
 
 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 
ESCOLA DE ENGENHARIA 

Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de 

Materiais (PPGE3M) 
 

 

 

 

 

VINICIUS ROCHA 

 

 

 

 

Aplicação Prática de Fluxo de Trabalho de Scorecard de 
Múltiplas Camadas (MLSW) para Classificação de Recursos 

Minerais 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Porto Alegre 

2023 



 
 

VINICIUS ROCHA 

 

 

 

 

 

Aplicação Prática de Fluxo de Trabalho de Scorecard de Múltiplas 
Camadas (MLSW) para Classificação de Recursos Minerais. 

 

 

 

 

 

Dissertação submetida ao Programa de Pós-

Graduação em Engenharia de Minas, 

Metalúrgica e de Materiais da Universidade 

Federal do Rio Grande do Sul, como requisito 

parcial à obtenção do título de Mestre em 

Engenharia, modalidade Acadêmica. Área de 

Concentração: Tecnologia Mineral. 

 

 

 

 

Orientador: Prof. Dr. Marcel Antonio Arcari Bassani 

 

 

 

 

 

 

Porto Alegre 

2023 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

VINICIUS ROCHA 

 

 

 

Aplicação Prática de Fluxo de Trabalho de Scorecard de Múltiplas 
Camadas (MLSW) para Classificação de Recursos Minerais 

 

Dissertação submetida ao Programa de Pós-

Graduação em Engenharia de Minas, 

Metalúrgica e de Materiais da Universidade 

Federal do Rio Grande do Sul, como requisito 

parcial à obtenção do título de Mestre em 

Engenharia, modalidade Acadêmica. Área de 

Concentração: Tecnologia Mineral. 

 

Dissertação defendida e aprovada em: 22, de setembro de 2023. 

 

Orientador: Prof. Dr. Marcel Antônio Acari Bassani 

 

 

Banca examinadora: 

____________________________________________________ 

Prof. Dr. Joao Felipe Costa 

 

______________________________________________________ 

Dr. Rafael Moniz Caixeta 

 

______________________________________________________ 

Dr. Diniz Tamantini Ribeiro 

  



 
 

AGRADECIMENTOS 

Agradeço ao Prof. Dr. Marcel Antonio Arcari Bassani por seus 

ensinamentos e disponibilidade. Sua orientação foi fundamental para o 

desenvolvimento deste trabalho. 

 

Agradeço também ao Prof. Dr. João Felipe Coimbra Leite Costa e aos 

demais professores do PPEGEM/LPM por compartilharem seu conhecimento e 

experiência. 

 

Agradeço aos colegas que contribuíram com este trabalho, especialmente 

Diniz Ribeiro, Debora Roldao, Anderson Miyashita, Jessica Shiels, Amanda 

Landriault, Juan Fernandez e Bruno Afonseca. 

 

Expresso minha gratidão aos amigos Eduardo Pinheiro e Carla Vanessa 

pelo apoio constante e troca de ideias. 

 

Agradeço à minha família, especialmente à Aylime, pelo companheirismo 

incondicional ao longo dessa jornada. 

 

 

 

 

 

 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"The only true 

wisdom is in knowing you 

know nothing." - Socrates 

  



 
 

Resumo  
A classificação de Recursos Minerais desempenha um papel crucial na 

divulgação pública e é fundamental para avaliar a maturidade e o risco associado 

a um depósito mineral, auxiliando na tomada de decisões informadas sobre a 

viabilidade econômica de um projeto ou operação. Para garantir precisão e 

abrangência, os recursos minerais devem ser classificados com base em seu 

nível de confiança e categorizados como Medido, Indicado ou Inferido. Nesse 

contexto, este estudo propõe o uso de um fluxo de trabalho via scorecard com 

múltiplas camadas para a classificação de Recursos Minerais, que leva em 

consideração diversos fatores provenientes de diferentes disciplinas. Essa 

abordagem é flexível, permitindo que o usuário adapte o fluxo de trabalho do 

scorecard às particularidades de cada depósito. No presente trabalho, foram 

consideradas métricas clássicas para a Classificação de Recursos, tais como o 

número de amostras (NS), a inclinação da reta de regressão (slope of regression  

- SR), a eficiência da krigagem (KE) e a variância da krigagem (KV), juntamente 

com métricas mais modernas, como o Índice de Risco, que combina a variância 

de krigagem e a continuidade geológica por meio de uma abordagem 

probabilística. Além disso, a metodologia pode incorporar informações 

qualitativas obtidas por meio de geomodeladores especialistas, como a 

complexidade geológica. O objetivo é classificar os recursos minerais 

considerando todos os componentes relevantes que afetam a incerteza e o risco 

associados a eles. O fluxo de trabalho proposto foi aplicado a dois bancos de 

dados diferentes estudos de caso: um caso 2D e um caso 3D. Os resultados 

demonstram a aplicabilidade da metodologia na classificação de recursos 

minerais, levando em consideração informações provenientes de diversas 

fontes. Essas múltiplas fontes são agrupadas por meio de uma combinação 

linear, em que cada fator recebe um peso. Ao adotar uma abordagem de 

múltiplas camadas para a classificação de recursos, este estudo tem como 

objetivo fornecer uma avaliação abrangente da categorização dos recursos. A 

metodologia do scorecard de classificação de recursos minerais oferece uma 

avaliação integrada de riscos, incorporando informações multidisciplinares 

provenientes dos departamentos de geologia e geociências. Além disso, 

proporciona adaptabilidade, transparência e rastreamento de auditoria. Ao 



 
 

considerar esses aspectos, a metodologia busca fornecer uma avaliação 

abrangente dos recursos minerais, auxiliando os tomadores de decisão na 

avaliação da viabilidade econômica de um projeto ou operação mineral 

 

Palavras-Chave: classificação de recurso; recurso mineral; risco; incerteza; 

krigagem de indicadores; geologia; código JORC; Indice de Risco. 

   



 
 

Abstract 
The classification of mineral resources is crucial for public disclosure. It is used 

to evaluate the maturity and risk associated with the mineral deposit to make 

informed decisions about the economic viability of a project or operation. To 

ensure accuracy and thoroughness, mineral resources must be classified based 

on their confidence level and categorized as Measured, Indicated, or Inferred. To 

address this need, this study proposes the use of a multi-layer scorecard 

workflow (MLSW) for mineral resource classification that considers multiple 

factors from different disciplines. This approach is highly flexible as the competent 

user may adapt the scorecard workflow to the particularities of each deposit. This 

study considered classical metrics for resource classification, such as the number 

of samples, the slope of regression, kriging efficiency, and kriging variance, 

combined with more modern ones (Risk Index), which combines the kriging 

variance and geological continuity using a probabilistic approach. The 

methodology can also incorporate qualitative information from the expert 

geomodeler, such as the geological complexity. The goal is to classify mineral 

resources considering all the relevant components that affect the uncertainty and 

risk associated with it. The proposed workflow has been applied in two different 

databases: one 2D and one 3D case. The results show the applicability of the 

methodology to classify mineral resources considering information from multiple 

sources. These multiple sources are combined as a linear combination, where 

each factor receives a weight. Using a multi-layer approach to resource 

classification, this study aims to provide a comprehensive and well-rounded 

evaluation of mineral resources. The mineral resource classification scorecard 

methodology offers integrating risk assessment, incorporating input from geology 

and geoscience departments, in addition to its adaptability, transparency, and 

audit trails. Considering these aspects, the methodology aims to provide an 

extensive mineral resource evaluation, supporting the decision-makers in 

assessing the economic availability of a project or the mineral operation. 

