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ABSTRACT
Background: Walking speed is reduced with aging. However, it is not certain
whether the reduced walking speed is associated with physical and coordination
fitness. This study explores the physical and coordination determinants of the
walking speed decline in older women.
Methods: One-hundred-eighty-seven active older women (72.2 ± 6.8 years) were
asked to perform a 10-m walk test (self-selected and maximal walking speed) and a
battery of the Senior fitness test: lower body strength, lower body flexibility, agility/
dynamic balance, and aerobic endurance. Two parameters characterized the walking
performance: closeness to the modeled speed minimizing the energetic cost per unit
distance (locomotor rehabilitation index, LRI), and the ratio of step length to step
cadence (walk ratio, WR). For dependent variables (self-selected and maximal
walking speeds), a recursive partitioning algorithm (classification and regression
tree) was adopted, highlighting interactions across all the independent variables.
Results: Participants were aged from 60 to 88 years, and their self-selected and
maximal speeds declined by 22% and 26% (p < 0.05), respectively. Similarly, all
physical fitness variables worsened with aging (muscle strength: 33%; flexibility: 0 to
−8 cm; balance: 22%; aerobic endurance: 12%; all p < 0.050). The predictors of
maximal walking speed were only WR and balance. No meaningful predictions could
be made using LRI and WR as dependent variables.
Discussion: The results suggest that at self-selected speed, the decrease in speed itself
is sufficient to compensate for the age-related decline in the motor functions tested;
by contrast, lowering the WR is required at maximal speed, presumably to prevent
imbalance. Therefore, any excessive lowering of LRI and WR indicates loss of
homeostasis of walking mechanics and invites diagnostic investigation.

Subjects Geriatrics, Kinesiology, Women’s Health, Biomechanics
Keywords Locomotion, Aging, Postural balance, Locomotor rehabilitation index, Walk ratio

INTRODUCTION
Walking speed is frequently investigated in the older adult population (Mian et al., 2006;
Schoene et al., 2017; Frimenko, Goodyear & Bruening, 2015). Aging, even under healthy
conditions (Michel & Sadana, 2017), is associated with visible stiffness in ambulation,
more prudent walking, and quantitative changes in virtually all walking parameters. Such
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changes include shorter stride length and frequency (hence, lower speed), larger step
width, reduced trunk mobility, and increased risk of falls (Mian et al., 2006; Aboutorabi
et al., 2016; Herssens et al., 2018; Schoene et al., 2017). Spontaneous walking speeds below
1.0 m s−1 are associated with increased mortality (Cesari et al., 2005; Figgins et al., 2021).
Reduced walking speed is also related to metabolic/cardiovascular, and mental/neurologic
comorbidities (Mone & Pansini, 2020;Mone et al., 2022a, 2022b; Noh et al., 2020; Zanardi
et al., 2021).

Declines in the most diverse body functions can contribute to changes in walking
performance (Cruz-Jimenez, 2017; Miller, Bemben & Bemben, 2021; Pantoja et al., 2016).
Cardiorespiratory endurance reaches its maximum capacity at about 20 years of age, after
that, until 65 years of age, there is a 20–30% reduction in cardiac output (Erkkola,
Vasankari & Erkkola, 2021). Maximal muscle strength reduces by 15–30% every 10 years
after the fifth decade of life (Papadopoulou, 2020; Pantoja et al., 2016). Muscle power
production may also decrease because of mitochondrial dysfunction (Conley et al., 2007).
Changes in joint flexibility may explain the lower range of joint excursions, subtended
mainly by loss of joint cartilage and a decrease in collagen concentration, entailing loss of
compliance and elasticity of joint capsules, ligaments, and tendons (Kothari et al., 2016;
Erkkola, Vasankari & Erkkola, 2021). Decreased balance seems to induce changes in
walking speed (Cruz-Jimenez, 2017) as the decrease in body balance may stem from
delayed muscle recruitment; impaired anticipatory and compensatory postural
adjustments; loss of proprioceptive fibers (Sanders et al., 2019; Gerards et al., 2021;
Martina et al., 1998); and decreased stiffness of calf tendons, leading to delayed elongation
of muscle spindles (Onambele, Narici & Maganaris, 2006). The age-associated decline in
static and dynamic balance variables related to postural sway has been estimated at 1% per
year (Takeshima et al., 2014).

