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Abstract: The microbiological sanitary quality and safety of leafy greens and strawberries 

were assessed in the primary production in Belgium, Brazil, Egypt, Norway and Spain by 

enumeration of Escherichia coli and detection of Salmonella, Shiga toxin-producing E. coli 

(STEC) and Campylobacter. Water samples were more prone to containing pathogens  
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(54 positives out of 950 analyses) than soil (16/1186) and produce on the field (18/977 for 

leafy greens and 5/402 for strawberries). The prevalence of pathogens also varied markedly 

according to the sampling region. Flooding of fields increased the risk considerably,  

with odds ratio (OR) 10.9 for Salmonella and 7.0 for STEC. A significant association between 

elevated numbers of generic E. coli and detection of pathogens (OR of 2.3 for STEC and 2.7 for 

Salmonella) was established. Generic E. coli was found to be a suitable index organism for 

Salmonella and STEC, but to a lesser extent for Campylobacter. Guidelines on frequency of 

sampling and threshold values for E. coli in irrigation water may differ from region to region. 

Keywords: primary production; E.coli; index; climate; logistic regression; risk factors  

 

1. Introduction 

Fresh produce is part of a healthy diet and its consumption should be further encouraged. Daily 

consumption of five or more portions of fruits or vegetables decreases the risk of heart disease and  

stroke [1,2] and consumption of whole fruits lowers the risk of diabetes [3]. However, most fruits and 

many vegetables such as leafy greens are typically consumed raw. If these are microbiologically 

contaminated they also present an increased risk for foodborne illness. Several outbreaks illustrate that 

the microbial safety of fresh produce should not be neglected. E. coli O157:H7 outbreaks occurred in 

the US with strawberries in 2011 [4], romaine lettuce in 2011 [5], bagged spinach in 2006 [6],  

as well as an outbreak of Salmonella with peppers in 2008 [7]. In Europe a number of cases of E. coli 

0157 were epidemiologically linked to fresh produce including watercress in England [8], iceberg lettuce 

in Sweden [9] and lettuce in Iceland and the Netherlands [10]. Another notorious incident was the  

E. coli O104 outbreak with sprouted fenugreek seeds in 2011 in Germany and the rest of Europe [11]. 

Leafy greens eaten raw as salads were involved in seven salmonellosis outbreaks reported in the EU in 

the period 2007–2011, involving 268 human cases in total [12]. Campylobacter is the most important 

cause of bacterial gastroenteritis reported cases in EU and is usually associated with broiler meat [13]. 

However, apart from Salmonella and Shiga toxin-producing E. coli (STEC), Campylobacter has been 

highlighted as a relevant microbial risk for raw vegetables, fruits and minimally processed packaged 

salads [14,15]. Campylobacter is a known water borne pathogen [16,17] and often present in wild birds, 

thus with potential of fecal contamination to crops growing in the fields, as was reported in an outbreak of 

campylobacteriosis associated with peas [18]. Domestic and wild animals are reservoirs of E. coli O157 and 

Salmonella in the agricultural production environment and may contaminate fresh produce on the field,  

either directly or via contaminated agricultural water, as illustrated by several recent outbreaks [4,7–9]. 

Washing, including washing in water with sanitizers, will not accomplish more than 2 log reduction 

of bacteria (including pathogens) present on fresh produce [19–26]. In addition, the washing procedure 

may damage sensitive products, such as berries, thereby decreasing the quality and shelf life by 

increasing the sensitivity to spoilage and mold growth [27,28]. Profound knowledge of the 

contamination sources and pathways for introduction of bacterial pathogens in primary production of 

fresh produce is needed to focus on prevention of contamination events [29]. Irrigation water quality is 

of major importance for fresh produce quality, since it may be both a source and route of microbial 
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contamination [30–33]. In case manure is used as an organic fertilizer, control of the composting process is 

also a critical point [32]. Combination of cattle rearing and fresh produce production is identified as a 

potential risk factor [34,35]. Climatic factors, i.e. increased temperatures and flooding events, were shown to 

be associated with a decreased microbiological quality and safety of leafy greens [30,32,36]. Most of these 

studies focused on one particular geographical region. The main objective of the present study is to 

investigate whether and which factors could be identified as universal risk factors for pathogen contamination 

of fresh produce across farms in various countries with variable climate and agro-technical management 

practices. For this purpose leafy greens, strawberries and their primary production environment  

(soil, water, contact surfaces) were analyzed for the presence of Salmonella, STEC, Campylobacter and 

the amount of generic E. coli using a similar sampling plan at a variety of farms in Belgium, Brazil, 

Egypt, Norway and Spain within the framework of the European Veg-i-Trade project, executing research 

on the topic of microbiological (and chemical) safety of fresh produce in a global context. 