 

Keywords: resource classification, mineral resource, risk, uncertainty, indicator 

kriging, geology, JORC code, Risk Index  
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1. Introduction 
Mineral resource classification is extremely relevant for investment 

decisions, reserve estimation, and mine planning, and helps to provide a more 

informed understanding of the potential risks of exploiting a deposit. The 

economic viability of mining projects depends on multiple factors, with resource 

classification playing a crucial role throughout the mining process. Accurate 

resource classification is essential for a reliable risk assessment within a mineral 

deposit. Companies typically report their economic assessment results to attract 

investments, and mineral resource classification standards were established to 

provide a clear framework for public disclosure of mineral deposits. 

The classification of resources aims to determine the degree of confidence 

and is mandatory according to the guidelines of the international codes. The 

geological confidence of resources is assessed and categorized as Measured, 

Indicated, and Inferred in descending order of geological confidence (JORC, 

2012). This classification is based on the level of geological knowledge, drilling 

density, and data quality available for the deposit.  

Various factors influence the classification of mineral resources, including 

the conditions and circumstances of the mining project, as well as geological and 

technical considerations. Mineral resources also must have reasonable 

prospects for eventual economic extraction (JORC, 2012). Usually, the mineral 

resources classification procedure is tailored to each deposit. Despite the 

differences in each project, it is essential that the mineral resources classification 

must be robust and can be defendable by the Competent Person (CP), who is 

the professional responsible for the resources model. 

The mineral resources classification procedure should comply with the 

guidelines written in international reporting codes (CRIRSCO, 2013; JORC, 2012; 

SAMREC, 2009). The international reporting codes inform the general principles 

and good practices but do not have a specific protocol for classifying mineral 

resources (SOUZA, 2002). Over time, various approaches have been employed, 

such as determining classifications based on the number of data in nearby search 

areas, used to estimate mining blocks, spacing between drill holes, range of 

variability, kriging variance, regression slope, and past experiences with similar 

deposits (VERLY; PARKER, 2021). 
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To provide a more multidisciplinary, comprehensive, and traceable 

approach to mineral resource classification, a multi-layer scorecard workflow is 

advocated (DUGGAN et al., 2017; MOHANLAL; STEVENSON, 2010; PARKER; 

DOHM, 2014). This systematic approach involves weighting or grading multiple 

linear parameters to determine the confidence level of a mineral resource 

estimate and derive a final score for classification. The method considers various 

factors that impact the estimation of resources, production scheduling, and the 

costs associated with the mining process. 

An interesting metric used for mineral resource classification is the Risk 

Index (AMORIM; RIBEIRO, 1996). The Risk Index combines the estimation error 

and geological continuity with a probabilistic ore and waste relationship. An 

indicator kriging estimate measures the geological continuity, while the estimation 

error is characterized by the kriging variance. The Risk Index, akin to classical 

geostatistical metrics for resource classification, such as the number of samples, 

the slope of regression, kriging efficiency, and kriging variance, is generally 

effective in evaluating massive ore bodies. However, it can be prone to artifacts 

when the mineralization consists of several orebodies unconnected. 

Souza (2002) emphasises the necessity for precise resource classification 

based on risk levels and the formidable challenge of establishing confidence 

limits within existing classification systems. The study investigates alternative 

methodologies, including the application of geostatistical techniques such as 

kriging and stochastic simulation, to incorporate uncertainty into resource and 

reserve estimates. It also underscores that while ordinary kriging offers 

expeditious tonnage estimates, it relies on assumptions that can be challenging 

to substantiate. In contrast, simulation techniques demonstrate their capacity to 

approximate estimation errors by generating multiple tonnage models, facilitating 

a more realistic evaluation of uncertainty (SOUZA 2002). 

Moreover, conditional simulation generates representations of the model 

uncertainty at a global and local scale. These representations find relevance in 

tasks encompassing resource classification and risk analysis for mine production. 

However, fusing these representations to establish probability intervals for 

resource classification remains comparatively limited and not yet widespread 

(ROSSI; DEUTSCH, 2014). It's noteworthy that adopting probabilistic 

methodologies that incorporate simulated models for resource classification 
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across different operational stages or projects could prove advantageous 

((BADENHORST; ROSSI, 2012; DIMITRAKOPOULOS, 1997; GLACKEN, 1996; 

GUARDIANO; PARKER; ISAAKS, 1995; JOURNEL; KYRIAKIDIS, 2004; 

LEUANGTHONG; DEUTSCH, 2003; ROSSI, 1999; ROSSI; CAMACHO, 2004; 

VAN BRUNT; ROSSI, 1999). However, as highlighted by Deutsch et al. (2007), it 

is crucial to emphasize that uncertainty models stemming from conditional 

simulations should serve as a supplementary resource for other technic, such as 

geometric-based drill hole distance. Deutsch et al. (2007) delve deeply into 

several aspects of the study conducted. Firstly, they extensively examine how the 

level of uncertainty is intricately linked to the decisions made about models and 

stationarity. Even minor adjustments in these aspects can wield considerable 

influence. Secondly, they highlight the intricate interplay of various parameters, 

which affects uncertainty in ways that may not be immediately apparent. Notably, 

an increased nugget effect has the abrupt consequence of reducing uncertainty 

for larger mining scales. Thirdly, the study underscores the significant roles 

played by uncertainty in the histogram and spatial continuity parameters. Lastly, 

the paper underscores the intricate nature of selecting uncertainty parameters for 

classification. It emphasizes the strong reliance of this selection on the specific 

characteristics of the deposit under consideration. For instance, choosing 

between relative and absolute uncertainty can dramatically reshape how 

uncertainty is perceived in regions containing lower-grade resources. 

Furthermore, certain types of deposits inherently possess lower levels of 

uncertainty, yet they lack comprehensive measurement data, particularly in cases 

where drill hole spacing is wide. 

This work shows two case studies of mineral resources classification that 

incorporate the Risk Index into the multi-layer scorecard framework. The case 

studies consider data derived from real deposits. The idea is to combine the 

strengths of several metrics in a robust workflow. For instance, the Risk Index 

incorporates the geological continuity and amount of information but does not 

inform the data quality used. To overcome this issue, an additional data-quality 

score may be added to the multi-layer scorecard. 
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1.1 Goals and Objectives 

The objective is to investigate and explore the practical application of a 

multi-layer scorecard workflow with a Risk Index for the classification of mineral 

resources. The methodology was applied in two case studies, using real deposit 

data to demonstrate how the risk index can be incorporated into a multi-layer 

scorecard framework. Additionally, the advantages of this multidisciplinary 

approach and the possibility of including an additional data quality score in the 

multi-layer scorecard will be discussed. The goal is to develop a robust workflow 

that considers various parameters for robust and traceable classification of 

mineral resources. 

