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a b s t r a c t 

Background: Biliary atresia is a neonatal disease characterized by choledochal obstruction and progres- 

sive cholangiopathy requiring liver transplantation in most patients. Hypoxia-ischemia affecting the bil- 

iary epithelium may lead to biliary obstruction. We hypothesized that ischemic cholangiopathy involving 

disruption of the peribiliary vascular plexus could act as a triggering event in biliary atresia pathogenesis. 

Methods: Liver and porta hepatis paraffin-embedded samples of patients with biliary atresia or intrahep- 

atic neonatal cholestasis (controls) were immunohistochemically evaluated for HIF-1alpha-nuclear sig- 

nals. Frozen histological samples were analyzed for gene expression in molecular profiles associated with 

hypoxia-ischemia. Prospective clinical-laboratory and histopathological data of biliary atresia patients and 

controls were reviewed. 

Results: Immunohistochemical HIF-1alpha signals localized to cholangiocytes were detected exclusively 

in liver specimens from biliary atresia patients. In 37.5% of liver specimens, HIF-1alpha signals were ob- 

served in biliary structures involving progenitor cell niches and peribiliary vascular plexus. HIF-1alpha 

signals were also detected in biliary remnants of 81.8% of porta hepatis specimens. Increased gene ex- 

pression of molecules linked to REDOX status, biliary proliferation, and angiogenesis was identified in 

biliary atresia liver specimens. In addition, there was a trend towards decreased GSR expression levels in 

the HIF-1alpha-positive group compared to the HIF-1alpha-negative group. 

Conclusion: Activation of the HIF-1alpha pathway may be associated with the pathogenesis of biliary 

atresia, and additional studies are necessary to confirm the significance of this finding. Ischemic cholan- 

giopathy and REDOX status disturbance are putative explanations for HIF-1alpha activation. These find- 

ings may give rise to novel lines of clinical and therapeutic investigation in the BA field. 
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18S. 
1. Introduction 

Biliary atresia (BA) is a neonatal disease involving choledochal

obstruction and progressive cholangiopathy leading to the devel-

opment of cirrhosis and necessitating liver transplantation (LTx) in

most patients [1 , 2] . The occurrence of several clinical variants of

BA suggests a variety of underlying pathogenic or etiological mech-

anisms. Deciphering the potential pathophysiology of BA may sup-

port the development of novel therapeutic approaches to improve

the quality of life of affected patients. 

The findings of progressive medial thickening of hepatic artery

branches [3] , peripheral arterial blockage with perivascular arterial

tufts [4] , and immunohistochemical expression of angiogenic fac-

tors in biliary structures suggest hypoxia and reactive angiogenesis

in BA [5] . Liver specimens of patients with isolated BA show up-

regulation of angiopoietins involved in pericyte recruitment to the

vascular wall [6] as well as features of hypoxia-ischemia associated

with disease aggravation [7] . Hypoxia-ischemia affecting the biliary

epithelium may lead to biliary obstruction when the niches of pro-

genitor cells are compromised [8–10] . 

We hypothesized that ischemic cholangiopathy involving injury

of the peribiliary vascular plexus (PVP) could act as a triggering

event in BA pathogenesis [11] and compromise the success of por-

toenterostomy. Aiming to address this research question, we per-

formed an exploratory study of HIF-1alpha pathway activation in

the liver and porta hepatis of patients with BA. 

