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Abstract: The myoelectric signal reflects the electrical activity of skeletal muscles and 
contains information about the structure and function of the muscles which make different 
parts of the body move. Advances in engineering have extended electromyography beyond 
the traditional diagnostic applications to also include applications in diverse areas such as 
rehabilitation, movement analysis and myoelectric control of prosthesis. This paper aims to 
study and develop a system that uses myoelectric signals, acquired by surface electrodes, to 
characterize certain movements of the human arm. To recognize certain hand-arm segment 
movements, was developed an algorithm for pattern recognition technique based on  
neuro-fuzzy, representing the core of this research. This algorithm has as input the 
preprocessed myoelectric signal, to disclosed specific characteristics of the signal, and as 
output the performed movement. The average accuracy obtained was 86% to 7 distinct 
movements in tests of long duration (about three hours). 

Keywords: biomedical instrumentation; surface electromyography (sEMG); arm movements; 
neuro-fuzzy system 

 

1. Introduction 

Research in Biomedical Engineering and Computational Intelligence is providing mechanisms to 
help people with some disabilities to perform simple tasks of day-to-day. Studies in this area are 
justified by the fact that approximately 15% of the World population has some type of disability [1]. 
Because of physical disability, a significant portion of society has some personal limitations, therefore 
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also for the professional and social life. According to Schulz et al. [2] in the United States there 41,000 
registered persons who have had an amputation of a hand or a complete arm. With the same frequency of 
occurrence (1 in 6,100) there would be 1,000,000 such persons worldwide. Recent advances in signal 
processing technologies and mathematical models have made it practical to develop advanced EMG 
detection and analysis techniques. In 2006 various mathematical techniques and Artificial Intelligence 
(AI) have received extensive attraction [3]. In recent years, there has been an explosion of interest in 
Computational Intelligence as evidenced by the numerous applications in health, biomedicine, and 
biomedical engineering [4–15]. Computational Intelligence techniques are computing algorithms and 
learning machines, including artificial neural networks, fuzzy logic, genetic algorithms, and support 
vector machines.  

The human skeletal muscular system is primarily responsible for providing the forces required to 
perform various actions. Currently, electromyography (EMG) studies are used for evaluating and 
diagnosing patients with neuromuscular disorders. The interpretation of EMG readings is usually 
performed by trained person. Problems arise when there are too few experts to meet the demand of 
patients and, therefore, it is becoming increasingly important to developed automated diagnostic 
systems based on EMG readings. This need provides scope for the application of Computational 
Intelligence techniques for the detection and classification of neuromuscular disorders based on EMG 
processing. The myoelectric signal is the sign of muscle control of the human body that contains the 
information of the user’s intent to contract a muscle and, therefore, make a move. It makes the use of 
this signal very advantageous, because the control of a robotic prosthesis can be performed based in 
the intention of the user.  

The work of Ahsan et al. [16] represents the detection of four hand motions (left, right, up and down) 
using an artificial neural network (ANN). According to Hudgins et al. [17], the success of a pattern 
classification system depends completely on the choice of features used to represent the raw EMG signals. 
Ahsan et al. [16] used seven statistical time and time-frequency based features: mean absolute value, root 
mean square, variance, standard deviation, zero crossing, slope sign change and Wilson amplitude.  

Rajesh et al. [18], used wavelets and classification using Euclidean distance. The general features of 
the hand gestures from EMG signal patterns were: hand extension, hand grasp, wrist extension, wrist 
flexion, and pinch and thumb flexion. They used the entropy, rms and standard deviation in the 
analysis of features. Shenoy et al. [19], used a simple feature (rms value over windows) and 
continuously classified windows of data collected while the subject maintained a static hand gesture 
(gestures correspond to pairs of actions: grasp-release, left-right, up-down and rotate). The 
classification was with Linear Support Vector Machines. Boschmann et al. [20], introduce an approach 
for classifying EMG signals taken from forearm muscles using support vector machines. In a single 
experiment run, the test subject had to perform a sequence of eleven different movements: extension, 
flexion, ulnar deviation, radial deviation, pronation, and supination, open, close, key grip, pincer grip 
and extract the index finger.  

Matrone et al. [21] presents the work of a robotic hand employing a two differential channels (four 
electrodes) EMG acquisition system and a principal components analysis (PCA) based controller. 
Participants volunteered in experimental tasks consisting in grasping, transporting and releasing different 
kinds of objects, by employing a five-fingered (and six motors) robotic hand. The control system decoded 
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and converted the subjects’ 2-DoF wrist contractions (flexion/extension and adduction/abduction) into 
hand posture control commands, implementing the algorithm based on PCA [22].  