 

1.2 Study methodology 

This study employs an approach that integrates multiple metrics. The main 

metrics are the kriging efficiency, the slope of regression, number of samples, 

search volume, and Risk index, which are traditionally used for mineral resources 

classification. The method also uses the following complementary and qualitative 

criteria: orebody geometry, data integrity and quality, bulk density, and other 

factors. The complementary criteria are not used often in mineral resource 

classification but are considered important. 

The first step of the methodology is to convert the multiple criteria into 

confidence scores using thresholds. The thresholds are empirically determined 

by the Competent Person (CP). Each confidence score is related to a resource 

category. The scores for each category are shown in Table 1. We emphasize that 

the categories assigned in this step are not the final classification, they are a prior 

classification. The prior classification is done for each criterion separately. The 

core idea is to evaluate how each criterion contributes to the final resource 

estimate confidence. 

Table 1 – Confidence categories and scores. 

Confidence Category Score 
High Confidence 1 

Medium Confidence 2 
Low Confidence 3 

 



19 
 

The final mineral resource classification is determined by the global score, 

which is a linear combination of the scores obtained previously. The weights are 

defined by the Competent Person based on experience and the deposit’s 

characteristics. For instance, if data quality is critical for mineral resource 

confidence, the criterion related to data quality receives more weight than the 

others. Usually, the weights sum up to one or one hundred so that the contribution 

of each criterion to the global score is straightforward. 

The last step is to assign the final resource classification based on the 

global score. This is accomplished by defining thresholds for the global score. 

Similar to the thresholds used for the individual criteria, the global score 

thresholds are also determined by the Competent Person (CP). The criteria used 

to calculate the global score are explained in Section 2.1 to 2.9. 

1.3 Dissertation Organization 

The dissertation is structured into chapters and organized as follows: 

• Chapter 1 - Introduction: This chapter introduces the topic, including 

the motivation, goals, study methodology, and overall organization of 

the dissertation. 

• Chapter 2 - Bibliography Review: This chapter focuses on the 

background of the scorecard method for resource classification, 

including a summary of the geostatistics used for each criterion within 

the method. It offers a concise overview of the geostatistical aspects 

related to resource classification. 

• Chapter 3 - Practical Application: The objective of this chapter is to 

apply the proposed workflow to two different real-world datasets. The 

case studies are presented in two distinct sections: Section 3.1 - 2D 

Case Study and Section 3.2 - 3D Case Study. The datasets 

demonstrate diverse degrees of geological complexity influenced by 

the characteristics of the deposit. Moreover, disparities in drilling 

campaigns, data quality, and other pertinent factors introduce 

variations in the confidence levels pertaining to the resources at 

specific locations. On Section 3.3 - Resource Classification Criteria and 

Considerations it is presentaded a table that summarizes key resource 

classification criteria, highlighting their respective pros and cons, aiding 
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in the selection of the most suitable approach for specific geological 

contexts. 

• Chapter 4 – Discussion and Conclusions: This chapter 

encompasses a comprehensive discussion on the implementation of 

the methods proposed in the dissertation. It further includes concluding 

remarks, a self-assessment of the study's outcomes, and 

contemplation of potential next steps and areas for improvement. 

 

2. Bibliography Review 
This chapter provides a review of the theoretical concepts related to the 

classification methods used in the proposed scorecard in this study. These 

methods include kriging efficiency, slope of regression, number of samples, 

kriging search volume, indicator kriging, risk index, and other risk factors that 

influence the classification of a mineral resource. Additionally, this chapter 

presents a historical background of the classification methodology via scorecard 

found in the literature. 

2.1 Background on Scorecard for Resources Classification 

The mineral resource classification process can be enhanced by 

implementing a multi-layer scorecard approach, which serves to evaluate the 

dependability and excellence of the mineral resource data. The scorecard 

encompasses various criteria that aid in classifying and categorizing the resource 

data, including but not limited to the quantity and quality of the data, the geology 

and geometallurgical traits of the deposit, the consistency and precision of the 

data, and the level of assurance in the resource estimate. 

Mohanlal & Stevenson (2010), Parker & Dohm (2014), and Duggan et al. 

(2017) have proposed the use of scorecard methodology for resource 

classification. Mohanlal & Stevenson's approach combines traditional 

geostatistical and non-geostatistical criteria, such as QA/QC, geological aspects, 

the presence of geophysical surveys, and mining history, to establish confidence 

thresholds. These criteria are weighted based on their relative importance and 

combined to generate a raw scorecard, which a Competent Person then reviews 

for final classification. 
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Parker & Dohm (2014) proposes a systematic approach for the evaluation 

and use of several key factors in the classification scorecard that depend on the 

geological characteristics of the deposit and the most significant aspects for its 

extraction. For a thorough assessment, it is recommended to consider various 

aspects such as the ore body's geometry, data quality, spatial relationships, 

estimation methods, bulk density, and other relevant factors. To assign a resource 

classification to a block model, each of these factors is evaluated and given a 

ranking (low, medium, or high) based on its significance to the deposit. These 

rankings are then multiplied by confidence ratings to determine discrete scores. 

The cumulative score for all factors is subsequently compared to predefined 

ranges for Inferred, Indicated, and Measured Resources.  

Duggan et al. (2017) suggested a semi-quantitative scorecard approach 

to evaluate complex and unique mineralization styles, covering five critical criteria 

in the resource estimation process: geology, grade, volume, revenue, and 

density. Due to the geological complexity and significant variability in grade, 

gemstone deposits, such as diamond deposits, pose challenges for accurate 

mineral resource estimation. To address this, the resource analyst completes the 

five scorecards, and the system is internally reviewed and finally ratified by a 

Competent Person (CP), providing a consistent and repeatable depiction of 

confidence in the company's mineral resources. 

 

2.2 Kriging Efficiency (KE) 

Kriging efficiency (KE), presented by Krige (1996), is a relevant metric for 

assessing the quality and precision of a kriging interpolation outcomes. It is 

determined by comparing the kriging variance with the theoretical variance of the 

variable at block scale (Equation 1) - (SILVA, 2015). 

Equation 1: 

𝐾𝐾𝐾𝐾 =
𝐵𝐵𝐵𝐵 − 𝐾𝐾𝐾𝐾

𝐵𝐵𝐵𝐵
 

𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 

𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 
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A kriging efficiency close to one indicates that the kriging variance is close to 

zero. This situation occurs when many data correlated with the block to be 

estimated are used in the estimation process.  