2. Experimental Section  

2.1. Sampling Plan 

In total, 3330 samples were taken from contact surfaces (524) including boxes, hands, blades, 

conveyers belts and tables, fertilizer (72), leafy greens (824) including lettuce, spinach and basil, 

strawberries (170), seeds (54), soil (1037) and water (649) including irrigation water from the source or 

reservoir, the tap, sprinkler or dripper and rinsing water for harvested crops on 45 farms in five countries 

(Belgium, Brazil, Egypt, Norway and Spain) [30–32,34,36–39] (Table 1). In the case of farms producing 

leafy greens, the sampling was repeated throughout the crop growth cycle: at planting, two weeks before 

harvest, one week before harvest and at harvest. In case of strawberries, the multiple sampling rounds 

were conducted over the production season, of which the timing depended on the country. Contact 

surfaces were swabbed: an area of 50 cm² or the whole hand surface, 200 g of fertilizer was taken  

200 to 300 g soil samples were taken (usually three were pooled but not in all studies), three crops of lettuce 

were pooled, 1 kg of strawberries was sampled and three samples of 100 g spinach were pooled and 5 L 

irrigation or rinse water was taken. After mixing, subsamples of 25 g for solid samples and 25 to 1000 mL 

in case of water (volume depending on the microbial load) were used for pathogen detection.  
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Table 1. Overview of the samples taken per country and per fresh produce type. 

Country Product Farms Visits Reference Sample Types 
Sampling Time 

Total 
Samples 

Planting 
Two Weeks before 

Harvest 
One Week before 

Harvest 
Harvest

Belgium Lettuce 8 3 Holvoet et al. (2014) [30] 

Contact surfaces 0 0 0 104 104 
Lettuce 23 69 69 126 287 
Soil  126 69 69 69 333 
Water 0 37 36 47 120 
Total 149 175 174 346 844 

Belgium Strawberry 6 4 Delbeke et al. (2015) [34] 

Contact surfaces     57 
Soil      48 
Strawberry     72 
Water      78 
Total     255 

Brazil Lettuce 6 1 Ceuppens et al. (2014) [32] 

Contact surfaces 0 0 0 36 36 
Fertilizer 18 0 0 0 18 
Lettuce 6 18 18 33 75 
Soil 24 18 18 18 78 
Water  12 12 12 17 53 
Total 60 48 48 104 260 

Egypt Lettuce 6 1 Abdel-Moneim et al. (2014) [31]

Lettuce    18 18 
Soil    6 6 
Water     6 6 
Total    30 30 

Egypt Strawberry 6 1 Abdel-Moneim et al. (2014) [31]

Soil     6 
Strawberry     18 
Water      6 
Total     30 
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Table 1. Cont. 

Country Product Farms Visits Reference Sample Types
Sampling Time

Total 
Samples Planting

Two Weeks before 
Harvest

One Week before 
Harvest

Harvest

Norway Lettuce 6 3 Johannessen (2015) [39] 

Contact 
surfaces  0 0 0 31 31 
Lettuce 54 45 54 54 207 
Soil 63 45 54 54 216 
Water  0 14 20 18 52 
Total 117 104 128 157 506 

Norway Strawberry 4 4 
Johannessen et al. (2015) 
[38] 

Contact 
surfaces      80 
Soil      80 
Strawberry     80 
Water      16 
Total     256 

Spain Lettuce 2 3 
Castro-Ibanez et al. (2015) 
[36] 

Lettuce     21 
Soil     30 
Water      18 
Total     69 

Spain Spinach 3 3 
Castro-Ibanez et al. (2015) 
[37] 

Contact 
surfaces  0 0 0 216 216 
Fertilizer 54 0 0 0 54 
Spinach 0 54 54 108 216 
Seeds 54 0 0 0 54 
Soil 78 54 54 54 240 
Water  0 102 102 96 300 
Total 186 210 210 474 1080 

Overall − 45 − This study 

Contact surfaces     524 
Fertilizer     72 
Leafy greens     824 
Seeds     54 
Soil     1037 
Strawberry     170 
Water      649 
Total     3330 
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2.2. Microbiological Analyses  

Details of the methods used for sampling and microbial analysis in the various countries can be found 

in prior description of these studies on a country level i.e. Belgium [30,34], Brazil [32], Egypt [31], 

Norway [38] and Spain [36,37]. Generic E. coli was enumerated in all studies and in all of the 3330 

samples by equivalent methods including ISO 9308-1:2000 [40], APHA 1998 [41], US-EPA Standard 

Method 9222 D/G [42], Colilert®-10 Test kit, Quanti-Tray™/2000 and Chromocult® Coliform Agar in 

water samples and by RAPID’E. coli 2/Agar, 3M™ Petrifilm™ Select E. coli, 3M™ Petrifilm™  

E. coli/Coliform, Chromocult® Coliform Agar and NMKL 125:2005 [43] for other sample types.  

Not all samples were also analyzed all the time for all pathogens as the capacity to analyze pathogens 

differed among the countries involved. In total 1605 samples (48.2%) were analyzed for Salmonella by 

equivalent methods including ISO 19250:2010 [44], ISO 6579:2002 [45] or NMKL 71:1999 [46]  

either as standard procedure or only as a subsequent method for isolation of the pathogen after prior screening  

for Salmonella using the GeneDisc® PCR test kit. In total, 509 samples were analyzed for  

Campylobacter (15.3%) by either ISO 17995:2005 [47], ISO 10272-1:2006 [48] or NMKL 119:2007 [49].  