Within the last dozen of years, different structures of neuro-fuzzy networks have been presented, 
often referred to in the world literature as neuro-fuzzy systems [23]. They combine the advantages of 
neural networks and fuzzy systems. Kurzynski et al. [24], used the following methods of sequential 
classification (five types): Bayes approach with Markov model, multilayer perceptron, multiclassifier 
with competence function, classifier based on fuzzy logic and classifier based on Dempster-Shafer 
theory of evidence. In this paper it is proposed a method to determine the input features based on 
autoregressive (AR) model. Six different types of grapes depending on the grasping object (a pen, a 
credit card, a computer mouse, a cell phone, a kettle and a tube) were chosen for recognition. Seven 
elementary actions were distinguished in the process of grasping with a hand: rest position, grasp 
preparation, grasp closing, grabbing, maintaining the grasp, releasing the grasp, transition to the rest 
position. The paper of George et al. [25], concentrates on the classification of different speeds of 
movement of human elbow. For this, EMG signals are acquired from the biceps brachii. Two types of 
classifiers are developed and compared: Fuzzy Logic Classifier (FLC) and Probabilistic Neural 
Network Classifier (PNNC). Khezri et al. [26] propose to use an adaptive neuro-fuzzy inference 
system (ANFIS) to identify hand motion commands (hand opening and closing, pinch and thumb 
flexion, wrist flexion and extension), but with vision feedback to increase the capability of the system. 
In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP) and least 
mean square (LMS) was utilized. In this study was used, mean absolute value, slope sign changes and 
AR model coefficients as time features of the signal. Khezri et al. [27], used two classifiers: fuzzy 
inference system (FIS) and artificial neural network (ANN). They consider four major parts including 
sEMG preprocessing, and conditioning, feature extraction (time domain, time-frequency domain and 
their combination), dimensionality reduction [applied to simplify the task of the classifier: two 
approaches: class separability (CS) and principle component analysis (PCA)] and classification. Eight 
hand movements were extracted: hand opening and closing, pinch, thumb flexion, wrist radial flexion 
and extension and wrist flexion and extension.  

Therefore, it is possible to distinguish certain muscle movements while processing the electrical 
parameters of the myoelectric signal. Considering that premise, this research aims to study and develop 
a system that uses myoelectric signals, acquired by surface electrodes, to characterize certain 
movements of the human arm. The pattern recognition system (see Figure 1) has three basic 
components: preprocessing (filtering, calibration of each channel, removal of DC component, 
windowing the signal of interest), the feature extraction (determining the rms value of the signal of 
interest) and classification (neuro-fuzzy). To recognize certain arm movements (see Table 1), an 
algorithm was developed for pattern recognition based on neuro-fuzzy logic, representing the core of 
this research. Fuzzy logic systems can emulate human decision-making more closely than many other 
classifiers, because of the possibility of introducing the knowledge of an expert system in the fuzzy 
rules [5,28]. The non-stationary nature of EMG signals, like other biological signals, makes the 
classification task more difficult, but the characteristics of a fuzzy inference system make it a viable 
tool for pattern recognition applications [29]. The algorithm developed has as input the preprocessed 
myoelectric signal, to disclosed specific characteristics of the signal, and as output the performed 
movement. The proposed system uses only eight pairs of electrodes for signal acquisition (without 
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visual feedback as output), and processes these signals with a neuro-fuzzy system for recognition of 
performed movements. Therefore, in this work we applied a neuro-fuzzy method to recognize EMG 
patterns. Neuro-fuzzy computing enables us to build a more robust intelligence-based decision making 
system by combining the advantages of artificial neural networks with the fuzzy modeling of imprecise 
and qualitative knowledge.  

Figure 1. A block-diagram representation of the system. 

 

2. Sugeno Inference System and Adaptive Neuro-Fuzzy: An Introduction 

A fuzzy set is defined as a set or collection of elements with membership values between 0 and 1. 
Therefore, the transition between belonging or not belonging to the set is gradual and is characterized 
by its fuzzy Membership Function (MF) that is used to describe the fuzzy membership value given to 
fuzzy set elements enabling the fuzzy set model linguist expression used in everyday life, such as,  
“the rms value of the masseter myoelectric signal is medium high”.  