2. Methods 

2.1. Patients and samples 

All the patients enrolled in this study underwent exploratory la-

parotomy between 2006 and 2015 as part of the diagnostic workup

for neonatal cholestasis at Hospital de Clínicas de Porto Alegre,

Brazil. Two groups were evaluated: the study group included 20

patients with BA in whom exploratory laparotomy preceded por-

toenterostomy; and the control group included five patients with

intrahepatic cholestasis (IHC), in whom surgery was necessary to

rule out BA. The clinical features of patients included in the control

group were indistinguishable from BA, thus demanding the per-

formance of a trans-operative cholangiogram for diagnostic differ-

entiation. BA diagnosis was confirmed through both intraoperative

cholangiogram and bile duct evaluation in porta hepatis. Morpho-

logical classification of BA following the Japanese Association of Pe-

diatric Surgeons was possible in 13 out of the 20 cases for whom

a surgical description was available, with 10 classified as type 3

(atresia of bile duct at the porta hepatis) and three as type 2 (atre-

sia of hepatic duct). Isolated BA was characterized by the absence

of biliary atresia splenic malformation (BASM), extrahepatic cysts

or positive IgM serology for cytomegalovirus. Clinical-laboratory,

molecular, and histological criteria defined the IHC group. The fi-

nal diagnoses of IHC controls included idiopathic neonatal hepati-

tis ( n = 2), alpha-1 antitrypsin deficiency ( n = 2) and parenteral

nutrition-associated cholestasis ( n = 1). During the surgical proce-

dures, tissue specimens were collected from the hepatic segment

IV in cases and controls and from porta hepatis in patients with

BA. In four patients with BA, porta hepatis specimens were avail-

able. For the remaining 16 BA patients, 11 had liver and porta hep-

atis specimens, and five cases only had liver samples. In addition,

a piece of the liver samples from 11 BA patients was stored at –

80 °C in RNA holder (BioAgency Biotecnologia, São Paulo, Brazil).

Liver specimens from the control group were also collected and

stored at –80 °C, except for one patient with alpha-1 antitrypsin.

The paraffin-embedded liver and porta hepatis samples were used

for immunohistochemical analysis. Gene expression profiles were

determined by RT-PCR in RNA isolated from the frozen liver sam-
ples. Preoperative laboratory tests were performed in all patients,

and surgery was performed if serum hemoglobin levels were ade-

quate for a safe surgical procedure. The duration and type of anes-

thesia did not differ between patients and controls, and there was

no evidence of intraoperative hypoxia in any of the infants studied.

2.1.1. Clinical-laboratory data collection 

All patient-related clinical and laboratory data were prospec-

tively collected and stored securely in a databank. Concerning the

laboratory tests for comparison between groups, as described in

the literature, serum bilirubin values were selected as the only in-

dicator of native liver survival after portoenterostomy [12] . 

2.2. Immunohistochemical method 

Paraffin-embedded samples were microtome-sectioned into

5 μm slices, deparaffinized with xylene, and rehydrated in decreas-

ing ethanol concentrations and distilled water. Antigen retrievals

were performed using EDTA/Tris buffer pH 8.0 in a water bath for

20 min at 95 °C. Immunohistochemical staining with recombinant

HIF-1alpha antibody (Abcam, Cambridge, UK, ab179483, 1:25) was

performed using the avidin-biotin complex (ABC) detection system

and a Ventana BenchMark ULTRA (Roche, CH) staining station. Two

tissue specimens were used as on-slide controls: a human kid-

ney specimen as positive control for HIF-1alpha signal and a non-

diseased liver control sample (See Fig. 1.1 and 1.2 , Supplemental

Digital Content (SDC) 1). 

2.2.1. Immunohistochemical analysis of HIF-1alpha positivity 

HIF-1alpha positivity was confirmed in the presence of brown

granular nuclear staining in all microanatomic structures, both in

liver and porta hepatis [13] . Detection and immunolocalization of

HIF-1alpha positivity were determined by consensus among three

liver histopathology experts blinded to diagnosis. 

2.2.2. Histopathologic variables associated with neonatal cholestasis 

A histopathological study was performed to evaluate whether

BA patients and controls were comparable concerning histopatho-

logical variables of interest, such as presence of ductular reaction,

tissue disease severity, and vascular features (vascular agglomer-

ates/hyperplasia in portal tracts, fibrous septa, or subcapsular area).