Changes in neural control also play an important role in age-related changes in walking
mechanics (Mian et al., 2006; Ortega & Farley, 2007). Furthermore, neural control can
provide functional compensation for metabolic and dynamic losses due to, e.g., muscle
overactivation and co-activation (Ortega & Farley, 2007; Miller, Bemben & Bemben, 2021;
Delabastita et al., 2021). A simple, more general form of adaptation is lowering the walking
speed. However, this adaptation is not without disadvantages. The muscular work during
walking is minimized by an inverted pendulum (Alexander, 2005). Maximizing the
effectiveness of this mechanism requires a given speed (Cavagna, Thys & Zamboni, 1976)
and, for any given speed, a given step length and, therefore, a given cadence (Cavagna &
Franzetti, 1986). The optimal step length, at optimal speed, is very close to those
spontaneously adopted by young adults (Cavagna, Thys & Zamboni, 1976; Peyré-
Tartaruga &Monteiro, 2016). Lower or higher speeds imply higher external work and cost
metabolic (Tesio, Roi & Möller, 1991). For any given speed, increasing cadence implies a
higher muscular work to reset, at each step, the limbs with respect to the body center of
mass (Willems, Cavagna & Heglund, 1995).

Studies assessing spontaneous walking speed in older adults have obtained
contradictory results that seem highly sample-dependent (Herssens et al., 2018; Fukuchi,
Fukuchi & Duarte, 2019; Boulifard, Ayers & Verghese, 2019). Speed measures range from
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0.79 (Boulifard, Ayers & Verghese, 2019) to 1.34 m s−1 (Fukuchi, Fukuchi & Duarte, 2019).
Naturally, speed needs to be normalized by body height (or lower limb length), e.g.,
through the dimensionless Froude number (Cavagna & Franzetti, 1986). Another possible
determinant of reduced preferred speed is dynapenia (reduced muscle strength). This
reduction would imply an impairment in the forward propulsive function of the
gastrocnemius muscle (Conway et al., 2021).

The comparison of possible mechanisms of reduced speed between older women and
men is lacking. Walking habits (Leung et al., 2009) and body size can interact with age in
determining walking speed and cadence. Even though the reduction in walking speed is
similar between the sexes, women reduce stride length proportionally more than men,
reducing stride frequency less than men (Frimenko, Goodyear & Bruening, 2015).

Whether walking speed depends on physical fitness and why healthy older adults tend
to adopt slower speeds even over short distances is still an open question. A previous study
has revealed that step time (inverse of step frequency) had the greatest influence on the
reduction of walking speed in senior women (Fien et al., 2019). Thus, some coordination
parameters, such as walk ratio index (WR) and balance, seem to be related to reduced
speed due to the task of swinging limbs during walking (Gomeñuka et al., 2020). Also, a
recent retrospective cohort study has reported that long-term participation in a
community-based exercise program delays age-related declines in walking speed and lower
extremity muscle strength (Hayashi et al., 2021); however, other physical fitness
parameters were not evaluated.

This study aims to investigate the motor skills that determine the walking speed in older
women. Factors that affect step length and frequency, such as muscle strength and balance,
are candidates to explain the reduced functional mobility of older women.

MATERIALS AND METHODS
This is an open, cross-sectional study carried out in a university extension program in
southern Brazil. The study was approved by the local ethics committee (Universidade
Federal do Rio Grande do Sul, project number: 17243819.0.0000.5347 and clinical trials ID:
NCT04348539). All individuals who agreed to participate signed an informed consent
form. For the Istituto Auxologico Italiano, this study fell within the RESET research
program, Ricerca Corrente IRCCS, Italian Ministry of Health.