• For this study the Sugeno fuzzy model had been used to generate fuzzy rules from a set of input 
and outputs. A typical fuzzy rule in the Sugeno fuzzy model is shown in Equation (1):  

• If x is equal to A and y is equal to B, then:  

z = f(x,y) (1)

as A and B sets of fuzzy antecedents and z= f(x,y) the crisp consecutive function.  
Adaptive Neuro-Fuzzy Inference System (ANFIS) is a class of adaptive networks whose 

functionality is equivalent to a fuzzy inference system (FIS), which generates a fuzzy rule and 
membership functions (MF) automatically. The output of this system can be described by the 
following Equation (2): 

ߛ ൌ ෍ ቊ൫∏ ௝൯௡௝ୀଵݔ௝௜൫ܨܯ ൯൫ݖ௜൯∑ ൫∏ ௝൯௡௝ୀଵݔ௝௜൫ܨܯ ൯௅௜ୀଵ ቋ௅
௜ୀଵ  

(2)

where MF is the membership function, xj (j = 1, 2, …, n) is the jth input and zi is the output of jth fuzzy 
rule. ANFIS adapts the parameters of Sugeno type inference system using the neural networks. 

Typically the Adaptive Neuro-Fuzzy Inference System network topology consists of connected nodes 
that depend on parameters that change according to certain learning rules that minimize the error. The 
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learning technique most commonly used is the gradient method, however Jang [30] proposed hybrid 
learning rule which includes the Least Square or simply LSE Estimator. Considering a fuzzy system 
with three inputs x, y and z, one output v and a fuzzy inference Sugeno model. One possible set of rules 
is shown in Equations (3) and (4): 

Rule 1: If x is equal to A1, y is equal to B1, and z is equal to C1, then f1 = p1x + q1y + r1y + s1 (3)

Rule 2: If x is equal to A2, y is equal to B2, and z is equal to C2, then f2 = p2x + q2y + r2z + s2 (4)

as an example, Figure 2(a) illustrates the reasoning mechanism for the Sugeno inference model.  
The equivalent ANFIS architecture is presented in Figure 2(b) with nodes of same layer having  
similar functions. 

Figure 2. (a) Example of a Sugeno Inference Model: three inputs and two rules and (b) The 
equivalent ANFIS architecture. 

(a) 

(b) 

The first layer of Figure 2(b) is represented by adaptive nodes i whose functions are determined by 
Equations (5–7): 
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ଵܱ,௜ ൌ ,ሻݔ஺೔ሺߤ ݎ݋݂ ݅ ൌ 1, 2 (5) ଵܱ,௜ ൌ ,ሻݕ஻೔షమሺߤ ݎ݋݂ ݅ ൌ 3, 4 (6) ଵܱ,௜ ൌ ,ሻݕ஼೔షరሺߤ ݎ݋݂ ݅ ൌ 5, 6 (7)

where x, y or z entries in node i and Ai Bi-2 and Ci-4 linguistic labels associated with that node. Thus, 
O1,i represents the pertinence degree to the fuzzy set A (A1, A2, B1, B2, C1 or C2) and specifies the 
degree to each input x, y or z satisfies the fuzzy set A. The membership function µ can be any of the 
membership functions: triangular membership function, Gaussian-membership function, Bell 
membership function, etc. When the values (called the premise parameters) of the membership 
function are changed, the function varies, i.e., display various types of MF to the fuzzy set A. The layer 
2 has fixed nodes indicated by Π with outputs that represents the input signals product, as indicated in 
Equation (8)—the output nodes represent the firing strength of a given rule:  ܱଶ,ଵ ൌ ߱௜ ൌ ,ሻݖ஼೔ሺߤሻݕ஻೔ሺߤሻݔ஺೔ሺߤ ݅ ൌ 1, 2. (8)

In layer 3 the fixed nodes are referred to N. The ith node calculates the firing strength rate of rule ith 
to the sum of all firing strength of rules, given by Equation (9)—the nodes in layer 3 are generally 
known as normalized firing strength: ܱଷ,௜ ൌ ప߱തതത ൌ ߱௜߱ଵ ൅ ߱ଶ , ݅ ൌ 1, 2. (9)

Layer 4, for example, the nodes i are adaptive with the function given by Equation (10): 

ସܱ,௜ ൌ ప߱തതത ௜݂ ൌ ప߱തതതሺ݌௜ݔ ൅ ݕ௜ݍ ൅ ݖ௜ݎ ൅ ௜ሻ (10)ݏ

where ప߱തതത is a normalized firing strength from layer 3 and {݌௜, ,௜ݍ ,௜ݎ  ௜} the set of parameters (calledݏ
consequence parameters) of this node. The last layer of the Figure 2(b) has only one fixed node called 
Σ that determines the final output as the sum of all signals represented by Equation (11):  ݐݑ݌ݐݑܱ ݈ܽ݊݅ܨ ൌ ܱହ,ଵ ൌ ෍ ప߱തതത ௜݂ ൌ ∑ ߱௜ ௜݂௜∑ ߱௜௜௜  (11)