Liver samples of 19 patients (14 BA cases and all five control pa-

tients) were stained with hematoxylin and eosin and picrosirius

red. A histopathologic protocol comprising 26 qualitative categor-

ical variables was used (See Table 1, Supplemental Digital Content

2) 

2.3. Gene expression analysis by qPCR 

Total RNA was extracted from liver specimens using AllPrep

DNA/RNA/Protein Mini Kit (Qiagen, Carlsbad, CA) following the

manufacturer’s instructions. For cDNA synthesis, reverse transcrip-

tion of 1 μg of RNA was performed using the NZY M-MulV Reverse

Transcriptase Kit (Nzytech, PT). Real-time PCR was performed us-

ing the iCycler IQTM real-time PCR detection system (Bio-Rad, CA)

with the primers described in SDC Table 2 (Supplemental Digital

Content 2). All primers were designed based on human mRNA se-

quences deposited in GenBank (NCBI), except for cytokeratin 19

(CK19), designed by Stathopoulou et al. [14] . mRNA expression was

determined in comparison to controls using the 2- ��CT method.

CT values were normalized by the housekeeping gene ribosomal
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Fig. 1. HIF-1alpha positivity in the liver of biliary atresia patients and control patients with intrahepatic cholestasis. 1.1- 35-day old IHC control: idiopathic neonatal cholesta- 

sis with absent HIF-1alpha nuclear signals in hepatobiliary structures; 1.2- BA patient: portal tract with HIF-1alpha positivity in the interlobular bile duct, marginal ductular 

reaction, hepatic arteriolar branch including endothelium and medial layer muscle cells, portal venous endothelium. Note apparent HIF-1alpha positivity in sinusoidal mem- 

brane cells (arrows). 1.3- HIF-1alpha positivity in the ductular reaction area with features similar to ductal plate malformation. Also note endothelial HIF-1alpha positivity 

in the core of a structure with features of a mini ductal plate (arrowhead); 1.4- HIF-1alpha positivity in the endothelium of peribiliary vascular plexus; 1.5- Subcapsular 

vascular agglomerate (SVA, on the left) giving rise to a fibrovascular septum. Note the ductular reaction with positive HIF-1alpha nuclear signals at the external margin 

of the subcapsular fibrous stroma (arrowhead). The fibrous septum departs from the subcapsular area (asterisk), producing a marginal ductular reaction with HIF-1alpha 

positivity, which continues to the portal tract (PT) margin (arrow); 1.6 and 1.7- Fibrovascular septum (asterisk) and subcapsular vascular agglomerate showing associated 

HIF-1alpha positive ductular reaction at the interface between the fibrous stroma and parenchyma (arrowheads). Magnifications: 100x, 400x, 630x, 1000x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Statistics 

Quantitative variables were expressed as mean ± SD or median

(range), and categorical data were described as frequencies and

percentages. Student’s t -test, Mann–Whitney test or Kruskal-Wallis

test were used for comparing groups depending on data symme-

try. The Pearson Chi-square test was used for qualitative variables.

Liver survival was compared in the study vs. control groups using

a Kaplan-Meier test followed by the log-rank test. A two-tailed p

value < 0.05 was accepted as significant. SPSS 27.0 (IBM, UK) was

used for data processing and statistical analysis. 

2.5. Ethics 

Written informed consent for the use of histological speci-

mens and clinical data was obtained from the patient ́s parents or

guardians. The study was approved by the Ethics Committee at the

Hospital de Clínicas de Porto Alegre, Brazil, and was performed in

accordance with the ethical standards outlined in the Declaration

of Helsinki. 

3. Results 

3.1. Clinical analysis of patient samples 

Liver tissue samples of 25 patients were assessed: 20 with BA

and five with IHC (control group). The demographic and clini-

cal characteristics of patients and controls are presented in Ta-
ble 3 (Supplemental Digital Content 2). At the time of surgery,

age ranged from 32 to 110 (mean 63 ±19.8) days in BA patients,

and from 35 to 81 (mean 59 ±21) days in controls, and was not

significantly different between the groups. Considering the total

follow-up period (2005 until the end of the study in 2018), seven

BA patients underwent LTx and eight died. Age of death ranged

from 6 to 80 (median = 9.5) months. Six patients (75% of the de-

ceased patients) died in the first year of life, four (50%) without

LTx. Age at LTx ranged from 6 to 84 (median = 26) months. Con-

cerning bilirubin serum levels at portoenterostomy, total bilirubin

(TB) ranged from 4.7 to 19.1 (mean 9.9 ± 3.8) mg/dL, and di-

rect bilirubin (DB) from 3.5 to 14.3 (mean 7.3 ± 2.8) mg/dL. At 3

months post-portoenterostomy, TB values ranged from 0.3 to 25.7

(median = 5.4) mg/dL and DB values ranged from 0.1 to 18.8 (me-

dian = 4) mg/dL. 