Participants
One hundred eighty-seven untrained older women were recruited through the media
(including social media). All were non-frailty individuals (Fried frailty index).
The recruitment was on the School of Physical Education, Physiotherapy and Dance
website of the Federal University of Rio Grande do Sul (https://www.ufrgs.br/esefid/site/).
The site has a space for disseminating studies to the community. Inclusion criteria for
sample selection were age between 60 and 90 years, community-dwelling status, regular
physical training program in the last 3 months at least two sessions per week, and verbal
understanding instructions for testing and demonstrating independent ambulation.
Exclusion criteria included the use of assistive mobility devices or any walking limitation.
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Assessments instruments
For the measurement of self-selected walking speed (SSWS), the 10-m walk test was used.
And the participants were asked to walk three attempts at their preferred usual speed in a
14-m straight line, measured at 10-m and discarded the first and last 2 m, which
correspond to the period of acceleration and deceleration of the walking (Novaes, Miranda
& Dourado, 2011). The same procedure was applied to determine the maximal walking
speed. Here, the participants were instructed “to walk as fast as possible without running”.
The time, in seconds, was measured using a digital stopwatch, and the mean of three
repetitions was used for further analysis. Speeds are presented in meters per second.

The locomotor rehabilitation index (LRI) was calculated as the ratio of the observed
walking speed to the predicted optimal (lowest cost) walking speed (Peyré-Tartaruga &
Monteiro, 2016; Gomeñuka et al., 2019). Subject’s optimal walking speed was estimated
using the dimensionless Froude number (Fr), as shown in Eq. (1):

Fr ¼ v2=ðg� LÞ (1)

where v is the speed, g is the gravity acceleration, and L is the lower limb length (measured
from the anterior-inferior iliac spine to the ground through the lateral malleolus)
(Vaughan & O’Malley, 2005). The dimensionless optimal walking speed (OWS, Eq. (2)) in
humans corresponds to Fr = 0.25 (Eq. (1)). So that,

OWS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 � g � L

p
(2)

Thus, the LRI is as follows (Eq. (3)):

LRI ¼ 100� SSWS=OWS (3)

The LRI has been applied to assess different populations, including patients with heart
failure (Figueiredo et al., 2013), Parkinson’s disease (Monteiro et al., 2017), and older adults
trained in Nordic walking (Gomeñuka et al., 2019).

The WR was calculated as the ratio of step length to cadence (Sekiya & Nagasaki, 1998;
Rota et al., 2011; Bogen et al., 2018; Kalron et al., 2020), with step length expressed in mm
and cadence in steps min−1. The WR serves as a sensitive indicator of neural and cognitive
walking impairments: it significantly decreases in multiple sclerosis (Rota et al., 2011;
Kalron et al., 2020) and Parkinson’s disease (Zanardi et al., 2021) as well as in healthy
subjects under high attentional demands (Almarwani et al., 2019).

Four tests were used to assess motor parameters that potentially influence walking
mechanics. Tests are from the Senior Fitness Test battery (Rikli & Jones, 1999) (see legend
of Table 1 for short descriptions): (i) 8-foot up and go (agility/dynamic balance test, ABa),
(ii) 30-s chair stand (lower body strength, LBS), (iii) 2-min step (aerobic endurance, AE),
and (iv) chair sit and reach (lower body flexibility, LBF). These tests have been extensively
validated, do not require any special equipment, and can be easily applied in any clinical or
exercise environment (Rikli & Jones, 2013; Gonçalves et al., 2021).
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Statistical analysis
The predictive models for either SSWS or maximal walking speed and either LRI or WR
were applied. Given that multicollinearity is expected across variables describing a subject’s
motor performance (mostly between maximal walking speed and SSWS but also between
speed and LRI), a decision-tree model rather than a conventional multiple regression
model was used.