 

2.3 Slope of regression for kriging estimators (SR) 

The slope of linear regression (SR) in ordinary kriging (OK) is a measure 

of the linear relationship between the true and estimated values. Also, the SR 

indicates the amount of conditional bias in the estimate. Avoiding conditional bias 

is crucial in resource classification as it reduces the risk of misclassifying blocks 

(DEUTSCH; SZYMANSKI; DEUTSCH, 2014; DEUTSCH, 2007; KRIGE, 1996; 

RIVOIRARD, 1987; SILVA, 2015). Equation 2 defines the slope of linear 

regression (SR): 

Equation 2: 

𝑆𝑆𝑆𝑆 =
𝐶𝐶𝐶𝐶𝐶𝐶 {𝑍𝑍𝑉𝑉,𝑍𝑍∗𝑉𝑉}

𝜎𝜎2𝑍𝑍∗𝑉𝑉
 

 
𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝐶𝐶𝐶𝐶𝐶𝐶 {𝑍𝑍𝑉𝑉 ,𝑍𝑍∗𝑉𝑉}

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑍𝑍𝑉𝑉) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝑍𝑍∗𝑉𝑉)𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎  

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑉𝑉 

𝜎𝜎2𝑍𝑍∗𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑍𝑍∗𝑉𝑉)𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑉𝑉 

A slope of linear regression of one means that the estimates do not have 

conditional bias. Conversely, a slope of linear regression significantly lower than 

one indicates problems in the estimates. 

 

2.4 Number of Samples (NS) 

Ordinary kriging (MATHERON, 1963) involves estimating the value of a 

variable of interest at an unsampled location using a set of data. The number of 

samples (NS) refers to the quantity of data points utilized in this process. The 

number of samples directly impacts the precision and accuracy of the kriging 

estimate. More samples generally result in a more accurate estimate, but the 

ideal number of samples also depends on the spatial distribution of the data and 
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the level of spatial autocorrelation. It is important to have sufficient samples to 

accurately capture the spatial pattern of the data and produce a reliable estimate 

at the unsampled location. 

To establish confidence thresholds for this study, the range between the 

minimum and maximum number of samples used in the estimation process (as 

shown in Figure 1) was divided into three intervals. Blocks estimated with many 

samples were classified as high confidence for this criterion and received a score 

of one. Similarly, blocks estimated with an intermediate number of samples 

received a score of two (medium confidence), and blocks estimated with a small 

number of samples received a score of 3 (low confidence). This approach is in 

accordance with the method described by Mohanlal and Stevenson (2010). 

 
 

 
Figure 1 – Range used for categorizing the Number of Samples used during the kriging process 

 

2.5 Search Volume (SV) 

In ordinary kriging (MATHERON, 1963), the search volume is a 

fundamental concept used to define the search neighbourhood that comprises 

the set of data points employed to estimate a value at an unsampled location or 
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point of interest. The size of the search ellipse plays a crucial role in determining 

the number of sample points included in the estimation process, while the 

orientation of the ellipse reflects the direction of maximum variability in the data. 

Therefore, the search volume is a critical parameter in the ordinary kriging 

algorithm that significantly impacts the accuracy and reliability of the estimates. 

This concept of neighbourhood restrictions in resource classification is 

related to the spatial relationship of the data points and the influence of nearby 

samples. It is common practice in geostatistical resource classification to use 

spatial relationships and spatial continuity to inform the modelling and estimation 

of mineral resources. The Search Volume is correlated with the continuity of the 

mineralization and is often used as a metric of resource classification (PARKER; 

DOHM, 2014). 

A common practice in mineral resource estimation is employing multiple 

estimation passes, each with different search parameters. The least restrictive 

pass is used to classify blocks as Inferred, the intermediate restrictive pass is 

used to define the Indicated category, and the most restrictive pass determines 

the Measured blocks (EMERY; ORTIZ; RODRÍGUEZ, 2006; PARKER; DOHM, 

2014; SILVA, 2015). Usually, the less restrictive search volumes are obtained by 

multiplying the axes of the most restrictive search volume by a factor. The most 

restrictive search volume ranges are determined based on the ranges of the 

variogram (FROIDEVAUX, 1982; SOUZA, 2007). 

Spatial continuity analysis is a crucial component of mineral resource 

estimation, often achieved through calculating and modelling of variograms. The 

variogram is widely recognized as the practical tool for characterizing the spatial 

variability of the regionalized variable, serving as a fundamental building block in 

the estimation process (JOURNEL; HUIJBREGTS, 1989). 

The search volume criteria are often used based on the variogram range 

of the main element estimated. The criteria are ranked using a three-level system 

of confidence, with a value of 1 assigned to the first search radius (1/3 of the 

variogram range) for high confidence, a value of 2 assigned to the second search 

radius (2/3 of the variogram range) for medium confidence, and a value of 3 

assigned to the third search radius (variogram range) for low confidence.  

Alternatively, the criterion for confidence ranking can be established by 

utilizing another empirical relationship derived from spatial continuity analysis. 
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This involves determining the range corresponding to a specific percentage of the 

total variance of the variable of interest in the variogram (sill). As depicted in 

Figure 2, a practical guideline for establishing the confidence ranking system is 

as follows: assign a value of 1 to the range that corresponds to 2/3 of the 

variogram sill, assign a value of 2 to the range that corresponds to the modelled 

variogram, and assign a value of 3 to 1.5 times the range identified at the 

confidence level 2. This approach also provides a systematic method for 

determining confidence levels based on the spatial characteristics revealed in the 

variogram analysis. 

 

 
Figure 2 – Confidence ranking through variogram analysis. 

 

It is essential to note that the selection of search parameters in Kriging can 

introduce certain criteria, such as minimum sample requirements, minimum 

samples per drill hole, and sector restrictions, which may lead to discontinuities 

in the resulting classification output. While these restrictions are crucial for grade 

estimation, they can introduce unwanted artifacts when employed for resource 

classification. An alternative approach involves employing a separate set of 

Kriging passes specifically tailored for resource classification – aiming to keep 

the search volume dimensions and orientations without the restrictions needed 

for grade estimation. 

Acknowledging that these premises rely on a well-structured and modelled 

variogram is important. However, it is worth noting that this may not always be 

the case, particularly when there is limited data available. Finally, conducting a 
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thorough analysis of ranking systems using variograms when working with high 

nugget effect deposits is also recommended. Examples of such deposits include 

gold veins with erratic distribution, narrow veins, and platinum group elements 

(PGE) deposits.  

 

2.6 Kriging variance (KV) 

Kriging variance (KV) is a measure of the uncertainty associated with a 

kriging estimate (JOURNEL; HUIJBREGTS, 1989). KV is low when many 

samples spatially correlated with the block to be estimated are used in the 

estimation. It indicates of the degree of confidence in the estimated values, with 

lower values indicating higher precision and higher values indicating lower 

precision.  

Equation 3: 

𝐾𝐾𝐾𝐾(𝑥𝑥)  =  �  
𝑛𝑛

𝑖𝑖=1

𝛾𝛾(𝑥𝑥𝑖𝑖,𝑉𝑉) ∗ λ𝑖𝑖  −  𝛾𝛾(𝑉𝑉,𝑉𝑉)  +  𝜇𝜇  

 
𝐾𝐾𝐾𝐾 (𝑥𝑥) =  𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 

𝛾𝛾(𝑥𝑥𝑖𝑖 ,𝑉𝑉) = 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑥𝑥𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑉𝑉) 

λ𝑖𝑖 =  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 

𝛾𝛾(𝑉𝑉,𝑉𝑉) =  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝜇𝜇 =  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 

However, it is imperative to acknowledge the limitations inherent to the Kriging 

Variance (KV) criteria. Owing to its fundamental nature as a measure of data 

density, the KV criterion possesses inherent shortcomings, notably its 

susceptibility to yielding artifacts referred to as "spotted-dogs" when employed as 

a surrogate for resource categorization. Furthermore, in congruence with this 

underlying principle, the criterion falls short of encompassing the grade variability. 