3.1.1. Detection and immunolocalization of HIF-1alpha positivity in 

the liver 

HIF-1alpha positivity was not detected in any hepatobiliary

structure in IHC controls ( Fig. 1.1 ). Conversely, six of 16 (37.5%) pa-

tients with BA presented HIF-1alpha positivity in cholangiocytes,

endothelial and medial layers of hepatic arterial branches, and less

commonly portal venous endothelium ( Fig. 1.2 ). HIF1-alpha posi-

tivity was also observed in sinusoidal endothelial cells; however,

we were neither able to determine in which sinusoidal cell type,

nor rule out a causal role of phagocytized bile pigments. HIF-

1alpha-positive cholangiocytes were located in portal tracts includ-

ing interlobular bile ducts ( Fig. 1.2 ) and proliferative ductules along
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Fig. 2. HIF-1alpha positivity in the porta hepatis. 2.1- biliary remnants with HIF-1alpha positivity in cholangiocytes; 2.2- HIF-1alpha positivity in the endothelium of large 

and medium-sized hepatic artery branches; 2.3- HIF-1alpha positivity in cellular infiltrate. Magnification- 10 0x, 40 0x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the portal margins. Cholangiocytes with HIF-1alpha positivity were

also abundant in stroma of fibrous septa ( Fig. 1.3 ), and in some

instances presented a morphology reminiscent of ductal plate mal-

formation containing “mini-ductal plates” with HIF-1alpha positiv-

ity in the endothelial cells of the vascular heart (arrow). Arterio-

lar endothelial HIF-1alpha positivity extended to the tiny vessels of

PVP encircling biliary structures ( Fig. 1.4 ). The fibrous septa emerg-

ing from both portal tracts and subcapsular vascular agglomerates

( Fig. 1.5 , left), particularly their margins ( Fig. 1.5 –1.7 ), constituted

the preferential location of HIF-1alpha-positive cholangiocytes. 

3.1.2. Detection and immunolocalization of HIF-1alpha positivity in 

porta hepatis 

HIF-1alpha-positive cholangiocytes were observed in biliary

remnants of nine out of the 11 (81.8%) porta hepatis specimens in

this study (Fig. 2.1). HIF-1alpha positivity was also detected in the

endothelium of large and medium-sized hepatic artery branches

(Fig. 2.2), as well as in inflammatory infiltrates in regions of fibro-

sis (Fig. 2.3). 

3.1.3. HIF-1alpha-positive biliary epithelium in the liver and 

demographic and clinical features of BA patients 

BA patients with and without HIF-1alpha positivity in cholan-

giocytes did not differ with regards to age and serum bilirubin lev-

els at the time of portoenterostomy and 3 months after portoen-

terostomy (See Table 4, Supplemental Digital Content 2). Five out

of six (83%) patients with HIF1-alpha positivity were classified as

type 3 BA according to the morphological classification proposed

by the Japanese Association of Pediatric Surgeons, in comparison

with five out of seven (71.4%) in the group of patients without HIF-

1alpha positivity. The small number of cases precluded statistical

comparison (See Table 3, Supplemental Digital Content 2). No sig-

nificant difference was observed concerning the need for LTx or

age at LTx. There was a statistical trend for correlation between
HIF-1alpha positivity in the liver and death before 1 year of age

(Pearson chi-square, p = 0.062) (See Table 5, Supplemental Digi-

tal Content 2). Sixty-seven percent of the HIF-1alpha-positive pa-

tients died in the first postoperative year, compared with only 20%

of HIF-1alpha-negative patients. At the end of the follow-up, only

16.7% of the HIF-1alpha-positive group survived with the native

liver, whereas 50% of patients without HIF-1alpha positivity re-

mained alive and non-transplanted. 