SSWS, maximal walking speed, LRI, and WR data were tested for normality of
distribution based on skewness and kurtosis and then summarized as mean (standard
deviation, SD) and median (interquartile range, IQR) or median (IQR) when appropriate.
Significance was set at p < 0.05, and p-values were Bonferroni-adjusted for multiple
comparisons. A predictive regression model was applied using a recursive partitioning
algorithm, i.e., a classification and regression tree (CART) model. This analysis is
distribution-free and transforms continuous levels into ordinal grades. The algorithm
builds a decision tree based on binary splits on variables (either continuous, ordinal, or
categorical). At each split, nodes are generated, and these nodes can be further split.
The algorithm automatically detects interactions (i.e., the tree/node structure) between
independent variables, providing the highest explanation of variance for the dependent
variable (either categorical or continuous; here, continuous). The final result (terminal
nodes) comprises a series of classes with the lowest possible within-class variance and the
highest possible between-class variance. Unlike conventional linear regression modeling,
in which the analyst must specify the expected interactions, CART itself discovers
interactions, even high-order ones that are very difficult to hypothesize (Breiman et al.,
1984). The algorithm is more sensitive to interactions than to main effects. The model’s
variance explanation is much less vulnerable to multicollinearity issues. Each split is
performed on a single variable. The latter is ignored if no further information is added by
further splitting on a covariate. Software packages typically allow the analyst to control the
procedure by imposing a minimum number of observations on each node or by setting
stopping rules for tree branching (for a simple clinical example, see D’Alisa et al., 2006). A
priori knowledge or requirements can thus complement the purely algebraic search for the
maximum amount of variance explained. The stability of the predicted model can be
inferred either by imposing the model splits (from the building sample) to an independent
(validation) sample or by simulating several independent samples (boot-strapping)
originating from the available sample. This procedure is typically done through random
extraction of subsamples and substituting their values by random replication of
observations from the remaining sample or the original total sample (resampling). In any
case, the amount of variance explained for the validated tree unavoidably declines
(shrinks) concerning the variance explained for the original sample. It is left to the analyst
to decide whether the model is satisfactorily stable or not (Breiman et al., 1984). There is no
rule of thumb for accepting a given amount of variance explained. A reasonable empirical
threshold for the validation tree is 30%, as suggested by the results for trees effectively
predicting the length of stay, care costs, and functional outcomes of rehabilitation
inpatients in the USA (Stineman, 1995).
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In the present study, CART analysis is initiated from unsplit dependent variables
(SSWS, maximal walking speed, LRI, WR) (root nodes). Each variable was split into nodes
according to optimal cut-off points for the remaining variables to maximize the variance
explained. Splitting continued until terminal nodes were defined, building the final
classification model. The limitations imposed on each tree were as follows: maximum
splitting levels, 10; splitting algorithm, least squares; minimum size node to split, 10;
minimum rows allowed in a node, 5; tree pruning and validation method, cross-validation;
the number of cross-validation folds, 10; and tree pruning criterion, within one standard
error of minimum cost complexity.

Descriptive statistics and regression modeling were done using IBM SPSS� version 21.0
(IBM Corporation, Armonk, NY, USA), and STATA� software (version 16.0; Stata Corp.
LLC, College Station, TX, USA). CART analysis was done through DTREG� software
(DTREG, Brentwood, TN, USA, 2021).

RESULTS
Table 1 provides descriptive statistics and a short definition of all variables assessed in this
study.

Age, SSWS, maximal walking speed, LRI, WR, and the four independent variables (ABa,
LBS, AE, and LBF) were tested for normality based on skewness and kurtosis (Bonferroni-
adjusted p < 0.006). Only ABa, LBS, and WR were significantly nonnormal (data not
shown); thus, the assumption of linear regression was violated. For each of these variables,
observations smaller than or greater than three SDs beyond the mean were trimmed (for
linear regression only, not for further analyses). The WR ratio remained nonnormal

Table 1 Descriptive statistics for the variables in the study.