It is noteworthy that kriging variances invariably occur in the context of relative 

thresholds, as the raw values lack substantive physical or geological significance 

(ROSSI; DEUTSCH, 2014). 
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2.7 Indicator Kriging  

Indicator Kriging (IK) is a geostatistical interpolation method proposed by 

Journel (1983) for the probabilities of occurrence of a categorical variable, such 

as the presence (ore) or absence (waste) of an ore type, or a continuous variable 

defined by its histogram and various thresholds. This approach provides a 

quantitative assessment of the geological risk. Low geological risk is related to 

high probabilities of being ore. For instance, if the probability of being ore is above 

90% for a given block, the block is very likely ore. This block is a candidate to be 

classified as Measured. 

 

2.8 Risk Index (RI) 

The Risk Index (RI) for resource classification was proposed by Amorim e 

Ribeiro (1996) as a method to evaluate the accuracy and reliability of mineral 

resource estimates. The Risk Index considers the estimation error and geological 

continuity using an indicator kriging estimate. The idea is to provide a quantitative 

assessment of the level of risk associated with a resource, rank and compare 

different resources, and inform decision-making about the resource and its 

potential for further development (RIBEIRO et al., 2012). 

The Risk Index (RI), according to Amorim e Ribeiro (1996), is calculated 

by combining two parameters: the Indicator Kriging (IK) estimated probability to 

be ore and the Standardized Kriging Variance [KV/Sill]. The kriging variance of 

the indicator kriging estimate is used to calculate the Standardized Kriging 

variance. The RI is represented as a vector in a cartesian plane formed by the 

parameters [1-IK] and [KV/Sill] (Figure 3). The value of the Risk Index (RI) vector 

can be calculated using the following expression: 

Equation 4: 

𝑅𝑅𝑅𝑅 =  �([1 − 𝐼𝐼𝐼𝐼]2) +  ([
𝐾𝐾𝐾𝐾
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

]2) 

𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 
𝐾𝐾𝐾𝐾
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 
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Figure 3 – Risk Index vector (adapted from Amorim e Ribeiro (1996)). 

 

2.9 Risk Areas: orebody geometry, data integrity and quality, and other 
factors 

Risk areas for resource estimates refer to the uncertainty surrounding the 

estimation of mineral resource tonnage and grades. The concept considers the 

various factors that contribute to this uncertainty, such as data integrity and 

quality, the complexity of the deposit, variability of the mineralization, and others 

(PARKER; DOHM, 2014). The goal is to understand the level of confidence in the 

resource estimate and to identify areas where further work is needed to reduce 

the level of uncertainty. In this workflow, the following criteria to identify risk areas 

were used: 

• Orebody geometry (OG): Accurate estimation of mineral resources can 

be significantly influenced by geological complexity, particularly in deposits 

that exhibit heterogeneity and discontinuity in their geology. It is crucial to 

incorporate geological expertise and knowledge into the estimation 

process to capture the complexities of the deposit better and enhance the 

accuracy of the estimates (ISAAKS; SRIVASTAVA, 1989). The orebody 

geometry plays a key role in determining a deposit's geological confidence 
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level. An orebody's complexity, shape, size, and orientation can impact the 

estimation of resources, production schedules, and the costs associated 

with the mining process.  

• Data integrity and quality (DIQ): resources estimation and classification 

must be based on high-quality and reliable data. Maintaining data integrity 

through the quality assurance and control process (QA/QC), which verifies 

the accuracy, completeness, and consistency of the data, is essential for 

the accuracy and confidence of the classification. The interpretation of the 

data must also be consistent, accurate, and supported by high-quality 

data. Data integrity and quality throughout resource classifications is vital 

(ROSSI; DEUTSCH, 2014). 

• Bulk density (BDens): provides valuable information on a deposit's 

tonnage and metal content. It is an important characteristic that must be 

accurately measured and considered in the resource estimation process 

to ensure the accuracy and reliability of the resource classification 

(PARRISH, 1993; ROSSI; DEUTSCH, 2014). 

• Other factors (OF): such as geometallurgical data, mineralogy, and 

penalty elements, are all important considerations in classifying mineral 

resources. This information is used to determine the best extraction and 

processing methods, estimate the costs associated with these methods, 

and ensure the resource classification's accuracy and reliability.  

 

To categorise different risk criteria, confidence levels are assigned based 

on their respective locations and degrees of uncertainty, which can range from 

high confidence (1), medium confidence (2), to low confidence (3), depending 

on the specific purpose and context of the assessment.  

 

2.10 Scorecard and smoothing for final classification 

The individual criteria are weighted based on relative importance and then 

combined to form a raw scorecard. This scorecard is subsequently reviewed 

visually and against the data by a Competent Person for final classification. 

Subsequently, non-probabilistic resource classification methods typically require 

posterior smoothing on a block-by-block basis to produce the final classification. 
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To achieve smoother volumes, one method is to manually interpret, while another 

option is to use a smoothing algorithm based on moving window statistics. Care 

must be taken to avoid bias and significant alterations to the global volumes 

defined by established criteria. It is recommended to check overall grade-tonnage 

curves by resource class before and after smoothing to understand the degree of 

changes introduced (ROSSI; DEUTSCH, 2014). Furthermore, it is important to 

acknowledge that the smoothing step is considered good practice but not 

mandatory. The Competent Person should assess its necessity and make an 

informed decision accordingly. 

 

3.  Practical application 
The present study applies a scorecard workflow for resource classification 

to two datasets, 2D and 3D. This methodology serves to demonstrate and 

illustrate the proposed workflow. The datasets exhibit varying degrees of 

geological complexity dependent on the deposit area. Additionally, differences in 

drilling campaigns, data quality, and other pertinent factors contribute to 

variations in the confidence levels associated with the resources at specific 

locations. 

 

3.1 2D Case Study 

 The proposed method was implemented on a 2D dataset encompassing 

six mineralized orebodies exhibiting varying degrees of geological complexity and 

drilling density. The drilling grid is irregular, comprising an exploratory grid of 

100m x 100m executed in different campaigns over time, and it was eventually 

complemented by infill drilling of a maximum of 30 m x 30m targeting high-grade 

areas. The block size dimensions are 10 x 10m, where the variable lead (Pb) and 

the indicator Ore (1) were estimated by ordinary kriging (Figure 4). As shown in 

Figure 4 4-A, the indicators Ore (1) and Waste (0) were assigned to the dataset, 
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and subsequently, the variography was modelled to perform the indicator kriging 

(IK) – Figure 4Figure 4-A.  

