tempo real, aumenta o

desempenho do NAS Benchmark em uma média de 9,8% em comparação com os método

de mapeamento Linux scheduler. Nossa pesquisa destacou que o desempenho depende do

tipo de instruções executadas por cada thread rodando simultaneamente. Classificamos

os aplicativos em quatro grupos com base na predominância de um tipo particular de

instrução.

Instruções Intensivas de Cálculo: A ferramenta IAM apresenta excelente desem-

penho para tipos de instrução intensivas em cálculo, como operações de inteiros, ponto

flutuante e branch. Ela emprega um método inovador de mapeamento de threads para nú-

cleos com base em tipos de instrução, mitigando assim a disputa por unidades funcionais

e levando a ganhos substanciais de desempenho. Portanto, para cargas de trabalho que

usam principalmente essas instruções, o IAM surge como uma alternativa promissora aos

escalonadores de sistema operacional convencionais.

Instruções Limitadas pela Memória: Para tipos de instrução limitados pela

memória, especialmente operações de carga e armazenamento, os benefícios de desem-

penho do IAM são menos evidentes. Essa variação destaca a influência de fatores além

da disputa de unidade funcional, notadamente a latência da memória, na formação do de-

sempenho do SMT. Embora o IAM possa não ser ideal para essas cargas de trabalho em

sua versão atual, sua abordagem de agendamento consciente de instruções oferece opor-

tunidades para refinamento. As futuras iterações do IAM poderiam incorporar estratégias

para antecipar e aliviar latências de memória, como ajustes dinâmicos na estratégia de

agendamento com base em padrões de utilização de memória em tempo real.

Diretrizes para Otimização SMT: Nosso estudo enfatiza o valor das consider-

ações específicas de instrução na otimização do desempenho SMT. A estratégia general-

izada pode apenas explorar parcialmente as capacidades dos processadores SMT. Em vez

disso, uma abordagem mais refinada que leve em conta as características específicas da

carga de trabalho pode ser adotada. Estratégias como o IAM reduzem a disputa de unidade
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funcional e podem fornecer benefícios de desempenho substanciais para instruções inten-

sivas em computação. Fatores relacionados à latência da memória e ao comportamento do

cache se tornam críticos para instruções limitadas pela memória. A exploração contínua

de estratégias de otimização de SMT específicas para instrução é justificada, e o potencial

de ferramentas como o IAM para se adaptar dinamicamente a cargas de trabalho variáveis

deve ser examinado.

Nossas descobertas avançam nosso entendimento do comportamento de desem-

penho do SMT e da influência das características de nível de instrução na formação deste

comportamento. Este conhecimento é vital para desenvolver soluções inovadoras para

melhorar a eficiência computacional, especialmente à medida que os processadores con-

tinuam a evoluir e os aplicativos se tornam cada vez mais diversos e complexos.

Além disso, nossa ferramenta é adaptável a qualquer ambiente de computação,

aprimorando a alocação de recursos e facilitando o mapeamento de threads com base em

características específicas de carga de trabalho. Ela pode ser benéfica tanto para prove-

dores de infraestrutura quanto para usuários. Os provedores podem implementar este

mecanismo em toda a sua infraestrutura de computação para aproveitar o aprimoramento

do mapeamento. Ao mesmo tempo, os usuários podem aproveitar este mecanismo para

otimizar suas cargas de trabalho, aumentando assim a eficiência computacional e o de-

sempenho.

B.7 Conclusões e Direções Futuras

Diante dos processadores multicore continuamente evoluindo e se tornando mais

complexos, espera-se que as implicações da competição de unidades funcionais se ampli-

fiquem. Essa tendência é impulsionada pelas arquiteturas prospectivas onde um número

crescente de núcleos compartilha unidades funcionais, exacerbando o desafio de mitigar

a competição de recursos. Consequentemente, como discutido nesta tese, a elaboração

de estratégias de mapeamento eficientes será fundamental na otimização da alocação de

threads entre os núcleos. Isso permitirá a utilização total das capacidades computacionais

nas futuras arquiteturas multicore, apesar das complexidades associadas ao compartil-

hamento de recursos.

Nossa pesquisa foi pioneira em um microbenchmark único para avaliar metodica-

mente o impacto do compartilhamento de recursos. Esta ferramenta, que se desvia do foco

tradicional na competição de memória, considera a competição entre várias unidades fun-
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cionais, oferecendo uma compreensão mais matizada da dinâmica do compartilhamento

de recursos em ambientes multicore.

Desenvolvemos uma estratégia inovadora para mapear threads de várias aplicações

paralelas em arquiteturas multicore baseadas em SMT com base na competição de difer-

entes unidades funcionais. Este método aproveita um entendimento granular da com-

petição de unidades funcionais para guiar decisões de alocação de threads, otimizando a

utilização de recursos e alcançando um equilíbrio no uso de recursos.

Nossos resultados mostram melhorias de desempenho consideráveis, com um au-

mento médio geométrico de 9.8% em comparação com Linux scheduler. Essas melhorias

são atribuídas principalmente à mitigação da competição de unidades funcionais através

do posicionamento estratégico de threads, que atribui threads que sobrecarregam as mes-

mas unidades funcionais a núcleos distintos. Além disso, introduzimos uma métrica de

dissimilaridade que indica uma correlação entre a semelhança de aplicativos e a degradação

de desempenho quando mapeados para o mesmo núcleo.

Em termos de trabalho futuro, aspiramos expandir nossa investigação sobre a in-

fluência da competição de unidades funcionais em uma variedade mais abrangente de

arquiteturas. Nosso foco inclui arquiteturas de ponta como Intel Sapphire Rapids e AMD

Zen 5, enquanto nos esforçamos para aprofundar nosso entendimento sobre a gestão de

recursos em processadores multicore. No processo, nosso objetivo é formular um con-

junto abrangente de diretrizes que permitirá a utilização eficiente dessas e futuras arquite-

turas multicore, permitindo-nos aproveitar suas vastas capacidades computacionais sem

sucumbir à competição de recursos.

Adicionalmente, vislumbramos a integração de nossa ferramenta no kernel do

Linux, uma progressão lógica dada a função do kernel na gestão do posicionamento de

threads nos núcleos do processador. A incorporação de nossa ferramenta nas trocas de

contexto do kernel do Linux permitirá o monitoramento e a gestão em tempo real da

competição de recursos. Este arranjo poderia gerir a alocação de recursos com base nas

percepções da ferramenta sobre a competição de unidades funcionais, diminuindo assim

os impactos no desempenho. Isso poderia resultar em um controle mais refinado e uma

gestão de recursos aprimorada, culminando em desempenho de sistema otimizado.

Por essa abordagem, nossa ferramenta poderia se adaptar continuamente ao com-

portamento de cada aplicação em execução no sistema, ajustando recursos conforme

necessário para maximizar o desempenho. Isso permitiria a implementação de estratégias
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de gestão de recursos dinâmicas e autoajustáveis onde o kernel aprende continuamente e

se adapta à carga de trabalho do sistema.

Em resumo, nosso trabalho futuro visa expandir nossa compreensão da com-

petição de recursos em arquiteturas multicore e investigar a integração de nossa ferra-

menta no kernel do Linux. Esses esforços progressivos lançarão as bases para estratégias

de gestão de recursos aprimoradas, impulsionando uma utilização mais eficiente e eficaz

dos processadores multicore. Esses avanços poderiam ter implicações de longo alcance

em vários domínios, incluindo data centers, eletrônicos de consumo e tecnologia móvel.
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