Considering the architecture shown in Figure 2(b) it can be seen that while the values of the 
parameters of the premises is fixed, the final output can be expressed as a linear combination of 
consequence parameters. Therefore, the output can be rewritten, for example, by the linear equation 
with the following consequence parameters: p1, q1, r1, s1, p2, q2, r2 and s2 (see Equation (12)): 

݂ ൌൌൌ
߱ଵ߱ଵ ൅ ߱ଶ ଵ݂ ൅ ߱ଶ߱ଵ ൅ ߱ଶ ଶ݂ప߱തതതሺ݌ଵݔ ൅ ݕଵݍ ൅ ݖଵݎ ൅ ଵሻݏ ൅ ߱ଶതതതതሺ݌ଶݔ ൅ ݕଶݍ ൅ ݖଶݎ ൅ ଶሻሺݏ ప߱തതതݔሻ݌ଵ ൅ ሺ ప߱തതതݕሻݍଵ ൅ ሺ ప߱തതതݖሻݎଵ ൅ ሺ ప߱തതതሻݏଵ ൅ ሺ߱ଶതതതതݔሻ݌ଶ ൅ ሺ߱ଶതതതതݕሻݍଶ ൅ ሺ߱ଶതതതതݖሻݎଶ ൅ ሺ߱ଶതതതതሻݏଶ

 
 

(12)

For training fuzzy system, ANFIS employs a back-propagation scheme for the parameters 
associated with the input membership functions, and least mean square estimation for the parameters 
associated with the output membership function [24]. The hybrid training algorithm is based on the 
following criteria: in the forward step of the hybrid algorithm, the outputs of the nodes will forward to 
the layer 4 and the consequence parameters are identified by the least squares method. In the backward 
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step, the error signal is propagated backward and the premise parameters are updated by gradient 
descent method [30]. 

3. Subtractive Clustering 

In order to optimize the fuzzy system and increase its ability for EMG pattern recognition, 
subtractive clustering was employed to optimize fuzzy rules specification. This method partitions the 
data into groups (clusters), and generates a Fuzzy Inference System (FIS) with the minimum number 
of rules required to distinguish the fuzzy qualities associated with each of the clusters. Therefore, the 
utilization of clustering algorithms allows characterization and organization of data, but also the 
construction of models from a database. Basically clustering divides data sets derived from a large 
group into similar groups. Clustering can be used to model an initial fuzzy network, in other words, to 
determine the fuzzy rules. For this purpose, the clustering technique is validated based on the 
following propositions: (a) similar entries in a target system should be modeled to produce similar 
outputs and (b) these similar pairs input-output are packed in clusters of the training data set [30]. 

Subtractive clustering is based on a measure of the density of data points in the feature space. The 
idea behind this approach is to find regions in the feature space with high densities of data points. The 
point with the highest number of neighbours is selected as the center for a cluster. The data points 
within a prespecified fuzzy radius are then removed (subtracted), and the algorithm looks for a new 
point with the highest number of neighbours. This continues until all data points are examined [24]. 

The technique subtractive clustering proposed by Chiu [31], considers any data points as candidates for 
the cluster centers. Using this method, the processing is proportional to the number of data points, 
independent of the size of the problem under consideration. For example, is a collection of n data 
points {x1,..., xn} in an M-dimensional space, whose points were normalized to a hypercube. Since 
each data point is candidate for the cluster center, the density measurement at each point xi is defined 
by Equation (13): 

࢏ࡰ  ൌ ෍ ܘܠ܍ ሺെ ฮ࢏࢞ െ ࢇ࢘ฮ૛ሺ࢐࢞ ૛⁄ ሻ૛ ሻ࢔
ୀ૚࢐  

(13)

where ra is a positive constant. A point will have a great density it has many neighbor points. The 
radius ra defines the neighborhood and the points outside of the neighborhood contribute very little to 
the density measurement. After the density measurement (Di) is calculated for all of the points, the 
point with highest density is selected to be the center of the first cluster. If xc1 is the selected point and 
Dc1 your density value, the measured density for each point is revised according to the expression 
shown in Equation (14): ࢏ࡰ ൌ ࢏ࡰ െ ܘܠ܍૚ࢉࡰ ሺെ ԡ࢏࢞ െ ࢈࢘૚ԡ૛ሺࢉ࢞ ૛⁄ ሻ૛ ሻ (14)