Figure 4 – The figure above displays the histogram (A) and variogram (B) of the indicator Ore. 
The code zero is for waste while the code one is for ore. 

 

The Risk Index (RI) criterion (Figure 5-C) was obtained with the 

combination of the indicator kriging estimate of the indicator (Figure 5-A) and the 

indicator Kriging Variance (Figure 5-B). The blocks were then categorized into 

Measured, Indicated, and Inferred using thresholds (Figure 5-D). Clearly, the 

resources classification using the Risk Index is highly influenced by the indicator 
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kriging estimate (see Figure 5-A and Figure 5-D, the classification view resembles 

the indicator kriging estimate). 

 
Figure 5 – The figure above displays the Risk Index (IR) process. The criteria is built up using 

the IK of the Ore(1) indicator (A). Kriging Variance (B), which are combined resulting in the Risk 
Index (C). Thus, Risk Index is classified in the confidence range (D). 

 

The search volume criterion was based on the variogram range of the main 

element estimated (Figure 6). The range of the first search volume is one-third of 

the variogram range, the range of the second is two-thirds of the variogram range, 

and the range of the third equals the variogram range. The scores 1, 2, and 3 are 

linked to the first, second, and third search volumes. 
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Figure 6 – Variogram for the variable of interest showing a range of 30m for the major and 20m 

for the semi-major. Important to note that the data is 2D. 

The application of the search volume criterion resulted in some 

discontinuities in the resource classification (Figure 7). These discontinuities will 

likely occur when the search volume is divided into sectors. Despite these 

discontinuities, dividing the search volume into sectors is advisable. This division 

mitigates the problem of negative weights and prevents the estimate from being 

dominated by clusters (groups of redundant samples). The Kriging configuration 

for the SV criteria was established with the following parameters: Minimum 

number of samples (4), Maximum number of samples (24), Sector Search 

(Octant), Maximum samples per octant (3), and a Maximum of samples per drill 

hole (2). 
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Figure 7 – This illustration depicts the raw search ratio criteria (A), which is then further refined 

by the application of the confidence level (B). 

Subsequently, as discussed on section 2.4, the application of the NS 

criteria can be seen on Figure 8, which is an output of the kriging process of the 

variable of interest. The NS criterion clearly defines the most sampled area, which 

occurs in the middle of the orebody. As expected, fewer samples are found near 

the boundaries of the ore.  
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Figure 8 – This figure illustrates the unprocessed NS criteria (A) alongside the same criteria 

after the application of the confidence level (B). 

Figure 9 shows the results regarding the KE. The criterion represents an 

outcome of the kriging process of the variable of interest and is shown in Figure 

9-A. As the kriging variance highly influences the KE, the KE map shows abrupt 

changes as the distance between the blocks and the samples increases. These 

abrupt changes resulted in artifacts in the resource classification defined by this 

criterion (Figure 9-B).  
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Figure 9 – This figure depicts the initial, unprocessed KE criteria (A) juxtaposed with the same 

criteria post the integration of the confidence level (B). 

Finally, the application of the SR criterion is visually presented in Figure 

10. The SR criterion also led to some artifacts (Figure 10-B). The main difference 

is that the artifacts are less pronounced than those obtained by KE. 
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Figure 10 – This figure portrays the initial, unprocessed SR criteria (A) in parallel with the same 

criteria after incorporating the confidence level (B). 

Table 2 details the specific classification rules employed in the present 

study to transform the raw criteria into the scores 1, 2, and 3 – when a numerical 

threshold is needed. For instance, the blocks whose risk index was below 0.3 

received a score of 1, which is destined for the high-confidence blocks. These 

thresholds play a role in categorizing individual blocks through the estimation 

process, contributing to the determination of the criterion for which a threshold is 
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needed. The classification rules are defined empirically based on the experience 

of the qualified/competent person. 

 

Table 2 – Classification rules applied to the criterion necessary to define the confidence levels. 

Description 
Scorecard 

(confidence 
level) 

Number of 
Samples 

Slope of 
Regression 

Kriging 
Efficiency Risk Index 

High 
confidence 1 >= 14 >= 0.96 > 0.65 < 0.3 

Medium 
confidence 2 < 14 and >= 

9 
< 0.96 and 

>= 0.88 
<= 0.65 and 

>= 0.3 
>= 0.3 and < 

0.6 

Low 
confidence 3 <9 < 0.88 < 0.3 >= 0.6 and < 

1.5 

            
 

Figure 11 compares the classification obtained using the number of 

samples, search volume, kriging efficiency, slope of regression, and Risk Index 

(Figure 11). As opposed to the categorization obtained by the number of samples, 

Search Volume, and Risk Index (Figure 11-A, Figure 11-B, Figure 11-E), the KE 

and SR categorizations resulted in artifacts (Figure 11-C and Figure 11-D). 
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Figure 11 – This figure shows the different workflow elements that are categorized based on 

their level of confidence criteria. The elements include (A) the Number of Samples, (B) Search 
Volume, (C) Kriging Efficiency, (D) Slope of Regression, and (E) Risk Index. These criteria are 

used to assess the level of confidence in the mineral resource 

 

Moreover, other criteria that are not linked with the estimates were used. 

These criteria are shown in Figure 12 and represent the Orebody Geometry, the 

QA/QC aspect, Bulk Density, and other factors. Similar to the criteria based on 

the estimates, these criteria were also divided into high, medium, and low 

confidence (Figure 12). Geological areas with low confidence in interpretation, 

and regions with poor confidence in lithological logging, were identified as having 

lower confidence (Figure 12-A). Furthermore, historical data that lacked 

appropriate materiality and quality assurance/quality control (QA/QC) protocol 

were given different confidence levels (Figure 12-B). Additionally, areas with 

historical drilling lacking density measurements were identified (Figure 12-C). 

Finally, two different areas of confidence were identified regarding 
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geometallurgical and mineralogical components, potentially impacting the ore 

processing (Figure 12-D). 

 

 
Figure 12 – The figure above displays the risk areas identified in the proposed workflow for 
classifying mineral resources. These areas are categorized into (A) Orebody Geometry, (B) 

Data Quality and Integrity, (C) Bulk Density, and (D) Other Factors. 

 

An individual score was assigned to the categories of each criterion. One 

is the individual score for the high-confidence blocks, two is the score for the 

medium-confidence blocks, and three is the score for the low-confidence blocks. 

The individual scores are combined using weights to obtain the final score. The 

final score is a linear combination of the individual scores and weights. In this 

case study, the final score was obtained by Equation 5:  
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Equation 5: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [𝑁𝑁𝑁𝑁 ∗ 0.1] + [𝐾𝐾𝐾𝐾 ∗ 0.05] + [𝑆𝑆𝑆𝑆 ∗ 0.05] + [𝑆𝑆𝑆𝑆 ∗ 0.05] + [𝑅𝑅𝑅𝑅 ∗ 0.2]

+ [𝑂𝑂𝑂𝑂 ∗ 0.2] + [𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 0.25] + [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 0.05] + [𝑂𝑂𝑂𝑂 ∗ 0.05] 
 

𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  

𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 

𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 

𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

Figure 13 shows the block model coloured by the final score. This score is 

the main parameter for the final resource classification.  