Mean (SD) Median (IQR) Range

Age (years) 72.22 (6.8) 72 (67–77) 60–88

Height (m) 1.56 (0.06) 1.56 (1.53–1.61) 1.39–1.73

BMI 28.37 (4.67) 27.95 (25.22–30.88) 19.85–49.07

LRI (%) 90.0 (13.83) 90.5 (80.6–100.4) 60.1–120.7

WR – 0.56 (0.52–0.63) 0.35–1.02

LBS (no. full stands) – 16 (13–19) 6–30

LBF (cm)* −3.44 (10.70) −2 (−9 to 3) −29 to 25

ABa (seconds)* – 5.1 (4.52–5.65) 3.37–8.85

AE 87.50 (15.89) 87 (79–97) 53–128

SSWS (m s−1) 1.30 (0.22) 1.31 (1.16–1.42) 0.77–1.87

MWS (m s−1) 1.74 (0.30) 1.74 (1.57–1.90) 0.94–2.74

Notes:
* The lower the value, the better the condition.
m, meters; BMI, body mass index (mass height−2); LRI, locomotor rehabilitation index; WR, walk ratio; no., number;
LBS, lower body strength (number of full stands in 30 s with arms folded across chest); LBF, lower body flexibility [from
sitting position at front of chair, with leg extended and hands reaching toward toes, number of cm (+ or −) from extended
fingers to tip of toe; negative values: cm missing to toes contact]; cm, centimeter; ABa, agility/dynamic balance test
(number of seconds required to get up from seated position, walk 8 foot, turn, and return to seated position on chair); AE,
aerobic endurance (number of full steps completed in 2 min, raising each knee to point midway between patella and iliac
crest-score is number of times right knee reaches target); SSWS, self-selected walking speed; MWS, maximum walking
speed.
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(p < 0.005 for skewness and kurtosis), as it had a uniform distribution. Linear regression
was applied despite this limitation.

Table 2 revealed that all variables worsened with age (with confidence limits never
including zero). The change was not significant for AE. In any case, the worsening was
moderate. From 60 to 88 years of age, SSWS and maximal walking speed worsened (i.e.,
declined) by 22% and 26%, respectively. For the other variables, worsening ranged from
14% to 33%. For LBF, a percentage change would be misleading: finger–toe distance
increased from 0 to 8 cm. The variance explained by age was low for all variables, exceeding
10% for WR.

The correlation matrix of the nine variables (Fig. 1) gives an overview of bivariate
associations.

Low values of AE (cardiorespiratory fitness index) and LBF (joint flexibility index)
indicate better performance. Fig. 1 shows that most of Pearson’s correlation coefficients
were very low. Only the correlation coefficients between LRI and SSWS (0.96), LRI and
maximal walking speed (0.51), and SSWS and maximal walking speed (0.53) were higher
than the arbitrary threshold of |0.5|. These findings were expected (see Eqs. (1)–(3)), given
that these variables are either derived from each other (LRI and maximal walking speed or
SSWS) or strictly dependent on the subject’s height (maximal walking speed and SSWS).

Interactions between multiple variables were explored through CART analysis. Fig. 2
depicts the decision trees used to predict SSWS (left panel) and maximal walking speed
(right panel).

Figure 3 shows the trees developed to predict LRI (left panel) and WR (right panel).
Table 3 summarizes the variance explained (for training/building and validation data)

for each of the four trees shown in Figs. 2 and 3.

Table 2 Linear regression modeling.