In total, 1545 samples were analyzed for Shiga toxin producing E. coli (STEC) (46.4%) either by ISO 

16654:2001 [50] for STEC O157 or more broadly for non-O157 STEC using GeneDisc® PCR screening 

for the simultaneous occurrence of stx1/2 toxin genes and eae/aggR adhesion genes, followed by 

isolation from presumptive STEC positive samples by plating on ChromID and CT-SMAC using the 

approach described in ISO 13136:2012 [51]. Positive PCR results were followed by culture isolation of 

the STEC strain. The presence of the virulence genes in the isolate were confirmed by PCR.  

2.3. Agro-Technological Practices and Information on Climatic Conditions 

Agro-technological practices were assessed during the farm visit by visual inspection and  

a questionnaire interview (e.g., as described by [32] and [35]). Climatic parameters were retrieved from 

the closest weather station. Flooding was defined as an event of excessive rainfall causing the fields to 

be inundated with accumulated rain water and/or water from overflowing natural water bodies such as 

nearby rivers within one week of sampling. 

2.4. Statistical Analyses 

All analyses were performed with SPSS Statistics version 21 at a significance level of 5 % (p = 0.050). 

The 95% confidence intervals for pathogen prevalence were calculated according to the Wilson score 

method without continuity correction [52]. Significant differences in the prevalence of pathogens were 

determined with the Mann-Whitney U test for continuous variables (E. coli counts and climatic 

parameters) and with the Chi-squared test of independence for categorical variables (agro-technical 

parameters). The presence/absenceof pathogens determined by culture was also modelled by multiple 

logistic regression according to the purposeful selection method [53]. Briefly, the significant main effects 

were determined by adding all covariates univariably in the logistic regression. All those with p < 0.250 

were included as potential main effects in one multivariable model on which stepwise backward 

likelihood ratio selection was performed. All omitted variables were added one-by-one to the obtained 

model and those with p < 0.050 were kept. The assumption of linearity was checked for all continuous 
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variables by adding the quadratic term as a main effect to the regression model. Then, all possible 

interactions were tested univariably and those with p < 0.250 were added together for forward LR model 

selection. Main effects were never eliminated, even if they lost their significance in the presence of the 

interaction. The Hosmer and Lemeshow test was used to check if the model fitted well to the data.  

The Cook’s distance and standardized residuals were plotted to check for highly influential data points 

and biases in the predictions. Sensitivity and specificity of the model were checked by Receiver 

Operating Characteristic (ROC) curve analysis. ROC curves are graphical representations of the 

sensitivity and specificity for each possible cut-off value of the test variable [54]. The area under the 

ROC curve (AUC) is the summary statistic which gives an idea of the overall diagnostic performance of 

the test, with the AUC ranging from 0.5 for meaningless to 1.0 for perfection. In our case, the AUC 

indicates the ability to predict the presence of pathogens.  

3. Results and Discussion 

3.1. Occurrence of Pathogens and Generic E. coli  

Within the framework of the EU FP7 Veg-i-Trade project the microbiological sanitary quality and 

safety of leafy greens and strawberries were assessed in the primary production in Belgium, Brazil, 

Egypt, Norway and Spain by the enumeration of E. coli and the detection of Salmonella, STEC and 

Campylobacter in these products and in their primary production environment. Although a substantial 

number of analyses were carried out, only few bacterial pathogen detections were observed within the 

combined data set.  

The overall prevalence of Salmonella in all samples analyzed (n = 1605) was 2.5% (95% confidence 

interval (CI): 1.8%–3.4%) (Table 2). Salmonella occurred most frequently in fertilizers (7.4% (2/27)), 

probably due to insufficient control of the composting process of manure used as organic fertilizer [55]. 