3.2. Histopathological analysis of features associated with neonatal 

cholestasis in BA patients and controls 

Given the small numbers of patients in each sample, compara-

tive statistical analysis of histopathological features was not per-

formed, and the variables of interest are described as frequen-

cies and percentages. All patients in both the BA and IHC con-

trol groups presented ductular reaction in portal tracts, including

the portal margins, and were thus comparable concerning HIF-

1alpha activation in cholangiocytes. Parenchymal ductular reaction

was noted in two IHC control patients. Cirrhotic nodules were

present in three out of five (60%) patients with HIF-1alpha ac-

tivation in cholangiocytes, in one out of nine (11%) HIF-1alpha-

negative patients, and were absent in HIC control patients. Inter-

estingly, vascular hyperplasia (agglomerates mostly of arterioles,

some of which with a prominent medial layer) in portal tracts and

fibrous septa only occurred in BA patients — including 100% of pa-

tients with and 78% of patients without HIF-1alpha positivity in

cholangiocytes (See Figs. 2 and 3 , Supplemental Digital Content 1).

3.3. mRNA expression of markers of cell function, cell death, and 

hypoxia 

We investigated the gene expression of a representative set of

molecules involved in metabolic and structural processes affected
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Fig. 3. Gene expression of molecules involved in metabolic and structural processes affected by the hypoxia-ischemia in the liver. Abbreviations: HIF-1alpha- hypoxia- 

inducible factor-1alpha; GSS- glutathione synthetase; GSR- glutathione-disulfide reductase; VEGFA vascular endothelial growth factor A; VEGFR2- vascular endothelial growth 

factor receptor 2; VCAM 1- vascular cell adhesion molecule 1; CK19 - Cytokeratin 19. Bars represent the mean and vertical lines the SEM. (Mann-Whitney test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by the hypoxia-ischemia process in the liver. In comparison to IHC

controls, BA patients presented overexpression of genes associated

with REDOX status (glutathione synthetase [GSS] p = 0.013;

glutathione-disulfide reductase [GSR], p = 0.019), cholangiocyte

proliferation (CK19, p = 0.026), and angiogenic response (VEGFA,

p = 0.026; VEGFR2, p = 0.019) ( Fig. 3 ). No statistically significant

differences were observed between BA patients with and without

HIF-1alpha positivity regarding relative levels of mRNA expression

of these molecules, despite a trend toward decreased gene expres-

sion of GSR in HIF-1alpha-positive patients ( p = 0.075, two-sided)

( Fig. 4 ). 

4. Discussion 

In animal models, regions of hypoxia develop in the liver after

injuries caused by toxins and bile duct ligation [15 , 16] , resulting

from coagulation system activation, production of vasoactive me-

diators, or anatomical vascular block. Instead, biliary epithelial

hypoxia results from PVP disruption leading to ischemic cholan-

giopathy [17] . Activation of HIF-1alpha is a cardinal feature of

hypoxia, although some cytokines, growth factors, and oxidative

stress can also activate the HIF-1alpha pathway [18] . In the current

animal models of cholestatic diseases used to study HIF-1alpha

pathway activation, positive signals have been detected strictly

in parenchyma, but not in cholangiocytes [19 , 20] . In this study,

liver HIF-1alpha signals were located in the biliary epithelium in

37.5% of BA patients, including interlobular bile ducts and ductular

reaction at the margins of portal tracts and in fibrovascular septa

( Fig. 1 ). Endothelial cells of arterioles encircling the bile ducts and

representing the branches of PVP were also positive for HIF-1alpha
( Fig. 1.4 ). HIF-1alpha activation was also observed in biliary struc-

tures displaying features of ductal plate malformations and mini

ductal plates ( Fig. 1.3 ) [21] . In addition to these findings in liver,

81.8% of the porta hepatis specimens investigated ( Fig. 2.1 ) showed

HIF-1alpha activation in cholangiocytes of biliary remnants as well

as in endothelial cells of hepatic artery branches and inflammatory

infiltrate ( Fig. 2.2 ). 