n β (95% CI) Const (95% CI) R2 p# Change§

LRI 185* −0.419 [−0.711 to −0.128] 120.2 [99.08–141.3] 0.04 0.0051 −14%

WR 187 −0.003 [−0.005 to −0.001] 0.803 [0.641–0.966] 0.04 0.0087 −15%

LBS 185^ −0.158 [−0.245 to −0.070] 27.30 [20.95–33.66] 0.06 0.0005 −33%

LBF 187 −0.331 [−0.555 to −0.108] 20.49 [4.282–36.70] 0.04 0.0039 107%&

ABa 183^ 0.048 [0.030–0.065] 1.718 [0.461–2.976] 0.14 0.0000 22%

AE 187 −0.364 [−0.700 to −0.029] 113.8 [89.50–138.1] 0.02 0.0333 −12%

SSWS 187 −0.009 [−0.133 to −0.004] 1.932 [1.600–2.266] 0.07 0.0002 −22%

MWS 187 −0.014 [−0.020 to −0.008] 2.726 [2.283–3.168] 0.10 0.0000 −26%

Notes:
# Bonferroni adjusted significance level, 0.006.
* Two missing data for LRI.
^ Observations exceeding the mean by ±3SD were trimmed.
§ Percent change from predicted values at 60 and 88 years; Positive changes indicate worsening for ABa and LBF;
negative changes indicate worsening for LBS and AE.

& From 0 to −8 cm.
Dependent variable (age) versus locomotor rehabilitation index (LRI), walk ratio (WR), lower body strength (LBS), lower
body flexibility (LBF), agility/dynamic balance test (ABa), aerobic endurance (AE), self-selected walking speed (SSWS)
and maximal walking speed (MSW β, slope coefficient of linear regression; const, y-intercept of linear regression; CI,
confidence interval; R2, proportion of variance explained.
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As demonstrated in Table 3, the variance explained by validation trees was satisfactory
for SSWS, maximal walking speed, and LRI (ranging from 36% to 93%) but barely
acceptable for WR (21%). The results suggest that most independent variables, including
age, were not predictive of SSWS. In the corresponding tree, only LRI was retained, a
circular finding (see above). By contrast, maximal walking speed was explained by SSWS
(another expected finding) and, notably, by WR for speeds below 1.23 m s−1 as well as by
ABa for WR values of less than or equal to 0.7 (most of the cases).

DISCUSSION
The expected associations between SWSS and maximal walking speed did not convey
meaningful information. Although expected, the association between SWSS and LRI
indicates that 7% of the variance in SWSS is related to size effects. Therefore, LRI seems to
be an improved marker of functional mobility due to size-dependent variation in walking
speed. Other points deserve consideration. Neither age nor any of the four motor indices
selected (LBS, LBF, Aba, and AE, see legend of Table 1) nor WR explained SSWS. Maximal
walking speed was partially explained by the interaction between WR and ABa (Fig. 2).
The WR tree (Fig. 3) confirms the relationship of WR with speed.

Figure 1 The scatterplot provides the correlation half-matrix of the parameters. Pearson’s
correlation coefficients are given in the corresponding boxes. Parameters: age, locomotor rehabilita-
tion index (LRI), walk ratio (WR), lower body strength (LBS), lower body flexibility (LBF), agility/
dynamic balance test (ABa), aerobic endurance (AE), self-selected walking speed (SSWS), and maximal
walking speed (MSW). Full-size DOI: 10.7717/peerj.14728/fig-1
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Figure 2 The scatterplot provides the correlation half-matrix of the parameters. Pearson’s correlation coefficients are given in the
corresponding boxes. Parameters: age, locomotor rehabilitation index (LRI), walk ratio (WR), lower body strength (LBS), lower body flexibility
(LBF), agility/dynamic balance test (ABa), aerobic endurance (AE), self-selected walking speed (SSWS), and maximal walking speed (MSW).

Full-size DOI: 10.7717/peerj.14728/fig-2

Figure 3 Final classification and regression tree (CART) prediction models of locomotor rehabilitation index (LRI) and walk ratio (WR).
Parameters: age, locomotor rehabilitation index (LRI), walk ratio (WR), lower body strength (LBS), lower body flexibility (LBF), agility/dynamic
balance test (ABa), aerobic endurance (AE), self-selected walking speed (SSWS), and maximal walking speed (MSW).