Irrigation water was second most contaminated (3.1% (12/387)) with Salmonella, probably because 

monitoring of the microbial water quality, and if necessary application of water treatment,  

was not (widely) applied by farmers [35]. The prevalence in the other sample types was similar, between 

1.8% and 2.9%. This relatively high prevalence in fresh produce was caused by the study in Egypt, 

sampling small scale farmers providing local market, which showed a considerably higher incidence of 

Salmonella in fresh produce than the other studies. All (5/5) of the Salmonella positive strawberries and 

seven out of the 12 Salmonella positive lettuce samples were from Egypt [31]. STEC was isolated by 

culture in 0.7% of all samples (n = 1545) (95% CI: 0.4%–1.3%), most often from irrigation water 

samples. It should be noted that positive PCR signals for both stx and eae genes were obtained for much 

more samples (68 positives), but subsequent culture confirmation of STEC proved difficult (11 isolates 

obtained) [34,38]. It has been acknowledged that the culture isolation procedures for STEC are difficult 

and prone to failure, in particular in samples with high numbers of competing microbiota [56–58]. 

Moreover, STEC strains may easily loose stx genes, as early as during the first sub-cultivation step [59]. 

In this manuscript, only culture confirmed results were regarded as positive. Campylobacter was isolated 

at an overall prevalence of 8.6% (95 CI: 6.5%–11.4%) (n = 509), again mostly from water sources. 

Pathogens were mainly isolated from the production environment rather than from the leafy greens or 
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strawberries themselves sampled at these fields, as noted by other studies [14,60,61]. No pathogens were 

detected on seeds (n = 27) and contact surfaces (n = 72) such as hands, boxes used at harvest, etc.  

The detection of pathogens varied according to the geographical region. Amongst other reasons such 

as differences in environmental pressure and climate, this may be affected by the different status of 

implementation of good agricultural practices and national measures, guidelines or support available to 

these farmers involved [62,63]. 

Table 2. Pathogen prevalence per sample type. 

Salmonella Analyses Positives Prevalence (%) 95 % Confidence Interval 
Contact surfaces 36 0 0.0 0.0 9.6 
Fertilizer 27 2 7.4 2.1 23.4 
Seeds 9 0 0.0 0.0 29.9 
Strawberry 170 5 2.9 1.3 6.7 
Leafy greens 377 10 2.7 1.4 4.8 
Soil 599 11 1.8 1.0 3.3 
Water 387 12 3.1 1.8 5.3 
Total 1605 40 2.5 1.8 3.4 
Shiga toxin-producing E. coli (STEC) Analyses Positives * Prevalence (%) * 95 % confidence interval * 
Contact surfaces 36 0 (0) 0.0 0.0 9.6 
Fertilizer 27 0 (0) 0.0 0.0 12.5 
Seeds 9 0 (0) 0.0 0.0 29.9 
Strawberry 152 0 (0) 0.0 0.0 2.5 
Leafy greens 359 0 (1) 0.0 0.0 1.1 
Soil 587 5 (34) 0.9 (5.8) 0.4 (4.2) 2.0 (8.0) 
Water 375 6 (33) 1.6 (8.8) 0.7 (6.3) 3.4 (12.1) 
Total 1545 11 (68) 0.7 (4.4) 0.4 (3.5) 1.3 (5.5) 
Campylobacter Analyses Positives Prevalence (%) 95 % confidence interval  
Strawberry 80 0 0.0 0.0 4.6 
Leafy greens 241 8 3.3 1.7 6.4 
Water 188 36 19.1 14.2 25.4 
Total 509 44 8.6 6.5 11.4 
All pathogens Analyses Positives Prevalence (%) 95 % confidence interval  
Contact surfaces 72 0 0.0 0.0 5.1 
Fertilizer 54 2 3.7 1.0 12.5 
Seeds 18 0 0.0 0.0 17.6 
Strawberry 402 5 1.2 0.5 2.9 
Leafy greens 977 18 1.8 1.2 2.9 
Soil 1186 16 1.3 0.8 2.2 
Water 950 54 5.7 4.4 7.3 
Total 3659 95 2.6 2.1 3.2 

* Positive results were culture confirmed, between brackets the PCR positive results are given. 

In general (i.e., taken all samples together), isolation of Salmonella, STEC and Campylobacter 

occurred from samples which also contained significantly higher counts of generic E. coli (p < 0.001,  

p = 0.046 and p < 0.001, respectively). When considering the results separately per sample type,  

E. coli also performed well as an index organism because the presence of pathogens was usually 

significantly associated with elevated E. coli numbers, except for fertilizer samples in association with 

Salmonella and soil samples with STEC (Table 3). The performance of E. coli as an index organism was 

better (AUC > 0.8) for Salmonella than for STEC and Campylobacter, in all sample types. Moreover,  

E. coli had a better functionality to serve as an index organism in water samples than in soil and fresh 

produce (leafy greens or strawberries) samples in the present study. Remarkably, although the isolation 

of STEC was significantly more frequent from water samples with elevated generic E. coli levels,  
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this was not the case in soil, where generic E. coli had no significant predictive ability for STEC.  