After reviewing the density of each point, the next center xc2 is selected and all of the density 
measures of the points are revised again. This process is repeated until a sufficient number of clusters 
are created. When applied the subtractive clustering technique for a set of input-output data, each 
cluster center will represents a prototype that exhibits certain characteristics of the system being 
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The noise was eliminated by using typical filtering procedures such as band-pass filter, band-stop filter 
and by use of a good quality of equipment with a proper electrode placement. The signal was amplified 
with a high common mode rejection ratio (CMRR) amplifier (which provides a high common mode 
rejection ratio of 110 dB). A notch filter (60 Hz) was used to eliminate power line noise. Through a 
data acquisition board (NI-USB6008 with an acquisition rate of 1 kHz per channel), the myoelectric 
signal is digitized and processed on a portable computer, where it is filtered (high-pass filter with 500 Hz 
cut-off frequency to reduce motion artifacts and a low pass filter of 20 Hz cut-off frequency to reduce 
noise, it was found that the dominant frequency was in the range of 70–300 Hz) and analyzed by 
software using the technique of pattern recognition, based on neuro-fuzzy systems. Finally, the system 
has as output the characterization of the movement and also verifies if the executed movement was 
well recognized.  

Figure 4. Picture showing the electrodes positions in the same arm (right arm). 

 

The virtual model created in this work aims to help the standardization of tests for the acquisition of 
the myoelectric signal. With this virtual model is possible, for the subject, visualize the movement to 
be performed during the tests, so that all subjects perform, as best as possible, the same movements at 
the same time base, making the system more user-friendly. For the development of the virtual model 
we used the software MakeHuman Alpha5 and Blender 1.0 Beta 2:54. Figure 5 shows details of the 
virtual model. 

Figure 5. Details virtual model: (A) zoom of the hand: (a) hand contraction, (b) wrist 
extension, (c) forearm rotation, (d) wrist flexion, (e) forearm flexion e; (B) whole body model. 

(A) (B) 
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This virtual model is a skeleton whose manipulative joints are used to define the positions that it should 
take. For the development of the animation it was necessary to set the start and end position and movement 
timing of each of the respective movement. The software then builds an animation by connecting the 
two points during a defined duration. A rest position was also established which was adopted for all 
movements. All movements start from the rest position, run and return to it. To display the animations, 
a routine was developed enabling the reading of files and reproduction the virtual model. 

There are seven movements, which are: Wrist Flexion; Hand Contraction, Wrist Extension, 
Forearm Flexion, Forearm Rotation, Hand Adduction and Hand Abduction (for example see Figure 6). 
For the movements the following time sequence with a total duration of each animation of 8.3 s was 
adopted: initial interval: 0.4 s in which the animation will be in the rest position; forward movement: 
duration of 2.9 s; movement interval: 1.25 s, in which the animation remains static at the end of the 
ongoing movement; backward movement: same duration as the forward movement (2.9 s); final 
interval: duration of 0.8 s, during which the animation is again in the rest position. 

Figure 6. Static representation of a simple movement: wrist extension movement. 

 

The data was collected from thirty able-bodied subjects. All the experiments were carried out with 
consent of the subjects, according to the ethical precepts. In order to standardize the testing of signal 
acquisition the following aspects were considered: each test consists of five sessions; a random 
sequence of animations is generated for each session of the test; each session is composed of five 
repetitions of each of the seven selected movements; between movements, the subject should rest for  
3 s and each subject participates in a single test (the subjects were instructed to relax between the 
movements and maintain each gesture comfortably). There were no restrictions or measurement of the 
force exerted by the subjects during arm movements.  

To start the acquisition, after correct positioning of the electrodes, the subject is instructed to 
replicate the animations of the virtual model, which appear on the LCD screen. The classification of 
each movement occurred during the data acquisition. A routine was developed to generate the 
sequence of movements randomly. The output is a vector with a random order of the movements of the 
virtual model presented to the user. The neuro-fuzzy system takes as input the rms values of each  
pre-processed data acquisition channel (calibration of each channel, removal of DC component, 
filtering, windowing the signal of interest and determining the rms value of the signal of interest). 

The system presents as output the characterized movements that are being carried out by the human 
arm. The fuzzy-neural network is interfaced via Labview, where the routine developed in Matlab is 
called when needed, being processed in the background. First the number of network inputs, which can 
vary from 2 to 8, depending on the number of channels which is intended to analyze, was set. The 
channel that will be used on the network can be selected by the operator of the system in which the 
developed routine performs reading of all channels and automatically separates the desired channels 
for processing. This function has as input the array of channels to be selected and as output only the 



Sensors 2013, 13 2623 
 

 

desired channels. The output of the neuro-fuzzy networks is considered fixed, containing the 7 
movements previously determined. The output values ranges from 0 to 1, and for each movement there 
is a corresponding fixed known value, as shown in Table 2. 

Table 2. Network output values associated with the recognized movements. 