Full-size DOI: 10.7717/peerj.14728/fig-3
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An algebraic explanation
It must be said that the explanation of variance requires some variance to be explained and
a covariance. Along a 28-year gradient, the spontaneous and maximal speeds of older
women undergo small changes, with a high interindividual variation. On the other hand,
WR is largely invariant with speed and age. Not surprisingly, the weak relationship
between speed and age (Table 1) is lost if a bivariate association is abandoned in favor of an
interactive model (Figs. 2 and 3). Of course, a greater sample size might have allowed
obtaining a more branched and explanatory decision tree. This algebraic interpretation,
however, does not seem to be entirely satisfactory. An interpretation based on physiology
from outside the data should be considered based on numerical assumptions.

Looking for an explanation in physiology
The results suggest that healthy aging implies a mild tendency for a decrease in SSWS,
unexpectedly unrelated to the various physical performance parameters analyzed and the
step length/cadence ratio (WR). The question then arises: given that these women were
capable, at various ages, of increasing their speed (on average, SSWS was 1.30 m s−1,
whereas maximal walking speed was 1.74 m s−1), why did they not retain the same SSWS at
all ages? The second unanswered question is, how could WR remain unrelated to age and
the various motor performance parameters? After all, step length and cadence should
reflect lower limb joint power, mobility, and balance.

One reason may be that human walking has very wide margins of safety. In symmetric
gaits, overall energy expenditure is minimal, given the refined pendulum-like exchange of
mechanical energy of the center of mass. This characteristic makes humans the most
efficient walkers in the animal realm (Sockol, Raichlen & Pontzer, 2007; Henn,
Cavalli-Sforza & Feldman, 2012). The cardiorespiratory power and the power required to
drive muscles (mainly the plantar flexors) remain much below the ceiling level (Tesio et al.,
2017). Lower limb joint excursions retain wide mobility margins despite having a more
overall flexed posture. In focal strength deficits, compensation may occur between limbs
and, within the same limb, between joints (Tesio, Roi & Möller, 1991; Tesio & Rota, 2019).
Once the speed needs to be decreased (see below for further explanation), there seems to be
no need for taking longer and more frequent steps than that already foreseen for the new
speed. In case of need, however, a wide margin of safety remains for decreasing WR.

Table 3 Variance explanation of the decision trees (Figs. 2 and 3) for the locomotor rehabilitation
index (LRI), walk ratio (WR), self-selected walking speed (SSWS) and maximal walking speed
(MSW).

Target variable Variance explanation %

Training data Validation data

LRI 95% 93%

WR 33% 21%

SSWS 84% 80%

MWS 50% 36%
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In fact, at any given speed, a decrease in step length has a minimal influence on the
effectiveness of the pendulum mechanism until a 50% decrease is reached (Cavagna &
Franzetti, 1986; Tesio et al., 2017).

Therefore, as a form of speculation, it can be hypothesized that cardiac–energetic or
musculoskeletal constraints do not determine the age-related decline in speed. Rather, as
suggested by several authors (Ortega & Farley, 2007; Miller, Bemben & Bemben, 2021;
Delabastita et al., 2021), balance control may represent a hidden, relevant determinant of
the mild age-related decrease in SSWS.

The role of balance compared to other walking constraints
Over short distances, one can well afford a mildly higher metabolic cost unless this is
prevented by severe cardiac or respiratory deficits (Tesio, Roi & Möller, 1991; Willems,
Cavagna & Heglund, 1995). However, because of its pendulum-like mechanics, the body
center of mass must be accelerated forward, upward (Cavagna, Thys & Zamboni, 1976),
and laterally (Tesio & Rota, 2019) at each step to overcoming ground friction and gravity
acceleration; the greater the ground friction, the longer the step, and the faster the
movement, the shorter the step duration. These mechanical demands decrease by reducing
walking speed. In particular, such a decrease in speed leaves more time for the amazingly
fast U-turn from one side to the opposite at each step, as demonstrated by the analysis of
the 3D trajectory of the body center of mass during a single stance (Malloggi et al., 2021).