The relation of generic E. coli with a pathogen may thus also vary on the environmental setting  

(i.e., the sample type). The presence of Campylobacter in fresh produce exhibited a significant but 

reverse association with E. coli: this pathogen was isolated more frequently when no or low levels of  

E. coli were present. In general, it should be noted that even when significant and positive correlations 

existed, these were never completely consistent. Detection of 100 % of the pathogen positive samples 

was not possible with any E. coli threshold value, because pathogens were occasionally isolated from 

samples which were negative for generic E. coli. To illustrate: in our study, 15% (6/40) of all samples 

positive for Salmonella had E. coli numbers below the detection limit (<10/g, except for the Spanish 

analyses and <1/100 mL for all water analyses) and this was 23 % (10/44) for Campylobacter (<10/g or 

<1/100 mL for all analyses). For STEC, no samples were positive by culture (0/11) when generic  

E. coli was below the detection limit. Since the detection limit for solid samples was tenfold higher in 

the Spanish study [37], for three Salmonella positive samples E. coli was < 100/g instead of 10/g. 

Table 3. Receiver Operating Characteristic (ROC) curve analysis of each index for each 

pathogen per sample type, showing the area under the curve (AUC) and number of samples 

(N) on which the ROC analysis was performed. 

Predictor Salmonella STEC Campylobacter 
Overall 

Logistic regression  AUC = 0.927 (n = 1530) AUC = 0.870 (n = 1545) AUC = 0.878 (n = 476) 
E. coli AUC = 0.838 (n = 1605) AUC = 0.665 (n = 1545) AUC = 0.697 (n = 509) 

Produce 
E. coli AUC = 0.910 (n = 547) No positives (n = 511) AUC = 0.135 (n = 321) 

Water 
E. coli AUC = 0.820 (n = 387) AUC = 0.850 (n = 375) AUC = 0.763 (n = 188) 

Soil 
E. coli AUC = 0.847 (n = 599) Not significant (n = 587) No data (n = 0) 

When data processing is done according to the investigated regions and the sample type, interesting 

findings can be reported (Figure 1). If the threshold value is put at 100 E. coli per g leafy greens or 

strawberries, between 50% (Egypt and Spain) and 100% (Brazil) of the fresh produce samples which 

tested positive for Salmonella would be identified by exceeding this E. coli threshold. But at the same 

time this limit would affect in total 0.6% (Belgium) to 25% (Egypt) of the fresh produce samples,  

most of which would be false-positive, resulting in food waste and an economic burden of loss or further 

testing for pathogens. Given the low counts of generic E. coli on strawberries, the threshold of  

100 CFU/g would be too high; 15 CFU/g would be more appropriate. If the threshold value is put at  

100 E. coli per 100 mL irrigation water, between 0% (Belgium) and 100% (Egypt and Norway) of water 

containing Salmonella would be rejected for irrigation, but this limit would result in a high rejection rate 

of the currently used water sources, ranging from 19% (Belgium) to 83% (Egypt). Pathogens present in 

irrigation water may not be transferred to the fresh produce if the contact between water and produce is 

restricted, for example by drip irrigation, and the threshold value for acceptable water quality may be set 

higher if such risk reducing strategies are employed [64]. Alternatively, to improve the microbiological 

quality of the water, the water could be subjected to various treatments (filtration, chemical 

decontamination, UV irradiation, sonication, etc.) before application as irrigation water [65,66].  
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Figure 1. Pathogens were associated with higher generic E. coli counts (in log CFU/g or  

100 mL), exemplified here by showing all Salmonella analyses per sample type (except for 

seeds and contact surfaces, since these were always negative). The horizontal red line 

indicates the threshold of 100 CFU E. coli per gram or 100 mL to show the potential impact 

of setting this value as a limit. Outliers are presented as circles (1.5 to 3 times the interquartile 

range below the 25th percentile or above the 75th percentile) or as asterisks (more than three 

times the interquartile range). 

3.2. Risk Factors for Increased Likelihood of Finding Pathogens  

A number of agro-technical factors were investigated individually for a significant relation with the 

occurrence of pathogens (Table 4). Specific countries, elevated generic E. coli numbers, flooding events 

and specific irrigation water sources (categorized as surface water, collected rainfall water, borehole 

water or municipal potable water) were associated with a higher probability of occurrence of all 

pathogens: Salmonella, STEC and Campylobacter. Salmonella was most often found (6.2%, 32 positive 

out of 513 samples) when surface water was the irrigation water source, while Campylobacter (20.8%, 

30/144) and STEC (1.7%, 10/581) were more often isolated when collected rainfall water was the 

irrigation water source. Specific sample types and elevated average daily temperatures at the day of 

sampling were significantly linked with the presence of Salmonella and Campylobacter but not with 
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STEC. Increased likelihood of STEC and Campylobacter was observed in case farmers combined 

cultivation of fresh produce crops with animal production. The use of (insufficiently) composted manure 

as a fertilizer and the use of flood irrigation was associated with increased Salmonella prevalence.  

