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ABSTRACT

Floods are natural events that can generate major disasters.
Remote sensing data can be used for mapping flood events.
However, atmospheric conditions in images captured by
optical sensors, such as the presence of clouds, affect
the recorded data and impair the use of these images in
hydrological studies. In this context, a machine learning
algorithm – Naive Bayes – was used to determine the extent
of water masks under two hypothetical cloud cover. The
results, compared to the observed data, indicated that the
proposed methodology could be used for the determination
of water masks, since the performance metrics reached
values for accuracy above 0.98 and for the critical success
index above 0.70. Further tests and validations should be
performed to prove the potential of reconstruction of water
masks by the proposed methodology.

Key words – flood, inundation, machine learning, remote
sensing

1. INTRODUCTION

Flooding is a natural event being the most frequent type of
disaster [1]. Some tools, such as maps, help the spatial
representation of floods [2] , however for the majority of
places there are no sufficient information to determine the
extension of these events.

Remote sensing is an important tool for mapping floods
because of the ability to observe water resources on large
scale, with high temporal coverage and reasonable accuracy
[3]. Optical sensors such as those embedded in Landsat
satellites have been proven capable of extracting water masks
from flood events [4], [5]. However, despite the proven
ability, information obtained from these sensors are highly
affected by atmospheric conditions such cloud presence or
particulate matter, for example [3].

The objective of this work is to reconstruct water masks
from images, whose data were obtained by optical sensors
with the presence of clouds, using the machine learning
algorithm Naive Bayes (NB). To achieve this, a flood event
without the presence of clouds was used as a benchmark
and two other images with the presence of clouds were used
to apply a cloud mask to the benchmark image. Finally,
predicted values for the pixels under the cloud mask were
compared with the original values to verify the accuracy of
the reconstruction.

2. MATERIAL E METHODS

This work is part of a research in a larger context on
flood mapping. Because of this, some previously performed

Figure 1: Study area presenting the benchmark image (left) and
the water mask extracted by mNDWI (right).

analyses will not be described in the methodology.

2.1. Study area

The study area of this work is a reach of Uruguai river (Figure
1, left), located in the west portion of the Rio Grande do
Sul state, southern Brazil and South America. The Uruguai
river makes the border of two states of Brazil and also Brazil,
Argentina and Uruguay.

The region is hydrologically representative to southern
Brazil, since the Uruguai river is the largest in extesion in the
Rio Grande do Sul state. In the river reach under analysis,
due its topographic carachteristics, flood events have been
recurrently recorded.

2.2. Data used

Five features were used as input data to the model: digital
surface model (DSM), land use and land cover (LULC),
height above nearest drainage (HAND), frequency of flood
occurrence (FO) and discharge’s return period (QRP). These
features were selected because of their significance in the
determination of flood inundation map by the NB model in
a previously performed analysis.

With the exception of QRP, the features were obtained from
the Google Earth Engine (GEE) cloud computing platform
by the application programming interface (API) available for
GEE use in Python programming language. The data used are
shown in Fig. 2

Elevation is a basic factor that influences the intensity of
the flood inundation [6]. For its representation was chosen the
digital surface model ALOS DSM [7], with spatial resolution
of approximately 30 meters.

HAND normalizes the topography according to the
drainage network [8], representing in a complementary way
the distance of the analysis point to the drainage [9]. The
HAND selected is from MERIT Hydro [10], which is a global
hydrographic dataset with spatial resolution of 90 meters.

https://proceedings.science/p/164182?lang=pt-br 426

https://proceedings.science/p/164182?lang=pt-br


Figure 2: Data used as input to the NB model.

LULC is an important factor to identify flood-susceptible
areas: vegetated areas tend to be less prone to flooding, unlike
urban and cropland areas [11]. The LULC data, produced
by [12], are available in GEE with spatial resolution of 100
meters.

The frequency of flood occurrence over time (FO) is a
dataset with 30 meters of spatial resolution presented by Pekel
et al. (2016). This feature was used to directly identify which
areas tend to be more flood prone.

The return period of the discharge associated to the river
reach in that minibasin area (QPR), which comes from the
hydrological and hydrodynamic model called Modelo de
Grandes Bacias (MGB). The version of the model used is the
MGB-AS, applied to all South America by [13]. The return
period was used to eliminate the differences in quantities
between discharges of different minibasins.

As observed data for the model, a water mask was used,
which is a binary map resulting from a flood inventory, where
the values indicate whether the pixel is considered not flooded
(pixel=0) or flooded (pixel=1) [9]. The observed water mask
was extracted from an image of a reference event, without
the presence of clouds by applying the modified version of
normalised difference water index (mNDWI) [14].

Two other images of the same scene, but with the presence
of clouds in distinct coverage percentage were used to extract
a cloud mask (by using the CloudMasking, a QGIS package).
These cloud masks were applied to the reference water mask,
excluding pixels that were under the cloud mask, creating
a hypothetical water mask that simulates the presence of
clouds. The hypothetical water masks remaining pixels were
considered the observed data for the models’ training.

2.3. Naive Bayes model

Due to its simplicity and elegance, the NB algorithm for
categorical data was adopted. NB is the simplest Bayesian
network, based on Bayes’ theory (equation 1) [15].

P (y|Feature) =
P (y)× P (Feature|y)

P (Feature)
(1)

where y is the class (not flooded/flooded), Feature is used
to describe the flood event, p(y/Feature) is the probability
of the not flood/flood occur since the Feature occurs, p(y)
and p(Feature) are the a priori probabilities.