Movement Corresponded Output Abbreviation 
Hand Contraction 0 M0 
Wrist Extension 0.083 M1 
Wrist Flexion 0.166 M2 

Forearm Flexion 0.249 M3 
Forearm Rotation 0.333 M4 
Hand Abduction 0.416 M5 
Hand Adduction 0.499 M6 

The developed structure is a fuzzy network type Sugeno obtained in the generation of an initial 
structure adapted from an input-output set acquired in the systems tests. The structure contains eight 
inputs and one output. To adjust the system it is necessary first to create an initial fuzzy network, 
which should be representative of the subject data. For this, the subtractive clustering technique was 
used, which can generate, from a input-output data, membership functions of input and output, and the 
fuzzy rules structure for type Sugeno. This technique was chosen because it obtained good results in 
preliminary studies cases. In the first subject assay, the expected input and output values are used to create 
the system initial structure representing the fuzzy network of eight inputs, 60 clusters (i.e., 60 rules) 
and one output, generated for a system assay, and adjust it later to adapt it to represent more faithfully 
a model that can characterize the subject movements.  

After creating the initial fuzzy structure is necessary to adapt the membership functions for the data 
acquired in the session, thus making a fine adjustment of the functions, leading to results more 
consistent with the ones expected. The adaptation step is very important, because it helps to better 
define the limits and parameters of the membership functions, leaving the model best suited for the 
subject. In this step a hybrid training function was used. The hybrid training is a combination of the 
gradient method with the LSE method to optimize the time convergence of the model, since it reduces 
the demand on the dimensional space. As output of the training step, a fuzzy network with adapted 
membership functions to a particular subject is generated, causing the limits of each function to be left 
according to the training data. 

5. Results and Discussion 

This topic will discuss the tests performed during system development, and the results obtained.  
It is important to note that the pre-processing routine and calibration have already been validated in 
previous studies [7,8]. Subjects participating in this research presented an age range of 20 ± 5 years of 
age, and were of both sexes. Altogether trials were conducted with thirty subjects. The abbreviations of 
the characterized movements are presented in Table 2. It is worth noting that the parameters of ANFIS 
training were the same for all subjects.  
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For example, Figure 7 represents the result of section 3 for Subject 1 where is possible to notice that for 
the movements M1, M2, M4, M5 and M6 an accuracy of 100% is obtained. Movements in which an 
incorrect recognition occurred, for example, were the M3 (forearm flexion) with M4 (forearm rotation), 
causing 20% error, which may occur since these movement uses common muscles, such as the biceps, 
and only surface electrodes were used. The first movement M0 (hand contraction) was considered the 
M6 (hand adduction), because it was wrongly executed by the user (check during this test). 

Figure 7. System output for Subject 1–Section 3 (5 repetitions). 

 

Figure 8 represents the result of Section 2 for Subject 27 where is possible to notice that for the 
movements M0, M1, M2, M3 and M5 an accuracy of 100% was obtained. Movements in which incorrect 
recognition occurred were the M4 (forearm rotation) with M3 (forearm flexion), causing a 60% error, 
which may occur since these movements uses common muscles, such as the biceps, and only surface 
electrodes were used. The second repetition of movement M6 (hand adduction) was recognized as M3 
(forearm flexion) because the user made the motion requested by half (check during this test). 

Figure 8. System output for Subject 27–Section 2 (5 repetitions). 
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For example, Table 3 represents the average accuracy rate of the system for each movement per 
session, and the overall average of each movement per session for Subject 1. The movements with 
lower hit rate are: forearm flexion (M3), forearm rotation (M4) and hand adduction (M6), with 85%, 
90% and 90% hit rate, respectively. This is due to the similarity between M3 and M4 and the difficulty 
of the subject in performing the movement M6. 

Table 3. Summary of the system average accuracy rate to the Subject 1. 

Subject 1 M0 M1 M2 M3 M4 M5 M6 
Session 2 (%) 100 100 100 100 80 100 80 
Session 3 (%) 80 100 100 80 100 100 100 
Session 4 (%) 100 80 100 80 100 80 100 
Session 5 (%) 100 100 100 80 80 100 80 
Average (%) 95 95 100 85 90 95 90 

Figure 9 represents the average of all tests performed for each movement. Analyzing the graph it is 
clear that the more accurate movements were M0, M1, M2, M5, with averages rates of approximately 
90%. These movements are quite distinct, which increases the accuracy rate of the system. Overall the 
system achieved an average accuracy of 86%.  

Figure 9. Overall result of the system for each movement. 

 

As it was possible to see from the results of this work, most of the errors were caused by similar 
movements, or the differentiation of compound movements with their simple movements. The human arm 
has many degrees of freedom and is able to develop a system that can characterize many different 
movements and combined them which is the real challenge and for this reason is an active area of 
research [7,8].  