 
Figure 13 - The figure above illustrates the application of the scorecard to each block, as 

outlined in Equation 4 

The final classification of the deposit is based on the final score and a 

series of thresholds. In this case study, the blocks with a final score between 1 

and 1.3 were considered Measured, scores ranging from 1.3 to 1.8 were 

considered Indicated, and scores above 1.8 were classified as Inferred. 
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The classification obtained by the final score (Figure 14-A) may contain 

"spotted-dog" patterns or other irregularities that need to be processed before the 

final resource classification. Therefore, the scorecard model was smoothed 

manually to remove these patterns and ensure a more accurate final classification 

(Figure 14-B). 

 
Figure 14 – The figure above illustrates the results of the final scoring workflow (A), and (B) the 
final scorecard resources classification where the smoothing and “spotted dog” treatment have 

been applied. 

 

3.2 3D Case Study 

Due to confidentiality requirements, this study withholds the name, 

location, and commodities of the studied deposit. The proposed methodology was 

applied to a 3D dataset that encompasses a highly structured polymetallic 

mineralization with seven known orebodies juxtaposed with a weathering profile. 

The drilling grid is irregular and comprises an exploratory grid executed in 

different campaigns over time, which was eventually complemented by infill 

drilling targeting high-grade and shallow areas.  

A confidence level difference exists between the historical drilling (with a 

data spacing of 100 x 100m) and the modern campaigns (with a data spacing of 

25 x 25m). Furthermore, bulk density measurements were only taken during the 

modern campaigns. The bulk density is crucial for the resource assessment of 

the deposit, as a specific mineral alteration combined with a high-density mineral 

worsens the ore processing performance. The block size dimensions are 8 x 8 x 

8m, sub-blocked to a suitable minimum of 2 x 2 x 2m. Additionally, ordinary kriging 

was employed to estimate the variable of interest and the indicator Ore (1).  

The results of the methodology are depicted in Figure 17, which 

categorizes the confidence levels into high (1), medium (2), and low (3) based on 
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each criterion. The high-confidence blocks receive a score of one, the medium-

confidence blocks receive a score of two, and the low-confidence blocks receive 

a score of 3. 

Figure 15 provides a visual representation of two distinct components. The 

first element features a histogram (Figure 15-A) that illustrates the indicators, 

specifically Ore (1) and Waste (0), within the dataset. The second aspect of the 

figure highlights the variogram model (Figure 15-A) pertaining to the Ore (1) 

variable. This figure collectively offers insights into the distribution of indicators 

and the variogram characteristics of the Ore (1) variable. The variogram modelled 

(Figure 15-A) has been used to perform the indicator kriging which is part of the 

Risk Index (RI) criteria – section 2.8. 

 

Figure 15 – The depicted figure showcases two elements: firstly, the histogram (A) representing 
the assignment of the indicators Ore (1) and Waste (0) to the dataset, and secondly, the 

modelled variogram (A) of the Ore (1) variable. 

 

Figure 16 depicts the model from the variable of interest which was used 

in the ordinary kriging process. Noteworthy is the major range of 230 meters, the 

semi-major range spanning 130 meters, and a minor range extending to 50 

meters. As discussed in section 2.5, the assessment standards are organized 

according to a three-tiered confidence framework.  
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Figure 16 – The variogram presented illustrates the variable of interest, indicating a major range 
of 230 meters, a semi-major range of 130 meters and 50 meters as minor.  

 

As expected, the classifications using KE (Figure 17-A) e NS (Figure 17-

D) present artifacts and a "spotted dog" effect surrounding the drilling data. 

Furthermore, the NS criteria exhibit artifacts on the orebody boundaries due to 

drilling complexity and the OK kriging anisotropy setup. On the other hand, the 

SR (Figure 17-B), RI (Figure 17-C) and Search Volume (Figure 17-E) criteria have 

shown higher spatial continuity in high and medium confidence levels within the 

high-density drilling grid area. Additionally, Figure 17-F and Figure 17-G illustrate 

the classification criteria for Data Integrity and Quality (DIQ) and Bulk Density 

(BD), respectively. The DIQ criterion assesses the impact of the new drilling 

based on distance, while the BD classification examines the availability of bulk 

density measurements. 
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Figure 17 – This figure illustrates various components of the workflow that are categorized 

based on their confidence level criteria. The elements include (A) Kriging Efficiency, (B) Slope 
of Regression, (C) Risk Index, (D) Number of Samples (E) Search Volume, (F) Data integrity 

and quality, and (G) Bulk Density. These criteria are utilized in combination to develop the 
scorecard classification. 
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The next step consisted of assigning weights for each criterion based on 

their relative importance. The weights assigned to each criterion were based on 

the empirical nature of the deposits described above and on the experience of 

the competent person. In this case, the following weights were applied to each 

criterion: 5% for Search Volume, 5% for Kriging Efficiency, 5% for Slope of 

Regression, 5% for Number of Samples, 15% for Risk Index, 25% for Bulk 

Density, and 40% for Data Integrity and Quality. 

These weights were then used to calculate the final score (Figure 18-A), 

which is a linear combination of the scores obtained from each criterion 

separately. Then, a smoothing step ("spotted dog" treatment) has been applied 

to the final score to obtain the final resource classification (Figure 18-B). The 

weighting system is essential to guarantee that important criteria influence the 

final score more. Another benefit of the weighting system is that it increases the 

transparency of the method. Even though many factors are combined, an external 

auditor is able to recognize the influence of each factor quickly. 

 

 
Figure 18 – The figure above displays the outcome of the final scoring workflow (A) scorecard, 

and (B) the final resource classification, where smoothing and "spotted dog" treatment have 
been implemented 

Figure 19 presents the tonnage allocation within each criterion comprising 

the scorecard and the final resource classification. Notably, the distribution of 

tonnages within the Data Integrity and Quality (DIQ) criterion closely aligns with 

the final resource classification. This observed similarity can be attributed to the 

significant weight purposely assigned to the DIQ criterion, accounting for 40% of 

the overall scorecard evaluation. 
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The DIQ criterion is paramount in the resource evaluation process, as it is 

a crucial determinant of the final classification. Its high weighting signifies its 

critical role in assessing the integrity and quality of the data associated with the 

resources under consideration. 

Furthermore, it is noteworthy to highlight that the need for post-processing, 

("smoothing") is minimal after the evaluation process. This implies that the 

classification derived from the scorecard aligns well with the observed tonnage 

distribution, and extensive adjustments or corrections through post-processing 

are not required. The findings depicted in Figure 19 provide insights into the 

resource classification methodology, underscoring the influence of the DIQ 

criterion and emphasizing the efficiency of the evaluation process in generating 

a reliable and accurate final classification within the deposit. 