Once the speed is conveniently lowered, therefore, a further decrease in step length (as
evidenced by a lower WR) would unnecessarily entail a higher “internal” work per unit
distance, i.e., the muscular work needed to reset the limbs at each step (Willems, Cavagna
& Heglund, 1995). Not surprisingly, WR remained nearly invariant with age and SSWS in
the present sample of women, confirming literature data on a wide range of velocities and
adult ages (Rota et al., 2011; Bogen et al., 2018). This invariance, however, does not hold for
the maximal walking speed showing that the spatiotemporal coordination pattern
represented by WR in the present study is altered in aged women at high walking speeds.

Consistently with its explanatory role, balance is known to decrease in healthy aging.
In the present study, ABa was the variable that most depended on age (Table 2). It entered
the prediction algorithm of maximal walking speed together with WR only. These results
point toward a pivotal role of balance in determining the decline of speed in aging, at least
at higher speeds. It should be noted that WR is diminished whenever the balance is
primarily affected (see Introduction). At any speed, WR decreases when walking on
slippery surfaces (Cappellini et al., 2010), and, as a rule, in the case of neural impairments.
Furthermore, the higher co-activation of lower limb muscles (Mian et al., 2006; Gomeñuka
et al., 2020) may help to understand balance’s role in reducing walking speed in older
women. The typical WR for adults and older adults up to 85 years is in the order of
5.5–6.5 mm step−1 min−1, across a wide range of walking speeds and body heights (Sekiya
& Nagasaki, 1998; Rota et al., 2011), and in line with our findings. Of note, this parameter
is consistently lower by about 5% in women than men (Bogen et al., 2018).
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Aging and walking, and what LRI and WR tell us
To sum up, in healthy aging, the decrease in speed (either self-selected or maximal) is
modest (Sanders et al., 2019; Gerards et al., 2021;Martina et al., 1998). LRI andWR, which
are related to each other, are virtually stable and seem unrelated to cardiorespiratory and
musculoskeletal performance. This result is no surprise, given the high effectiveness of
human bipedalism. LRI and WR indices provide complementary information. They both
seem to reflect a homeostatic control of walking, so alterations might represent alarming
early predictors of latent cardiorespiratory or joint power limitations (LRI) and/or latent
balance deficit (LRI and WR). In particular, a decrease in LRI indicates a reduced
pendulum-like mechanism resulting in a higher energy cost of walking (reduced economy,
Gomeñuka et al., 2014, 2016; Peyré-Tartaruga & Monteiro, 2016).

Further, a reducedWRmay indicate balance deficits insufficiently compensated for by a
reduction of speed. In support of this speculation, one should consider that human
bipedalism is unique among bipedal vertebrates in many respects. For instance, the role of
plantar flexion is critical as the main “engine” of walking (Usherwood et al., 2012). Another
unique feature of particular interest is the need for a refined balance control on the frontal
plane (Malloggi et al., 2021; Cassidy et al., 2014). This need can represent a weakness in the
case of balance deficits and many other neural impairments, leading to a reduction in
speed and, in the most severe cases, further reduction of step length.

Some limitations of the present study cannot be overlooked. First, the results refer only
to women. Second, only short distances were tested; speed and LRI and WR indices might
have differed at longer distances. Third, the sample size did not validate the predictive
model in an independent sample, representing a complementary and perhaps a more
robust mode of validation than cross-validation. Finally, questions regarding the chosen
statistical methods may have some implications for the results. Future studies in this field
are advised including and controlling factors as comorbities and including groups more
advanced with symptoms of frailty as in institutionalized individuals (Mone & Pansini,
2020; Mone et al., 2022a, 2022b).

CONCLUSIONS
The maximal walking speed was partially explained by an impaired agility/dynamic
balance, and a reduction in muscle strength, flexibility, and balance across age groups was
observed. Whereas LRI seems to denote physical capabilities, WR represents a key
coordination aspect of functional mobility, particularly related to balance in older women.
The results suggest that both LRI and WR are helpful as a short screening battery for
walking performance in aging and, potentially, in disability. These indices, however, only
measure the presence of complex, tenacious, adaptive, and homeostatic mechanisms so
that any alterations should entail a deeper, causal diagnostic inquiry.
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