Lower precipitation at the day of sampling, absence of any disinfection treatment of the irrigation water 

and storage of irrigation water in open reservoirs (ponds) was correlated with elevated Campylobacter 

isolation rates.  

Table 4. List of factors which were univariably investigated in logistic regression for 

significance (see p-value, significance at the 5% level is indicated by grey boxes). 

Factors Salmonella STEC Campylobacter 
Country (Belgium, Brazil, Egypt, Norway, Spain) p < 0.001 p = 0.004 p < 0.001 

Generic E. coli (log CFU/g or 100 mL) p < 0.001 p < 0.001 p < 0.001 
Irrigation water type (surface water, rain water, ground water, 
drinking water) 

p < 0.001 p = 0.002 p < 0.001 

Flooding (yes/no) p = 0.001 p = 0.010 p < 0.001 

Average daily temperature (°C) p < 0.001 p = 0.252 p < 0.001 

Presence of farm animals (yes/no) p = 0.444 p = 0.001 p < 0.001 
Sample type (leafy greens, strawberry, water, soil, contact surfaces, 
seeds, fertilizer) 

p < 0.001 p = 0.335 p < 0.001 

Daily precipitation (mm) p = 0.991 p = 0.992 p = 0.024 

Water treatment (yes/no) p = 0.200 p = 0.993 p = 0.002 

Irrigation water storage type (no storage, open reservoir) p = 0.051 p = 0.232 p < 0.001 

Irrigation method (drip irrigation, spray irrigation, flood irrigation) p < 0.001 p = 0.054 p = 0.494 

Farm type (open field, greenhouse) p < 0.001 p = 0.621 p = 0.053 

Fertilizer type (manure-based (=raw or composted manure, pure or 
mixed with other types), other fertilizers (=inorganic or organic from 
purely vegetable origin) 

p < 0.001 p = 0.418 p = 0.302 

3.3. Prediction of Pathogen Occurrence Based on Significant Microbiological and Agro-Technical Factors  

Multiple logistic regression was performed to investigate which factors are of major influence on the 

presence of pathogens when all factors are considered simultaneously, what is the extent of their impact 

and whether there are interactions between the significant main effects (Table 5). This analysis showed 

that the probability of Salmonella occurrence was determined by the numbers of generic E. coli,  

the country in which the data were collected, the source of the water used for irrigation water and the 

occurrence of a flooding event. Presence of STEC was predicted by the numbers of generic E. coli and 

the occurrence of a flooding event. Prevalence of Campylobacter was impacted by the country,  

the type of storage of irrigation water, open field farms vs. greenhouses and the sample type (lettuce, 

strawberries, water and soil).  
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Table 5. Parameter estimates of the predictors in the multiple logistic regression models for 

the presence (confirmed by culture isolation) of Salmonella, Shiga toxin producing E. coli 

(STEC) and Campylobacter. 

Parameter Estimation 
Standard 

Error 
95 % Confidence 

Interval 
Significance (p-

value) 
Odds 
Ratio 

Salmonella (n = 1530, p = 40) 
Constant –4.97 0.60 –6.14 –3.81 0.000 0.01 
Generic E. coli 1.00 0.20 0.60 1.40 0.000 2.73 
Spain Reference    0.000  
Belgium 0.75 1.43 –2.05 3.55 0.600 2.12 
Brazil 1.26 1.36 –1.40 3.91 0.355 3.51 
Egypt 3.07 0.52 2.05 4.09 0.000 21.48 
Norway –1.54 0.82 –3.14 0.06 0.060 0.21 
Surface water Reference    0.095  
Drinking water –15.98 2604.76 –5121.30 5089.35 0.995 0.00 
Rain water –3.27 1.37 –5.95 –0.58 0.017 0.04 
Ground water –2.61 1.09 –4.74 –0.48 0.016 0.07 
Flooding 2.39 0.71 1.00 3.78 0.001 10.90 

STEC (n = 1545, p = 11) 
Constant –6.87 0.70 –8.25 –5.49 0.000 0.00 
Generic E. coli  0.83 0.21 0.41 1.25 0.000 2.29 
Flooding 1.94 0.82 0.34 3.54 0.017 6.96 

Campylobacter (n = 476, p = 44) 
Constant –2.57 0.59 –3.73 –1.41 0.001 0.08 
Norway Reference      
Belgium 1.28 0.44 0.42 2.15 0.004 3.61 
No storage of 
irrigation water 

Reference      

Open reservoir 1.26 0.54   0.020 3.51 
Farm type: open field Reference      
Farm type: greenhouse –1.69 0.49 –2.64 –0.74 0.001 0.18 
Water Reference    0.000  
Lettuce –2.54 0.57 –3.66 –1.42 0.000 0.08 
Strawberry –19.89 4803.98 –9435.68 9395.91 0.997 0.00 
Farm type * Water Reference    0.042  
Farm type * Lettuce 2.18 0.86 0.48 3.87 0.012   
Farm type * 
Strawberry 

1.69 13587.70 –26630.21 26633.59 1.000   

Note: * indicates the interaction term between two main effects. 