The NB algorithm is known as naive due the conditional
independence, where all features are independent given a
class variable. When applying the algorithm to a real-world

problem, this condition is difficult to be respected (JIANG et
al., 2013). However, it has been proven that it is possible to
obtain satisfactory results even if there is correlation between
the attributes [15].

The NB classifier algorithm is a simplification of equation
1. Considering an i number of features, the result of the
classification is ŷ, presented by the equation 2, adapted from
[16]:

ŷ = argmax
y

p(y)

n∏
i=1

p(Featurei|y) (2)

where ŷ is the class determined by the algorithm, according
to the highest value of the equation’s product, p(y) is
the a priori probability of the class (not flooded/flooded),
p(Featurei/y) is the likelihood of Featurei depending on
the y class.

Two models were trained, one for each dataset obtained
by applying the cloud masks. The models were conditioned
using the input features, with the water masks after the
application of the cloud masks considered the observed
data. Validation occurred by predicting the flood extensions
that were under the cloud mask, comparing them with the
observed pixels that had been excluded from the training
dataset.

2.4. Performance metrics

Two metrics were used to verify the accuracy of the models
generated from the estimation of flood extents: accuracy
(AC) and critical success index (CSI). Accuracy is defined
by Equation 3, as per [17], and the CSI, which is also known
as fit [18] or threat score [19], is defined by Equation 4:

AC =
TP + TN

TP + FP + TN + FN
(3)

CSI =
TP

TP + FP + FN
(4)

where: TP are the true positives, pixels that are predicted
and observed flooded, TN are the true negatives, pixels that
are predicted and observed not flooded, FP are the false
positives, pixels predicted flooded and observed not flooded,
and FN are the false negatives, pixels predicted not flooded
and observed flooded.

AC was chosen because it is a metric that generally
represents the percentage of success on a predictive model,
widely used in flood mapping works. Likewise, the choice for
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Figure 3: The two images used to create the cloud mask (top)
and the respective hypothetical water mask (bottom)

CSI was due its metric that varies between 0 and 1, 0 meaning
total disagreement between the observed and predicted
flood extent, and 1 meaning total agreement. Therefore,
it disregards true negatives, predicted and observed non-
flooded, which is the value that causes accuracy imbalance,
penalizing the result with false predictions (positive or
negative) [18].

3. RESULTS

The flood event selected to be the benchmark is the one that
occurred in January 4th, 2015. The image that represents this
event is a Landsat 8, Collection 2, Level 2 located in path
225, row 081. This event was selected due to the absence of
clouds (Figure 1, left). The water mask of this flood event
was extracted using mNDWI and is showed in the right side
of Figure 1. This is the benchmark water mask.

The images used to create the cloud mask are both from
the same Landsat scene of the benchmark. Cloud masks
extracted are from August 29, 2020 with 26% cloud cover
and January 18, 2020 with 35% cloud cover, and they are
presented in the upper side of Figure 3. Both hypothetically
created water masks by applying these cloud masks to the
benchmark are presented in the lower side of Figure 3.

Two NB models were trained with the input data and the
remaining pixels of each hypothetical water mask used as
observed values. The prediction using the NB model trained
with 26% cloud cover achieved an AC of 0.9817 and a CSI of
0.706, considering only the pixels under the cloud mask. For
the prediction using the NB with 35% cloud cover model, the
performance metrics were 0.9775 for AC and 0.713 for CSI.

The results of the reconstructed pixels are showed in Figure
4, left side for the reconstruction of the 26% cloud cover
image and 35% for the right side. More detailed results are
shown in lower part of the Figure 4, visually comparing the
models performance.

Figure 4: Reconstruction of pixels hypothetically considered as
cloud. In the left the 26% and in the right the 35% cloud cover

predicted values under the cloud mask.

4. DISCUSSION

A water mask from an image in which clouds would
hypothetically be present was reconstructed using a NB
model, estimating the lost information due the clouds based
on the remaining values, that were assimilated by the model.
Although the temporal substitution method is the most usual
for reconstructing remote sensed images with the presence of
clouds [20], this is not applicable to the case, as a flood event
has short duration and temporarily modifies the landscape,
especially in the floodplain.

A threshold of 0.65 for the CSI was proposed by [21] to
consider flood maps as locally relevant. The results obtained
by the methodology presented here achieved higher values
of CSI than the proposed threshold. This could indicate the
possibility of using the NB model to reconstruct images for
use in studies on larger scales such as regional or continental,
without prejudice to accuracy and using a flood event that,
depending on the size of the cloud cover would not be used.

5. CONCLUSIONS

This work explored the potential of the machine learning
Naive Bayes algorithm to reconstruct water masks derived
from optical remote sensed images with presence of clouds.

The NB model trained with the remaining data of a 26% of
cloud cover was able to reconstruct a water mask, extracted
from a Landsat 8 image, with an AC of 0.9817 and a CSI of
0.706. Another NB model, trained with 35% of cloud cover
image, extracted from the same Landsat scene, achieved the
proposed performance metrics of 0.9817 and 0.706 for AC
and CSI, respectively.
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These results demonstrated the feasibility of using the
proposed model in this context. For future work, a
recommendation would be to investigate the use of the model
in other regions. In addition, in the same flood event, compare
water masks obtained by images captured by optical sensors
with masks obtained by microwave sensors such as those
present in Sentinel satellites.
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