However, for easy observation observed and to confirm the investigation, analysis of variance 
(ANOVA) and the multiple comparisons were used (therefore, for statistical validation methodology 
was used the design and analysis of three-factor experiments—Three-Factor Fixed Effects Model). The 
ANOVA provides a statistical test of whether or not the means of several groups are all equal. If there 
are not all the same, you may need information about which pairs of means are significantly different, 
and which are not. A multiple comparison procedure is a test that can provide such information. Two 
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means are significantly different if their intervals are disjoint, and are not significantly different if their 
intervals overlap. This experimental design is a completely randomized design. Consider the  
three-factor-factorial experiment, with underlying model Equation (15): 

 ௜ܻ௝௞௟ ൌ ߤ ൅ ߬௜ ൅ ௝ߚ ൅ ௞ߛ ൅ ሺ߬ߚሻ௜௝ ൅ ሺ߬ߛሻ௜௞ ൅ ሺߛߚሻ௝௞ ൅ ሺ߬ߛߚሻ௜௝௞ ൅ ߳௜௝௞௟  ൞݅ ൌ 1,2, … , ݆ܽ ൌ 1,2, … , ܾ݇ ൌ 1,2, … , ݈ܿ ൌ 1,2, … , ݊  (15)

where ߤ is the overall mean effect, ߬௜ is the effect of the ith level of factor A (eight different muscles or 
eight channels 0–7), ߚ௝ is the effect of the jth level of factor B (thirty subjects: 1 and 30), ߛ௞ is the 
effect of the kth level of factor C (seven movements: hand contraction, wrist extension, wrist flexion, 
forearm flexion, forearm rotation, hand abduction and hand adduction), ሺ߬ߚሻ௜௝  is the effect of the 
interaction between A and B, ሺ߬ߛሻ௜௞ is the effect of the interaction between A and C, ሺߛߚሻ௝௞ is the 
effect of the interaction between B and C, ሺ߬ߛߚሻ௜௝௞ is the effect of the interaction between A, B and C 
and ߳௜௝௞௟ is a random error component having a normal distribution with mean zero and variance ߪଶ. 
Notice that the model contains three main effects (A,B and C), three two-factor interactions, a  
three-factor interaction, and an error term.  

The F-test on main effects and interactions follows directly from the expected mean squares. These 
ratios follow F distributions under the respective null hypotheses. We will use ߙ ൌ 0.05 (significance 
level). The analysis of variance for a three-factor experiment showed that the main effects due to the 
eight channels, thirty subjects and seven movements are significant, in other words, there is a strong 
evidence to conclude that ܪ଴ is not true (the variances of the three main effects are different). Thus, it is 
possible to say that the output rms for each one of the eight channels, thirty subjects and seven movements 
are quite distinct from each other, and thus, the myoelectric signals are also distinct and so can be treated as 
distinct channels by the developed neuro-fuzzy system. The results of this model showed that the 
interactions are true, i.e., ሺ߬ߚሻ, ሺ߬ߛሻ, ሺߛߚሻ and ሺ߬ߛߚሻ are significant. Table 4 presents several studies 
with similar characteristics: mathematical method, movements’ number or objective of the study.  

The results indicated that the ANFIS system exhibits similar performance compared to other studies 
(see Table 4). The system developed by Chan using fuzzy techniques classified four simple 
movements with an accuracy of 91% [5]. A system was developed by Ajiboye to characterize four 
classes of movements using four channels, obtaining an accuracy of 86% [4]. These systems had similar 
results to those found in the preliminary study of this research in which the neuro-fuzzy technique was 
used to classify five distinct movements using three signal acquisition channels, obtaining an accuracy 
of 86% [7,8]. Another difference that it is important to note is that the proposed study used only one 
feature extracted for each channel (RMS value), without feedback, without extraction of channels  
or data, unlike other studies that use many features per channel and many techniques for classification. 
The results found in this study when compared to the work [32] demonstrate the importance of  
training the volunteers. In this study, the volunteers used the system for at least 3 months and thus had 
a higher hit rate. 
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Table 4. Results from other studies. 
Selected 

Study Ahsan et al. [16] Rajesh et al. [18] George et al. [25] Shenoy et al. [19] 

Movements 
used Left, right, up and down 

Hand extension, hand 
grasp, wrist extension, 

wrist flexion,  
pinch and thumb 

flexion 

Classification of 
different speeds of 

movement of human 
elbow 

Static hand gesture 
(gestures correspond to 

pairs of actions:  
grasp-release,  

left-right, up-down and 
rotate) 