Activation of the HIF-1alpha pathway in both cholangiocytes

located to the liver and porta hepatis in a subset of BA patients

supports the hypothesis that ischemic cholangiopathy plays a role

in the pathogenesis of BA. The presence of HIF-1alpha-positive

inflammatory cellular infiltrates ( Fig. 2.3 ) in the porta hepatis

suggests the existence of an integrated network of processes

involving hypoxia, inflammation, fibrosis, and biliary obstruction

[11] . In patients with BA, previous studies have shown peripheral

arterial blockage with perivascular arterial tufts [4] , with a VEGFA

immuno-localization pattern suggestive of hypoxia affecting the

biliary epithelium with reactive angiogenesis [5] . In the liver of pa-

tients with the isolated variant of BA, there are molecular features

of hypoxia-ischemia associated with disease aggravation [7] . VEGFA

is secreted in response to hypoxia through stabilization of hypoxia-

inducible factors which are the primary mediators of hypoxia. Un-

der hypoxic conditions, the HIF protein alpha subunit becomes sta-

bilized, translocates to the nucleus, heterodimerizes with the beta

subunit, and regulates the expression of genes responsible for cel-

lular adaptation to hypoxia [22] . In arterial vessels, HIF-1alpha is a

major mediator of reactional angiogenesis [23] . The observed HIF-

1alpha positivity in this study potentially correlates with the bio-

logical behavior of VEGFA within the biliary structures of patients

with BA [5] . We hypothesized that an injurious agent affecting the
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Fig. 4. Gene expression of molecules involved in metabolic and structural processes affected by the hypoxia-ischemia in the liver of BA patients according to HIF-1alpha 

nuclear signal status. Abbreviations: HIF-1alpha- hypoxia-inducible factor-1 alpha; GSS- glutathione synthetase; GSR- glutathione-disulfide reductase; VEGFA- vascular en- 

dothelial growth factor A; VEGFR2- vascular endothelial growth factor receptor 2; VCAM 1- vascular cell adhesion molecule 1; CK19- Cytokeratin 19. Bars represent the mean 

and vertical lines the SEM. (Mann-Whitney test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vascular endothelium of PVP would lead to endothelial dysfunction

and secondary ischemic cholangiopathy. The identification in the

Rhesus-rotavirus induced BA of a derangement in PVP immedi-

ately before luminal obstruction [24] , and the HIF-1alpha positivity

patterns detected in our study strengthen this hypothesis. 

The specific immunolocalization of HIF-1alpha positivity to bil-

iary structures in BA, involving the PVP ( Fig. 1 ), rather than

to the parenchymal location described in other cholestatic dis-

eases [20 , 25] , suggests simultaneous vascular and biliary disrup-

tion, since human bile ducts are supplied exclusively with arterial

blood via PVP [26 , 27] . 

Additionally, since imaging studies from several other groups

have described increased subcapsular blood flow specifically in

BA patients, and representing spider telangiectasias [28–35] , we

evaluated vascular agglomerates in the subcapsular region ( Fig. 1.5

and 1.6 ). Like bile ducts, the subcapsular region is irrigated ex-

clusively by blood from hepatic artery branches [26 , 27] . Extensive

HIF-1alpha positivity in the ductular reaction was evident in the

limiting plates in areas of subcapsular vascular agglomerates, as

well as in septa departing from these areas and subsequently

merging with portal tract margins. Therefore, HIF-1alpha-positive

structures involve the hepatic progenitor cell compartment (HPC,

Fig. 1.7 ) [36] . The HPC represents the histologic recess that is

critically involved in the control of proliferation, differentiation,

and pluripotency of progenitor cells [20] , influencing the develop-

ment of ductular reaction and secondary fibrogenesis. According to

Desmet [21 , 37] , ductular reaction consists of a regenerative process

triggered by hypoxic stimuli that leads to an angiogenic response

with beneficial effects on the hepatobiliary system. In contrast,
several studies have shown that instead of a beneficial regenera-