 

 

Figure 19 – The graph showcases all the different criteria that are utilized to create the 

scorecard and, subsequently, the final Resource Classification. These criteria include Search 

Volume, Kriging Efficiency, Slope of Regression, Number of Samples, Risk Index, Bulk Density 

and Data Integrity and Quality. After applying smoothing techniques to the Scorecard, the final 

Resource Classification is produced. 
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3.3 Resource Classification Criteria and Considerations 

Table 3 below provides an overview of this study's key criteria for resource 

classification. The pros and cons associated with each criterion are outlined, 

shedding light on the factors that must be weighed when choosing the most 

suitable approach for a specific geological context.  

Table 3 – Overview of the benefits and drawbacks of each criterion. 

Criteria   Upsides   Drawbacks 

Slope of Regression 

·       Directly related to the 
possible bias of the estimation 

·       Sensitive to the variogram 
and estimation parameters 

·        Correlation between the 
estimated value vs the data 

sampled 

·       Does not consider the 
grade variability 

·       Prone to artifacts 

Kriging Variance 

·       Highly correlated with the 
data density/availability 

·       Sensitive to the variogram 
and estimation parameters 

·       Proxy to estimation error ·       Does not consider the 
grade variability 

·       Considers the spatial 
variability of the data. ·       Prone to artifacts 

Kriging Efficiency 

·       Considers the spatial 
variability of data 

·       Sensitive to the variogram 
and estimation parameters 

·     Inversely related to Kriging 
Variance 

·       Does not consider the 
grade variability 

·       Prone to artifacts 

Number of Samples 

·       Higher sample numbers 
generally lead to more reliable 

estimates 

·       Uneven, biased or poorly 
treated sample distribution can 

lead to poor estimate 

·       Disregard the redundancy 
between the samples 

·       Simple and intuitive 

·        After a threshold the 
increasing sample size might 

not significantly improve 
accuracy 

Search Volume 
·       Directly related with the 

spatial continuity of the deposit ad 
anisotropy 

·       Sensitive to the choice of 
variogram and estimation 

parameters,  

·       Sensitive quantity data 
available within the search 

volume, which can be a 
challenge in certain areas 
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·        Can be adjusted to capture 
different scales of spatial 

variability (short/long term 
models) 

·       May cause 
discontintituities when the 

search is divided into sector, 
which is usually the case 

Risk Index 

·       Considers the geological 
continuity (through a probabilistic 
approach) and the drilling density 

(KV)  

·       Relies on the quality of the 
geological model and continuity 

of wireframing (in cases of 
overextrapolation could be 

harmful) 

·       Emphasized the difficulty in 
estimating blocks near the 

contacts, which usually have 
higher uncertainty. 

·        Prone to artifacts when 
the mineralization consists of 

several orebodies unconnected 

  
·       The impact of each factor 

on the final index is not 
intuitive; 

Risk Areas: Orebody 
Geometry, Data integrity 

and quality, and Other 
Factors 

·       Qualitative aspects can be 
beneficial to de-risk know areas 
based on previous knowledge 

·       Empirical and manual 
approach 

·       Holistic approach considers 
various risk factors that could 
impact resource classification, 

tailored and adaptable for 
different scenarios 

 

 

4.  Discussion and Conclusions  
The classification of mineral resources is a fundamental step in evaluating 

their economic viability and the associated risk in a mineral project. In this study, 

we proposed a multi-layer scorecard workflow for mineral resource classification 

that considers multiple factors from different disciplines to ensure a 

comprehensive and well-rounded evaluation of mineral resources. The 

methodology combines classical metrics, such as the number of samples, the 

slope of regression, kriging efficiency, and kriging variance, with modern ones, 

such as the Risk Index, which incorporates the estimation error and geological 

continuity by a probabilistic approach. Additionally, the workflow can also 

integrate qualitative information obtained from the expert geomodeler, such as 

the geological complexity, to improve the accuracy of the classification. 

The proposed workflow was applied to two different databases: one 2D 

and one 3D. The results showed the applicability of the methodology in classifying 
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mineral resources while considering information from multiple sources. The 

combination of multiple factors is weighted, and the competent user can adapt 

the scorecard workflow to the particularities of each deposit. Therefore, the 

Competent Person (CP) needs to evaluate the thresholds that are applicable to 

each parameter. 

In addition to the proposed methodology, other techniques such as 

simulation and uncertainty analysis could be integrated to provide a more 

comprehensive approach. By incorporating these approaches, the workflow 

could further improve the evaluation of mineral resources by capturing additional 

sources of uncertainty and reducing the impact of bias on the final score. 

Overall, the proposed methodology offers several advantages, including: 

• Integrating risk assessment: The methodology considers multiple 

factors that can affect the risk associated with a mineral deposit, 

such as the geological continuity and the estimation error. 

• Incorporating input from geology/geoscience departments: 

The methodology allows for the integration of qualitative information 

from experts in geology and geoscience, such as the geological 

complexity of the deposit. 

• Adaptability: The methodology can be adapted to the 

particularities of each deposit by adjusting the weights of the 

different factors. 

• Transparency: The methodology is transparent and auditable, as 

it clearly explains how the score is calculated. 

• Robustness: The methodology is robust and can be used to 

classify mineral resources of different types and sizes. The 

methodology also provides a framework to combine the strengths 

of several metrics. For instance, the kriging variance describes the 

areas more densely drilled but not to capture the ore/waste 

boundaries. The scorecard workflow may combine the kriging 

variance with an indicator kriging estimate to promote the synergy 

between multiple metrics. 
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In resource classification methodologies, many criteria have emerged, 

each bringing its own set of advantages and considerations. These criteria play 

a pivotal role in shaping the accuracy, comprehensiveness, and reliability of 

resource classification outcomes. In the pursuit of optimal decision-making, it 

becomes imperative to understand both the strengths and limitations inherent in 

these criteria. 

In conclusion, each metric brings its own advantages and limitations to 

resource classification. Choosing the most appropriate metrics depends on the 

specific characteristics of the mineral deposit, available data, project goals, and 

the level of detail required for decision-making. Combining multiple metrics with 

care can provide a more comprehensive understanding of resource distribution 

and associated uncertainties. 

Metrics obtained through Kriging may exhibit redundancies, including 

Kriging Efficiency, Kriging Variance, and Slope of Regression. As a result, it is 

essential to assess their performance under these conditions and select the most 

suitable one for Resource Classification purposes. 

The objective of this study was to employ and showcase a wide range of 

criteria, both qualitative and quantitative. However, in practical applications, it is 

advisable to exercise conciseness by carefully choosing a subset of criteria that 

are both feasible and sensible for characterizing the deposit. 

Despite its strengths, the method does not completely evaluate a mining 

project. The economic feasibility of a project involves aspects beyond the area of 

mineral resource classification. These aspects include the community operating 

license, permitting, infrastructure constraints, safety, market analysis, technical 

feasibility, financial viability, and social/environmental impact assessments. 

Overall, the proposed methodology offers flexibility to incorporate factors 

obtained from different sources (estimates, geological interpretation, QA/QC). 

The multi-layer approach to resource classification can help decision-makers 

evaluate the maturity and risk associated with the mineral deposit and make 

informed decisions about the economic viability of a project or operation. 
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