Figures 2, 3 and 4 graphically illustrate the results from the logistic models presented in Table 5.  

The prevalence of Salmonella and STEC was estimated to increase in case of higher generic E. coli 

counts (Figure 2a and Figure 3). The odds ratio (OR) ranged from 2.3 to 2.7, meaning that an increase 

of 1.0 log CFU per g or per 100 mL of generic E. coli doubles to triples the odds of finding pathogens. 

There were no interactions of E. coli counts with other factors, meaning that this effect applied to all 

countries involved in the present study and all sample types included (i.e., produce, soil and water). 

Salmonella and Campylobacter prevalence differed significantly between countries and thus the risk 

estimates are specifically adjusted for each country. Detection of Salmonella was more likely if surface 

water was used for irrigation, followed by ground water, next collected rainfall water and it was least 
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likely if municipal potable water was used (Figure 2b). Our study confirmed once more that surface 

water is most frequently contaminated with pathogens relative to other irrigation water sources such as 

rain and ground water [33,67,68]. When sampling within one week of a flooding event, the odds for 

Salmonella presence increased 10.9-fold (Figure 2c) and that for STEC 7.7-fold (Figure 3). Storage of 

irrigation water in open reservoirs prior to use was significantly associated with increased likelihood of 

Campylobacter detection (OR = 3.5). In particular water samples contained significantly more often 

Campylobacter than fresh produce samples (OR ≥ 12.5) and samples (of any type) taken in greenhouses 

showed significantly less Campylobacter than samples taken in open field farms (OR = 0.2), but there 

was an interaction between sample type and the farm type (open fields vs. greenhouses). This means that 

the ORs of sample type and farm type are not constant but vary depending on the value of the other 

factor. Specifically for this model, it means that the probability of finding Campylobacter was higher for 

irrigation water in open field farms than irrigation water in greenhouses, but Campylobacter prevalence 

was lower in leafy greens from open fields than leafy greens grown in greenhouses (Figure 4). Irrigation 

water in greenhouses presented a lower risk for Campylobacter, which could be explained by the more 

often use of reclaimed water (reuse of water after disinfection treatment) and/or the use of municipal 

potable water. However, the fresh produce itself grown in greenhouses seems to be more likely to finding 

Campylobacter than upon cultivation in open fields. This might be due to the exclusion of birds,  

lower exposure to solar UV radiation and the usually higher relative humidity in greenhouses enabling 

prolonged survival of microorganisms in general, and of Campylobacter in particular [69,70].  

Risk factors for pathogen contamination could be identified but the small number of samples from 

which pathogens were isolated, impaired the estimation of their quantitative effects by multiple logistic 

regression models. Data sparseness was observed as an unequal distribution of the data over all different 

factor combinations. The probability of rare factor combinations was very low relative to the sample size 

of this study, occasionally resulting in frequencies lower than five or even zero. For example,  

flooding events within one week of sampling only occurred in three out of the five individual country 

surveys with relatively rare frequencies (12/694 for Belgium, 36/260 for Brazil and 5/1103 for Spain), 

resulting in the low overall frequency of flooding of 1.8% (53/2879). Due to practical limitations in 

sampling and testing in the participating countries and intrinsic variability in primary production systems 

in place at the farms who participated on a voluntary basis in these surveys, the combined dataset was 

unbalanced because unequal amounts of data for all agro-technological and microbiological parameters 

was obtained per individual country. For example, one or two sources of irrigation water typically 

dominated in a specific country, with differences among the countries, resulting in partial data separation 

of the irrigation water sources according to country. Due to the low prevalence of pathogens in fresh 

produce, data sparseness issues were aggravated.  
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Figure 2. (a) Effect of the irrigation water type; (b) flooding events; (c) generic E. coli 

concentrations on the estimated risk of Salmonella presence by multiple logistic regression 

(Table 3). 

0,0

0,2

0,4

0,6

0,8

1,0

Spain Belgium Brazil Egypt Norway

No flooding

Flooding

Estimated probability of Salmonella presence 

C) Effect of flooding (surface water, average E. coli concentration)

0,0

0,1

0,2

0,3

0,4

0,5

Spain Belgium Brazil Egypt Norway

Municipal potable water
Rain water
Ground water
Surface water

Estimated probability of Salmonella presence 

B) Effect of irrigation water type (average E. coli concentration, no flooding)

0,0

0,1

0,2

0,3

Undetected 1 log CFU/g
or 100 mL

2 log CFU/g
or 100 mL

3 log CFU/g
or 100 mL

4 log CFU/g
or 100 mL

Egypt
Brazil
Belgium
Spain
Norway

Estimated probability of Salmonella presence 

A) Effect of different E. coli concentrations (rain water, no flooding)

Generic E. coli



Int. J. Environ. Res. Public Health 2015, 12 9823 

 

 

 

Figure 3. Effect of the generic E. coli concentration and flooding on the estimated risk of 

Shiga toxin producing E. coli (STEC) presence, isolated by culture, by multiple logistic 

regression (Table 3). 