Features 

Mean absolute value, 
RMS, variance, standard 
deviation, zero crossing, 
slope sign change and 

Wilson amplitude 

Entropy, RMS and 
standard deviation 

Mean absolute value 
and variance RMS value 

Classification Artificial neural network Euclidean distance 

Fuzzy Logic Classifier 
(FLC) and 

Probabilistic Neural 
Network Classifier 

(PNNC) 

Linear Support Vector 
Machines 

Hit Ratio Average of 88.4% For feature RMS was 
83.33% 

97.3% for FLC and 
93.6% for PNNC Accuracy of 92 to 98% 

Selected 
Study Kurzynski et al. [24] Khezri et al. [27] Khezri et al. [26] Boschmann et al. [20] 

Movements 
used 

Seven elementary actions 
were distinguished in the 
process of grasping with a 
hand: rest position, grasp 

preparation, grasp closing, 
grabbing, maintaining the 
grasp, releasing the grasp, 

transition to the rest 
position 

Eight hand movements: 
hand opening and 

closing, pinch, thumb 
flexion, wrist radial 

flexion and extension 
and wrist flexion and 

extension. 

Hand motion 
commands  

(hand opening and 
closing, pinch and 

thumb flexion, wrist 
flexion and extension), 

but with vision 
feedback to increase 
the capability of the 

system 

Seven different 
movements: extension, 

flexion, ulnar 
deviation, radial 

deviation, pronation, 
supination, open, close, 

key grip, pincer grip 
and extract the index 

finger 

Features 

Six types of grapes 
depending on the grasping 

object (a pen, a credit 
card, a computer mouse,  
a cell phone, a kettle and 

a tube) 

Time domain,  
time-frequency domain 
and their combination 

Mean absolute value, 
slope sign changes and 
AR model coefficients 

 

Classification 

Five types: Bayes 
approach with Markov 

model, multilayer 
perceptron, multiclassifier 

with competence 
function, classifier based 

on fuzzy logic and 
classifier based on 

Dempster-Shafer theory 
of evidence 

Fuzzy inference system 
(FIS) and Artificial 

neural network (ANN) 

Adaptive  
neuro-fuzzy inference 

system (ANFIS) 

Support vector 
machines 
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Table 4. Cont. 

Selected 
Study 

Kurzynski et al. [24] Khezri et al. [27] Khezri et al. [26] Boschmann et al. [20] 

Hit Ratio 

Mandani inference system 
is applied with the one-

instant-backwards and the 
two-instant-backwards 
dependence (algorithms 

FS1 and FS2):  
the classification 

accuracies of sequential 
classifiers compared in 

the experiment: for FS1: 
72.5 (order of AR model 

was 2) to  

Average accuracy for 
eight movements was of 

the 83% to 78% (the 
best combination to 

design sEMG pattern 
recognition system) 

Average results of the 
neuro-fuzzy system:  

opening-98%;  
closing-100%; wrist 
flexion-94%; wrist 

extension-96%;  
pinch-98%;  

Accuracy averaged 
over all 11 movements 

is 91.3% 

 

89.7 (order of AR model 
was 8) and FS2: 69.5 

(order of AR model was 
2) to 88.5 (order of AR 

model was 8) 

 
Thumb flexion-94% 
and average for six 
movements-96.67% 

 

Selected Study This work 
Movements 

used 
Seven movements: Wrist Flexion; Hand Contraction, Wrist Extension, Forearm Flexion, Forearm 

Rotation, Hand Adduction and Hand Abduction 
Features RMS value 

Classification Neuro-Fuzzy 

Hit Ratio 
Average accuracy of 86%; Average accuracy of approximately 90% (hand contraction, wrist extension, 

wrist flexion and hand abduction) 

6. Conclusions 

The proposed system was designed to use a limited amount of up to eight channels of myoelectric 
signal acquisition and with the assistance of a more robust artificial intelligence technique was able to 
verify the validity of this system in terms of performance in the characterization of seven distinct 
movements. With the windowing signal occuring at the instant when a movement occurs, it is possible 
to obtain the rms value for each of the eight channels and to use these values as input to a neuro-fuzzy 
network with one output an up to eight inputs. This network aims to characterize the movements that 
are being executed. The network is adapted in accordance with supervised training, to evaluate system 
performance over time. As can be seen on the results, some movements achieved a lower hit rate, this 
may occur due to poor signal quality, user error, and the amount of motion that was presented to the 
neuro-fuzzy network, since most of the errors were caused by similar movements, or the differentiation 
of compound movements with their simple movements, which have a very similar rms value response, 
causing the network to get confused. The average hit rate accuracy obtained was 86% for seven 
distinct movements in tests of long duration, about three hours.  
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