tive response to improve bile flow, ductular reaction may produce

detrimental outcomes resulting in progressive liver fibrogenesis

[38–43] , including in BA. Ductular reaction refers not only to the

epithelial components, but also to expanding precursor niches for

cells that are responsible for fibrogenesis [36 , 44-49] , so that the

development of ductular reaction leads to concomitant production

of fibrillary collagens [36 , 49] . HIF-1alpha itself controls secretion

of profibrotic mediators during the development of liver fibrosis

[19] , including VEGF [23 , 50] . The HIF-1alpha activation observed in

the HPC compartment [36] may thus produce profound effects on

hepatobiliary pathophysiology by playing a direct role in stem cell

regulation [20 , 38 , 51] . The mechanisms involved in the observed

HIF-1alpha activation may result from the effects of hypoxia or

oxidative stress, or even both, on the biliary epithelium and HPC

[52] . Oxidative stress and hypoxia are intricately linked, and both

lead to endothelial dysfunction [25 , 53 , 54] . 

The gene expression analysis of molecular pathways affected by

hypoxia-ischemia in our samples showed overexpression of VEGFA

and VEGFR2 in BA patients as compared to controls, which sug-

gests triggering of the angiogenic pathway ( Fig. 3G and 3H ). VEGFA

secretion affects and is affected by cholangiocyte proliferation,

playing a crucial part in the cross-talk between cholangiocytes and

PVP [23 , 50] . In BA, VEGFA is strongly expressed in portal structures

and may be involved in the mechanistic regulation of progressive

cholangiopathy [5] . Another finding, the increased gene expression

of CK19 in BA patients (described in Fig. 3C ), demonstrates the ex-

tensive ductular reaction that characterizes BA and supports the

presence of ongoing liver fibrogenesis in patients with BA [55] . Ad-
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Fig. 5. Diagram representing the putative relationships between study data. The liver samples of biliary atresia patients showed overexpression of genes associated with 

ductular reaction and angiogenesis, two interrelated processes that are responsible for fibrogenesis. Molecules involved in REDOX status equilibrium were also overexpressed 

in BA, evidencing oxidative stress, which may be correlated with angiogenesis. A subset of BA patients presented HIF-1alpha activation in cholangiocytes, and PVP, involving 

the progenitor cell niche. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ditionally, we found increased GSS and GSR gene expression in BA

patients compared to controls ( Fig. 4E ). GSS and GSR are impor-

tant modulators of the glutathione pathway and critically interre-

lated with the fibro-inflammation, progression, and survival of BA

[56] . Our findings confirm that livers of patients with BA are under

a continuum of oxidative stress associated with altered glutathione

metabolism, similar to the effects caused by toxins biliatresone and

methylenedianiline [57 , 58] . In a murine model of bile duct ligation,

the hepatic expression of glutathione synthetic enzymes increased

early in an adaptive response to oxidative stress (which entails a

protective role), but decreased markedly during later stages charac-

terized by advanced fibrosis [59] . The increased expression of GSS

and GSR observed in BA liver specimens in this study represents

an adaptive hepatic response against oxidative stress. The diagram

in Fig. 5 describes the results associated with gene expression

in BA patients with or without HIF-1alpha activation and in IHC

controls. 

A limitation of this study was the small sample size, which pre-

cluded confirmative statistical evidence for two of our hypotheses:

first, the existence of a correlation between HIF-nuclear positiv-

ity in cholangiocytes and decreased early native liver survival; and

second, that reduced native liver survival might have resulted from

the loss of the protective role of GSR against oxidative stress, as

observed in an experimental model of BA [60] . However, given the

small size of the sample, for both these correlations we were only

able to detect a trend for statistical significance (SDC2 Table 5 and

Fig. 4E ). 

In conclusion, to the best of our knowledge, our study is the

first to provide histopathological evidence of HIF-1alpha activation

in cholangiocytes, also involving the peribiliary vascular plexus, in

a group of patients with isolated biliary atresia. These findings

warrant further studies focused on the mechanisms involved in

HIF-1alpha pathway activation and on the role and clinical effects

of hypoxia and/or oxidative stress affecting cholangiocytes, espe-

cially in the hepatic progenitor cell compartment. 
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