 

Figure 4. Effect of farm type and sample type on the estimated probability of Campylobacter 

presence by multiple logistic regression (Table 3), exemplified by the country Norway and 

the practice of not storing irrigation water in open reservoirs. 
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into account the identified risk factors can either improve the sensitivity (detecting more pathogen 

positive samples) or improve the specificity (reducing the number of false positives) of the performance 

of testing for an index organism as a surrogate for the pathogen itself. The main advantage in using the 

logistic regression model in comparison with solely the generic E. coli numbers lies in the increased 

specificity at a fixed sensitivity, which also translates in a higher AUC (Table 3). For example in our 

dataset: by setting a limit of 10 generic E. coli per 100 mL water, 92% of the samples containing 

Salmonella were justly rejected because they also contained ≥10 E. coli per 100 mL (i.e., sensitivity of 

92%), but at the same time 38% of the Salmonella negative water samples were also rejected for 

irrigation because they too contained ≥ 10 E. coli per 100 mL (i.e., 62% specificity). By using additional 

information in the logistic regression model at 92 % sensitivity, the specificity was increased to 74% 

and now only 24% of the Salmonella negative water samples were rejected. 

4. Conclusions  

In this study, climatic parameters and factors (average daily temperature, daily precipitation and 

flooding of the fields) were shown to be significantly correlated with the presence of pathogens in the 

fresh produce production environment in univariable analysis, but with the exception of flooding,  

their relative importance to other microbiological (i.e. generic E. coli levels) and agro-technological 

factors (e.g., greenhouses) was too little to be retained as significant in the multivariable analysis.  

Other studies have identified the amount precipitation within three days prior to sampling as one of the 

most important risk factors for Salmonella detection in the fresh produce fields [71] and surface water 

used for irrigation [68], although the former revealed a positive and the latter a negative correlation.  

It should be noted that the use of weather parameters from the day of sampling may not be optimal and 

longer term definition of weather parameters may be more appropriate [72]. 

This study also showed that elevated E. coli numbers had moderate to good predictive value on 

presence of pathogens Salmonella and STEC, but much less for Campylobacter. Campylobacter species 

can reside intracellularly in protozoa such as Acanthamoeba polyphaga, which may allow prolonged 

survival and even multiplication in environmental waters. This may explain the weaker relationship with 

fecal indicator organisms such as E. coli [73]. No defined number of generic E. coli in for example 

strawberries, leafy greens or water was shown to serve as a threshold value to distinguish between safe 

and unsafe produce or irrigation water. Instead it was shown that taking into account the status of defined 

risk factors (i.e., the country of sampling, the sample type, a flooding event) will enhance the 

functionality of predicting the presence of pathogens in fresh produce and could contribute to more 

efficient and risk-based testing for index organisms (or pathogens) in the quest to ensure safety of the 

fresh produce. It is however recommended that further data are collected in the various regions of the 

world with regard to microbiological quality of fresh produce and the production environment to further 

underpin and confirm the results of the present study in relation to risk factors and their estimated 

(quantitative) impact on safety of the fresh produce. It is known there is considerable variation in weather 

conditions over the years which may influence the microorganisms in the agricultural environment [74]. 

In addition, geographic regions differ in their organization and management of the fresh supply chain 

which will also impact on the finding of risk factors. Moreover, to which extent the risk factors have 

been tackled already by defined control procedures and assurance activities (including microbiological 
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monitoring) in place varies considerably on a global level. The relation of E. coli with pathogens is 

complex, whether E. coli may function as a suitable index organism or not depends on the pathogen,  

the climate and seasonality, the geographic region, the sample type (soil, water, fresh produce) and the 

presence of animal and human reservoirs, which is illustrated by the fact that contradictory results have 

been obtained in previous studies [31,68,75–78].  

In conclusion, this study combined data sets from different countries but equivalent sampling plans and 

contributed to the better understanding of key factors on a global level that need attention in good agricultural 

practices on the farm. This study also showed testing for E. coli numbers can provide information on the 

likelihood of finding pathogens and thus serve as an index organism to reliably assess food safety of fresh 

produce, testing and sampling needs to be driven by information on adoption of food safety practices,  

local weather conditions and incidents, which may vary upon the regional location of the farm. 
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